
A Semantic Web Approach to Feature Modeling and
Verification

Hai Wang1 Yuan Fang Li2

Jing Sun3 Hongyu Zhang4 Jeff Pan1

1 The University of Manchester, United Kingdom
{hwang,pan}@cs.man.ac.uk

2 National University of Singapore, Singapore
liyf@comp.nus.edu.sg

3 The University of Auckland, New Zealand
j.sun@cs.auckland.ac.nz

4 RMIT University, Australia
hongyu@cs.rmit.edu.au

Abstract. Feature models are widely used in domain engineering to capture
common and variant concepts among systems in a particular domain. However,
the lack of a formal semantics of feature models has hindered the development
of this area. This paper presents a Semantic Web environment for modeling and
verifying feature diagrams using ontologies. We use OWL DL (a decidabledi-
alect of OWL) to precisely capture the relationships among features in feature
diagrams and configurations. OWL reasoning engines such as RACER are de-
ployed to check for the inconsistencies of feature configurations fully automati-
cally. As part of the environment, we also develop a CASE tool to facilitate the
visual development, interchange and reasoning of feature diagrams represented
as ontologies.

1 Introduction

Domain engineering is a software reuse approach that focuses on a particular applica-
tion domain such as word processing, inventory management systems, etc. In domain
engineering, we perform domain analysis and capture domainknowledge in the form
of reusable software assets. By reusing the domain assets, an organization will be able
to deliver a new product in the domain in a shorter time and at alower cost. In industry,
domain engineering forms a basis for software product line practices [14].

Feature modeling [3] plays an important role in domain engineering. Features are
prominent and distinctive user visible characteristic of asystem. Systems in a domain
share common features and also differ in certain features. In feature modeling, we iden-
tify the common and variant features and capture them as a graphical feature diagram.
Feature modeling is considered as “the greatest contribution of domain engineering to
software engineering” [3].

Quite a number of feature-based reuse approaches have been proposed, such as
FODA (Feature-Oriented Domain Analysis) [12], FORM (Feature-Oriented Reuse Method) [13]
and FeatuRSEB [8]. However, due to the absence of a formal semantics of features and



feature modeling, there is no automated tool that can check the correctness of a partic-
ular feature configuration based on the constraints specified in a feature model.

Works in the description logics area also inspired us to apply Semantic Web tech-
nologies to feature modeling. For instance, various description logics systems have been
applied to solving complex configuration problems [17, 6] and verifying the consistency
of UML diagrams [1]. However, to our best knowledge, Semantic Web and ontology
languages have not been applied to feature modeling problems before. Moreover, the
Semantic Web approach that we adopt provides an semantic foundation and working
environment that facilitates model creation, verification, integration, maintenance, etc.

Ontology languages such as OWL [11] play a key role in realizing the full potential
of Semantic Web as they prescribe how data are defined and related. We feel that there
is a strong similarity between Semantic Web ontology engineering and feature model-
ing, both of which represent concepts in a particular domainand define how various
properties relate among them. Hence, we believe that Semantic Web can play important
roles in domain engineering, and vice versa.

In this paper, we explore the synergy of domain engineering and Semantic Web. We
propose methods for transforming a feature model into an OWL DL ontology. Being
based on XML, the OWL format facilitates storage and exchangeof the feature models.
We then use OWL reasoning engine such as RACER [10] to perform automated analysis
over an OWL representation of the feature model. The analysishelps us detect possible
inconsistencies in feature configurations. We illustrate our approach using an example
of the Graph Product Line (GPL) feature model, which is a standard problem proposed
in [15] for evaluating product line technologies. Furthermore, we developed a CASE
tool to facilitate visual development, reasoning and distribution of feature models in the
Semantic Web environment.

The remainder of the paper is organized as follows. In Section 2, we give a brief
overview of feature modeling and Semantic Web ontology languages and tools. Sec-
tion 3 presents our proposal of feature model using OWL. We also show how Semantic
Web reasoning engines, can be used to perform automated analysis over the OWL rep-
resentation of the feature configurations. In Section 4, we demonstrate the CASE tool
we developed to facilitate the visual creation and reasoning of feature models. Section 5
concludes the paper and describes future work.

