
The Isomorphism Problem On Classes of Automatic Structures

Dietrich Kuske
CNRS, LaBRI, Bordeaux, France

kuske@labri.fr

Jiamou Liu, Markus Lohrey∗

Universität Leipzig, Institut für Informatik, Germany
{jiamou,lohrey}@informatik.uni-leipzig.de

Abstract

Several undecidability results on isomorphism prob-
lems for automatic structures are shown: (i) The isomor-
phism problem for automatic equivalence relations isΠ0

1-
complete. (ii) The isomorphism problem for automatic trees
of heightn ≥ 2 is Π0

2n−3-complete. (iii) The isomorphism
problem for automatic linear orders is not arithmetical.

1 Introduction

The idea of an automatic structure goes back to Büchi
and Elgot who used finite automata to decide, e.g., Pres-
burger arithmetic [4]. Automaton decidable theories [7] and
automatic groups [5] are similar concepts. A systematic
study was initiated by Khoussainov and Nerode [10] who
also coined the name “automatic structure”. In essence, a
structure is automatic if the elements of the universe can
be represented as strings from a regular language and every
relation of the structure can be recognized by a finite state
automaton with several heads that proceed synchronously.
Automatic structures received increasing interest over the
last years [1, 2, 12, 13, 14, 19]. One of the main motiva-
tions for investigating automatic structures is that theirfirst-
order theories can be decided uniformly (i.e., the input is an
automatic presentation and a first-order sentence).

Automatic structures form a subclass of computable
structures. A structure is computable, if its domain as well
as all relations are recursive sets of finite words (or natu-
rals). A well-studied problem for computable structures is
the isomorphism problem, where it is asked whether two
given computable structures over the same signature (en-
coded by Turing-machines for the domain and all relations)
are isomorphic. It is well known that the isomorphism prob-
lem for computable structures is complete for the first level
of the analytical hierarchyΣ1

1. In fact, Σ1
1-completeness

holds for many subclasses of computable structures, e.g.,

∗The second and third author are supported by the DFG researchproject
GELO.

for linear orders, trees, undirected graphs, Boolean alge-
bras, Abelianp-groups, see [3, 6].Σ1

1-completeness of the
isomorphism problem for a class of computable structures
implies non-existence of a good classification (in the sense
of [3]) for that class.

In [12], it was shown that also for automatic structures
the isomorphism problem isΣ1

1-complete. By a direct in-
terpretation, it follows that for the following classes theiso-
morphism problem is stillΣ1

1-complete [17]: automatic suc-
cessor trees, automatic undirected graphs, automatic com-
mutative monoids, automatic partial orders, automatic lat-
tices of height 4, and automatic 1-ary functions. On the
other hand, the isomorphism problem is decidable for au-
tomatic ordinals [13] and automatic Boolean algebras [12].
An intermediate class is the class of all locally-finite auto-
matic graphs, for which the isomorphism problem is com-
plete forΠ0

3 (third level of the arithmetical hierarchy1) [18].
For many interesting classes of automatic structures, the

exact status of the isomorphism problem is open. In the
recent papers [19, 11] it was asked for instance, whether
the isomorphism problem is decidable for automatic equiv-
alence relations and automatic linear orders. For the latter
class, this question was already asked in [13]. In this paper,
we answer these questions. Our main results are:

• The isomorphism problem for automatic equivalence
relations isΠ0

1-complete.

• The isomorphism problem for automatic successor
trees of finite heightk ≥ 2 (where the height of a tree
is the maximal number of edges along a path from the
root to a leaf) isΠ0

2k−3-complete.

• The isomorphism problem for automatic linear orders
is hard for every level of the arithmetical hierarchy.

Most hardness proofs for automatic structures, in partic-
ular theΣ1

1-hardness proof for the isomorphism problem
of automatic structures from [12], use transition graphs of
Turing-machines (these graphs are easily seen to be auto-
matic). This technique seems to fail for inherent reasons,

1For background on the arithmetical hierarchy see, e.g., [20].

when trying to prove our new results. The reason is most
obvious for equivalence relations and linear orders. These
structures are transitive but the transitive closure of thetran-
sition graph of a Turing-machine cannot be automatic in
general (it’s first-order theory is undecidable in general).
Hence, we have to use a new strategy that is based on
Hilbert’s 10th problem. Recall that Matiyasevich proved
that every recursively enumerable set of natural numbers is
Diophantine [16]. This fact was used by Honkala to show
that it is undecidable whether the range of a rational power
series isN [8]. Based on a similar technique, we show that
the isomorphism problem for automatic successor trees of
height2 isΠ0

1-complete. An inductive argument then allows
us to prove that the isomorphism problem for automatic suc-
cessor trees of heightn ≥ 2 is Π0

2n−3-complete. From the
casen = 2 we can easily deduce that the isomorphism prob-
lem for automatic equivalence relations isΠ0

1-complete. Fi-
nally, using a similar but technically more involved reduc-
tion, we show that the isomorphism problem for automatic
linear orders is hard for every level of the arithmetical hi-
erarchy. In fact, since our proof is uniform on the levels in
the arithmetical hierarchy, it follows that the isomorphism
problem for automatic linear orders is at least as hard as true
arithmetic, i.e., the first-order theory of(N; +,×). At the
moment it remains open whether the isomorphism problem
for automatic linear orders isΣ1

1-complete. A long version
of this extended abstract can be found in [15].

2 Preliminaries

Let N+ = N \ {0}. Let p(x1, . . . , xn) ∈ N[x1, . . . , xn]
be a polynomial with coefficients inN. DefineImg+(p) =
{p(c) | c ∈ Nn

+}. If p 6= 0, thenImg+(p) ⊆ N+.
Details on the arithmetical hierarchy can be found for in-

stance in [20]. WithΣ0
n we denote thenth (existential) level

of the arithmetical hierarchy; it is the class of allA ⊆ N

such that there exists a recursive predicateP ⊆ Nn+1 with
A = {a ∈ N | ∃x1∀x2 · · ·Qxn : (a, x1, . . . , xn) ∈ P},
whereQ = ∃ (Q = ∀) for n odd (even). The set of com-
plements ofΣ0

n-sets is denoted byΠ0
n. By fixing some

effective encoding of strings by natural numbers, we can
talk aboutΣ0

n-sets andΠ0
n-sets of strings over an arbitrary

alphabet. A typical example of a set, which does not be-
long to the arithmetical hierarchy is the first-order theoryof
(N; +,×), which we denote byFOTh(N; +,×).

We assume basic terminologies and notations from au-
tomata theory. For a fixed alphabetΣ, a non-deterministic
finite automaton(NFA) is a tupleA = (S, ∆, I, F) where
S is the set of states,∆ ⊆ S × Σ × S is the transition
relation, I ⊆ S is a set of initial states, andF ⊆ S
is the set of accepting states. Arun of A on a word
u = a1a2 · · · an (a1, a2 . . . , an ∈ Σ) is a word over∆
of the formr = (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn),

whereq0 ∈ I. If moreoverqn ∈ F , thenr is anaccept-
ing run of A on u. We will only apply these definitions in
casen > 0, i.e., we will only speak of (accepting) runs on
non-empty words.

