
Generating Domain-Specific Visual Language Editors from High-level Tool
Specifications

John Grundy1, 2, John Hosking1, Nianping Zhu1 and Na Liu1
1Department of Computer Science and 2Department of Electrical and Computer Engineering

University of Auckland, Private Bag 92019
Auckland, New Zealand

{john-g, john, nianping, karen}@cs.auckland.ac.nz

Abstract
Domain-specific visual language editors are useful in
many areas of software engineering but developing such
editors is challenging and time-consuming. We describe
an approach to generating a wide range of these graphical
editors for use as plug-ins to the Eclipse environment.
Tool specifications from an existing meta-tool, Pounamu,
are interpreted to produce dynamic, multi-view, multi-
user Eclipse graphical editors. We describe the
architecture and implementation of our approach,
examples of its use realizing domain-specific modelling
tools, and strengths and limitations of the approach.

1. Introduction
Domain-specific visual languages (DSVLs) are

popular in many areas of software engineering [2], [8].
DSVLs provide high-level, domain-specific visual
notations to describe complex information in a particular
domain more efficiently and effectively than general-
purpose modelling languages [11], [16]. Examples
include special-purpose modelling languages for software
architecture modelling and requirements capture [19],
UML extensions for modelling e.g. aspect-oriented
systems or real-time behaviour [1], process modelling and
web service orchestration tools [25], data transformation
tools [11], and visualization techniques, e.g. 3D code
package navigation [27]. Users need tools to navigate and
collaboratively edit models defined using such DSVLs.
These tools often need to generate code [7],[4] or other
models such as XMI, BPEL4WS or XSLT [25],[19].

Developing DSVL tools for such domains is
demanding [2]. Key challenges include specifying the
desired tool meta-models and visual notations; realising
tool editors; and integrating the DSVL tools with other
software engineering tools. A number of tool
specification techniques and associated meta-tools have
been produced to make the task easier, such as MetaEdit+
[14], Pounamu [36], Escalante [21], IPSEN [15],
MetaMOOSE [7], DiaGen [22] and DSL Tools [8].
Unfortunately many of these approaches suffer from
insufficient expressive power to build desired visual
language tools; difficulty in using the meta-tools, reliance

on extending frameworks and hence programming skills;
and a lack of tool integration support (data, control and
presentation [31]). An additional problem is that the
generated tools must compete, in terms of usability and
quality, with the highly polished commercial and open
source general purpose development tools and
environments end users are used to, such as the Eclipse
and VisualStudio IDEs [5][8]. Unfortunately building
domain-specific visual language tools with Eclipse
frameworks is still very challenging, time-consuming and
error-prone [6], [27].

We have developed Marama1, a set of Eclipse plug-ins
that realize domain-specific visual modelling tools
specified using high-level DSVL tool specifications
produced from an existing meta-tool, Pounamu [36].
Marama allows users to rapidly specify or modify a
desired visual language tool using Pounamu design tools
and then have the tool realised as a high-quality Eclipse-
based editing environment. Multiple users and multiple
views are supported along with visual editing and
complex behavioural specification support. Marama
DSVL editors look and feel like other Eclipse graphical
editors, use Eclipse code generation support, and can be
integrated with and extended by other Eclipse plug-ins.
Their specifications can, however, be modified on the fly
using Pounamu allowing rapid trialling and deployment.

We firstly present a motivating example for our work
and survey related work on meta-tools, domain-specific
languages and visual language environments. We then
provide an overview of Marama’s approach and
architecture, illustrate the development and use of
Marama visual editors, and discuss key design and
implementation details. We describe evaluations of the
Marama toolset, discuss its strengths and limitations, and
summarise possible future research directions.

2. Motivation
Visual, domain-specific languages empower software

engineers by providing a set of building blocks and visual
metaphors allowing them to efficiently and effectively
describe models in particular problem domains. Consider
a tool for specifying web service compositions.

1 Marama is Maori for “moon”, the generator of an Eclipse…

(a)

(b)

Figure 1. (a) ViTABaL-WS editing in Pounamu; (b) tool specifications in Pounamu; (c) editing in Marama.

Rather than writing process descriptions in a textual
scripting language like BPEL4WS (BusinessProcess
Execution Language for Web Services) [19], most users
would prefer to graphically specify the web services and
their composition to form a new “business process”. A
number of domain-specific visual language tools have
been developed to do this [25],[19], the rationale being
that a special-purpose tool using a special-purpose
language is better than a general-purpose tool/language
such as vanilla UML in a conventional CASE tool.

We have developed one such tool, ViTABaL-WS, for
composing web services. We have developed a visual
language environment for ViTABaL-WS using a meta-
tool, Pounamu [19]. Figure 1 (a) shows ViTABaL-WS in
use modelling the composition and orchestration of
several web services using its domain-specific tool
abstraction-based visual language. The Pounamu
specification of this tool includes definitions of the tool
meta-model, shapes, connectors, graphical views of the
model, editing behaviour and code generation
(BPEL4WS encoding of the model). Figure 1 (b) shows
an example of these definitions. Key requirements for
domain-specific visual language tools that we and others
have identified include:
• Providing users a rich set of graphical modelling

primitives and diagram editing support, producing a
consistent visual “metaphor” for the domain;

• Having an underlying model shared by all diagrams
(model views) with a well-defined meta-model;

• Ability to display and edit different parts of the
model in different diagrams, with consistency
management;

• Support for complex event handling and information
import/export, with complex editing and model
constraint rules, code generation and tool
integration;

• Scalable persistency and collaborative work support,
including asynchronous version management and
synchronous diagram editing and awareness support;

• Tight presentation, data and control integration with
related tools e.g. IDEs, CASE tools.