2 Background Information

2.1 Feature Modeling - Preliminary

Concepts & Features
Feature research has its root in conceptual modeling and cognitive science. In classical
conceptual modeling, we describe concepts by listing theirfeatures, which differentiate
instances of a concept. In software engineering, software features differentiate software
systems. Features of a software system are not only related to user-visible functional
requirements, but also related to non-functional requirements (quality attributes), design
decisions, and implementation details. In domain engineering and software product line
context, features distinguish different members of a product line. A product line can



be seen as a concept, and members of the product line can be seen as instances of
the concept. Product line members share common features andalso differ in certain
features.

Feature Diagrams & Feature Relations
Conceptual relationships among features can be expressed by a feature model as pro-
posed in [12].

Table 1.Features types

Type Notation

Mandatory

C

F

Optional

C

F

Alternative
F1 F2

C

Or
F1 F2

C

A feature model consists of a feature diagram and other associated information
(such as rationale, constraints and dependency rules). A feature diagram provides a
graphical tree-like notation that shows the hierarchical organization of features. The
root of the tree represents a concept node. All other nodes represent different features.

Table 1 provides an overview of some commonly found feature types. The graphical
notation introduced in [3] are used here. In Table 1, assuming the conceptC is selected,
we have the following definitions on its child features:

– Mandatory – The feature must be included into the description of a concept in-
stance.

– Optional – The feature may or may not be included into the description of a concept
instance.

– Alternative – Exactly one feature from a set of features can be included into the
description of a concept instance.

– Or – One or more features from a set of features can be includedinto the description
of a concept instance.



A feature diagram itself cannot capture all the inter-dependencies among features.
We have identified two additional relations among features:requiresandexcludes.

– Requires – The presence of some feature in a configuration requires the presence
of some other features.

– Excludes – The presence of some feature excludes the presence of some other fea-
tures.

As theRequiresandExcludesrelations do not appear in a feature diagram, they are
usually presented as additional constraints in a textual description.

The Graph Product Line (GPL) feature model
The Graph Product Line (GPL) example was proposed by Lopez-Herrejon and Batory
as a standard problem for evaluating software product line technologies [15]. We use
it as a case study to demonstrate the effectiveness of our approach in verifying feature
models using OWL. The GPL is a family of classical graph applications in the Computer
Science domain. Members of GPL implement one or more graph algorithms, over a
directed or undirected graph that is weighted or unweighted, and one search algorithm
if required1. We summarize it as follows.

GPL is a typical software product line in that different GPL applications are distin-
guished by a set of features. Lopez-Herrejon and Batory haveidentified the following
features in GPL:

– Algorithms – A graph application implements one or more of the following algo-
rithms: Vertex numbering (Number), Connected Components (Connected), Stro-
ngly Connected Components (StronglyConnected), Cycle Checking (Cycle), Mini-
mum Spanning Trees (MST), and Single-Source Shortest Path (Shortest).

– Graph Type – A graph is eitherDirectedor Undirected, and its edges can be either
Weightedor Unweighted.

– Search – A graph application requires at most one search algorithms: Breadth-First
Search (BFS) or Depth-First Search (DFS).

Based on the above feature classification, a feature diagramfor the Graph Product
Line (GPL) applications can be defined as shown in Figure 1.

Not all combinations of the features described in the above feature diagram (Fig-
ure 1) are valid in a GPL implementation. For example, if a graph application imple-
ments the Minimum Spanning Trees (MST) algorithm, we have touse the Weighted and
Undirected graph types and require no search algorithm. Table 2 shows the additional
constraints among the GPL features for representing a validcombination, adapted from
Lopez-Herrejon and Batory [15].