We usesynchronousn-tape automatato recognizen-ary
relations. Such automata haven input tapes, each of which
contains one of the input words. Then tapes are read in
parallel until all input words are processed. Formally, let
Σ⋄ = Σ ∪ {⋄} where⋄ /∈ Σ. For wordsw1, w2, . . . , wn ∈
Σ∗, their convolutionis a wordw1 ⊗ · · · ⊗ wn ∈ (Σn

⋄)∗

with lengthmax{|w1|, . . . , |wn|}, and thekth symbol of
w1 ⊗ · · · ⊗ wn is (σ1, . . . , σn) whereσi is thekth symbol
of wi if k ≤ |wi|, andσi = ⋄ otherwise. Ann-ary relation
R is FA recognizableif the set of all convolutions of tuples
(w1, . . . , wn) ∈ R is a regular language.

A relational structureS consists of adomainD and
atomic relations on the setD. We will only consider struc-
tures with countable domain. For a set{Si | i ∈ I} of re-
lational structures over the same signature, we denote with
⊎{Si | i ∈ I} the disjoint union of these structures. With
S1 ⊎ S2 we denote the disjoint union of two structuresS1,
S2. A structureS is calledautomaticoverΣ if its domain
is a regular subset ofΣ∗ and each of its atomic relations is
FA recognizable; any tupleP of automata that accept the
domain and the relations ofS is called anautomatic pre-
sentation ofS; in this case, we writeS(P) for S. If an auto-
matic structureS is isomorphic to a structureS′, thenS is
called anautomatic copyof S′ andS′ is automatically pre-
sentable. In this paper we sometimes abuse the terminology
referring toS′ as simply automatic and calling an automatic
presentation ofS also automatic presentation ofS′. We also
simplify our statements by saying “given/compute an auto-
matic structureS” for “given/compute an automatic presen-
tationP of a structureS(P)”. The structures(N;≤, +) and
(Q;≤) are both automatic. On the other hand,(N;×) and
(Q; +) have no automatic copies (see [9, 19] and [21]).

Let FO + ∃∞ be first-order logic extended by the quan-
tifier ∃∞ (there exist infinitely many). The following the-
orem (see [19] for references and generalizations) lays out
the main motivation for investigating automatic structures.

Theorem 2.1 From an automatic presentationP and a for-
mulaϕ(x̄) ∈ FO + ∃∞ in the signature ofS(P), one can
compute an NFA whose language consists of those tuplesā
fromS(P) that makeϕ true. In particular, theFO+∃∞ the-
ory of any automatic structureS is (uniformly) decidable.

Let K be a class of automatic structures closed under iso-
morphism. Theisomorphism problemfor K is the set of
pairs (P1, P2) of automatic presentations withS(P1) ∼=
S(P2) ∈ K. The isomorphism problem for the class of
all automatic structures is complete forΣ1

1 — the first level
of the analytical hierarchy [12] (this holds already for auto-
matic successor trees). However, if one restricts to special

2

subclasses of automatic structures, this complexity bound
can be reduced. For example, for the class of automatic or-
dinals and also the class of automatic Boolean algebras, the
isomorphism problem is decidable. Another interesting re-
sult is that the isomorphism problem for locally finite auto-
matic graphs isΠ0

3-complete [18]. All these classes of auto-
matic structures have the nice property that one can decide
whether a given automatic presentation describes a struc-
ture from this class. Thm. 2.1 implies that this property also
holds for the classes of equivalence relations, trees of height
at mostk, and linear orders, i.e., the classes considered in
this paper.

3 Automatic Trees

A tree is a structureT = (V ;≤), where≤ is a partial
order with a least element, called theroot, and such that for
everyx ∈ V , the order≤ restricted to the set{y | y ≤ x}
of ancestors ofx is a finite linear order. Thelevelof a node
x ∈ V is |{y | y < x}| ∈ N. The heightof T is the
supremum of the levels of all nodes inV ; it may be infinite,
but this paper deals with trees of finite height only. One may
also view a tree as a directed graph(V, E), where there is
an edge(u, v) ∈ E if and only if u is the largest element
in {x | x < v}. The edge relationE is FO-definable in
(V ;≤). In this paper, we assume the partial order definition
for trees, but will quite often refer to them as graphs for
convenience. We useTn to denote the class of automatic
trees with height at mostn. Let n be fixed. Then the tree
order≤ is FO-definable inT = (V, E) and this holds even
uniformly for all trees fromTn. Moreover, it is decidable
whether a given automatic graph belongs toTn (since the
class of trees of heightn can be axiomatized in first-order
logic).

In this section, we prove that the isomorphism problem
for Tn is Π0

2n−3-complete. We start with the upper bound:

Proposition 3.1 The isomorphism problem for the classTn

of automatic trees of height at mostn is (i) decidable for
n = 1 and (ii) in Π0

2n−3 for all n ≥ 2.

Proof. We first show thatT1
∼= T2 is decidable for auto-

matic treesT1, T2 ∈ T1 of height at most1: It suffices to
compute the cardinality ofTi (i ∈ {1, 2}) which is possible
since the universes ofT1 andT2 are regular languages.

Now let n ≥ 2 and considerT1, T2 ∈ Tn. Let Ti =
(Vi, Ei), w.l.o.g. V1 ∩ V2 = ∅, andV = V1 ∪ V2, E =
E1 ∪ E2. For any nodeu in V , let T (u) denote the subtree
(of eitherT1 or T2) rooted atu and letE(u) be the set of
children ofu. Fork = n − 2, n − 3, . . . , 0, we will define
inductively aΠ0

2n−2k−3-predicate isok(u1, u2) for u1, u2 ∈
V . This predicate expresses thatT (u1) ∼= T (u2) provided
u1 andu2 belong to level at leastk. The result will follow

sinceT1
∼= T2 if and only if iso0(r1, r2) holds, whererσ is

the root ofTσ.
For k = n − 2, the treesT (u1) andT (u2) have height

at most2. The statement ison−2(u1, u2) can be defined as
follows: For all κ ∈ N ∪ {ℵ0} and all ℓ ≥ 1 we have

∃x1, . . . , xℓ ∈ E(u1) :
∧

1≤i<j≤ℓ

xi 6= xj ∧
ℓ∧

i=1

|E(xi)| = κ

if and only if

∃y1, . . . , yℓ ∈ E(u2) :
∧

1≤i<j≤ℓ

yi 6= yj ∧
ℓ∧

i=1

|E(yi)| = κ.

