
Copyright 2004 IEEE. Published in Proceedings of ASWEC 2004, April 15-16 2004, Melbourne, Australia. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

An Environment for Automated Performance Evaluation of J2EE and
ASP.NET Thin-client Architectures

John Grundy1, 2, Zhong Wei1, Radu Nicolescu1 and Yuhong Cai1

Department of Computer Science1 and Department of Electrical and Computer Engineering2,
University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

Assessing the likely run-time performance of
applications using thin-client architectures during their
design is very difficult. We describe SoftArch/Thin, a thin-
client test-bed generator that synthesises performance test-
bed thin-client and server code from high-level software
architecture models. This generated code is performance
tested using a third-party tool and the results summarised.
Architecture models can be evolved and tests repeated
during application development to inform software
engineers of realistic performance characteristics of their
designs. Our environment currently supports J2EE and
ASP.NET-based thin-client code generation and
performance testing.

1. Introduction

Thin-client software architectures have become
extremely common in enterprise system implementations.
A user accesses the system via a web browser, which
obtains content to render from web server pages. These
web components access databases, application server
objects, legacy systems and so on. Two common
technologies for implementing such systems are Java 2
Enterprise Edition and Microsoft™ .NET.

Predicting the likely performance of thin-client systems
during their design is very challenging, as it is with other
distributed systems approaches [5, 10, 12]. Various tools
and techniques have been developed to predict distributed
system performance, notably via simulation, benchmarking
and rapid prototyping [1, 9, 3, 15]. Various tools have been
developed to assess the performance of implemented
distributed and thin-client applications [7, 12, 17]. It
remains difficult to assess the likely impact on performance
characteristics of different web architectural design and
implementation technology decisions. None of these
current approaches provide architects with high-level
support for modelling their architectures, easily exploring
performance impacts of different design and

implementation alternatives and obtaining realistic likely
performance indicators.

We describe SoftArch/Thin, an environment for high-
level modelling of thin-client application architectures with
an associated performance test-bed generator. Architects
sketch a high-level design of their intended system
architecture, including major client, web server component,
application server component and database abstractions.
Runnable J2EE and ASP.NET code is generated fully
automatically from this model along with configuration
scripts for the Microsoft™ Application Centre Test, a
third-party thin-client performance testing tool. These
generated servers are performance tested and the results
presented for analysis and architecture and technology
evolution.

We firstly motivate this research and describe related
approaches to thin-client architecture performance analysis.
We give an overview of the SoftArch/Thin approach and
illustrate some case study distributed system architecture
models. We describe how performance test-bed code and
testing tool scripts are generated and illustrate examples of
performance testing different design models and
implementation technology performance. We discuss
results of evaluations of our prototype tool, summarise the
contributions of our work and outline areas for future
research.

2. Motivation

Thin-client software architectures follow more or less
the structure outlined in Figure 1. Users access enterprise
system functionality via web browsers, which render
marked-up text, images and other media obtained remotely
from web servers.

W e b
B ro w s e rs

W e b S e rv e r(s)

W e b C o m p o n e n ts :
J S P s , S e rv le ts , A S P s

A p p l ic a tio n S e rv e r(s)

B u s in e s s O b je c ts :
C O R B A , C O M , E J B s

D a ta b a s e (s)

Figure 1. Thin-client software architectures.

A set of “web components” are hosted by these web
services, typically grouped into multiple implementations
of “pages” to display in the client browsers. Typical
implementation technologies used to build these web
components include Java Server Pages (JSPs), Java
Servlets, Active Server Pages (ASPs), PHP scripts, CGI
scripts, and Perl scripts. Web components may access
databases directly (in relatively simple systems), producing
a “three-tier” architecture. Alternately, they may access
(possibly distributed) enterprise application server
components like Enterprise Java Beans (EJBs), COM and
CORBA remote objects, and legacy systems, producing a
“multi-tier” architecture.

When designing a thin-client application developers
will normally have some desired or required performance
criteria from the system’s non-functional requirements that
different web components should meet. A variety of
different architectural arrangements are possible: splitting
or combining pages, using three-tier or multi-tier
architectures, replicating web server and application server
components, using multiple databases. They typically
specify various performance-impacting characteristics e.g.
number of server threads used, hardware and network
configurations and so on. They may also realise the design
with different web component, application server
component and database server technologies. It is very hard
to predict how well a thin-client architecture design will
meet its performance requirements under this great range of
different alternatives [1, 5].

