A Semantic Web Approach to Feature Modeling and
Verification

Hai Wand Yuan Fang L%
Jing Sud Hongyu Zhand Jeff Par

! The University of Manchester, United Kingdom
{hwang, pan}@s. man. ac. uk
2 National University of Singapore, Singapore
I'iyf @onp. nus. edu. sg
3 The University of Auckland, New Zealand
j.sun@s. auckl and. ac. nz
4 RMIT University, Australia
hongyu@s.rnit. edu. au

Abstract. Feature models are widely used in domain engineering to capture
common and variant concepts among systems in a particular domairevidgw
the lack of a formal semantics of feature models has hindered the gavetn

of this area. This paper presents a Semantic Web environment follingpelad
verifying feature diagrams using ontologies. We use OWL DL (a deciddible
alect of OWL) to precisely capture the relationships among features iaréea
diagrams and configurations. OWL reasoning engines such as RAGE&Rea
ployed to check for the inconsistencies of feature configurations futtynaaii-
cally. As part of the environment, we also develop a CASE tool to facilitate the
visual development, interchange and reasoning of feature diagepresented

as ontologies.

1 Introduction

Domain engineering is a software reuse approach that feausa particular applica-
tion domain such as word processing, inventory managenysteras, etc. In domain
engineering, we perform domain analysis and capture dokrewledge in the form
of reusable software assets. By reusing the domain assetsganization will be able
to deliver a new product in the domain in a shorter time andawar cost. In industry,
domain engineering forms a basis for software product lnaetres [14].

Feature modeling [3] plays an important role in domain eegiing. Features are
prominent and distinctive user visible characteristic glyatem. Systems in a domain
share common features and also differ in certain featundeature modeling, we iden-
tify the common and variant features and capture them aspdige feature diagram.
Feature modeling is considered as “the greatest contithati domain engineering to
software engineering” [3].

Quite a number of feature-based reuse approaches have bmsrsed, such as
FODA (Feature-Oriented Domain Analysis) [12], FORM (Feet@riented Reuse Method) [13]
and FeatuRSEB [8]. However, due to the absence of a formalrsiirs of features and

feature modeling, there is no automated tool that can checkdrrectness of a partic-
ular feature configuration based on the constraints spédifia feature model.

Works in the description logics area also inspired us toyaggimantic Web tech-
nologies to feature modeling. For instance, various dgsari logics systems have been
applied to solving complex configuration problems [17, & aarifying the consistency
of UML diagrams [1]. However, to our best knowledge, Senwakifeb and ontology
languages have not been applied to feature modeling prebefore. Moreover, the
Semantic Web approach that we adopt provides an semantiddtion and working
environment that facilitates model creation, verificatiomegration, maintenance, etc.

Ontology languages such as OWL [11] play a key role in readitie full potential
of Semantic Web as they prescribe how data are defined anddel&le feel that there
is a strong similarity between Semantic Web ontology ergjing and feature model-
ing, both of which represent concepts in a particular donaaic define how various
properties relate among them. Hence, we believe that Semvaleb can play important
roles in domain engineering, and vice versa.

In this paper, we explore the synergy of domain engineenibSemantic Web. We
propose methods for transforming a feature model into an OWloBtology. Being
based on XML, the OWL format facilitates storage and exchafigfee feature models.
We then use OWL reasoning engine such as RACER [10] to perfotomeated analysis
over an OWL representation of the feature model. The anahgdiss us detect possible
inconsistencies in feature configurations. We illustrateapproach using an example
of the Graph Product Line (GPL) feature model, which is addad problem proposed
in [15] for evaluating product line technologies. Furthers we developed a CASE
tool to facilitate visual development, reasoning and thation of feature models in the
Semantic Web environment.

The remainder of the paper is organized as follows. In Se@jowe give a brief
overview of feature modeling and Semantic Web ontology laggs and tools. Sec-
tion 3 presents our proposal of feature model using OWL. We stiew how Semantic
Web reasoning engines, can be used to perform automatedmsnaler the OWL rep-
resentation of the feature configurations. In Section 4, eraahstrate the CASE tool
we developed to facilitate the visual creation and reagpoirieature models. Section 5
concludes the paper and describes future work.

2 Background Information

2.1 Feature Modeling - Preliminary

Concepts & Features

Feature research has its root in conceptual modeling andta@gscience. In classical
conceptual modeling, we describe concepts by listing fieaiiures, which differentiate
instances of a concept. In software engineering, softweaeifes differentiate software
systems. Features of a software system are not only relateset-visible functional
requirements, but also related to non-functional requireisi(quality attributes), design
decisions, and implementation details. In domain engingend software product line
context, features distinguish different members of a pcbdine. A product line can

be seen as a concept, and members of the product line can hheseéestances of
the concept. Product line members share common featurealsodliffer in certain
features.