Key research questions in the area of specifying and

building domain-specific visual language tools include:
• How can DSVL tools be described at a high level of

abstraction avoiding the low-level coding needed in
most frameworks? This includes meta-model, visual
notation, multi-view and editing constraints,
import/export and code generation features.

• How can we generate high-quality DSVL tools, in
terms of end-user needs and satisfaction with the
tool and range of tool capabilities that can be
realised? Ideally the same DSVL tool specification
could be used to generate different tool realisations
e.g. as plug-ins for VisualStudio, Eclipse, Enterprise
Architect, or providing web-based user interfaces or
using different code generation technologies.

• Can we generate DSVL tools from a suitable high-
level specification that can compete with hand-
implemented tools, but with much easier tool
modification and extension?

Pounamu, like other meta-tools, provides a set of

editing tools that realise its meta-tool specifications

allowing end users to model using the generated domain-
specific modelling tools. However, like most other meta-
tools Pounamu-generated modelling tools are difficult to
integrate with other tools, provide their own look-and-feel
and do not produce “commercial quality” IDE user
interfaces and support facilities. They rely on custom
code generation, plug-in extension and CSCW support
mechanisms. Similar editors can be built with Eclipse’s
Graphical Editing Framework (GEF). Such editors have
the advantage of seamless integration into the (open
source but commercial quality) Eclipse IDE, can directly
use Eclipse’s code generation and other plug-ins, and can
be readily packaged and deployed.

Unfortunately GEF is very complex and while
graphical editors built with it are high quality, developing
and maintaining these is challenging [6],[27]. Developers
do not directly obtain model save/load, multi-view and
multi-user editing support, having to code these using
other (complex) Eclipse frameworks. Also, while
Pounamu allows non-experts and even non-programmers
to easily develop exploratory domain-specific visual
language modelling tools, only expert Eclipse developers
can reasonably be expected to develop GEF-based visual
language editors. Ideally what we want is to realize GEF-
quality editors as plug-ins to the Eclipse environment but
using Pounamu-style meta-tool capabilities.

3. Related Work
Three main approaches exist for the development of

the type of visual, multiple view and multi-user
environment exemplified by ViTABaL-WS: the use of
reusable class frameworks; visual language toolkits; and
diagramming or CASE meta-tools.

General purpose graphical frameworks provide low-
level yet powerful sets of reusable facilities for building
diagramming tools or applications. These include MVC
[13], Unidraw [30], COAST [29], HotDoc [1] and
Eclipse’s GEF [12]. While powerful they typically lack
abstractions specific to multi-view, visual language
environments, so construction of tools is time-consuming.
For example, supporting multiple views of a shared model
in GEF requires significant programming effort. Special
purpose frameworks for building multi-user, multi-view
diagramming tools include Meta-MOOSE [7], JViews
[9], and Escalante [21]. These offer reusable facilities for
visual language-based environments, but still require
detailed programming and a compile/edit/run cycle,
limiting their ease of use for exploratory development.

Many general-purpose, rapid development user
interface toolkits have been developed to reduce the
edit/compile/run cycle. Many, including Tcl/Tk [32],
Suite [3], and Amulet [24], are suitable for visual
language-based tool development. They combine rapid
application development tools and programming

extensions. However, as they lack high-level abstractions
for visual, multi-view environments and tool integration,
more targeted toolkits have been produced to make such
development easier. These include Vampire [20], DiaGen
[22], VisPro [34], JComposer [9], PROGRES [28] and
DSLTools [8]. Some of these use code generation from a
specification model, e.g. DiaGen and JComposer. Others,
e.g. PROGRES and VisPro, use formalisms such as graph
grammars and graph rewriting for high-level syntactic and
semantic specification of visual tools. Code generation
approaches suffer from similar problems to many toolkits:
an edit/compile/run cycle and difficulty in integrating
third party solutions. Formalism-based visual language
toolkits may limit the range of visual languages supported
and are often difficult to extend in unplanned ways.

Meta-tools provide an IDE for developing other tools.
These include KOGGE [4], MetaEdit+ [14], MOOT [26],
GME [16], MetaEnv [1] and IPSEN [15]. Usually they
aim for a degree of round-trip engineering of the target
tools. Typically they provide support for their target
domain environments, but are limited in their flexibility
and integration with other tools [31]. These problems
occur at presentation (interface) and data/control levels.

As the Eclipse environment has gained popularity a
number of tools have been developed or proposed for
generating Eclipse graphical editors. These include the
proposed Graphical Modelling Framework (GMF),
combining the EMF (model) and GEF (graphical)
frameworks, the Merlin graphical editor generator, which
uses EMF data models to generate a basic editor suite,
and generation of Eclipse editors from graph grammar
formalisms [6], supporting simple diagram notations.
Unfortunately these generators provide only limited editor
functionality, use limited formal expression of editor
functionality, or infer editor functionality and generate
simplistic graphical symbols and editors. In summary:
• Framework and UI toolkit-based approaches are

very powerful and produce high-quality DSVL tools
but require detailed programming and class
framework knowledge;

• Most visual language tool-kits use higher-level
models and formalisms e.g. graph grammars, but are
limited in their expressive power and tend to
produce limited visual notations and editor
functionality;

• Few of these development tools support round trip
engineering and live, evolutionary development.
Regeneration of code can be a large problem when
integrating backend code. Most have limitations
with regard to integration with other tools.