A variety of approaches have been developed to
estimate or assess performance of software applications.
Simulation-based approaches build models of software
application architectures and use these models to estimate
application performance based on architecture [1, 14] or
middleware [10, 15] of the target application. A variety of
modelling and simulation approaches have been tried. As
these approaches simulate application performance, their
accuracy is prone to large variation and it is very difficult
to obtain performance models for 3rd party support
applications such as databases. Benchmarking approaches
[3, 5] provide reference application architectures and
implementations and compare relative performance when
different technologies are used to implement the reference
application. These provide accurate performance measures
for the benchmark application, but are only a very rough
performance guide for any related application. Rapid
prototyping approaches [9] focus on rapid development of
a partial application, usually focusing on implementing
partial versions of performance-critical parts (e.g.
networking and database loading). A large amount of
development effort must typically be expended even for
simple prototypes. If the architecture evolves the rapid
prototyping must be repeated to get updated performance
estimates for the final target application.

A number of tools have been developed to support
software architecture performance analysis [7, 1, 14],

application performance measurement [12, 8, 16, 18], and
network performance analysis [17], as well as software
architecture modelling and analysis in general [4, 11].In
general these either do not support performance modelling
of architectures or provide simulation-based approaches.
Those supporting analysis of architecture performance via
testing of real code either don’t support thin-client
abstractions or require a hand-implemented, completed
thin-client application to test.

3. Our Approach

We have extended our earlier performance test-bed
analysis tool work [7] to investigate support for thin-client
architecture modelling and performance analysis. This has
included developing code generators for both J2EE and C#,
ASP.NET thin client application implementation
technologies. The aim is to provide architects with a tool to
quickly model their architectures and to gain accurate
performance estimates of these models by generated and
performance testing real web server component and related
code. Such a tool could be used iteratively throughout
development of the application, from initial simple
architecture analysis to detailed performance testing of a
complex architecture used for the actual system design.

Figure 3 provides an outline of how SoftArch/Thin is
used by architects to assess the likely performance of their
thin-client architecture designs. An architect first models a
candidate software architecture for their web-based system
(1).

1. SoftArch architecture
modeling

<AppServer>
<Name>customerMaintain</Name>
<Type>iis</Type>
 ….

<RemoteObject>
<Type>aspx</Type>

 …

2. Generate XML

3. XSLT transfomation

6. Collect test results

7. Present and analyze results XSLT

J2EE test-bed
ASP.NET test-bed

Database

Web Application Testing Tool
+ client descriptor(s)

Web Application Testing Tool
+ client descriptor(s)

Test results

4. Upload /deploy test-bed

5. Process performance test

* JSP, Java code
* client descriptors
* database scripts
* batch files
* other support fi les

* ASPX, C# code
* client descriptors
* database scripts
* batch files
* other support fi les

Web application

Deployment Tool

<Client>
<Name>clientA</Type>
<Threads>4</Threads> …

<DBaseServer>
<Type>sqlServer</Type>
 …. …

Figure 2. Outline of our approach.

Abstractions used include clients, client requests,
servers, server components, server operations, databases,
database tables, and various relationships and properties.
From this architecture model an XML encoding of the
design is generated by SoftArch/Thin (2). A set of XSLT
transformation scripts is run over this XML to generate

various client and server test bed code and support files,
including JSP and .java code, ASP and C# code,
compilation, database configuration and component
installation scripts, and thin-client testing tool
configuration scripts (3). A deployment tool is used to
upload this generated code and scripts to multiple
networked client and server host machines (4).
Performance tests are run which involves the client
browsers being instructed to make large numbers of
requests to the server components (5). Performance test
results are collected (6) and analysis and summaries
displayed (7). The architect may then refine their
architecture and/or choose different implementation
technology options in the SoftArch/Thin modelling tool,
repeating the performance test generation and runs.

4. Modelling Thin-client Architectures

Our SoftArch/Thin performance test generation tool
provides a graphical modelling environment for specifying
abstractions making up a thin-client application
architecture design. Each design element has a set of
properties, some related to its structural architectural
characteristics and others used by the code and script
generation process to formulate performance test beds. The
modelling tool is based on our earlier SoftArch architecture
design environment work [6], with meta-model extensions
for supporting thin-client and test bed code generation
facilities.