In other words: for everyκ ∈ N ∪ {ℵ0}, u1 andu2 have
the same number of children with exactlyκ children. Since
FO + ∃∞ is uniformly decidable for automatic structures,
this is indeed aΠ0

1-sentence (note that2n− 2k − 3 = 1 for
k = n − 2). For 0 ≤ k < n − 2, we define isok(u1, u2)
inductively as follows:For all v ∈ E(u1) ∪ E(u2) and all
ℓ ≥ 1 we have

∃x1, . . . , xℓ ∈ E(u1) :
∧

1≤i<j≤ℓ

xi 6= xj ∧
ℓ∧

i=1

isok+1(v, xi)

if and only if

∃y1, . . . , yℓ ∈ E(u2) :
∧

1≤i<j≤ℓ

yi 6= yj ∧
ℓ∧

i=1

isok+1(v, yi).

By quantifying over allv ∈ E(u1) ∪ E(u2), we quantify
over all isomorphism types of trees that occur as a subtree
rooted at a child ofu1 or u2. For each of these isomorphism
typesτ , we express thatu1 and u2 have the same num-
ber of childrenx with T (x) of typeτ . Since by induction,
isok+1(v, xi) and isok+1(v, yi) areΠ0

2n−2k−5-statements,
isok(u1, u2) is aΠ0

2n−2k−3-statement. ⊓⊔

The rest of this section is devoted to proving that the iso-
morphism problem for the classTn of automatic trees of
height at mostn ≥ 2 is alsoΠ0

2n−3-hard (and therefore
complete). So letPn(x0) be aΠ0

2n−3-predicate. In the fol-
lowing lemma and its proof, all quantifiers with unspecified
range run overN+.

Lemma 3.2 For any Π0
2n−3-predicatePn(x0), there exist

Π0
2i−3-predicatesPi(x0, x1, y1, x2, y2, . . . , xn−i, yn−i) for

2 ≤ i < n such that

(a) for all 2 ≤ i < n, Pi+1(v) is logically equivalent to
∀xn−i∃yn−i : Pi(v, xn−i, yn−i), and

(b) if ∀yn−i : ¬Pi(v, xn−i, yn−i) holds, then also
∀x′

n−i ≥ xn−i ∀yn−i : ¬Pi(v, x′
n−i, yn−i),

wherev = (x0, x1, y1, . . . , xn−i−1, yn−i−1).

3

Proof. The predicatesPi are constructed by induction,
starting with i = n − 1 down to i = 2 where the con-
struction ofPi does not assume that (a) or (b) hold true
for Pi+1. So let 2 ≤ i < n such thatPi+1(v) is a
Π0

2(i+1)−3-predicate. Then there exists aΠ0
2i−3-predicate

P (v, xn−i, yn−i) such thatPi+1(v) is logically equivalent
to ∀xn−i∃yn−i : P (v, xn−i, yn−i). But this is logically
equivalent to

∀xn−i ∀x′
n−i ≤ xn−i ∃yn−i : P (v, x′

n−i, yn−i) . (1)

Let ϕ(v, xn−i) be the formula∀x′
n−i ≤ xn−i ∃yn−i :

P (v, x′
n−i, yn−i). Then for anyxn−i ∈ N,

¬ϕ(v, xn−i) =⇒ ∀x ≥ xn−i : ¬ϕ(v, x) . (2)

Since∀x′
n−i ≤ xn−i is a bounded quantifier, the formula

ϕ(v, xn−i) belongs toΣ0
2i−2 (see for example [20, p. 61]).

Thus there is aΠ0
2i−3-predicatePi(v, xn−i, yn−i) such that

ϕ(v, xn−i) ⇐⇒ ∃yn−i : Pi(v, xn−i, yn−i) . (3)

Therefore (1) (and thereforePi+1(v)) is logically equiv-
alent to∀xn−i ∃yn−i : Pi(v, xn−i, yn−i), which shows
statement (a). For (b) note that∀yn−i : ¬Pi(v, xn−i, yn−i)
if and only if (by (3))¬ϕ(v, xn−i), which by (2) implies
∀x ≥ xn−i : ¬ϕ(v, x). By (3) again, this is equivalent to
∀x ≥ xn−i ∀yn−i : ¬Pi(v, x, yn−i). ⊓⊔

Let us fix the predicatesPi for the rest of Sec. 3. By
induction on2 ≤ i ≤ n, we construct the following trees:

• test treesT i
c ∈ Ti for c ∈ N

1+2(n−i)
+ (which depend on

Pi) and

• treesU i
κ ∈ Ti for κ ∈ N+ ∪ {ω} (we assume the

standard order onN+ ∪ {ω}).

The idea is thatT i
c
∼= U i

κ if and only if κ = 1+ inf({xn−i |
∀yn−i ∈ N+ : ¬Pi(c, xn−i, yn−i)} ∪ {ω}). We will not
prove this equivalence, but the following simpler conse-
quences for anyc ∈ N

1+2(n−i)
+ :

(P1) Pi(c) if and only if T i
c
∼= U i

ω.

(P2) ¬Pi(c) if and only if T i
c
∼= U i

m for somem ∈ N+.

The first property is certainly sufficient for provingΠ0
2n−3-

hardness (withi = n), the second property and therefore
the treesU i

m for m < ω are used in the inductive step. We
also need the following property for the construction.

(P3) No leaf of any of the treesT i
c or U i

κ is a child of the
root.

In Section 3.1, we will describe the treesT i
c and U i

κ of
height at mosti and prove (P1) and (P2). Condition (P3)
will be obvious from the construction. Section 3.2 is then
devoted to proving the effective automaticity of these trees.

3.1 Construction of trees

We start with a few definitions: A forest is a disjoint
union of trees. LetH and J be two forests. The forest
Hω is the disjoint union of countably many copies ofH .
Formally, if H = (V, E), thenHω = (V × N, E′) with
((v, i), (w, j)) ∈ E′ if and only if (v, w) ∈ E andi = j.
We writeH ∼ J for Hω ∼= Jω. ThenH ∼ J if they are
formed, up to isomorphism, by the same set of trees (i.e.,
any tree is isomorphic to some connected component ofH
if and only if it is isomorphic to some connected component
of J). If r does not belong to the domain ofH , then we
denote withr ◦ H the tree that results from addingr to H
as new least element.

3.1.1 Induction base: construction of T 2
c and U2

κ

For notational simplicity, we writek for 1 + 2(n − 2).
Hence,P2 is a k-ary predicate. By Matiyasevich’s the-
orem, we find two non-zero polynomialsp1(x1, . . . , xℓ),
p2(x1, . . . , xℓ) ∈ N[x], ℓ > k, such that for anyc ∈ Nk

+:

P2(c) ⇐⇒ ∀x ∈ Nℓ−k
+ : p1(c, x) 6= p2(c, x) .