4. Our Approach
We have developed Marama, a set of Eclipse plug-ins

that read high-level Pounamu meta-tool specifications and

realize multi-view, multi-user graphical editors in the
Eclipse IDE. Figure 2 shows the approach we use to
realise Eclipse-based DSVL tools with Marama.

A tool developer or user creates or modifies a tool
specification using the Pounamu meta-toolset (1). This
specification is written to an XML-encoded format (2),
which is read by the Marama Eclipse plug-in to configure
editing tools (3). On reading a tool specification Marama
creates a shared model and one or more graphical editors
conforming to the Pounamu-generated specification (4).
We used GEF to realise the graphical editors and EMF to
represent model and diagram state. Model and diagram
state are saved and loaded to XML files or an XML
database using the OMG XMI common exchange format
via EMF’s built-in capabilities (5).

1. Visual language tool
specification in the
Pounamu meta-tool

2. Pounamu saves tool
specification to XML files

<< XML >>

3. Load tool specification
into Marama plug-in

Eclipse
IDE

Marama
Plug-ins

Eclipse IDE

GEF-based
editors

EMF-based
model data

Marama
Plug-ins

Tool spec.
XML

4. Marama dynamically
configures GEF editors; uses

EMF-based model data

Eclipse IDE

GEF-based
editors

EMF-based
model data

Diagram
Differencing

5. Modelling tool data
saved/loaded as XMI; multi-

user support via plug-ins

XMI

Collaborative
Editing

Other
Maramas Editing commands

Other
Eclipse
plug-
ins

Figure 2. The Marama approach to realizing Eclipse-

based visual language tools.
In addition, we have developed plug-ins to support

multi-user diagramming, including diagram differencing
for asynchronous work and collaborative diagram editing
for synchronous work. These plug-ins use the GEF
Command pattern and EMF Notification pattern standard
plug-in integration mechanisms. 3rd party Eclipse plug-ins
can also interact in standard ways with Marama’s user
interface and its diagram and model data, using standard
Eclipse IDE, EMF and GEF plug-in interfaces. Marama
supports dynamic update of tools by allowing a modified
Pounamu tool description to be re-read, even while a tool
is in use.

5. Architecture
Despite large numbers of DSVL toolkits and tools

being produced over many years of research, there is no
currently agreed way of specifying such tools at high
levels of abstraction. A wide range of approaches have
been used e.g. graph grammars (often resulting in very
constrained editing functionality) [6], [35]; symbol

grammars [4], [14]; object model-based generation [7],
[9]; XML models [8], [26]; and custom low-level code
solutions [29], [30].

Our Pounamu meta-tool represents tool specifications
as a set of meta-model entities and associations; view
shapes, connectors and dialogues; view types relating
shapes and connectors to meta-model entities and
associations; and event handlers for complex editing
control and model constraint implementation. Pounamu
tool specifications are hierarchically organised as a set of
related XML files. Figure 3 illustrates their basic
structure. This includes a tool project file specifying the
configuration of a particular tool, the meta-model, shape
and connector type specifications (visual icons for
diagrams), view types (diagram types), and event
handlers. The meta-model is a form of extended entity-
relationship model. The shape and connector type
specifications describe abstract GUI components that
make up arbitrarily complex visual notational symbols for
the tool. Event handlers are Java code, reused from a
library or written by hand via a Pounamu meta-tool
interface that is plugged into the running tool to
implement complex editing and model behaviour,
constraints, and code generation. View types are the
diagram types supported by the tool: allowed shapes,
connectors, and event handlers for each diagram type and
mappings from them to model entities and associations.

Tool project.xml
-name
-meta-models
-view types
-shapes, connectors
-event handlers

Meta-model(s)

Entities.xml
-name, type
-attributes

Associations.xml
-name, type
-entities
-attributes
-constraints

View elements

Shapes.xml
-names, types
-sub-shapes
-properties

Connectors.xml
-names, types
-shapes
-properties

View type(s)
-name
-shapes, connectors
-entities, associations
-mappings: shape->
 entity etc
-event handlers

Event handlers Handlers.xml
-name,
 description
-Java code

Figure 3. Structure of Pounamu tool specifications.
Figure 4 shows a high-level architecture view of the

Pounamu meta-tool and Marama Eclipse plug-ins.
Pounamu tool specifications represented in XML format
are saved to tool projects (1), hierarchically organised
directories or ZIP archives. Compiled event handlers are
stored as Java .class files. Users of Marama locate a
desired existing Marama project to open or request a

project be created via the standard Eclipse resource
browser (2). When a project is re-opened or created in
Marama, the corresponding Pounamu tool specification
files are read and loaded into DOM objects (3). These are
parsed and provide an in-memory representation of the
Marama tool configuration. This tool configuration is
used to configure an EMF-based in-memory model of
both model and view (diagram) data (the names and
properties of all entities, associations, shapes and
connectors). It is also used to produce the editing controls
of Marama GEF-based diagram editors (i.e. the allowable
shapes and connectors; the rendering of shapes and
connectors; the editable attributes of shapes and
connectors, etc) (4). When a diagram is opened, Marama
configures a GEF editor and renders the diagram (5).
 Eclipse IDE Application

Pounamu Meta-tool
Application

Specification Tools

 Shape Designer
Meta-model

Designer
Event handler

Designer
View Designer

Tool Specifcations
– XML documents

Tool specification
projects (XML)

Java .class files
(event handlers)

Marama Plug-in
(GEF Editor)

Eclipse IDE
resource

management

Event handler objects
 (in sandbox)

Marama save files - Eclipse
workspace files (XMI)

Marama Plug-in
(EMF Model)

(3)
Adapter API

(4)
(2)

(5)

(6)

(7)

(9) (1)

Eclipse IDE UIs
Tool

config.
held in
DOMs

(8)

Figure 4. The architecture of Marama.