1.Client

2. Server

3. Database

Editor Pane

Figure 3. SoftArch/Thin model of a simple architecture.

A simple example of a software architecture model
from SoftArch/Thin is shown in Figure 3. A single client,
Client_A, has one request defined for it, selectVideo. A
VideoWebServer has one web component,
VideoManagePage, which in turn has a
selectVideo_service. The selectVideo_service makes one
database request as part of its operation. A database server,
VideoDB_server, has a videoDB database, with one table
defined, video_table. Each of these abstractions in the
architecture design is related to others by a variety of
relationships. These include ownership e.g, selectVideo
belongs to Client_A; hosting e.g. videoDB_server Manage
videoDB; and message passing e.g. selectVideo_query
Consult2 videoDB. Other relationships include refinement,
allowing complex architecture elements to be composed of
hierarchical compositions.

Each architectural element and relationship has a range
of properties, accessed by dialogues as shown in Figure 3
for selectVideo. Some are structural, such as Type and
RemoteServer, specifying architectural element and
relationship characteristics. Others are used by the test bed
code generation, such as TimesToCall, RecordTime,
Duration and Warmup. These are used to formulate
appropriate testing parameters and control code.

Architecture models in SoftArch/Thin may be very
abstract, capturing very few basic abstractions. Test beds
generated from such a model can give a broad indication of
performance of the modelled abstractions in the target
application but will necessary be over-simplified. The
architect can refine a high level architecture model to much
more detailed levels, specifying many more client and
client request mixes, more detailed web server pages and
services, more detailed application server objects, and more
database tables and table properties. Such a more detailed
model will enable much more realistic performance
measures to be determined.

Figure 4 shows such a more detailed architectural
design, in this example part of the “PetStore” J2EE
reference application [13]. In this example several clients
are identified, each with different requests they will make
to the server. Each client has different numbers of instances
specified, and similarly each client request has different
numbers of requests to run and wait times between each
request. When test bed code is generated, these clients will
be concurrently run. The architect can vary the number and
mix of client requests to gauge their impact on application
performance. Some of the web server pages do single
operations e.g. ViewCategory_service, while others do
multiple e.g. PlaceOrder_service. Multiple diagrams can be
used to model subsets of the architecture to help manage
complexity. Alternative models for the same architecture
can be versioned within the tool, allowing multiple design
decisions to be modelled and their relative performance
compared.

Figure 4. Example of modelling parts of the J2EE Reference PetShop application in SoftArch/Thin.

5. Generating and Running Test-beds

Our SoftArch/Thin environment models are used to
fully-automatically synthesise performance test bed code,
configure a 3rd party web application performance testing
tool, and to co-ordinate the running of the tests and analysis
and visualisation of test results. Figure 5 shows an outline
of this process. The SoftArch/Thin model is converted to
XML, and XSLT transformation scripts run over this XML
to generate JSP, ASP, Java and C# code, along with build
script, deployment script and testing tool script files (1). A
deployment tool is used to upload this generated
information to multiple hosts, each running a deployment
tool server (2). The code is compiled and configuration
scripts run to initialise the web server(s), application
server(s) and database server(s) required by the architecture
model under test. The thin-client testing tool, Microsoft™
Application Centre Test, is told to run the performance test
(3). This behaves as one or more concurrent user client
browsers making requests to the generated web server
components. An analysis of the performance tests is shown
to the architect (4).

The XML encoding of a part of a SoftArch/Thin
architecture model is shown in Figure 6 (1). This example
illustrates how the synthesis of a JSP web component to be
performance tested is achieved. The XML file containing
the software architecture model encodes various
abstractions as XML tags and property values. In this
example, an AppServer “j2ee_videoWebApp” has a
RemoteObj (web component) “videoSearch”, which is of
Type “jsp” and defines a number of StatsReturned. A JSP
page generator XSLT script (2) is run on this XML by
SoftArch/Thin, transforming the XML-encoded

architecture properties into a .jsp code file (3). Part of this
particular transformation script is shown, a template that
matches a StatesReturned/State record in the input XML
model and transforms this into JSP page tags to display
object state information. Usually such information has been
returned from a database and stored in a “JavaBean” object.