Feature Diagrams & Feature Relations
Conceptual relationships among features can be expregsadedature model as pro-
posed in[12].

Table 1.Features types

Type Notation

Mandatory

Optional

Alternative

n
Y
n
N

Or

A feature model consists of a feature diagram and other ededcinformation
(such as rationale, constraints and dependency rules)ayrie diagram provides a
graphical tree-like notation that shows the hierarchiaghaization of features. The
root of the tree represents a concept node. All other nogeesent different features.

Table 1 provides an overview of some commonly found featypeg. The graphical
notation introduced in [3] are used here. In Table 1, assgttia concepC is selected,
we have the following definitions on its child features:

— Mandatory — The feature must be included into the descriptiba concept in-
stance.

— Optional — The feature may or may not be included into therijgtsan of a concept
instance.

— Alternative — Exactly one feature from a set of features carncluded into the
description of a concept instance.

— Or—0ne or more features from a set of features can be incintiethe description
of a concept instance.

A feature diagram itself cannot capture all the inter-deleecies among features.
We have identified two additional relations among featureguiresandexcludes

— Requires — The presence of some feature in a configuratiarirescthe presence
of some other features.

— Excludes — The presence of some feature excludes the peesksaome other fea-
tures.

As the Requiresand Excludesrelations do not appear in a feature diagram, they are
usually presented as additional constraints in a textusdrigion.

The Graph Product Line (GPL) feature model
The Graph Product Line (GPL) example was proposed by Lopazeidn and Batory
as a standard problem for evaluating software product gehrtologies [15]. We use
it as a case study to demonstrate the effectiveness of owoagpin verifying feature
models using OWL. The GPL is a family of classical graph agpions in the Computer
Science domain. Members of GPL implement one or more gragdrifims, over a
directed or undirected graph that is weighted or unweighdad one search algorithm
if required®. We summarize it as follows.

GPL is a typical software product line in that different GRip#cations are distin-
guished by a set of features. Lopez-Herrejon and Batory lterified the following
features in GPL:

— Algorithms — A graph application implements one or more @ fbllowing algo-
rithms: Vertex numberingNumbej, Connected Component€@nnectell Stro-
ngly Connected ComponentStfonglyConnectedCycle CheckingCyclg, Mini-
mum Spanning Tree®ST), and Single-Source Shortest PaBinfrtesy.

— Graph Type — A graph is eith&irectedor Undirected and its edges can be either
Weightedor Unweighted

— Search — A graph application requires at most one searchthigs: Breadth-First
Search BFS or Depth-First SearctDFS).

Based on the above feature classification, a feature diaffnathe Graph Product
Line (GPL) applications can be defined as shown in Figure 1.

Not all combinations of the features described in the abeetufe diagram (Fig-
ure 1) are valid in a GPL implementation. For example, if gpfrapplication imple-
ments the Minimum Spanning Trees (MST) algorithm, we havestothe Weighted and
Undirected graph types and require no search algorithnleTabhows the additional
constraints among the GPL features for representing a eafithination, adapted from
Lopez-Herrejon and Batory [15].

From the GPL model presented in Fig. 1 above and additionatcaints, we can
see tha{GPL, GraphType, Directed, Unweighted, Algorithms, Nurlgea possible
configuration derived from th&PL feature model. However, not all combinations of

! More information about the GPL example can be found onlinehat p: / / www. cs.
ut exas. edu/ user s/ dsh/ GPL/ gr aph. ht m

Algorithms

GraphType

Shortest

Weighted
Undirected

Strongly

Gonnected

F|P. 1. A feature model for Graph Product Line.
Table 2. Additional Constraints on GPRIgorithms
Algorithm | Searches Required | Required

Required|Graph Type| Weight
Vertex DFS, BFS Directed, | Weighted,
Numbering Undirected|Unweighted
Connected |DFS, BFS Undirected| Weighted,
Components Unweighted
Strongly DFS Directed | Weighted,
Connected Unweighted
Cycle DFS Directed, | Weighted,
Checking Undirected|Unweighted
Minimum None | Undirected| Weighted
Spanning Tree
Single-Sourcé None Directed | Weighted
Shortest Path

features are valid. For example, the configuraii@fL, GraphType, Directed, Undi-
rected, Weighted, Algorithms, Shortast)nvalid since the featurd3irectedandUndi-
rectedare exclusive to each other.

