Reconfigurable Computing - CORDIC algorithms

Oliver Sinnen
Electrical and Computer Engineering
The University of Auckland

Cray XD1 supercomputer with FPGA (Xilinx Virtex II Pro) acceleration
Trigonometric Functions

- Functions such as \sin, \cos, \tan, ... appear in many problems
 - Signal processors
 - Transforms, Filters, ...
 - for end applications such as Radar, ...
 - Robotics
 - Motion prediction, environment geometry calculation, ...
 - Linear systems
 - Control, ...

- Computation techniques
 - Taylor series
 - Requires floating point
 - Iterative
 - Slow
 - Lookup tables
 - Fast
 - Require memory or
 - Limited precision
CORDIC algorithms – idea

- CORDIC arithmetic
 - Coordinate Rotation by Digital Computer
 - Technique proposed by Volder, 1956

Main idea:
- Use rotation transform:
- Rotate a vector \((x,y)^T\) by angle \(\Phi\)
CORDIC algorithms – idea

- **CORDIC arithmetic**
 - Coordinate Rotation by Digital Computer
 - Technique proposed by Volder, 1956

Main idea:
- **Use rotation transform:**
- **Rotate a vector** \((x,y)^T\) **by angle** \(\Phi\)
CORDIC algorithms – idea

- CORDIC arithmetic
 - Coordinate Rotation by Digital Computer
 - Technique proposed by Volder, 1956

Main idea:
- Use rotation transform:
- Rotate a vector \((x, y)^T\) by angle \(\Phi\)

\[
\begin{align*}
 x_1 &= x \cos(\Phi) - y \sin(\Phi) \\
 y_1 &= x \sin(\Phi) + y \cos(\Phi)
\end{align*}
\]
CORDIC algorithms – idea

- How does a vector rotation help us?
 \[x_1 = x \cos(\phi) - y \sin(\phi) \]
 \[y_1 = x \sin(\phi) + y \cos(\phi) \]

- Choose unit vector \((1,0)^T\) as starting vector

=>

\[x_1 = \cos(\phi) \]
\[y_1 = \sin(\phi) \]

=> Technique: Calculate the trigonometric functions \(\sin, \cos\) by rotating unit vector \((1,0)^T\)!
CORDIC procedure

How do we rotate a unit vector using computer arithmetic?

=> Using series of rotation with *tabled* values

Procedure:

- Iteratively rotate a unit vector until angle is ϕ

\[
\begin{align*}
 x^{(i+1)} &= x^{(i)} \cos(\phi^{(i)}) - y^{(i)} \sin(\phi^{(i)}) \\
 y^{(i+1)} &= x^{(i)} \sin(\phi^{(i)}) + y^{(i)} \cos(\phi^{(i)}) \\
 z^{(i+1)} &= z^{(i)} - \phi^{(i)}
\end{align*}
\]

- z is variable to keep track of the total rotation

Example, to rotate by 30°:

\[
45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 - 0.9 + 0.4 - 0.2 + 0.1 = 30.1 \approx 30
\]
CORDIC procedure

Procedure:

- **Iteratively rotate a unit vector until angle is ϕ**

 \[
 \begin{align*}
 x^{(i+1)} &= x^{(i)} \cos(\phi^{(i)}) - y^{(i)} \sin(\phi^{(i)}) \\
 y^{(i+1)} &= x^{(i)} \sin(\phi^{(i)}) + y^{(i)} \cos(\phi^{(i)}) \\
 z^{(i+1)} &= z^{(i)} - \phi^{(i)}
 \end{align*}
 \]

- **After m rotations, with $x^{(0)}=x$, $y^{(0)}=y$, $z^{(0)}=z$**:

 \[
 \begin{align*}
 x^{(m)} &= x \cos(\sum \phi^{(i)}) - y \sin(\sum \phi^{(i)}) \\
 y^{(m)} &= x \sin(\sum \phi^{(i)}) + y \cos(\sum \phi^{(i)}) \\
 z^{(m)} &= z - (\sum \phi^{(i)})
 \end{align*}
 \]
Pseudorotations