Client

Database

Web app server

1. Generate .jsp/.asp, .java/.c,
.bat, .sql, .war etc files

2. Deploy generated test-bed files
to client, server host machines

ACT + client descriptor

J2EE web applicationDatabase

SoftArch/MTE/Thin

3. Instruct
Application Centre

Test to perform tests

4. Display and
Analyse results

Figure 5. Generating thin-client performance test-beds.

The generated .jsp file (3) code has tags which instruct
the JSP when accessed by a web browser to generate mark-
up to display state variable values of a JavaBean object in
HTML text fields. The JavaBean field names and text field
names are those from the source .xml file
StatesReturned/State records. Some of the XSLT scripts
get quite complex and can generate large amounts of code
from the model XML. Part of an Application Centre Test
configuration script is shown (4), which is the “client” code
generated by another XSLT script to test the performance
of the generated web page.

j2ee_videoWebApp.xml
<?xml version="1.0" encoding="UTF-8" ?>

<AppServer>
<Name>j2ee_videoW ebApp</Name>
<Type>j2ee</Type>
<RemoteObj>

<Name>videoSearch</Name>
<Type>jsp</Type>
<StatesReturned>

<State Table="video">id</State>
<State Table="video">name</State>
<State Table="video">description</State>
<State Table="video">status</State>
<State Table="video">stock</State>

.

.
</RemoteObj>

</AppServer>

. Jsp.xsl
<xsl:template match="RemoteObj">

<xsl:for-each select="StatesReturned/State">
 <xsl:value-of select="."/><![CDATA[<INPUT type=text name="]]><xsl:value-of select="."/><![CDATA[" size="115"

value="]]><%=myBean_<xsl:value-of select="../../Name"/>.get<xsl:value-of select="."/>()%>"
 </xsl:for-each>
.
.
 </form>
 </body>
</html>]]>
</xsl:template>
</xsl:stylesheet>

videoSearch.jsp
<html>
 .
 .
 id<INPUT type=text name="id" size="115"
value="<%=myBean_videoSearch.getid()%>">
 name<INPUT type=text name="name" size="115"
value="<%=myBean_videoSearch.getname()%>">
 description<INPUT type=text name="description" size="115"
value="<%=myBean_videoSearch.getdescription()%>">
 status<INPUT type=text name="status" size="115"
value="<%=myBean_videoSearch.getstatus()%>">
 stock<INPUT type=text name="stock" size="115"
value="<%=myBean_videoSearch.getstock()%>">
 </form>
 </body>
</html>

(3)

(2)

(1)

Option Explicit
Dim strServer, port
strServer = "130.216.36.173"
port = 80
Sub Main()

call SendRequest1()
call SendRequest2()
call SendRequest1()
call SendRequest2()

 End Sub
Main
Sub SendRequest1()
 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode, strPath
 If fEnableDelays = True then Test.Sleep (0)
 Set oConnection = Test.CreateConnection(strServer, port, false)
 . . .
 strPath = "/j2ee_videoW ebApp/videoSearch.jsp"
 oRequest.Path = strPath
 . . .
End Sub

(4)

Figure 6. Examples of .jsp code and ACT script generation in SoftArch/Thin.

We chose to use the Microsoft™ Application Centre
Test (ACT) tool to carry out the performance tests and
basic analysis. We did also prototype a simple “psuedo-
web browser”, and a web client test application that used
COM to instruct an IE5 browser, which can both perform
the specified client requests. However we found the ACT
tool provided the same capability to run concurrent
performance tests and also offered useful results capture
and visualisation facilities. SoftArch/Thin generates
configuration scripts for ACT and also uses the deployment

tool servers to invoke multiple instances of the tool running
on different clients for large-scale performance tests.

Figure 7 shows two examples of ACT testing tool runs
for generated architecture models for the PetShop
application. The only difference between the models was
that one specified “JSP” web components be generated and
the other “ASP”. The ACT testing tool displays in this
example are showing number of requests performed per
second over time along with summary information.

Figure 7. Example of using the ACT to analyse performance of generated systems.