It is well known that the functionC : N × N → N with

C(x, y) = (x + y)2 + 3x + y (4)

is injective (C(x, y)/2 defines a pairing function, see e.g.
[8]). For two numbersm, n ∈ N+, let T [m, n] denote the
tree of height1 with exactlyC(m, n) leaves. Then define
the following forests, whereκ ∈ N+ ∪ {ω}:

H2 =
⊎

{T [m, n] | m, n ∈ N+, m 6= n}

H2
c = H2 ⊎

⊎
{T [p1(c, x) + xℓ+1, p2(c, x) + xℓ+1] |

x ∈ Nℓ−k
+ , xℓ+1 ∈ N+}

J2
κ = H2 ⊎

⊎
{T [x, x] | x ∈ N+, x > κ}

Note thatJ2
ω = H2. Moreover, the forestsJ2

κ (κ ∈ N+ ∪
{ω}) are pairwise non-isomorphic, sinceC is injective.

The treeT 2
c (resp. U2

κ) is obtained fromH2
c (resp. J2

κ)
by taking countably many copies and adding a root:

T 2
c = r ◦ (H2

c)ω and U2
κ = r ◦ (J2

κ)ω, (5)

see Fig.1 and 2. The following lemma states (P1) for the
Π0

1-predicateP2 , i.e., fori = 2.

Lemma 3.3 For all c ∈ Nk
+: P2(c) ⇐⇒ T 2

c
∼= U2

ω.

4

r

∀x ∈ N
ℓ−k
+

∀xℓ+1 ∈ N+ ∀m, n

m 6= n

T [p1(c, x) + xℓ+1,
p2(c, x) + xℓ+1]

T [m, n]

Figure 1. The tree T 2
c

r
∀x > κ ∀m, n

m 6= n

T [x, x] T [m, n]

Figure 2. The tree U2
κ

Proof. By (5), it suffices to show thatP2(c) holds if and
only if H2

c ∼ J2
ω. So first assumeP2(c) holds. We have to

prove that the forestsH2
c andJ2

ω = H2 contain the same
trees (up to isomorphism). Clearly, every tree fromH2 is
contained inH2

c . For the other direction, letx ∈ Nℓ−k
+ and

xℓ+1 ∈ N+. Then the treeT [p1(c, x) + xℓ+1, p2(c, x) +
xℓ+1] occurs inH2

c . SinceP2(c) holds, we havep1(c, x) 6=
p2(c, x) and thereforep1(c, x) + xℓ+1 6= p2(c, x) + xℓ+1.
Hence this tree also occurs inH2.

Conversely supposeH2
c ∼ H2 and letx ∈ Nℓ−k

+ . Then
the treeT [p1(c, x)+1, p2(c, x)+1] occurs inH2

c and there-
fore inH2. Hencep1(c, x) 6= p2(c, x). Sincex was chosen
arbitrarily, this impliesP2(c). ⊓⊔

Now consider the forestH2
c once more. If it contains a

tree of the formT [m, m] for somem (necessarilym ≥ 2),
then it contains all treesT [x, x] for x ≥ m. Hence,H2

c ∼
J2

κ for someκ ∈ N+ ∪ {ω}, which impliesT 2
c
∼= U2

κ for
someκ ∈ N+ ∪ {ω}. Thus, with Lemma 3.3 we get:

¬P2(c) ⇐⇒ T 2
c 6∼= U2

ω

⇐⇒ ∃m ∈ N+ : T 2
c
∼= U2

m

Thus, we proved (P2) for theΠ0
1-predicateP2. This finishes

the construction of the treesT 2
c andU2

κ for κ ∈ N+ ∪ {ω},
and the verification of properties (P1) and (P2). Clearly,
also (P3) holds forT 2

c and U2
κ (all maximal paths have

length 2).

3.1.2 Induction step: construction of T i+1
c and U i+1

κ

Again, we writek for 1 + 2(n − i − 1). Thus,Pi+1 is a
k-ary predicate andPi a (k + 2)-ary one. We now apply
the induction hypothesis. For anyc ∈ Nk

+, x, y ∈ N+,

r

∀x, m ∈ N+ ∀x, y ∈ N+

. . .︸︷︷︸
x

Ui
m

. . .︸︷︷︸
x

T i
cxy

Figure 3. The tree T i+1
c

r

∀x, m ∈ N+ ∀1 ≤ x < κ

. . .︸︷︷︸
x

Ui
m

. . .︸︷︷︸
x

Ui
ω

Figure 4. The tree U i+1
κ

κ ∈ N+ ∪ {ω} let T i
cxy andU i

κ be trees of height at mosti
such that:

Pi(c, x, y) ⇐⇒ T i
cxy

∼= U i
ω

¬Pi(c, x, y) ⇐⇒ ∃m ∈ N+ : T i
cxy

∼= U i
m.

In a first step, we build treesT ′
cxy andU ′

κ,x (x ∈ N+) from
T i

cxy andU i
κ, resp., by addingx leaves as children of the

root. This ensures:

T ′
cxy

∼= U ′
κ,x′ ⇐⇒ x = x′ ∧ T i

cxy
∼= U i

κ , (6)

since, by property (P3), no leaf of any of the treesT i
cxy or

U i
κ is a child of the root. Next, we collect these trees into

forests as follows:

Hi+1 =
⊎

{U ′
m,x | x, m ∈ N+} ,

Hi+1
c = Hi+1 ⊎

⊎
{T ′

cxy | x, y ∈ N+} , and

J i+1
κ = Hi+1 ⊎

⊎
{U ′

ω,x | 1 ≤ x < κ} for κ ∈ N+ ∪ {ω}

The treeT i+1
c (resp.U i+1

κ) is obtained from the forestHi+1
c

(resp.J i+1
κ) by taking countably many copies and adding a

root:

T i+1
c = r ◦ (Hi+1

c)ω and U i+1
κ = r ◦ (J i+1

κ)ω, (7)

see Fig.3 and 4. Note that the height of any of these trees
is one more than the height of the forests defining them and
therefore at mosti + 1. Since none of the connected com-
ponents of the forestsHi+1

c andJ i+1
κ is a singleton, none

of the trees in (7) has a leaf that is a child of the root and
therefore (P3) holds. The next lemma states (P1) fori + 1:

Lemma 3.4 For all c ∈ Nk
+: Pi+1(c) ⇐⇒ T i+1

c
∼= U i+1

ω .

5

Proof. By (7), it suffices to show thatPi+1(c) if and only
if Hi+1

c ∼ J i+1
ω . First assumeHi+1

c ∼ J i+1
ω and let

x ≥ 1 be arbitrary. We have to find somey ≥ 1 with
Pi(c, x, y). Note thatU ′

ω,x belongs toJ i+1
ω and therefore

to Hi+1
c . SinceU ′

ω,x 6∼= U ′
m,x′ for anym, x, x′ ∈ N+, this

implies the existence ofx′, y′ ≥ 1 with T ′
cx′y′

∼= U ′
ω,x. By

(6), this is equivalent tox = x′ andT i
cxy′

∼= U i
ω. Now the

induction hypothesis implies thatPi(c, x, y′) holds. Since
x ≥ 1 was chosen arbitrarily, we getPi+1(c).