Let us make it simpler for hardware implementation

\[
\begin{align*}
 x^{(i+1)} &= x^{(i)} \cos(\phi^{(i)}) - y^{(i)} \sin(\phi^{(i)}) \\
 y^{(i+1)} &= x^{(i)} \sin(\phi^{(i)}) + y^{(i)} \cos(\phi^{(i)})
\end{align*}
\]

\[
\begin{align*}
 x^{(i+1)} &= \cos(\phi^{(i)}) (x^{(i)} - y^{(i)} \tan(\phi^{(i)})) \\
 y^{(i+1)} &= \cos(\phi^{(i)}) (y^{(i)} + x^{(i)} \tan(\phi^{(i)}))
\end{align*}
\]

Pseudorotation:

\[
\begin{align*}
 x^{(i+1)} &= x^{(i)} - y^{(i)} \tan(\phi^{(i)}) \\
 y^{(i+1)} &= y^{(i)} + x^{(i)} \tan(\phi^{(i)}) \\
 z^{(i+1)} &= z^{(i)} - \phi^{(i)}
\end{align*}
\]

without \textit{cos} term

- Pseudorotations are simpler
- \textit{cos} term is constant for fixed angles
- Can be easily compensated later
CORDIC iteration

Choosing $\Phi^{(i)}$

- To simplify, pick $\Phi^{(i)}$ such that
 $$\tan(\Phi^{(i)}) = d_i 2^{-i}$$
 with $d_i \in \{-1, 1\}$

- Then
 $$x^{(i+1)} = x^{(i)} - d_i y^{(i)} 2^{-i}$$
 $$y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i}$$
 $$z^{(i+1)} = z^{(i)} - d_i \tan^{-1}(2^{-i})$$

Advantage:

- Computation of $x^{(i+1)}$ and $y^{(i+1)}$ requires only i-bit right shift and add/subtract
- $\tan^{-1}(2^{-i})$ precomputed and stored in table

=> one CORDIC iteration involves 2 shifts, 1 table lookup, 3 additions!
CORDIC algorithms – rotation mode

- **CORDIC iterations**

 \[
 x^{(i+1)} = x^{(i)} - d_i y^{(i)} 2^{-i} \\
 y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i} \\
 z^{(i+1)} = z^{(i)} - d_i \tan^{-1}(2^{-i})
 \]

 Rule: Choose \(d_i \in \{-1, 1\} \) such that \(z \to 0 \)

- **CORDIC equations**
 - with \(z = \sum \phi^{(i)} \)

 \[
 x^{(m)} = K(x \cos(z) - y \sin(z)) \\
 y^{(m)} = K(x \sin(z) + y \cos(z)) \\
 z^{(m)} = 0
 \]

 \[K = \prod \frac{1}{\cos(\phi^{(i)})} = \prod \sqrt{1 + \tan^2(\phi^{(i)})}\]

 \(K \) is a constant and can be precomputed (if always the same rotation angles are used)
Rotation mode – example

- **CORDIC iterations**

\[
\begin{align*}
x^{(i+1)} &= x^{(i)} - d_i y^{(i)} 2^{-i} \\
y^{(i+1)} &= y^{(i)} + d_i x^{(i)} 2^{-i} \\
z^{(i+1)} &= z^{(i)} - d_i \tan^{-1}(2^{-i})
\end{align*}
\]

Rule: Choose \(d_i \in \{-1, 1\} \) such that \(z \to 0 \)

- **From the rule it follows:** \(d_i = \text{sign}(z^{(i)}) \)

Example:

Rotate by 30°, i.e. \(z = 30° \):

\[-45.0 + 26.6 - 14.0 + 7.1 - 3.6 - 1.8 + 0.9 - 0.4 + 0.2 - 0.1\]

\[= -0.1 \approx 0\]

- **For \(n \)-bit precision of result, \(n \) CORDIC iterations!**

\[
\begin{array}{c|c|c}
 i & \tan^{-1} 2^{-i} \text{ (in degree)} \\
0 & 45.0 \\
1 & 26.6 \\
2 & 14.0 \\
3 & 7.1 \\
4 & 3.6 \\
5 & 1.8 \\
6 & 0.9 \\
7 & 0.4 \\
8 & 0.2 \\
9 & 0.1 \\
\end{array}
\]