Figure 8 shows a graph of average performance results
in terms of milliseconds to complete for several generated
JSP and C#/ASP.NET web components in the PetShop
application example. These tests were run with three
networked PCs, one each used to host the client (ACT
tool), web server and components (JSPs/ASPs) and
database (SQL Server 2000). The client requests and
database server tables are identical, the middle-tier web
components and servers being the difference. The
C#/ASP.NET version performs much faster than the JSP
version in this example. However, we used the Microsoft
IIS web server, a commercial performance-optimised
platform for the ASP.NET hosting, but used an un-
optimised J2EE SDK application server to host the JSP
web components.

The architect can modify various parameters in
SoftArch/Thin to adjust their performance tests e.g. web
component and database version to use, number of
concurrent clients, number of times to perform a request,
thread pool size, database table fields, and so on. They can
also modify their architecture e.g. splitting or merging
pages, adding or modifying web component database
requests, or adding or modifying application server
components and requests for multi-tier architectures.
SoftArch/Thin regenerates the code and script files and re-
runs the new performance tests automatically.

Average time to last byte (TTLB)

0

20

40

60

80

100

120

Page

M
ill

is
ec

on
d

J2EE
.NET

accountManage
Page

categoryManage
Page

itemManage
Page

ordertManage
Page

productManage
Page

Figure 8. Comparison of J2EE vs ASP.NET PetShop

application web page performance.

We compared the performance analysis results of our
generated test-beds to some pre-existing, third-party code
to illustrate the variation in performance between generated
code and hand-written code. Figure 9 shows the
performance test results of SoftArch/Thin-generated web
components to that of a hand-implemented C#/ASP.NET-
implemented version of the PetShop application,

downloaded from the internet [13]. We ran the exact same
ACT performance tests against the hand-implemented and
generated web components. The hand-implemented
application has additional application logic code which is
not present in SoftArch/Thin, but most of the generated
web component performance results are very close to the
hand-implemented application ones. The main outlier is the
orderManagePage, where the hand-implemented one has
some complex transaction logic that is over-simplified in
the generated version, hence the latter’s performance is
unrealistically fast.

Performance
parameters

Real
ASP.NET
PetShop

SoftArch/Thin-
generated PetShop

Overall average RPS
(requests/second)

419.56 460.22

Overall average (ms) 28.67 24.75

accountManagePage 27.34 26.36
categoryManagePage 23.42 23.56

itemManagePage 23.74 24.34
orderManagePage 39.15 27.34

productManagePage 23.63 24.01

Figure 9. Real ASP.NET PetShop performance vs
SoftArch/Thin-generated one.

6. Design and Implementation

The architecture of SoftArch/Thin is illustrated in
Figure 10. We developed a set of meta-models which
define thin-client architecture modelling abstractions
available to architects. Architecture models developed with
these abstractions are represented by an XML format, used
as input to a set of XSLT transformation scripts. We used
the Xalan XSLT engine to process these scripts to generate
JSP, JavaBean, ASP, .NET component, batch scripts,
configuration tool scripts and ACT scripts. These are
uploaded to multiple remote client and server host
machines and deployment scripts are run to compile, install
and initialise web and application server code and database
tables. The ACT clients deployed on client hosts are
instructed to run by remote messages sent via the
deployment tool servers. These run their specified
performance tests, collecting and summarising results. If
required, saved test results can be copied back to the
SoftArch/Thin tool via the deployment servers for further
analysis and aggregation.

Rem ote Server Hosts

W eb/Database/App
Servers

SoftArch

M eta-m odels
for thin-client
perform ance

testing

Architecture
M odels

XM L Save
Form at

Xalan XSLT
Engine

JSP, ASP,
Java, C#,

scripts
Deploym ent
Tool Client

Rem ote Client Hosts

Deployed
JSP, ASP etc

ACT Clients

ACT scripts

XSLT code
generation

scripts

Deploym ent
Tool Server

Deploym ent
Tool Server

Figure 10. The architecture of SoftArch/Thin.