Conversely supposePi+1(c). Let T belong toHi+1
c . By

the induction hypothesis, it is one of the treesU ′
κ,x for some

x ∈ N+, κ ∈ N+∪{ω}. In any case, it also belongs toJ i+1
ω .

Hence it remains to show that any tree of the formU ′
ω,x be-

longs toHi+1
c . So letx ∈ N+. Then, byPi+1(c), there

existsy ∈ N+ with Pi(c, x, y). By the induction hypothe-
sis, we haveT i

cxy
∼= U i

ω and thereforeT ′
cxy

∼= U ′
ω,x (which

belongs toHi+1
c by the very definition). ⊓⊔

Lemma 3.5 For all c ∈ Nk
+ there existsκ ∈ N+∪{ω} such

thatT i+1
c

∼= U i+1
κ .

Proof. It suffices to prove thatHi+1
c ∼ J i+1

κ for some
κ ∈ N+∪{ω}. Letκ be the smallest value inN+∪{ω} with
∀x ≥ κ ∀y : ¬Pi(c, x, y). By property (b) from Lemma 3.2
for Pi, we get∀1 ≤ x < κ ∃y : Pi(c, x, y). By the in-
duction hypothesis, we get∀x ≥ κ ∀y : T ′

cxy 6∼= U ′
ω,x and

∀1 ≤ x < κ ∃y : T ′
cxy

∼= U ′
ω,x. Thus,Hi+1

c contains, apart
from the trees inHi+1 =

⊎
{U ′

m,x | x, m ∈ N+}, exactly
the trees from{U ′

ω,x | 1 ≤ x < κ}, i.e.,Hi+1
c ∼ J i+1

κ . ⊓⊔

Lemma 3.4 and 3.5 immediately imply also (P2) fori+1.
Finally, (P1) fori = n gives:

Proposition 3.6 For the Π0
2n−3-predicateP (x) we have

for all c ∈ N+: P (c) if and only ifT n
c
∼= Un

ω .

It remains to show that the treesT n
c andUn

ω are effectively
automatic – this is the topic of the next section.

3.2 Automaticity

For constructing automatic presentations for the trees
from Section 3.1, it is actually easier to work withdags(di-
rected acyclic graphs). Theheightof a dagD is the length
(number of edges) of a longest directed path inD. We only
consider dags of finite height. Aroot of a dag is a node
without incoming edges. A dagD = (V, E) can be un-
folded into a forestunfold(D) in the usual way: Nodes of
unfold(D) are directed paths inD that cannot be extended
to the left (i.e., the initial node of the path is a root) and
there is an edge between two pathsp, p′ if and only if p′

extendsp by one more node. For a nodev ∈ V of D, we

define the treeunfold(D, v) as follows: First we restrictD
to those nodes that are reachable fromv and then we unfold
the resulting dag. We need the following lemma.

Lemma 3.7 From givenk ∈ N and an automatic dagD =
(V, E) of height at mostk, one can construct effectively an
automatic presentationP with S(P) ∼= unfold(D).

Proof. The universe for our automatic copy ofunfold(D)
is the setP of all convolutionsv1⊗v2⊗· · ·⊗vm, wherev1

is a root and(vi, vi+1) ∈ E for all 1 ≤ i < m. SinceD has
height at mostk, we havem ≤ k. Since the edge relation
of D is automatic and since the set of all roots inD is first-
order definable and hence regular,P is indeed a regular set.
Moreover, the edge relation ofunfold(D) becomes clearly
FA recognizable onP . ⊓⊔

For2 ≤ i ≤ n, let F i be the forest
⊎

{T i
c | c ∈ N

1+2(n−i)
+ } ⊎

⊎
{U i

κ | κ ∈ N+ ∪ {ω}} .

By induction overi, we will prove:

Proposition 3.8 There is an an automatic copyF i of F i

and an isomorphismf i : F i → F i that maps (i) the root of
the treeT i

c to ac (for all c ∈ N
1+2(n−i)
+), (ii) the root of the

treeU i
ω to ε, and (iii) the root of the treeU i

m to bm (for all
m ∈ N+).

This will give the desired result sinceT n
c is then isomorphic

to the connected component ofFn that contains the wordac

(and similarly forUn
κ). Note that this connected component

is again (effectively) automatic by Thm. 2.1, since the forest
Fn has bounded height.

By Lemma 3.7, it suffices to construct an automatic dag
Di such that there is an isomorphismh : unfold(Di) → F i

that is the identity on the set of roots ofDi.

3.2.1 Induction base: the automatic dag D2

Recall that, fori = 2, we used two polynomialsp1 andp2

from Matiyasevitch’s theorem and constructed the treesT i
c

andU i
κ that then formed the forestF 2. To show automatic-

ity of this forest (more precisely: of a suitable dagD2), we
therefore have to represent polynomials by automata. The
basis for this representation, that is inspired by Honkala’s
work [8], is provided by the following construction.

For a symbola, let Σa
k denote the alphabetΣa

k =
{a, ⋄}k \ {(⋄, . . . , ⋄)} and letσi denote theith component
of σ ∈ Σa

k. Fore = (e1, . . . , ek) ∈ Nk
+, define

ae = ae1 ⊗ ae2 ⊗ · · · ⊗ aek ∈ (Σa
k)∗ .

For a languageL, we write⊗k(L) for the language

{u1 ⊗ u2 ⊗ · · · ⊗ uk | u1, . . . , uk ∈ L}.

6

Lemma 3.9 There exists an algorithm that, given a non-
zero polynomialp(x) ∈ N[x] in k variables, constructs
an NFAA[p(x)] on the alphabetΣa

k with L(A[p(x)]) =
⊗k(a+) such that for allc ∈ Nk

+: A[p(x)] has exactlyp(c)
accepting runs on inputac.

Proof. The NFAA[p(x)] is build by induction on the con-
struction of the polynomialp, the base case is provided by
the polynomials1 andxi.

Let A[1] be a deterministic automaton withL(A[1]) =
⊗k(a+). Next, supposep(x1, . . . , xk) = xi for some1 ≤
i ≤ k. Let A[p(x)] = ({q1, q2}, {q1}, ∆, {q2}) with ∆ =
{(q1, σ, qj) | j ∈ {1, 2}, σ ∈ Σa

k, σi = a} ∪ {(q2, σ, q2) |
σ ∈ Σa

k}. When the NFAA[p(x)] runs on an input wordac,
it has exactlyci many times the chance to move from state
q1 to the final stateq2. Therefore there are exactlyci = p(c)
many accepting runs onac.

Let p1(x) andp2(x) be polynomials inN[x]. Assume
as inductive hypothesis that there are two NFAA[pi(x)] =
(Si, ∆i, Ii, Fi) such that the number of accepting runs of
A[pi(x)] onac equalspi(c) for i ∈ {1, 2}

For p(x) = p1(x) + p2(x), let A[p(x)] denote the dis-
joint union of A[p1(x)] andA[p2(x)]. For any wordac,
the number of accepting runs ofA[p(x)] on u is equal to
the sum of the numbers of accepting runs ofA[p1(x)] and
A[p2(x)] onac, which isp(c).