Event handler code is compiled by Pounamu to Java
.class files and stored in the tool project directory
structure or ZIP archive. Marama loads all event handler
compiled classes (6) during tool configuration load time.

However, as these classes were compiled to use the
Pounamu editing tool’s API, they are run in a special
sandbox within the Marama plug-in inside Eclipse. A set
of adapter classes look to the compiled event handlers like
the Pounamu editor API but map Pounamu API calls onto
the Marama Eclipse plug-in APIs (7). When Marama
view or model data is updated, the Marama EMF objects
are wrapped by Pounamu API adaptor objects and events
are sent to the loaded Pounamu-compiled event handler
classes. These can then invoke methods on the wrapping
adapter classes which are translated into EMF object
requests and updates (8). This saves complex conversion
of Pounamu event handler code into native Marama form.

Marama uses EMF’s XMI save and load support to
store and load modelling project data (9). Model entity
and association instances are written to a .model file,
while each diagram and its shape and connector data are
written to a separate .view file, all managed within the
Eclipse resource workspace. Alternatively an XML
database or object to relational database layer can be used
for this. Several of these exist for generic EMF model
persistency. Stand-alone diagrams can be created and
used without a model and a subset of all diagrams for a
shared model can be opened at one time. Consistency is
supported between views sharing the same information by
immediate update if all views are in memory, or
differencing and then merging when a view is reloaded.
Marama can be extended with plug-ins that enhance its
capabilities using standard Eclipse mechanisms. For
example we have developed diagram differencing and
collaborative editing plug-ins to support asynchronous
and synchronous collaboration [22]. In addition, Marama
tools can use other Eclipse capabilities via their event
handlers and Marama-Pounamu object wrappers. For
example, we have used the EMF Java Emitter Templates
(JET) toolset to implement code generation capabilities.

<pounamushape>
 <name>Toolie</name>
 <source>Toolie</source>
 <thumbnailshapetype>square</thumbnailshapetype>
 <thumbnailsizetype>ratio</thumbnailsizetype>
 <thumbnailwidth>100</thumbnailwidth>
 <thumbnailheight>100</thumbnailheight>
 <displayname>panel1</displayname>
 <type>pounamu.core.visualcomp.PounamuPanel</type>
 <path>this</path>
 <property>
 <propertyname>type</propertyname>
 <propertytype>ShapeType</propertytype>
 <propertyflag>visual</propertyflag>
 <propertypath>this</propertypath>
 <propertyvalue>
 <simplevalue>Oval</simplevalue>
 </propertyvalue>
 </property>
 <property>
 <propertyname>stroke</propertyname>
 <propertytype>BasicStroke</propertytype>
 <propertyflag>visual</propertyflag>
 <propertypath>this</propertypath>
 <propertyvalue>
 <linewidth>1.0</linewidth>
 <endcaps>2</endcaps>
 <linejoints>0</linejoints>
 <dasharray0>10.0</dasharray0>
 <dasharray1>0.0</dasharray1>
 <dasharray2>10.0</dasharray2>
 <dasharray3>0.0</dasharray3>
 <miterlimit>10.0</miterlimit>
 <dashphase>0.0</dashphase>
 </propertyvalue>
 </property>
 …

import org.eclipse.emf.common.notify.Notification;
import ….Library1...SimpleManageContainedShapes;
import nz.ac.auckland.cs.marama.model.diagram.MaramaDiagram;

/**
 *
 * Manage list of request sub-shapes inside client & service shapes...
 *
 * @author john-g
 *
 */
public class ManageRequests extends SimpleManageContainedShapes

{

 String myOwningShapes[] = { "ServiceShape" };
 String mySubshapes[] = { "RequestShape", "DelayShape" };

 public void setDiagram(MaramaDiagram diagram)
 {
 super.setDiagram(diagram);

 OwningShapes = myOwningShapes;
 Subshapes = mySubshapes;
 subshapeConnector = "RequestConn";

 containerKeyProperty = "name";
 subshapeLabelProperty = "name";
 subshapeKeyProperty = "id";
 connectorKeyProperty = "name";
 }

}

a b
c

Figure 5. Part of a tool shape specification in Pounamu and part of its XML and event handler encodings.

6. Example Usage
In this section we illustrate the use of Marama to

realise the ViTABaL-WS web service orchestration tool
described in Section 2. One of the Pounamu meta-tool
views describing a shape specification for ViTABaL-WS
is shown in Figure 5 (a), along with part of the XML save
file for this shape definition Figure 5 (b). Shapes have a
set of properties and sub-shapes and describe the
appearance of a notational symbol for use in a view type
(i.e. diagram type). When this tool project is opened by
Marama, the shape definition and other tool specification
files are loaded and used to configure the Marama view
data and GEF-based graphical editors for the tool.