From the GPL model presented in Fig. 1 above and additional constraints, we can
see that(GPL, GraphType, Directed, Unweighted, Algorithms, Number) is a possible
configuration derived from theGPL feature model. However, not all combinations of

1 More information about the GPL example can be found online at:http://www.cs.
utexas.edu/users/dsb/GPL/graph.htm



Fig. 1.A feature model for Graph Product Line.
Table 2.Additional Constraints on GPLAlgorithms

Algorithm Searches Required Required
Required Graph Type Weight

Vertex DFS, BFS Directed, Weighted,
Numbering Undirected Unweighted
Connected DFS, BFS Undirected Weighted,

Components Unweighted
Strongly DFS Directed Weighted,

Connected Unweighted
Cycle DFS Directed, Weighted,

Checking Undirected Unweighted
Minimum None Undirected Weighted

Spanning Tree
Single-Source None Directed Weighted
Shortest Path

features are valid. For example, the configuration(GPL, GraphType, Directed, Undi-
rected, Weighted, Algorithms, Shortest)is invalid since the featuresDirectedandUndi-
rectedare exclusive to each other.

2.2 Semantic Web - Ontology languages & Tools

Description logics [19] are logical formalisms for representing information about classes,
individuals and their relationships. It evolved from frame-based systems [18] and pred-
icate logic and is well-known for the trade-off between expressivity and decidability.

Based on RDF Schema [4] and DAML+OIL [21], OWL [16] is the de-facto ontol-
ogy language for the Semantic Web. It consists of three increasingly expressive sublan-
guages: OWL Lite, DL and Full. OWL DL is very expressive yet decidable. As a result,
core inference problems, namely concept subsumption, consistency and instantiation,
can be performed fully automatically. In OWL (and description logics), conceptual enti-
ties are organized as classes in hierarchies. Individual entities are grouped under classes
and are called instances of the classes. Classes and individuals can be related by prop-
erties.



RACER, theRenamedABox andConceptExpressionReasoner [10], implements
a TBox (terminological box, class-level) and ABox (assertional box, instance-level)
reasoner for the description logicALCQHIR+(D)− [9]. It can be regarded as:

– a Semantic Web inference engine,
– a description logic reasoning system capable of both TBox and ABox reasoning,
– a prover for modal logic Km.

In the Semantic Web domain, RACER’s functionalities include developing ontologies
(creating, maintaining and deleting concepts, roles and individuals); querying, retriev-
ing and evaluating the knowledge base, etc. It supports RDF,DAML+OIL and OWL.

3 Feature Modeling using OWL

In this section, we use OWL DL to formally define the semantics of the above-mentioned
feature relations, namelymandatory, optional, alternative, or; and additional constraints
requiresandexcludes. With feature models expressed in OWL DL, a Semantic Web en-
vironment can be built to facilitate feature model storing,sharing and distribution and
to assist design cooperation. In this paper, we only focus onverifying feature models
using OWL.

Our presentation of the OWL encoding will be divided into three parts. In the first
part, we present how a feature diagram and additional constraints are modeled in OWL.
In the second part, the modeling of feature configurations are discussed. In the last part,
we discuss the verification of feature configurations using the GPL example. The feature
modeling in OWL is presented in a syntax similar to the “DL syntax” given in [11].

3.1 Conceptual Modeling

Pre-processing
Before we model the different feature relations in a featurediagram, we need to build
the OWL ontology for the various nodes and edges in the diagram. The ontology is
constructed in two steps. For a parent featureG and its child featuresF1, ..., Fn, the
initial modeling produces the following ontology.

1. We identify the nodes (concepts and features) in a featurediagram. Each node in
the diagram is modeled as an OWL class (subclass of the top class⊤). Moreover,
we assert that these classes are mutually disjoint.

G ⊑ ⊤

Fi ⊑ ⊤

G⊓ Fi = ⊥ , for 1 ≤ i ≤ n
Fi ⊓ Fj = ⊥, for 1 ≤ i < j ≤ n

Note that the clauseG⊓ Fi = ⊥ is used to assert the disjointness of the classesG
andFi .
Taking GPL as an example, concept GPL and features such as Search, DFS, Cycle,
etc. are all classes in the ontology.