2.2 Semantic Web - Ontology languages & Tools

Description logics [19] are logical formalisms for repretieg information about classes,
individuals and their relationships. It evolved from fraim@sed systems [18] and pred-
icate logic and is well-known for the trade-off between egsivity and decidability.

Based on RDF Schema [4] and DAML+OIL [21], OWL [16] is the detfaontol-
ogy language for the Semantic Web. It consists of three asingly expressive sublan-
guages: OWL Lite, DL and Full. OWL DL is very expressive yet diatile. As a result,
core inference problems, namely concept subsumptionjstensy and instantiation,
can be performed fully automatically. In OWL (and descriptiogics), conceptual enti-
ties are organized as classes in hierarchies. Individugie=nare grouped under classes
and are called instances of the classes. Classes and imlican be related by prop-
erties.

RACER, theRenamedABox andConceptExpressionReasoner [10], implements
a TBox (terminological box, class-level) and ABox (assetél box, instance-level)
reasoner for the description logieCC QHZr+ (D)~ [9]. It can be regarded as:

— a Semantic Web inference engine,
— a description logic reasoning system capable of both TBaxABox reasoning,
— a prover for modal logic Km.

In the Semantic Web domain, RACER’s functionalities inéwtkveloping ontologies
(creating, maintaining and deleting concepts, roles adiituals); querying, retriev-
ing and evaluating the knowledge base, etc. It supports RBNL+OIL and OWL.

3 Feature Modeling using OWL

In this section, we use OWL DL to formally define the semantfédb®above-mentioned
feature relations, nameiyandatoryoptional, alternative or; and additional constraints
requiresandexcludesWith feature models expressed in OWL DL, a Semantic Web en-
vironment can be built to facilitate feature model storislgaring and distribution and
to assist design cooperation. In this paper, we only focugenifying feature models
using OWL.

Our presentation of the OWL encoding will be divided into thparts. In the first
part, we present how a feature diagram and additional ainttrare modeled in OWL.
In the second part, the modeling of feature configuratioaglacussed. In the last part,
we discuss the verification of feature configurations udieg@PL example. The feature
modeling in OWL is presented in a syntax similar to the “DL sitgiven in [11].

3.1 Conceptual Modeling

Pre-processing

Before we model the different feature relations in a featliagram, we need to build
the OWL ontology for the various nodes and edges in the diagidma ontology is
constructed in two steps. For a parent featGrand its child feature§, ..., F,, the
initial modeling produces the following ontology.

1. We identify the nodes (concepts and features) in a feaagram. Each node in
the diagram is modeled as an OWL class (subclass of the top Cladloreover,
we assert that these classes are mutually disjoint.

GC T GnNF=L1,for1<i<n
HFCT FinFj=_L,fori<i<j<n

Note that the claus& M F; = L is used to assert the disjointness of the clagses
andF;.

Taking GPL as an example, concept GPL and features such eshSP&S, Cycle,
etc. are all classes in the ontology.

GPLC T GPLM GraphType= L
GraphTypeC T GPLM Search= L
SearchC T GraphType1 Search= L

2. The root concept and features in a feature diagram anergltgted by various fea-
ture relations, represented by different edge types in thgram. In our OWL
model, for each of these edges, we create an object propeetyassert that the
range of the property is the respective feature class.

T C VhasGG T CVhask.Fj,forl1 <i<n

For the GPL case study, we have one object property for egtle abncept/features.

T C VhasGPLGPL T C VhasSearctsearch
T C VhasBFSBFS T C V hasAlgorithmAlgorithm

3. For each concept/feature node in the diagram, we creldtdexlass. For each of
theseRuleclasses, we add a necessary and sufficient B48j val ent Cl ass)
condition, using an existential restriction, to bind Bd e node to the correspond-
ing feature node in the diagram.

GRuleC T FiRuleC T,for1 <i<n
GRule= 3 hasGG FiRule= 3hask.Fj,for1 <i <n

For the GPL case study, part of the initial modeling is showiow.

GPLC T GraphTypeC T
GPLRuleC T GraphTypeRulée- T

GPLRule= FhasGPLGPL GraphTypeRules 3 hasGraphTyp&raphType
GPLM GraphType= L e

Now we are ready to model the feature relations. The genefalition of each
of the four feature relations will be shown, based on the aldeature ontology. The
GPL case study presented in Section 2 will be used to illtestree idea. The ontology
will be constructed incrementally to show the modeling ofimas feature relations
and additional constraints defined in Table 2. As we will saere axioms will be
introduced to model the feature relations.