Pounamu provides facilities to specify model and
view meta-models (entities, associations, shapes,
connectors); view types (collections and shapes and
connectors and their mapping to a model); and event
handlers [36]. Event handlers are Java scriptlets used to
specify: editing constraints e.g. keep shape within another
shape/resize shape when another is resized etc; model
constraints e.g. enforce relationship arity constraint/auto-
create entity on another entity creation; recalculate
dependent values; and import/export e.g. code generation,
import data from XMI format into tool. Many such event
handlers are reusable from a library requiring little or no
Java coding, an example shown in Figure 5 (c). Complex
editing operations e.g. replace collection of
shapes/connectors with another set are implemented as
event handlers invoked by a pop-up menu or when
another event occurs. Pounamu supports definition of
shapes-within-shapes allowing arbitrarily complex
renderings of model information in diagrams. Limited
preferences are supported for generating a Marama editor
from a Pounamu tool specification e.g. the editing palette

items, kind of property sheet and outline views provided
for generated editor. These are currently specified using
an event handler to set properties on view initialisation.

A Marama user starts Eclipse and then uses the
standard Eclipse IDE resource browser to create (or
reopen) Marama model projects and diagrams. Figure 6
(1) shows a user has created a new ViTABaL-WS model
project in Marama by selecting the Pounamu meta-tool
tool project save file with the resultant meta-model
viewer opened in Marama. This viewer is a GEF editor
displaying the imported Pounamu meta-model entity and
association types. It supports the user rearranging (but
currently not defining) meta-model entity and association
shapes and model instance data browsing via a property
sheet viewer below. In this example, the Flow association
type is selected and the property sheet shows information
about the five instances of this association that are in the
model.

The user may reopen existing Marama diagrams or
create new ones. In Figure 6 a ViTABaL-WS web service
composition diagram is edited in Marama. This uses a
GEF editor Marama has configured using the view type
specification files generated by the Pounamu meta-tool.
The available shape and connector types are accessed via
a palette (a); shapes and connectors can be directly
manipulated in a canvas (b); properties of a selected shape
or connector can be edited using the standard Eclipse
property viewer (c); and tool bars and pop-up menus used
to manipulate diagram content (d). A hierarchical outline
view is also provided (e). Marama diagrams behave like
other GEF editors using standard Eclipse drag and drop,
copy/paste, printing etc. The resource view (f) shows
model projects and diagrams available; these can be
organised into Eclipse projects and folders.

a
b

c

d

e

f

1 2

Figure 6. ViTABaL-WS views being edited in Marama.

a

b

Figure 7. (a) Multi-view consistency and (b) diagram differencing for collaborative work.

Multiple views are supported and are kept consistent
with one another via an EMF model. Figure 7 (b) shows a
second ViTABaL-WS view with common elements to
those in Figure 6. This multiple view support extends to
consistency between multiple diagram types with a
common EMF model. In the example in Figure 7, the user
has renamed a service in a BPMN (Business Process
Modelling Notation) view (a) of the web service
composition, resulting in changes to the name in
ViTABaL-WS composition view (b).

Figure 7 (b) also shows our diagram differencing
support. In earlier work we developed a number of
extensions to Pounamu to support CSCW, thin-client
diagram editing, and code generation and model export
facilities [36]. These used a custom plug-in extension
mechanism and web service-based API for Pounamu. We
have developed exemplar plug-ins for Marama to support
diagram differencing and merging and collaborative
editing for group work, using the same algorithms as used
in [22], but using Eclipse’s standard plug-in extension
and integration mechanisms to extend Marama. As with
the Pounamu plugins, the support is generic, working
with any Marama-generated diagram type.

The diagram differencing and merging plug-in
extends the pop-up menu for Marama allowing the user to
compare two versions of the same diagram. In Figure 7,
the user has checked-out a diagram (“process_view1a” –
middle view tab at top) from a shared CVS repository,
made changes to it, and then wishes to compare the
diagram to the other version that has been concurrently
modified by another user. The user checks-out a read-
only copy of this alternate version (“process_view1b”)
from the repository, opens it, selects the Diagram
differencing command added to the Marama editor pop-
up menu and the diagram to compare to, and a list of
Marama editing commands are generated (bottom).

Running these commands on the diagram will convert it
into the alternative version. The user may elect to run all
or some of the commands, doing a full or partial merge of
changes.

To support external tool integration with a Marama
editor, a convenient mechanism is to use code generation
via Java Emitter Templates (JET). For example, in Figure
8 (a) the user has elected to generate a BPEL4WS
specification (right) from the Marama ViTABaL-WS
model (left). To achieve this, an event handler is invoked
when the user selects a “Generate BPEL” pop-up menu
item and the event handler calls a JET-generated
translator. This translator converts the Marama
ViTABaL-WS business process model data into a
corresponding BPEL4WS specification. Selecting
“Execute BPEL” deploys this BPEL4WS code to a
workflow engine and run (we used IBM’s BPWS4J) as
outlined in Figure 8 (b). Implementing such back end
code generators is simple and straightforward using the
leverage provided by the JET framework, contrasting
with the need for Java or complex XSLT code to do the
same in Pounamu.