GPL⊑ ⊤

GraphType⊑ ⊤

Search⊑ ⊤

· · ·

GPL⊓ GraphType= ⊥

GPL⊓ Search= ⊥

GraphType⊓ Search= ⊥

· · ·

2. The root concept and features in a feature diagram are inter-related by various fea-
ture relations, represented by different edge types in the diagram. In our OWL
model, for each of these edges, we create an object property.We assert that the
range of the property is the respective feature class.

⊤ ⊑ ∀hasG.G ⊤ ⊑ ∀hasFi .Fi , for 1 ≤ i ≤ n

For the GPL case study, we have one object property for each ofthe concept/features.

⊤ ⊑ ∀ hasGPL.GPL
⊤ ⊑ ∀ hasBFS.BFS
· · ·

⊤ ⊑ ∀ hasSearch.Search
⊤ ⊑ ∀ hasAlgorithm.Algorithm
· · ·

3. For each concept/feature node in the diagram, we create aRuleclass. For each of
theseRuleclasses, we add a necessary and sufficient (NS,EquivalentClass)
condition, using an existential restriction, to bind theRule node to the correspond-
ing feature node in the diagram.

GRule⊑ ⊤

GRule≡ ∃hasG.G
FiRule⊑ ⊤, for 1 ≤ i ≤ n
FiRule≡ ∃hasFi .Fi , for 1 ≤ i ≤ n

For the GPL case study, part of the initial modeling is shown below.

GPL⊑ ⊤

GPLRule⊑ ⊤

GPLRule≡ ∃hasGPL.GPL
GPL⊓ GraphType= ⊥

GraphType⊑ ⊤

GraphTypeRule⊑ ⊤

GraphTypeRule≡ ∃hasGraphType.GraphType
· · ·

Now we are ready to model the feature relations. The general definition of each
of the four feature relations will be shown, based on the above feature ontology. The
GPL case study presented in Section 2 will be used to illustrate the idea. The ontology
will be constructed incrementally to show the modeling of various feature relations
and additional constraints defined in Table 2. As we will see,more axioms will be
introduced to model the feature relations.

It is to be noted that the modeling of various feature relations and constraints will
heavily rely on theRuleclasses as well as the original feature classes. It is theRule
classes where all the OWL restrictions will be imposed.

Mandatory
A mandatoryfeature is included if its parent feature is included.

For each of themandatoryfeaturesF1, ..., Fn of a parent featureG, we use one
N constraint to model it. It is asomeValuesFrom restriction onhasFi , stating that



each instance of the classGRulemust have some instance ofFi class forhasFi . The
following ontology fragment shows the modeling of mandatory feature set and parent
featureG.

GRule⊑ ∃hasF1.F1

· · ·

GRule⊑ ∃hasFn.Fn

It can be seen from Fig. 1 that the root nodeGPL has a mandatory child feature
GraphType, which is itself a non-leaf node. We create two new classes for these two
non-leaf nodes2.

GraphType⊑ ⊤

⊤ ⊑ ∀hasGraphType.GraphType
GPLRule⊑ ∃hasGraphType.GraphType

The statement⊤ ⊑ ∀hasGraphType.GraphTypeis used to ensure the range of
propertyhasGraphTypeto beGraphType. The statementGPLRule⊑ ∃hasGraphType.
GraphTypeensures that GPL will have some GraphType as one of its child features.

Optional
An optional feature may or may not be included in a diagram, if its parent is included.

For each of theoptionalfeaturesF1, ..., Fn of a parent featureG, we need to ensure
that if any of the feature from this set is included in a configuration, the parent feature
also must be included. We accomplish this by making the Rule class of each child
feature class a sub class of thesomeValuesFrom restriction on the parent feature (or
concept) class.

F1Rule⊑ ∃hasG.G · · · FnRule⊑ ∃hasG.G

In the GPL case study,Searchis an optional feature forGPL. We model it as follows.