Forp(x) = p1(x)·p2(x), letA[p(x)] = (S1×S2, ∆, I1×
I2, F1 × F2), where ∆ = {((p1, p2), σ, (q1, q2)) |
(p1, σ, q1) ∈ ∆1, (p2, σ, q2) ∈ ∆2}. Then the number of
accepting runs ofA[p(x)] on a wordac is the product of the
numbers of accepting runs ofA[p1(x)] andA[p2(x)] onac,
which isp(c). ⊓⊔

Lemma 3.10 Let q1, q2 ∈ N[x1, . . . , xℓ] and leta be some
symbol. There is an automatic forest of height1 over an
alphabetΣa

ℓ ⊎ Γ such that: (i) the roots are the words from
⊗ℓ(a

+), (ii) the leaves are words fromΓ+, and (iii) the tree
rooted atae is isomorphic toT [q1(e), q2(e)].

Proof. Setp(x) = C(q1(x), q2(x)) (C is defined in (4))
and letA[p] = (S, I, ∆, F) be the NFA over the alphabet
Σa

ℓ from Lemma 3.9. Define the NFAB[p] = (S, I, ∆′, F)
with alphabet∆ and∆′ = {(p, (p, σ, q), q) | (p, σ, q) ∈
∆}; it accepts the set of accepting runs ofA[p]. Let π :
∆∗ → (Σa

ℓ)∗ be the projection morphism withπ(p, a, q) =
a. Then, for alle ∈ Nℓ

+, the size ofπ−1(ae) ∩ L(B[p])
equals the number of accepting runs ofA[p] onae, which is
p(e). Let

L = ⊗ℓ(a
+) ∪ (π−1(⊗ℓ(a

+)) ∩ L(B[p])) and

E = {(u, v) | u ∈ ⊗ℓ(a
+), v ∈ π−1(u) ∩ L(B[p])}.

ThenL is regular andE is FA recognizable, i.e.,(L; E)
is an automatic graph. It is actually a forest of height1,
the words from⊗ℓ(a

+) form the roots, and the tree rooted
at ae has preciselyp(e) leaves, i.e., it is isomorphic to
T [q1(e), q2(e)]. ⊓⊔

From now on, we use the notations from Sec. 3.1.1. By
Lemma 3.10, we can compute automatic forestsF1 andF2

over alphabetsΣa
ℓ+1 ⊎ Γ1 andΣb

2 ⊎ Γ2, resp., such that

(a) the roots ofF1 (resp.F2) are the words from⊗ℓ+1(a
+)

(resp.⊗2(b
+)),

(b) the leaves ofFi are words fromΓ+
i (i ∈ {1, 2}),

(c) the tree rooted ataeeℓ+1 is isomorphic to the tree
T [p1(e) + eℓ+1, p2(e) + eℓ+1] for e ∈ Nℓ

+, eℓ+1 ∈ N+,

(d) the tree rooted atbe1e2 is isomorphic toT [e1, e2] for
e1, e2 ∈ N+.

We can assume that the alphabetsΓ1, Γ2, Σa
ℓ+1, andΣb

2 are
mutually disjoint. LetF = (VF , EF) be the disjoint union
of F1 andF2; it is effectively automatic. The universe of
the automatic dagD2 is the regular language

⊗k(a+) ∪ b∗ ∪ ($∗ ⊗ VF),

where$ is a new symbol. We have the following edges:

• For u, v ∈ VF , $m ⊗ u is connected to$n ⊗ v if and
only if m = n and (u, v) ∈ EF . This producesℵ0

many copies ofF .

• ac is connected to all words from$∗ ⊗ ({ac x | x ∈
Nℓ−k+1

+ } ∪ {be1e2 | e1 6= e2}). By point (c) and
(d) above, this means that the treeunfold(D2, ac)
has ℵ0 many subtrees isomorphic toT [p1(c x) +
xℓ+1, p2(c x) + xℓ+1] for x ∈ Nℓ−k

+ , xℓ+1 ∈ N+

and T [e1, e2] for e1, e2 ∈ N+, e1 6= e2. Hence,
unfold(D2, ac) ∼= T 2

c .

• ε is connected to all words from$∗⊗{be1e2 | e1 6= e2}.
By (d) above, this means that the treeunfold(D2, ε)
has ℵ0 many subtrees isomorphic toT [e1, e2] for
e1, e2 ∈ N+, e1 6= e2. Hence,unfold(D2, ε) ∼= U2

ω.

• bm (m ∈ N+) is connected to all words from$∗ ⊗
{be1e2 | e1 6= e2 or e1 = e2 > m}. By (d), this means
that the treeunfold(D2, bm) hasℵ0 many subtrees iso-
morphic toT [e1, e2] for all e1, e2 ∈ N+ with e1 6= e2

or e1 = e2 > m. Thus,unfold(D2, bm) ∼= U2
m.

Hence,unfold(D2) ∼= F 2 and the roots are as required in
Prop. 3.8. Moreover, it is clear thatD2 is automatic.

7

3.2.2 Induction step: the automatic dag Di+1

SupposeDi = (V, E) is such thatF i = unfold(Di) is as
described in Prop. 3.8. We use the notations from Sec. 3.1.2.
We first build another automatic dagD′, whose unfolding
contains (copies of) all treesU ′

κ,x (κ ∈ N+ ∪ {ω}, x ∈

N+) andT ′
cxy (c ∈ Nk

+, x, y ∈ N+). Recall that the set of
roots ofDi is ⊗k+2(a

+) ∪ b∗ ⊆ V . The universe ofD′

consists of the following regular set, where♯, ♯1, and♯2 are
new symbols:

(V \ b∗) ∪ (♯+ ⊗ b∗) ∪ ♯+1 ♯∗2.

We have the following edges inD′:

• All edges fromE except those with an initial node in
b∗ are present inD′.

• acxy ∈ V is connected to all words of the form♯i
1♯

x−i
2

for c ∈ Nk
+, x, y ∈ N+, and1 ≤ i ≤ x. This ensures

that the subtree rooted atacxy getsx new leaves, which
are children of the root. Thusunfold(D′, acxy) ∼=
T ′

cxy.

• ♯x ⊗ bm for x ∈ N+ andm ∈ N is connected to (i)
all nodes to whichbm is connected inDi and to (ii) all
nodes from♯i

1♯
x−i
2 for 1 ≤ i ≤ x. This ensures that

unfold(D′, ♯x ⊗ bm) ∼= U ′
m,x in casem ∈ N+ and

unfold(D′, ♯x ⊗ ε) ∼= U ′
ω,x.

In summary,D′ is a dag, whose unfolding consists of (a
copy of)U ′

ω,x rooted at♯x ⊗ ε, U ′
m,x (m ∈ N+) rooted at

♯x ⊗ bm, andT ′
cxy rooted atacxy.