<receive name="receive" partnerLink="customer"
 portType="loanApprovalPT"
 operation="approve"
 inputVariable="request"
 outputVariable="FinalApproval">
 <!--links-->
<invoke name="invokeapprover" partnerLink="approver"
 portType="loanApprovalPT"
 operation="approve"
 inputVariable="request"
 outputVariable="FinalApproval">
 <!--links-->
<invoke name="invokeassessor" partnerLink="assessor"
 portType="riskAssessmentPT"
 operation="check"
 inputVariable="request"
 outputVariable="assessmentInfo">
 <!--links-->

Eclipse IDE
Marama Plug-in

EMF model of
Marama projects

Java Emitter
Templates for
ViTABaL-WS

JET Engine

Generated BPEL4WS
specifications

BPWS4J Engine

Deployed
Web

Services

Event
handler to
deploy

Deployed
BPEL4WS

“Debug”
web
service

a

b

Figure 8. JET-based BPEL4WS generation.

7. Design and Implementation
To realise Marama we used a number of Eclipse
frameworks to implement a dynamic interpreter for our
Pounamu-generated DSVL tool specifications. Figure 9
illustrates the structure of Marama. Tool specifications
are loaded from Pounamu XML files into Document
Object Model (DOM) structures. A set of Marama meta-
model classes provide an interface to the tool
specifications (1).

Marama Models use the Eclipse Modelling
Framework (EMF) to represent model (entities and
associations) and view (diagrams, shapes and connectors)
data. When creating or re-opening a Marama project or
diagram, these are configured using the DOM derived
Marama meta-tool specification objects (2). These define
allowed diagram, shape, connector, entity and association
types, and their attributes and relationship constraints.
When rendering a diagram, Marama EditPart objects
create Marama Figure objects based on the Marama meta-
tool diagram specifications. Figure objects read diagram
data and meta-model shape and connector appearance
specifications (3) using them to instantiate the diagram
via draw2d Figures, resulting in a rendered diagram in a
GEF window (4).

When selected, properties associated with a shape or
connector are displayed, with values fetched from the
diagram shape/connector and any associated model
entity/association, using a standard Eclipse property
sheet.
Edits to a Marama diagram are processed by GEF edit
parts (5). A set of specialised edit part factory, policy and
edit parts have been implemented for Marama editors.
These generate appropriate figure and outline view
renderings and Command objects to modify a diagram’s

model state (6). Changes to diagram objects generate
EMF Notification events. These are used to determine
appropriate changes to make to the underlying shared
model entities and associations (7). Updates to model
entities and associations also result in generation of EMF
events. If multiple views contain shapes or connectors
sharing the updated model data, the EMF events are used
to trigger appropriate update of diagram model data. The
diagrams are then re-rendered to reflect the changes (8).
Project and diagram model data is written to and from an
XMI format using EMF’s XMI reader/writer support (9).

The Pounamu meta-tool compiles event handler
specifications –Java scripting code - into Java classes that
use the Pounamu editing tool APIs. A mechanism was
required to load compiled Pounamu API-using event
handlers into Marama as automatic translation to using
Marama APIs proved too difficult. We chose to use a
“sandbox” approach where Pounamu-generated event
handler objects are dynamically loaded by Marama into a
sandbox providing adaptors between the Pounamu APIs
and Marama APIs, making the handlers think they are
running in the Pounamu editing tool. EMF Notification
objects generated by Marama model and diagram objects
are sent to Marama objects representing a proxy to the
Pounamu event handler objects (10).

Marama model and diagram object changes are
wrapped by PounamuEvent objects and sent to these
Pounamu-native running event handlers (11). These
Pounamu-compiled handlers may then read and update
the Marama diagram and/or project model data via a set
of adaptor classes between Pounamu API calls and
Marama API calls. These calls result in updates to
Marama model and diagram objects as appropriate or may
invoke other Eclipse tools and plug-ins e.g. the JET code
generator.

 Eclipse GEF
editors + views

Marama Models (data) Meta-models (Tool
Specifications)

Marama Diagrams
(editors)

Eclipse Graphical
Editing Framework
(GEF) and draw2d

GUI framework
Marama Figures -
rendering shapes,

connectors

Marama – meta-
tool specification

objects

OMG XML
DOM objects

Pounamu Tool
specification files

Eclipse Modelling
Framework (EMF)

Marama Project
Model - projects,

entities, associations

Marama Diagram
Model – data for
diagrams, shapes,

connectors

Marama
Commands –

to modify view
data

Marama Editor Parts -
edit parts/policies to

modify shapes, connectors

Marama – event handler and
Pounamu API wrapper classes

Marama – Plug-in classes Marama – Wizards, Views (to create, open
projects; to view data)

Marama XMI project and
diagram save files/database

(1)

(2)
(3)

(4)
(5)

(6)

(7)

(8)

(11)

(2)

Dynamically loaded native Pounamu
API event handler objects

Other Eclipse frameworks/plug-ins
e.g. JET code generator

(9)

(10)

Figure 9. Implementation of Marama.

8. Discussion
We have developed a wide range of multi-view

diagramming tools using Pounamu [36]. These have all
been very easily ported to Marama by importing their
Pounamu tool specifications. Existing import/export and
tool integration mechanisms have been preserved by
using the Marama adaptor classes to sandbox execution
of the Pounamu compiled event handlers. Enhancements
to the tools have been possible using Marama’s EMF
object interfaces and other Eclipse plug-ins. For example,
the performance test bed generator’s XSLT-based code
generator was replaced with an improved Eclipse JET-
based code generator.