\(K = 1.646760258121... \)
Rotation mode – calculating of $\cos \Phi, \sin \Phi$

- **CORDIC equations**

 \[
 x^{(m)} = K (x \cos(z) - y \sin(z)) \\
 y^{(m)} = K (x \sin(z) + y \cos(z)) \\
 z^{(m)} = 0
 \]

$\cos \Phi, \sin \Phi$

- $z = \Phi, x = 1/K, y = 0$ \hspace{1cm} $1/K$ can be precomputed

 => $x^{(m)} = \cos \phi$ \\
 $y^{(m)} = \sin \phi$

Domain of convergence:

- **Usually** $-A < z < A$, with $A > \pi/2$ (90°), where A is the sum of all predefined angles $A = \sum \tan^{-1}(2^{-i})$

- **Outside this range:**
 - use trigonometric identities, e.g. $\cos(\phi-\pi) = -\cos \phi$
CORDIC algorithms – vector mode

- **In rotation mode** \(z \rightarrow 0 \)

Now
- **In vector mode** \(y \rightarrow 0 \)
- **After** \(m \) rotations, with \(x^{(0)}=x \), \(y^{(0)}=y \), \(z^{(0)}=z \) :

\[
\begin{align*}
x^{(m)} &= K \left(x \cos \left(\sum \phi^{(i)} \right) - y \sin \left(\sum \phi^{(i)} \right) \right) \\
y^{(m)} &= K \left(x \sin \left(\sum \phi^{(i)} \right) + y \cos \left(\sum \phi^{(i)} \right) \right) \\
z^{(m)} &= z - \left(\sum \phi^{(i)} \right)
\end{align*}
\]

\[
y^{(m)} = 0 = K \left(x \sin \left(\sum \phi^{(i)} \right) + y \cos \left(\sum \phi^{(i)} \right) \right) = K \sin \left(\sum \phi^{(i)} \right) \left(x + \frac{y}{\tan \left(\sum \phi^{(i)} \right)} \right)
\]

\[
\Rightarrow \quad \frac{-y}{x} = \tan \left(\sum \phi^{(i)} \right)
\]
Vector mode

- **with** \(\frac{-y}{x} = \tan(\sum \phi^{(i)}) \)

\[
\Rightarrow \quad x^{(m)} = K \left(x \cos(\sum \phi^{(i)}) - y \sin(\sum \phi^{(i)}) \right)
= K \cos(\sum \phi^{(i)})(x - y \tan(\sum \phi^{(i)}))
= K \cos(\sum \phi^{(i)})(x + y^2/x)
= K \frac{x + y^2/x}{\sqrt{1 + \tan^2(\phi^{(i)})}} = K \frac{x + y^2/x}{\sqrt{1 + y^2/x^2}}
= K \sqrt{x^2 + y^2}
\]

\[
z^{(m)} = z - (\sum \phi^{(i)})
= z \pm \tan^{-1}(y/x)
\]

\[
\cos(\phi^{(i)}) = \frac{1}{\sqrt{1 + \tan^2(\phi^{(i)})}}
\]
Vector mode

- **CORDIC iterations**

\[
x^{(i+1)} = x^{(i)} - d_i \cdot y^{(i)} \cdot 2^{-i} \\
y^{(i+1)} = y^{(i)} + d_i \cdot x^{(i)} \cdot 2^{-i} \\
z^{(i+1)} = z^{(i)} - d_i \cdot \tan^{-1}(2^{-i})
\]

Rule: Choose \(d_i \in \{-1, 1\}\) such that \(y \to 0\)

- **CORDIC equations**

\[
x^{(m)} = K \sqrt{x^2 + y^2} \\
y^{(m)} = 0 \\
z^{(m)} = z + \tan^{-1}(y/x)
\]

- **From the rule it follows:** \(d_i = -\text{sign}(x^{(i)} y^{(i)})\)
 - Within the usual domain of convergence, \(x^{(i)}\) is always positive
 \[\Rightarrow d_i = -\text{sign}(y^{(i)})\]
Vector mode – calculation of $\tan^{-1} \Phi$

- **CORDIC equations**

 \[
 x^{(m)} = K \sqrt{x^2 + y^2} \\
 y^{(m)} = 0 \\
 z^{(m)} = z + \tan^{-1}(y/x)
 \]

\[\tan^{-1} \Phi\]