SearchRule⊑ ∃hasGPL.GPL

Alternative
As stated in Section 2, one and only one feature from a set ofalternativefeatures can
be included, if their parent feature is included in a configuration.

For a set ofalternativefeaturesF1, ..., Fn and a parent featureG, we use disjunc-
tion of someValuesFrom restrictions overhasFis to ensure that some feature will
be included. We use the complement of conjunction ofsomeValuesFrom restric-
tions to ensure that only one feature can be included. The symbols

⊔
and

d
represent

distributed disjunction and conjunction respectively.

GRule⊑
⊔

(∃hasFi .Fi), for 1 ≤ i ≤ n
GRule⊑ ¬

d
(∃hasFi .Fi), for 1 ≤ i ≤ n

2 For brevity reasons, class definitions, disjointness and range statementswill not be shown from
here onwards.



Fig. 1 shows that featuresBFS and DFS compose an alternative feature set for
Search. We model this relation as follows.

SearchRule⊑ (∃hasBFS.BFS) ⊔ (∃hasDFS.DFS)
SearchRule⊑ ¬ ((∃hasBFS.BFS) ⊓ (∃hasDFS.DFS))

Or
According to Section 2, at least one from a set ofor features is included, if the parent
feature is included.

For a set ofor featuresF1, ..., Fn of a parent featureG, we need to use a disjunction
of someValuesFrom restrictions to model this relation.

GRule⊑
⊔

(hasFi .Fi), for 1 ≤ i ≤ n

It may be noticed that the definition ofor is very similar to that ofalternative,
with the omission of the negation of conjunction to allow formultiple or features to be
included.

In Fig. 1, the featureAlgorithmshas someor features. We use the following con-
structs to model it.

AlgorithmsRule⊑ ((∃hasNumber.Number) ⊔
(∃hasConnected.Connected) ⊔ (∃hasCycle.Cycle) ⊔
(∃hasMST.MST) ⊔ (∃hasShortest.Shortest) ⊔
(∃hasStronglyConnected.StronglyConnected))

Requires
A feature may depend on some other features, hence its presence in a feature configu-
rationrequiresthe appearance of the others.

For a given featureG and a set of featuresF1, ..., Fn thatG requires, we make sure
that each ofFis appears in the configuration ifG is present.

GRule⊑ ∃hasF1.F1

· · ·

GRule⊑ ∃hasFn.Fn

In Table 2, featureStronglyConnectedrequires bothDFSandDirected, and either
Weightedor Unweighted. Its OWL representation is as follows.

StronglyConnectedRule⊑ ∃hasDFS.DFS
StronglyConnectedRule⊑ ∃hasDirected.Directed

SinceWeightedandUnweightedform the set of two alternative features ofGraphType,
which is itself a mandatory feature and exactly one from a setof alternative features
must appear in the configuration, we do not need to express them as additional con-
straints forStronglyConnected.



Excludes
The presence of a feature may be inhibited by that of some other features. We say
the appearance of a feature in a configuration excludes the appearance of some other
features.

For a given featureG and a set of featuresF1, ..., Fn thatG excludes, we make sure,
using the negation ofsomeValuesFrom restriction onhasFi property, thatG does
not have anyFi feature .

GRule⊑ ¬ (∃hasF1.F1)
· · ·

GRule⊑ ¬ (∃hasFn.Fn)

The next example shows both requires and excludes constraints for a single feature.
In GPL, cycle checking algorithmCycleexcludes the use of breadth-first searchBFS.
From Table 2, we know thatCycleonly requiresDFS, hence it also excludesBFS.

CycleRule⊑ ∃hasDFS.DFS
CycleRule⊑ ¬ (∃hasBFS.BFS)

3.2 Feature Configuration Modeling

In feature modeling, a feature configuration derived from a feature model represents a
concrete instance of a concept (i.e., a specific system in a domain). Intuitively, given
a feature model ontology, features and concepts in a configuration should be instances
(OWL individuals) of the classes defined in the ontology.

In our approach, we use OWL classes to simulate feature and concept instances so
that the full power of the reasoning engines can be exploitedto detect inconsistencies
in the configuration.