From a usability perspective, the tools rate well
compared to Pounamu equivalents and other comparable
Eclipse-based tools. Our Marama editors are robust, have
a consistent look and feel, and, based as they are on the
Eclipse GEF and EMF frameworks, have good usability
characteristics. In contrast to other GEF generating
toolkits [6] the look and feel of Marama editors is very
similar to that of a hand-implemented GEF/EMF editor.
In many respects they are better as multiple views are
implicitly supported and the tool specification can be
changed on-the-fly via Pounamu. The diagram editors
integrate naturally into the Eclipse IDE, providing
excellent presentation integration. They are readily
extended via the Eclipse extension point approach which
provides good control integration. The Eclipse XMI
save/load and JET back-ending support allow
straightforward import/export capabilities to be developed
providing a simple data integration mechanism. Complex
data integration is possible via the EMF model.

Of more importance, the process of developing the
tools is tremendously simpler than coding tools using the
Eclipse frameworks directly. Reusing Pounamu to
generate Marama tools means we have not had the
overhead of developing a new meta-tool nor the cost of
developing tools from scratch. These are obvious
advantages but there are drawbacks. Pounamu and
Eclipse must both be running for tool development and
integration between the two is weak, only via data
integration, with no presentation or control integration.
There are also limitations on using EMF and GEF
facilities that “built from scratch” editors would avoid.
We are working to address these limitations. In particular
we are developing Eclipse-based meta-tools for Marama,
bootstrapping their development by defining the meta-
tools in Pounamu, importing their specifications into
Marama, and integrating and extending them using
Eclipse integration support and customized handler code.

Stepping up a level, we see this project as a step
towards a generic DSVL tool specification interchange
standard. We have demonstrated that Pounamu tool

specifications can be interpreted in an Eclipse based
environment providing multi-platform yet consistent
implementations of the same tool. With implementation
of the Marama meta-tools, we can also specify tools in
Marama and realize them in Pounamu. An obvious step
beyond that is to leverage the Microsoft DSL Tools [8] to
generate Visual Studio based realizations (including the
meta-tools). We can then generalize from the 3 examples
to a tool specification interchange standard. Our work
with Marama/ Pounamu suggests this will have the
following components:
• Icon and connector types, their attributes, and

interaction mechanisms. This appears straightforward
to develop a common standard for as most modern
UI toolkits provide similar widgets and functionality.

• Common model element types, attributes and
relationships. This also appears relatively
straightforward. Most model-view frameworks
support something like an Extended Entity
Relationship model for the shared repository.

• Views, their icons and connector types, and the
mappings from view to model elements. The
mappings are somewhat more problematic here.
Simple 1:1 view-model mappings are
straightforward, but complex mappings may require
significant hand coding in different frameworks

• Additional behavioural elements, including event
handlers and constraints. These are most problematic
as they are typically hand coded in most frameworks.
We are currently working on general solutions to the

final two cases. This relates closely to the proposed
Eclipse Graphical Modelling Framework (GMF)
approach using domain models (EMF) and visual DSL
models (GEF) [5]. For the behavioural specification, we
are working on a generalised visual framework for
specifying event based systems [17]. This integrates
several event specification languages with a common
intermediate model compileable to a variety of
implementations (eg OCL, Java, RuleML). The view
mapping problem is being solved in a similar manner,
building on our prior work in mapping specification
systems [10]. We are developing a meta-toolset for
Marama within Eclipse, providing a single integrated
toolset for both specification and generation of Marama
tools. Our eventual aim is to be able to generate GMF and
Visual Studio DSL tool specifications from our Marama-
implemented meta-tools to leverage others’ frameworks
for building DSVL tools.

9. Summary
We have described an approach for generating

Eclipse-based multi-view graphical editors suitable for
domain specific visual language implementation. This
reuses an existing meta tool, Pounamu, to specify the

underlying model and graphical editor, together with
Marama, a set of Eclipse plug ins that extend the Eclipse
GEF and EMF frameworks, to interpret the tool
specifications and realize them as a high-quality Eclipse
tool. Tools realized are well integrated within Eclipse and
may use standard Eclipse extension mechanisms and
backend code generation facilities for enhancement and
integration with other Eclipse tools. We have used this
approach to implement a wide range of Eclipse-based
domain specific language tools. In each case we have
been able to rapidly implement a complex Eclipse-based
tool, with typically a several hundred-fold increase in
productivity over coding the tool with the standard GEF
and EMF frameworks. The generated tools show
excellent usability and robustness.

10. REFERENCES
[1] Buchner, J., Fehnl, T., and Kuntsmann, T., HotDoc a

flexible framework for spatial composition, Proc. 1997
IEEE Symp. on Visual Languages, IEEE, 92-99.

[2] Burnett. M., Goldberg, A., Lewis, T. (eds) Visual Object-
Oriented Programming, Manning, Greenwich, CT, 1995.

[3] Dewan, P. and Choudhary, R. 1991. Flexible user interface
coupling in collaborative systems, Proc. of ACM CHI'91,
ACM Press, April 1991, pp. 41-49.

[4] Ebert, J, Süttenbach, R, and Uhe, I, Meta-CASE in
practice: a case for KOGGE, Proc. CAiSE’97, LNCS 1250,
203-216.

[5] Eclipse.org, www.eclipse.org
[6] Ehrig, K., Ermel, C. Hänsgen, S. and Taentzer, G.