We implemented SoftArch/Thin using a Java
application for the modelling tool, Xalan XSLT engine, a
custom deployment tool, and a third-party thin-client
application testing tool (Microsoft™ ACT). An existing
software architecture modelling tool, SoftArch, was
extended to support thin-client performance test generation
by use of a set of meta-models providing domain-specific
modelling abstractions and an XML save format for
architecture models. We have found XSLT to be a good
approach to code and script generation from XML source
data. Some of our XSLT scripts are quite complex but
scripts can be readily added and modified. This allows us
to provide additional code generation support for new save
file information without changing the modelling tool’s
implementation. The Application Centre Test thin-client
performance testing tool proved to be a robust, flexible
approach to carrying out the performance testing and
provides basic results analysis to architects.

7. Discussion

7.1. Evaluation of SoftArch/Thin

We have used SoftArch/Thin to model several thin-

client architecture applications and to provide performance
testing of these models. These applications have included
an on-line video search and rental library, the J2EE
PetShop reference application, and a complex micro-
payment system [2]. With the video application we
experimented with several different architectural
arrangements including 3-tier JSP/database, 4-tier
JSP/CORBA/database and multi-tier solutions. We also ran
performance tests using different database technologies and
web browsers. With all three applications we generated
both J2EE and C#/ASP.NET implementations of the web
and application server components and compared their
performance. We had pre-existing hand-implemented
versions of each of these systems so we could compare the

actual performance of to our generated web component
performance measures.

With each of the SoftArch/Thin generated web
component and application server component
implementations we gathered performance test results. For
most we used the Microsoft™ ACT tool, but to test
performance with different browser clients we used a client
proxy which drove the browser using COM. We then
gathered performance test results for the real, hand-
implemented versions of these applications and compared
the actual performance of the applications to the results
obtained by using SoftArch/Thin.

In general, the performance of the generated thin-client
applications was close to that of the real, hand-
implemented applications, for the most part within 15-30%
of the actual application speed under the same ACT-
managed tests. This result depended on the level of detail
in the SoftArch/Thin models: very abstract, simplified
architecture models produced correspondingly less accurate
performance results. It also depended on the complexity of
the application logic in the real system: the more complex
the logic, the less accurate in general the generated web
component performance test results. Some major
performance differences were found in the micro-payment
application due to the implementation approach used in the
real application for CORBA remote object access and the
parameter types passed between web component and
application server components. Application components
with complex transaction logic also tended to produce less
accurate results as the generated components use only
simple database and distributed object transaction models.

7.2. Advantages and Limitations

We have found that SoftArch/Thin provides a useful

environment for sketching software architectures and
generating performance test-beds to gain an understanding
of the possible performance of a system using such an
architecture. Software architects can sketch an architecture

design quickly and have significant amounts of code
generated which test the performance of web server,
application server and database performance under a wide
variety of user-specified loading conditions. A range of
architectural and implementation features can be modelled
and appropriate code generated without any user
intervention. The ACT suite provides a useful third-party
tool for load-testing the generated systems and reporting
performance test-bed results to the user.

However, our approach does have several limitations.
While more detailed architecture designs produce more
detailed generated test-bed code, as all of the code is
generated from the high-level design the performance
results obtained will never be exactly the same as those
from a fully-implemented system based on the design.
Hence the results will always only provide a guideline to
the architect. Approaches that measure performance of
hand-implemented code will always be able to provide
more accurate results, if the users are willing to expend the
effort involved in developing the prototype system.

SoftArch/Thin requires users to use its own proprietary
software architecture design notation. We developed this
notation as part of another project which investigated
enrichening visual architecture description languages.
Because this notation is non-standard, it may be useful to
investigate a more common architecture representational
approach, for example using an extended version of
appropriate UML diagrams.

Currently SoftArch/Thin users are expected to specify
all components of an architecture with the tool in order to
generate performance test-bed code. In addition, its current
support for results visualisation, storing and reusing
previous test-run results and comparing multiple test-run
results are very limited. The use of the Application Centre
Test tool suite limits the range of performance statistical
analysis results that can be presented to users. While we
have applied the tool to a number of thin-client software
architecture examples, it has limitations in terms of the size
of the architectures that can be sensibly modelled in the
tool and the results visualisation facilities for complex
architectures.