Specifically, the reasoning support over ABoxes is not as comprehensive as that over
TBox. ABox reasoners such as RACER can only detect that an ABox is incoherent w.r.t.
a TBoxas a whole. It cannot tell which instance(s) actually causes the problem. On the
contrary, OWL reasoners can not only detect inconsistenciesin a TBox, it can also show
which class(es) are inconsistent.

Definition: feature configuration modeling
A feature configuration is a set of features that an instance of a concept may hold. The
modeling of a given feature configuration is as follows.

– We model the concept node in the configuration as a subclass oftheRuleclass of
the root concept in a feature diagram.

– We use an existential restriction for each feature includedin the configuration.
– For each feature present in a feature diagram, we make its absence/presence explicit

in a configuration according to this feature diagram to prevent the reasoning engine
from erroneously inferring the existence of this feature inthe configuration. This is
necessary because of the Open World Assumption adopted by OWL.

– We make the concept class equivalent (NS condition) to the conjunction of the
above constraints.



Without loss of generality, for a concept instanceC derived from a feature diagram
with root conceptG and a set of featuresF1, ..., Fn, assuming thatF1, ..., Fi appear in
the configuration ofC andFi+1, ..., Fn do not, a feature configuration can be modeled
as follows.

C ⊑ GRule
C ≡

d
(∃hasFj .Fj , for 1 ≤ j ≤ i) ⊓d
(= 0 hasFk, for i < k ≤ n)

The feature configuration is constructed as a separate ontology and the reasoning
engine is invoked to check its consistency. The configuration is valid if the ontology is
checked to be consistent with respect to the feature diagramontology.

3.3 Feature Configuration Verification in RACER

We use the GPL example to illustrate this approach. Suppose we have a configuration
containing a concept instanceE and some features for the GPL feature diagram in Fig. 1.
We name the instance node the classE. Note that the namespace name of the feature
diagram ontology isGPL and is omitted from the presentation.

E ⊑ GPLRule
E ≡ ((∃ hasConnected.Connected) ⊓ (∃hasSearch.Search)⊓

(∃hasAlgorithms.Algorithms) ⊓ (∃hasBFS.BFS)⊓
(∃hasGraphType.GraphType) ⊓ (∃hasNumber.Number)⊓
(∃hasWeighted.Weighted) ⊓ (∃hasUndirected.Undirected)⊓
(∃hasStronglyConnected.StronglyConnected)⊓
(= 0 hasDirected) ⊓ (= 0 hasMST) ⊓ (= 0 hasShortest)⊓
(= 0 hasUnweighted) ⊓ (= 0 hasDFS) ⊓ (= 0 hasCycle))

If we input this ontology into Protéǵe and use RACER toclassifythe above on-
tology, RACER will complain that classE is inconsistent, as is shown in Fig. 2. A
closer inspection reveals thatStronglyConnectedrequires (via the Rule class)DFSand
Directed, which are both absent in the configuration.

We correct the above configuration by asserting thatE does haveDFSandDirected.
SinceBFSandDFS andUndirectedandDirectedare alternative features, we remove
BFSandUndirectedfrom E.

E ⊑ GPLRule
E ≡ ((∃ hasConnected.Connected) ⊓ (∃hasSearch.Search)⊓

(∃hasAlgorithms.Algorithms) ⊓ (∃hasDFS.DFS)⊓
(∃hasGraphType.GraphType) ⊓ (∃hasNumber.Number)⊓
(∃hasWeighted.Weighted) ⊓ (∃hasDirected.Directed)⊓
(∃hasStronglyConnected.StronglyConnected)⊓
(= 0 hasUndirected) ⊓ (= 0 hasMST) ⊓ (= 0 hasShortest)⊓
(= 0 hasUnweighted) ⊓ (= 0 hasBFS) ⊓ (= 0 hasCycle))

However, RACER again complains that conceptE is inconsistent. The source of
this inconsistency does not come fromStronglyConnected. However, it is caused by the



Fig. 2.RACER detects an inconsistency.

fact that featureConnectedrequiresUndirected, which is absent from the configuration.
Then we realize that featuresStronglyConnectedandConnectedare mutually exclusive
in any valid configuration since they require different features from a set ofalternative
features.