From the automatic dagD′, we now build in a final step
the automatic dagDi+1. This is very similar to the con-
structions ofD2 andD′ above. LetV ′ be the universe of
D′. The universe ofDi+1 is the regular language

⊗k(a+) ∪ b∗ ∪ ($∗ ⊗ V ′) .

The edges are as follows:

• Foru, v ∈ V ′, $m⊗u is connected to$n⊗v if and only
if m = n and(u, v) is an edge ofD′. This generates
ℵ0 many copies ofD′.

• ac is connected to every word from$∗ ⊗ ({acxy |
x, y ∈ N+} ∪ (♯+ ⊗ b+)). Hence, the tree
unfold(Di+1, ac) hasℵ0 many subtrees isomorphic to
T ′

cxy for x, y ∈ N+ andU ′
m,x for x, m ∈ N+. Thus,

unfold(Di+1, ac) ∼= T i+1
c .

• ε is connected to all words from$∗⊗(♯+⊗b∗). Hence,
the treeunfold(Di+1, ε) hasℵ0 many subtrees isomor-
phic toU ′

κ,x for all x ∈ N+ andκ ∈ N+ ∪ {ω}. Thus,
unfold(Di+1, ε) ∼= U i+1

ω .

• bm (m ∈ N+) is connected to all words from$∗ ⊗
((♯+ ⊗ b+) ∪ {♯x ⊗ ε | 1 ≤ x < m}). This means
that the treeunfold(Di+1, bm) hasℵ0 many subtrees
isomorphic toU ′

m,x for all m, x ∈ N+ andU ′
ω,x for all

1 ≤ x < m. Hence,unfold(Di+1, bm) ∼= U i+1
m .

This finishes the proof of Prop. 3.8.

Theorem 3.11 For any n ≥ 2, the isomorphism problem
for automatic trees of height at mostn is Π0

2n−3-complete.
The isomorphism problem for the class of auto-

matic trees of finite height is recursively equivalent to
FOTh(N; +,×).

Proof. We first prove the first statement. Containment in
Π0

2n−3 was shown in Prop. 3.1. For the hardness, letPn ⊆
N+ be anyΠ0

2n−3-predicate and letc ∈ N+. Then, above,
we constructed the automatic forestFn of heightn. The
treesT n

c andUn
ω are first-order definable inFn since they

are (isomorphic to) the trees rooted atac andε, resp. Hence
these two trees are effectively automatic. By Prop. 3.6, they
are isomorphic if and only ifPn(c) holds.

We now come to the second statement. Since the proof
of Prop. 3.1 is uniform in the leveln, we can compute from
two automatic treesT1, T2 of finite height an arithmetical
formula, which is true if and only ifT1

∼= T2. The other di-
rection follows from the first statement because of the uni-
formity in constructing the treesT n

c andUn
ω . ⊓⊔

From Thm. 3.11 we can easily deduce a corollary on au-
tomatic equivalence structures. An equivalence structureis
of the formE = (D; E) whereE is an equivalence relation
onD.

Corollary 3.12 The isomorphism problem for automatic
equivalence structures isΠ0

1-complete.

Proof. By Thm. 3.11 fork = 2 it suffices to show that the
isomorphism problem forT2 is recursively equivalent to the
isomorphism problem for automatic equivalence structures.
First, letE = (V ;≡) be an automatic equivalence structure
and let≤lex be the length-lexicographic order onV . Now
build the treeT (E) of height at most 2 as follows: Letr
be a new letter that serves as root. Its children are the≤lex-
minimal elementsu of the equivalence classes of≡, and the
children ofu are the remaining elements of the equivalence
class[u]. It is clear thatT (E) is a tree of height at most2.
Moreover, ifE is automatic, then alsoT (E) is automatic and
an automatic presentation forT (E) can be computed from
an automatic presentation forE . Finally, E1

∼= E2 if and
only if T (E1) ∼= T (E2). This gives us a reduction from the
isomorphism problem for automatic equivalence structures
to the isomorphism problem forT2.

8

For the reverse reduction, letT be a tree of height 2. We
construct an equivalence structureE(T) as follows: W.l.o.g.
assume thatT is not a single node. Then we first add to
each child of the root ofT a further child. This ensures
that every maximal path inT has length 2. LetT ′ be the
resulting tree. Then the elements ofE(T) are the leaves
of T ′ and two leavesu andv are equivalent if and only if
the have the same parent node. Again it is easy to see that:
(i) If T is automatic then alsoE(T) is automatic and an
automatic presentation forE(T) can be computed from an
automatic presentation forT . (ii) T1

∼= T2 if and only if
E(T1) ∼= E(T2). ⊓⊔

Let us close this section, with a brief discussion on the
isomorphism problem for computable trees of finite height.

Theorem 3.13 For everyn ≥ 1, the isomorphism problem
for computable trees of height at mostn is Π0

2n-complete.

Proof. For the upper bound, let us first assume thatn = 1.
Two computable treesT1 andT2 of height1 are isomorphic
if and only if: for everyk ≥ 0, there exist at leastk nodes
in T1 if and only if there exist at leastk nodes inT2. This
is aΠ0

2-statement. For the inductive step, we can reuse the
arguments from the proof of Prop. 3.1.

For the lower bound, we first deal with the casen = 1. It
is known that the problem whether a given recursively enu-
merable set is infinite isΠ0

2-complete [20]. For a given de-
terministic Turing-machineM , we construct a computable
treeTM of height1 as follows: the set of leaves ofTM is
the set of all accepting computations ofM . We add a root
to the tree and connect the root to all leaves. IfL(M) is
infinite, thenTM is isomorphic to the height-1 tree with in-
finitely many leaves. IfL(M) is finite, then there exists
m ∈ N such thatTM is isomorphic to the height-1 tree with
m leaves. We can use this construction as the base case for
our construction in Sec. 3.1.2. This yields the lower bound
for all n ≥ 1. ⊓⊔

4 Automatic Linear Orders

Our main result for automatic linear orders is:

Theorem 4.1 The isomorphism problem for the class of au-
tomatic linear orders is at least as hard asFOTh(N; +,×).

The proof of this result follows our arguments for trees of
finite height but is technically more involved. Looking back
to the proof of Thm. 3.11, we see that trees are used in order
to encode sets of sets of. . . sets of natural numbers. For
linear orders, we replace the basic tree operation of gluing
together a set of trees into a single tree by adding a new

root by theshuffle sum. The shuffle sum of a countable
set of linear order typesL is constructed as follows: First,
we densely colorQ with the order types inL, i.e., for all
rationalsx < y and allL ∈ L there existsx < z < y such
that z is colored with the order typeL (it doesn’t matter
which dense coloring we choose). The shuffle sum ofL is
the linear order that results from(Q, <) by replacing each
L-colored rational (L ∈ L) with the orderL. Assuming
that every order type inL starts with some ordinalω · i
(i ∈ N) and does not containω · i as an interval elsewhere,
the shuffle sum ofL encodes the setL as a linear order. In
our proof of Thm. 4.1 we use iterated shuffle sums. In order
to stay within automatic linear orders, we have to realize
shuffle sums in an automatic way, details can be found in
the complete version [15] of this paper.