8.3. Future Work

There are a number of enhancements that could be

made to SoftArch/Thin to improve the facilities it provides
and the usefulness of the performance measures that it
produces. Automated visualisation of performance results
within SoftArch/Thin architecture diagrams could be used
to convey in situ summarises of different architecture
element performance characteristics. Similarly, integrated
graphing and results comparison would enable users to see
multiple test run results for different architecture and
implementation decisions within the tool. Generating more
complex code, particularly to support complex transaction
logic and caching of data would allow more realistic results

to be obtained from generated server code. Allowing users
to specify ranges of values for testing parameters e.g. 5-10
concurrent clients; findVideo invoked 10-15 times and
returning between 3-10 rows, would allow multiple test
configurations to be generated in one go. Ranges of
averaged performance values could then be collected and
presented rather than a single average performance
measure as at present. We would like to add other measures
than just transaction throughput in the future, such as
average CPU/memory usage, disk performance and so on.

8. Summary

Determining the likely run-time performance of thin-
client applications is very difficult. We have described a
tool, SoftArch/Thin, which provides support for test-bed
based thin-client application performance analysis. A high
level software architecture model is used to generate web
server components, application server components and
database tables, along with compilation and configuration
scripts. This generated code is uploaded to distributed
client and server hosts and performance tests run on the
web components using the Microsoft™ Application Centre
Test tool. We have successfully used SoftArch/Thin to
model several thin-client architectures and obtain realistic
performance measures via generated test bed code.

References

1. Balsamo, S., Simeoni, M., Bernado, M. Combining
Stochastic Process Algebras and Queueing Networks for
Software Architecture analysis, In Proceedings of the 3rd
International Workshop on Software and Performance,
Rome, Italy, July 214-26 2002, ACM Press.

2. Dai, X. and Grundy, J.C. Customer perceptions of a thin-
client micro-payment system: issues and experiences,
Journal of End User Computing, Vol. 15, No. 4, Idea
Publishing Group.

3. ECPerf Performance Benchmarks, August 2002,
ecperf.theserverside.com/ecperf.

4. Gomaa, H., Menascé, D., and Kerschberg, L. A Software
Architectural Design Method for Large-Scale Distributed
Information Systems, Distributed Systems Engineering
Journal, Sept. 1996, IEE/BCS.

5. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE.

6. Grundy, J.C. and Hosking, J.G. SoftArch: Tool support for
integrated software architecture development, International
Journal of Software Engineering and Knowledge
Engineering, Vol. 13, No. 2, April 2003, World Scientific, pp.
125-152.

7. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the 2001 IEEE International
Conference on Automated Software Engineering, San Diego,
CA, Nov 26-29 2001.

8. Hansen, K. Loading testing your applications with Apache
JMeter, http://javaboutique.internet.com/tutorials/JMeter/.

9. Hu L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In Proceedings
of the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, IEEE, pp. 270 – 276.

10. Juiz, C., Puigjaner, R. Performance modelling of pools in
soft real-time design architectures, Simulation Practice &
Theory, vol.9, no.3-5, 15 April 2002, Elsevier, pp.215-40.

11. Kazman, R. Tool support for architecture analysis and
design, In Proceedings of the Second International Workshop
on Software Architectures, ACM Press, 94-97.

12. McCann, J.A., Manning, K.J. Tool to evaluate performance
in distributed heterogeneous processing. In Proceedings of
the Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE, 1998, pp.180-185.

13. MSDN, Using .NET to implement Sun Microsystem’s Java
Pet Store J2EE BluePrint application, October 2002,
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnbda/html/psimp.asp.

14. Nimmagadda, S., Liyanaarachchi, C., Gopinath, A., Niehaus,
D. and Kaushal, A. Performance patterns: automated
scenario based ORB performance evaluation, In Proceedings
of the Fifth USENIX Conference on Object-Oriented
Technologies and Systems, USENIX, 1999, pp.15-28.

15. Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I. Using
analytic models for predicting middleware performance. In
Proceedings of the Second International Workshop on
Software and Performance, ACM 2000, pp.189-94.

16. Subraya, B.M., Subrahmanya, S.V. Object driven
performance testing of Web applications, In Proceedings of
the First Asia-Pacific Conference on Quality Software, IEEE
CS Press, pp.17-26.

17. Topol, B., Stasko, J. and Sunderam, V., PVaniM: A Tool for
Visualization in Network Computing Environments,
Concurrency: Practice & Experience, Vol. 10, No. 14, 1998,
pp. 1197-1222.

18. Web Application Testing, WAPT Version 2.0,
http://www.loadtestingtool.com/.