It is to be noted that the modeling of various feature refetiand constraints will
heavily rely on theRuleclasses as well as the original feature classes. It isilie
classes where all the OWL restrictions will be imposed.

Mandatory
A mandatoryfeature is included if its parent feature is included.

For each of thanandatoryfeaturesF, ..., F, of a parent featur&, we use one
N constraint to model it. It is aoneVal uesFr omrestriction onhask, stating that

each instance of the clagRulemust have some instance Bf class forhasF. The
following ontology fragment shows the modeling of mandgtiature set and parent
featureG.

GRuleC Jhask.F;

GRuleC Jhask,.F,

It can be seen from Fig. 1 that the root nd@PL has a mandatory child feature
GraphType which is itself a non-leaf node. We create two new classethiese two
non-leaf nodes

GraphTypeC T
T C VhasGraphTyp&raphType
GPLRuleC 3 hasGraphTyp&raphType

The statement’ C VhasGraphTyp&raphTypeis used to ensure the range of

propertyhasGraphTyp#o beGraphType The statemen&PLRuleC 3hasGraphType
GraphTypeensures that GPL will have some GraphType as one of its abdltlifes.

Optional

An optionalfeature may or may not be included in a diagram, if its paremidluded.
For each of th@ptionalfeatured-, ..., F, of a parent featur&, we need to ensure

that if any of the feature from this set is included in a configion, the parent feature

also must be included. We accomplish this by making the Rlasscof each child

feature class a sub class of theneVal uesFr omrestriction on the parent feature (or

concept) class.

F;RuleC 3hasGG e F,RuleC 3 hasGG
In the GPL case stud§earchs an optional feature fa&PL. We model it as follows.

SearchRuleZ 3hasGPLGPL

Alternative
As stated in Section 2, one and only one feature from a selt@fativefeatures can
be included, if their parent feature is included in a configjion.

For a set ofalternativefeaturesk, ..., F, and a parent featur®, we use disjunc-
tion of sonmeVal uesFr omrestrictions ovehasFks to ensure that some feature will
be included. We use the complement of conjunctiors ofreVal uesFr omrestric-
tions to ensure that only one feature can be included. Thdslgh| and[] represent
distributed disjunction and conjunction respectively.

GRuleC | | (3hask.Fj),for1 <i<n
GRuleC - [] (FhasFk.Fj),for1 <i<n

2 For brevity reasons, class definitions, disjointness and range statemilénts be shown from
here onwards.

Fig. 1 shows that featureBFS and DFS compose an alternative feature set for
Search We model this relation as follows.

SearchRuléZ (3hasBFSBFS) LI (3hasDFSDFS)
SearchRuléC — ((3hasBFSBFS) 1 (3 hasDFSDFS))

Or
According to Section 2, at least one from a sebofeatures is included, if the parent
feature is included.

For a set obr featured, ..., F,, of a parent featur&, we need to use a disjunction
of soneVal uesFr omrestrictions to model this relation.

GRuleC | | (hasR.Fj),for1 <i<n

It may be noticed that the definition @ is very similar to that ofalternative
with the omission of the negation of conjunction to allow foultiple or features to be
included.

In Fig. 1, the featurélgorithmshas somer features. We use the following con-
structs to model it.

AlgorithmsRuleZ ((3 hasNumbeiNumbey L
(3 hasConnecte€onnected U (3 hasCycleCycle) L
(3hasMSTMST) U (3 hasShortesShortest L
(3 hasStronglyConnectestronglyConnected

Requires
A feature may depend on some other features, hence its peesea feature configu-
rationrequiresthe appearance of the others.

For a given featur& and a set of featurds, ..., F, thatG requires we make sure
that each of;s appears in the configurationGfis present.

GRuleC Jhask.F;
GRuleC Fhask,.F,

In Table 2, featuré&tronglyConnectedequires botlDFS andDirected and either
Weightedor Unweighted Its OWL representation is as follows.

StronglyConnectedRule 3 hasDFSDFS
StronglyConnectedRule 3 hasDirectedDirected

SinceWeightecandUnweightedorm the set of two alternative features@faphType
which is itself a mandatory feature and exactly one from ao$etternative features
must appear in the configuration, we do not need to express &seadditional con-
straints forStronglyConnected

Excludes
The presence of a feature may be inhibited by that of some délag¢ures. We say
the appearance of a feature in a configuration excludes theaagnce of some other
features.