In [13], it is shown that every linear order has finite FC-
rank. We do not define the FC-rank of a linear order in
general, see e.g. [13]. A linear orderL has FC-rank 1, if
after identifying allx, y ∈ L such that the interval[x, y] is
finite, one obtains a dense ordering or the singleton linear
order. The result of [13] mentioned above suggests that the
isomorphism problem might be simpler for linear orders of
low FC-rank. We now prove that this is not the case:

Corollary 4.2 The isomorphism problem for automatic
linear orders of FC-rank 1 is at least as hard as
FOTh(N; +,×).

Proof. We provide a reduction from the isomorphism
problem for automatic linear orders of arbitrary rank. IfL is
an automatic linear order, then so isL̃ = ((−1, 0]+ [1, 2)) ·
L. This linear order is obtained fromL by replacing each
point with a copy of the rational numbers in(−1, 0]∪ [1, 2).
ThenL̃ has FC-rank 1: Only the copies of0 and1 will be
identified, and the resulting order is isomorphic to(Q,≤).
Moreover,L is isomorphic to the set of allx ∈ L̃ satisfying
∃z > x ∀y : (x < y ≤ z → y = z). HenceL1

∼= L2 if and
only if L̃1

∼= L̃2, which completes the reduction. ⊓⊔

5 Arithmetical isomorphisms

We conclude this paper with an application of
Thms. 3.11 and 4.1. The following corollary shows that
although automatic structures look simple (especially for
automatic trees), there may be no “simple” isomorphism
between two automatic copies of the same structure. An
isomorphismf between two automatic structures with do-
mainsL1 and L2, resp., is aΣ0

k-isomorphism, if the set
{(x, f(x)) | x ∈ L1} belongs toΣ0

k.

Corollary 5.1 For anyk ∈ N, there exist two isomorphic
automatic trees of finite height (and two automatic linear
orders) without anyΣ0

k-isomorphism.

9

Proof. Assume that between any two isomorphic auto-
matic trees of finite height, there always exists aΣ0

k-
isomorphism. Then the isomorphism problem for automatic
trees of finite height would belong toΣ0

k+2 (which contra-
dicts Thm. 3.11): two automatic treesT1 = (D1; E1) and
T2 = (D2; E2) of finite height are isomorphic ifthere exists
a Σ0

k-predicateP (x, y) such that for allx1, x2 ∈ D1 there
exist y1, y2 ∈ D2 (and vice versa) such that:P (x1, y1),
P (x2, y2), (x1 = x2 ↔ y1 = y2), and ((x1, x2) ∈
E1 ↔ (y1, y2) ∈ E2). SinceP is a Σ0

k-predicate, this is
a Σ0

k+2-statement, which expresses the existence of aΣ0
k-

isomorphism fromT1 to T2. For linear orders we can argue
in the same way. ⊓⊔

6 Open problems

The main open problem, which remains, is the precise
complexity of the isomorphism problem for automatic lin-
ear orders. Is this problemΣ1

1-complete or does it belong to
the hyperarithmetical hierarchy (which makes upΣ1

1∩Π1
1)?

Another interesting problem is the isomorphism problem
for automatic well-founded trees (trees without an infinite
path). In the proof of [12] (Σ1

1-completeness of the isomor-
phism problem for automatic successor trees), trees with in-
finite paths arise. Finally, it seems to be open, whether the
isomorphism problem for automatic groups (in the sense of
[10] and not [5]) is decidable.

References

[1] V. Bárány, L. Kaiser, and S. Rubin. Cardinality
and counting quantifiers on omega-automatic struc-
tures. InSTACS 2008, pages 385–396. IFIB Schloss
Dagstuhl, 2008.

[2] A. Blumensath and E. Grädel. Finite presentations of
infinite structures: Automata and interpretations.The-
ory Comput. Syst., 37(6):641–674, 2004.

[3] W. Calvert and J. F. Knight. Classification from a com-
putable viewpoint.Bull. Symbolic Logic, 12(2):191–
218, 2006.

[4] C. Elgot. Decision problems of finite automata design
and related arithmetics.Trans. Am. Math. Soc., 98:21–
51, 1961.

[5] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F.
Levy, M. S. Paterson, and W. P. Thurston.Word pro-
cessing in groups. Jones and Bartlett, Boston, 1992.

[6] S. S. Goncharov and J. F. Knight. Computable struc-
ture and antistructure theorems.Algebra i Logika,
41(6):639–681, 2002.

[7] B. R. Hodgson. On direct products of automaton de-
cidable theories.Theoret. Comput. Sci., 19:331–335,
1982.

[8] J. Honkala. On the problem whether the image of
anN -rational series equalsN . Fund. Inform., 73(1-
2):127–132, 2006.

[9] B. Khoussainov and M. Minnes. Model theoretic com-
plexity of automatic structures. InTAMC 08, LNCS
4978, pp 514–525, Springer, 2008.

[10] B. Khoussainov and A. Nerode. Automatic presenta-
tions of structures. InLCC: International Workshop
on Logic and Computational Complexity, LNCS 960,
pages 367–392, Springer 1995.

[11] B. Khoussainov and A. Nerode. Open questions in the
theory of automatic structures.Bulletin of the EATCS,
94, pages 184–204, 2008.

[12] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan.
Automatic structures: richness and limitations.Log.
Methods Comput. Sci., 3(2):2:2, 18 pp. (electronic),
2007.

[13] B. Khoussainov, S. Rubin, and F. Stephan. Automatic
linear orders and trees.ACM Trans. Comput. Log.,
6(4):675–700, 2005.

[14] D. Kuske and M. Lohrey. Some natural decision prob-
lems in automatic graphs.J. Symbolic Logic, 2009. To
appear.

[15] D. Kuske, J. Liu, and M. Lohrey. The isomorphism
problem on classes of automatic structures.http:
//arxiv.org/abs/1001.2086

[16] Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT
Press, Cambridge, Massachusetts, 1993.

[17] A. Nies. Describing groups.Bull. Symbolic Logic,
13(3):305–339, 2007.

[18] S. Rubin. Automatic Structures. PhD thesis, Univer-
sity of Auckland, 2004.

[19] S. Rubin. Automata presenting structures: A survey
of the finite string case.Bull. Symbolic Logic, 14:169–
209, 2008.

[20] R. I. Soare.Recursively enumerable sets and degrees.
Perspectives in Mathematical Logic. Springer, 1987.

[21] T. Tsankov. The additive group of the rationals
does not have an automatic presentation.http:
//arxiv.org/abs/0905.1505

10