Generation of Visual Editors as Eclipse Plug–Ins, Proc.
2005 ACM/IEEE Automated Software Engineering.

[7] Ferguson R, Parrington N, Dunne P, Archibald J,
Thompson J, MetaMOOSE-an object-oriented framework
for the construction of CASE tools, CoSET’99, LA, May
1999.

[8] Greenfield, J., Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools, http://msdn.microsoft.com/vstudio/DSLTools/ 2004

[9] Grundy, J.C., Mugridge, W.B. and Hosking, J.G.
Constructing component-based software engineering
environments: issues and experiences, Information and
Software Technology, Vol. 42, No. 2, pp. 117-128.

[10] Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Visual
specification of multi-view visual environments, Proc
IEEE VL'98, Halifax, Nova Scotia, Sept 1998, pp. 236-243.

[11] Grundy, J.C, Hosking, J.G., Amor, R., Mugridge, W.B., Li,
M. Domain-specific visual languages for specifying and
generating data mapping systems, JVLC 15, 2004, 243-263.

[12] Hudson, R. Create an Eclipse-based application using the
Graphical Editing Framework, www-128.ibm.com/
developerworks/opensource/library/os-gef/

[13] Krasner, G.E. and Pope, S.T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80, JOOP, vol. 1, no. 3, pp. 26-49, Aug. 1988.

[14] Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully
configurable Multi-User and Multi-Tool CASE
Environment, Proc. of CAiSE'96, LNCS 1080, 1996.

[15] Klein, P. and Schürr, A. Constructing SDEs with the
IPSEN Meta Environment, Proc. SEE’97,1997, pp. 2-10.

[16] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G.: Composing Domain-Specific
Design Environments, Computer, 44-51, Nov, 2001.

[17] Liu, N. Visual Languages for Event Integration
Specification, ICSE’06 Doctoral Symposium, May 2006.

[18] Liu, N., Hosking, J.G. and Grundy, J.C. A Visual
Language and Environment for Specifying Design Tool
Event Handling, Proc. VL/HCC’2005, Dallas, Sept 2005.

[19] Liu, N., Grundy, J.C. and Hosking, J.G. A Visual
Language and Environment for Composing Web Services,
Proc. 2005 IEEE/ACM ASE, Long Beach CA, Nov 7-11
2005.

[20] McIntyre, D.W., Design and implementation with
Vampire, Visual Object-Oriented Programming. Manning
Publications, Greenwich, CT, USA, 1995, Ch 7, 129-160.

[21] McWhirter, J.D. and Nutt, G.J. Escalante: An Environment
for the Rapid Construction of Visual Language
Applications, Proc. VL '94, pp. 15-22, Oct. 1994.

[22] Mehra, A., Grundy, J.C., Hosking J.G., A generic approach
to supporting diagram differencing and merging for
collaborative design, 2005 IEEE/ACM ASE.

[23] Minas, M. and Viehstaedt, G. DiaGen: A Generator for
Diagram Editors Providing Direct Manipulation and
Execution of Diagrams, Proc. VL '95, 203-210 Sept. 1995.

[24] Myers, B.A., The Amulet Environment: New Models for
Effective User Interface Software Development, IEEE
TSE, vol. 23, no. 6, 347-365, June 1997.

[25] Pautasso, C. and Alonso, G. Visual Composition of Web
Services, Proc. 2003 IEEE HCC, 2003, pp. 92-99.

[26] Phillips C, Adams S, Page D, Mehandjiska D, The Design
of the Client User Interface for a Meta Object-Oriented
CASE Tool, Proc TOOLS 1998, Melbourne, p156-167.

[27] Rayside, D., Litoiu, M., Storey, M.A.D., Best, C., Lintern,
R. Visualizing Flow Diagrams in WebSphere Studio Using
SHriMP Views, Information Systems Frontiers 5 (2), 2003.

[28] Rekers, J Schuerr, A Defining and parsing visual languages
with layered graph grammars, JVLC, 8, 27-55, 1997.

[29] Shuckman, C., Kirchner, L., Schummer, J. and Haake, J.M.
1996. Designing object-oriented synchronous groupware
with COAST, Proc ACM CSCW, Nov. 1996, pp. 21-29.

[30] Vlissides, J.M. and Linton, M., Unidraw: A framework for
building domain-specific graphical editors, Proc. UIST’89,
ACM Press, pp. 158-167.

[31] Wasserman, A.I., Tool Integration in Software Engineering
Environments, Proc. SEE’89, IEEE, pp. 137-149.

[32] Welch, B. and Jones, K. Practical Programming in Tcl and
Tk, 4th Edition, Prentice-Hall, 2003.

[33] Younas, M.a.I., R. Developing Collaborative Editing
Applications using Web Services. Proc. 5th Int. Workshop
on Collaborative Editing, Helsinki, Finland, Sept 15, 2003.

[34] Zhang, D.-Q. and Zhang, K. VisPro: A Visual Language
Generation Toolset, Proc. VL'98, pp. 195-202, Sept. 1998.

[35] Zhang, K. Zhang, D-Q. and Cao, J. Design, Construction,
and Application of a Generic Visual Language Generation
Environment", IEEE TSE, 27,4, April 2001, 289-307.

[36] Zhu, N., Grundy, J.C. and Hosking, J.G., Pounamu: a
meta-tool for multi-view visual language environment
construction, Proc. VL/HCC 2004, 254-256.