After we removeConnectedfrom the configuration ofE, RACER confirms that the
ontology is consistent, hence the configuration is valid.

Working on OWL DL, RACER can identify the inconsistency of a configuration
with full automation. As pointed out in [5], with the growth of number of features in a
feature diagram, manual checking of the consistency of a configuration is very laborious
and highly error-prone. Since ontology reasoning tools aredeveloped to reason about
knowledge bases with enormous size, this approach is very scalable. The automated
approach we adopt here is thus very advantageous.

4 A Tool Support for Feature Modeling in OWL

In the previous section, we present that OWL can be used to perform feature modeling.
However it will be a tedious job for software engineers to design their system at such
low level details. In this section we present a visual CASE tool that provides a high-
level and intuitive environment for constructing feature models in OWL. Our feature
modeling tool was built based on the meta-tool Pounamu [22].Pounamu is a meta-case
tool for developing multi-view visual environment. Fig. 3 shows the GPL feature model
defined by the tool. From it we can see that the GPL feature model can be defined easily
by creating instances of the pre-defined model entities and associations.



Fig. 3.A CASE tool for Feature Modeling, showing the GPL feature diagram.

Note that additional constraints among the features can also be specified in the “con-
straints” attribute of a concept. By triggering the defined event handler menu item in the
tool, it transforms all the default XML format of each feature in the diagram into a sin-
gle OWL representation of the feature model and save it for theRACER reasoning.

5 Conclusion

In this paper, we propose a Semantic Web environment to feature modeling and veri-
fication. We use the ontology language OWL DL to represent feature models and con-
figurations in a formal and unambiguous way. By representingfeatures as OWL classes
and feature relations as OWL properties, the consistency of feature configurations can
be automatically checked by Semantic Web reasoning enginessuch as RACER.

To facilitate visual development and analysis of feature models, we also developed a
CASE tool that enables drawing feature diagrams and expressing additional constraints
on various features. Feature diagrams are then converted toOWL syntax, made ready
for online interchange and analysis. We used the Graph Product Line case study, a stan-
dard problem in the feature engineering community, throughout the paper to illustrate
our approach.

There have been similar works on applying description logics to configuration prob-
lems [17, 7] and UML diagrams [1]. Compared to the description logics works, our
approach has the following advantages.

– Compared to description logics, ontology languages and tools define mechanisms
for management of ontologies. Hence, using ontology language for feature model-
ing makes the tasks of integrating, sharing, importing, versioning and maintaining
feature models easy.



– Feature modeling languages can be enriched to support the modeling of features
and feature relations of a higher complexity, beyond the expressivity of OWL.
However, the expressiveness of the OWL language can be easilyextended with the
development of upper-layer languages such as the rule extension SWRL FOL [2].
With the development of tool support of these languages, more complex queries
and checking can be performed for large-scale and complex feature models.

– The syntactic well-forcedness of OWL also makes it easy to transform feature on-
tologies to other useful formats for the purpose of visualization, concrete represen-
tation, etc.

– Being an open standard ontology language, potentially OWL has the advantage of
ample reasoning support, which may not be restricted to description logics domain.
For example, automated theorem provers (ATP) such as Vampire [20] have already
been implemented to support reasoning OWL ontologies. Moreover, complex prop-
erties that cannot be handled by tools such as RACER may be solved by combined
approaches such as [6].

We believe that Semantic Web can play important roles in domain engineering, and
we will continue exploring the synergies between them. In the future, we plan to de-
velop an integrated environment based on the current tool that supports the construction,
analysis and exchange of the feature models in OWL.

Acknowledgement

The second author would like to thank Singapore Millennium Foundation (http://
www.smf-scholar.org/) for the financial support. This work was supported in
part by HyOntUse Project (GR/S44686) funded by the UK Engineering and Physical
Science Research Council.