- $z = 0$, $x = 1$, $y = \Phi$

$\Rightarrow z^{(m)} = \tan^{-1} \phi$
CORDIC algorithms – summary

Summary:

- By appropriately choosing the start values for x, y, z and the rule for d_i calculation, many functions can be computed
 - \sin, \cos, \tan^{-1}, vector rotation, vector magnitude
 - even more complex functions, e.g. $\tan^{-1}(y/x)$
- For n-bit precision of result, n CORDIC iterations
- One CORDIC iteration involves 2 shifts, 1 table lookup, 3 additions

=> complexity similar to sequential multiplication!

Virtually all functions of common interest can be computed with the (generalised) CORDIC method

- \cos^{-1}, \sin^{-1}, hyperbolic functions (e.g. \sinh) ...
- even division and multiplication!
- $\ln w, e^z$...
CORDIC implementations

Implementation

- Angles in radians, range \([-\pi/2, \pi/2]\) (i.e. \([-90^\circ, 90^\circ]\))
 - For other angles: use trig. identities and convert to angle in \([-\pi/2, \pi/2]\)
 - Angles are multiples of \(\pi\) => possible to work in \([-\frac{1}{2}, \frac{1}{2}]\), with \(\pi\) implicit
- Values are real numbers
 - Range is limited

 \(eg\) all numbers are \(0 \leq x < 1\)

=> well suited to fixed-point arithmetic

- Choose an appropriate representation
 - Use 2’s complement representation
 - Place the virtual point after the first binary bit
- Fixed point representations work well with data from sensors
 - It comes from fixed-point A to D converters!

- Precision
 - Determine the necessary precision, i.e. the number of bits

=> that determines the necessary number of CORDIC iterations
CORDIC implementations

- Assume
 - Application demands \(n \)-bits of accuracy on \(m \)-bit inputs

- One CORDIC iteration involves 2 shifts, 1 table lookup, 3 additions

- Design a basic block with these operations
CORDIC basic block – rotation mode

- CORDIC iteration

\[
x^{(i+1)} = x^{(i)} - d_i y^{(i)} 2^{-i} \\
y^{(i+1)} = y^{(i)} + d_i x^{(i)} 2^{-i} \\
z^{(i+1)} = z^{(i)} - d_i \tan^{-1}(2^{-i})
\]

\[d_i = \text{sign}(z^{(i)})\]
CORDIC implementation

- Combine \(n \) basic blocks
 - \(n \) blocks, each with \(m \)-bit add/subtract/shift units
 - \(O(m \times n) \) space complexity
 - \(O(m \times n) \) time complexity
 - \(O(n \log(m)) \) with efficient adders
 - Latency – long – \(n \cdot t_{block} \)
 - Throughput – \(f = 1/(n \cdot t_{block}) \)

Note
- LUT in each block is only one value
- Propagation of \(i \) not necessary
- Shift can be “wired”
CORDIC implementation – pipeline

- **Pipeline n basic blocks**
 - Add a register to each block
 - Complexity remains the same
 - Latency – increased by register overhead
 - Throughput – increases by $p' < n$
Pipeline implementation – k iterations/stage

- **Wrap** k instances of the basic model in a stage model
 - pipeline register after each stage
 - Complexity remains the same
 - Latency – less register overhead
 - **Stage delay can be adjusted to match that for slowest stage in the remainder of the system**
 - Throughput – increases by $p' < \frac{n}{k}$
CORDIC implementation – sequential

- Wrap the basic model in a recycling block
 - $O(m)$ space complexity
 - $O(m \cdot n)$ time complexity
 - $O(n \log(m))$ with efficient adders
 - Latency – $n \cdot (t_{\text{block}} + t_{\text{reg}})$
 - Good compromise between space and speed
 - Can use fast carry chain adders!
Sequential implementation – k iterations/stage

- Wrap k instances of the basic model in a recycling block
 - $O(m \frac{n}{k})$ space complexity
 - $O(m \cdot n)$ time complexity
 - $O(n \log(m))$ with efficient adders
 - Latency – $(n/k) \times (k \cdot t_{\text{block}} + t_{\text{reg}})$
 - Adjust k to use all available space to gain speed