References

1. D. Berardi. Using dls to reason on uml class diagrams. InProc. of the 2002 Workshop on
Applications of Description Logics (ADL 2002), Aachen, Germany, September 2002. CEUR
(http://ceur-ws.org/.

2. Harold Boley, Mike Dean, Benjamin Grosof, Ian Horrocks, Peter Patel-Schneider, Said
Tabet, and Gerd Wagner. SWRL FOL (November 2004).http://www.daml.org/
2004/11/fol/, November 2004.

3. Krysztof Czarnecki and Ulrich Eisenecker.Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, MA., 2000.

4. D. Brickley and R.V. Guha (editors). Resource description framework (rdf) schema specifi-
cation 1.0.http://www.w3.org/TR/rdf-schema/, February 2004.

5. Sybren Deelstra, Marco Sinnema, and Jan Bosch. Experiences in Software Product Families:
Problems and Issues During Product Derivation. In Robert L. Nord, editor,SPLC, volume
3154 ofLecture Notes in Computer Science, pages 165–182. Springer, 2004.

6. J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. A Combined Approachto Checking Web
Ontologies. InProceedings of 13th World Wide Web Conference (WWW’04), pages 714–
722, New York, USA, May 2004.



7. Michael Eisfeld. Model construction for configuration design. InProceedings of Workshop
on Applications of Description Logics (ADL 2002), 2002.

8. M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB. In
The 5th International Conference on Software Reuse, pages 76–85, Vancouver, BC, Canada,
June 1998.

9. Volker Haarslev and Ralf M̈oller. Practical Reasoning in Racer with a Concrete Domain
for Linear Inequations. In Ian Horrocks and Sergio Tessaris, editors, Proceedings of the
International Workshop on Description Logics (DL-2002), Toulouse, France, April 2002.
CEUR-WS.

10. Volker Haarslev and Ralf M̈oller. RACER User’s Guide and Reference Manual: Version
1.7.6, December 2002.

11. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. FromSHIQ and RDF to
OWL: The making of a web ontology language.J. of Web Semantics, 1(1):7–26, 2003.

12. Kyo C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-90TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990.

13. Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, andMoonhang Huh.
FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference Architectures.
Annals of Software Engineering, 5:143–168, 1998.

14. Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-Oriented Product Line Engineer-
ing. IEEE Software, 9:58–65, 2002.

15. Roberto E. Lopez-Herrejon and Don S. Batory. A standard problem for evaluating product-
line methodologies. InProceedings of the Third International Conference on Generative and
Component-Based Software Engineering, pages 10–24, Erfurt, Germany, September 2001.
Springer-Verlag.

16. M. Dean and G. Schreiber (editors). OWL Web Ontology Language Reference.http:
//www.w3.org/TR/2004/REC-owl-ref-20040210/, February 2004.

17. Deborah L. McGuinness. Configuration. In Franz Baader, DiegoCalvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,Description Logic Hand-
book, pages 388–405. Cambridge University Press, 2003.

18. M. Minsky. A framework for representing knowledge. In J. Haugeland, editor,Mind Design:
Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT Press, Cambridge, MA,
1981.

19. Daniele Nardi and Ronald J. Brachman. An introduction to descriptionlogics. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
editors,The description logic handbook: theory, implementation, and applications, pages
1–40. Cambridge University Press, 2003.

20. Alexandre Riazanov and Andrei Voronkov. Vampire. In Harald Ganzinger, editor,Automated
Deduction – CADE-16, 16th International Conference on Automated Deduction, LNAI 1632,
pages 292–296, Trento, Italy, July 7–10, 1999. Springer-Verlag.

21. F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks (editors). Reference description of
the DAML+OIL ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D.
Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness,
L. A. Stein, et. al., March, 2001.

22. Nianping Zhu, John Grundy, and John Hosking. Pounamu: a meta-tool for multi-view vi-
sual language environment construction. InProceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’04), Rome, Italy, September 2004.