For a given featur& and a set of featurds,, ..., F, thatG excludes, we make sure,
using the negation afoneVal uesFr omrestriction onhask property, thatG does
not have anyF; feature .

GRuleC - (Fhask.F,)
GRuleC - (Fhask,.Fp)

The next example shows both requires and excludes cortstfaira single feature.
In GPL, cycle checking algorithr@ycleexcludes the use of breadth-first seaB#S
From Table 2, we know thatycleonly requiresDFS, hence it also excludeBFS

CycleRuleZ FhasDFSDFS
CycleRuleC — (FhasBFSBFS)

3.2 Feature Configuration Modeling

In feature modeling, a feature configuration derived froreattdre model represents a
concrete instance of a concept (i.e., a specific system imaih). Intuitively, given
a feature model ontology, features and concepts in a coafigarshould be instances
(OWL individuals) of the classes defined in the ontology.

In our approach, we use OWL classes to simulate feature armepbimstances so
that the full power of the reasoning engines can be expladgetbtect inconsistencies
in the configuration.

Specifically, the reasoning support over ABoxes is not agrehrensive as that over
TBox. ABox reasoners such as RACER can only detect that arxA&iacoherent w.r.t.
a TBoxas a wholelt cannot tell which instance(s) actually causes the owbiOn the
contrary, OWL reasoners can not only detect inconsistent&3 Box, it can also show
which class(es) are inconsistent.

Definition: feature configuration modeling
A feature configuration is a set of features that an instahesconcept may hold. The
modeling of a given feature configuration is as follows.

— We model the concept node in the configuration as a subclabe Bluleclass of
the root concept in a feature diagram.

— We use an existential restriction for each feature includeble configuration.

— For each feature present in a feature diagram, we make eaedpresence explicit
in a configuration according to this feature diagram to pmétlee reasoning engine
from erroneously inferring the existence of this featurthm configuration. This is
necessary because of the Open World Assumption adopted by. OWL

— We make the concept class equivalent (NS condition) to timguoction of the
above constraints.

Without loss of generality, for a concept instari@éelerived from a feature diagram
with root concepG and a set of featurds,, ..., F,, assuming thaf, ..., F; appear in
the configuration oC andF; 4, ..., F, do not, a feature configuration can be modeled
as follows.

C C GRule
C=[] (Fhask.Fj,for1 <j<i)
[1 (= 0hask, fori < k <n)

The feature configuration is constructed as a separateogyteind the reasoning
engine is invoked to check its consistency. The configunatosalid if the ontology is
checked to be consistent with respect to the feature diagraaiogy.

3.3 Feature Configuration Verification in RACER

We use the GPL example to illustrate this approach. Suppedeawe a configuration
containing a concept instanEeand some features for the GPL feature diagram in Fig. 1.
We name the instance node the cl&sd\Note that the namespace name of the feature
diagram ontology i$5PL and is omitted from the presentation.

E C GPLRule
= ((IhasConnecte€onnectedn (3 hasSearctsearchr
(3 hasAlgorithmsAlgorithms M (3 hasBFSBFM
(3hasGraphTyp&raphTypé 1 (3 hasNumbeiNumbep
(3 hasWeightedVeighted 1 (3 hasUndirectedJndirected
(3 hasStronglyConnecteStronglyConnected
(= 0 hasDirected M (= 0 hasMST 1 (= 0 hasShortest]
(= 0 hasUnweighter (= 0 hasDF3 1 (= 0 hasCycle)

If we input this ontology into Pré&ge and use RACER talassifythe above on-
tology, RACER will complain that clask is inconsistent, as is shown in Fig. 2. A
closer inspection reveals th@tronglyConnectetequires (via the Rule clasBFSand
Directed which are both absent in the configuration.

We correct the above configuration by asserting Ehébes havd®FSandDirected
SinceBFSandDFS andUndirectedandDirected are alternative features, we remove
BFSandUndirectedfrom E.

E C GPLRule
E = ((3hasConnecte@onnected 1 (3 hasSearclsearchn
(3 hasAlgorithmsAlgorithmg 1 (3 hasDFSDFS)M
(3 hasGraphTyp&raphType M (3 hasNumbeNumbep™
(3 hasWeightedVeighted 1 (3 hasDirectedDirected)™
(3 hasStronglyConnecteStronglyConnected
(= 0 hasUndirectedi (= 0 hasMST) 1 (= 0 hasShortest1
(= 0 hasUnweightefr (= 0 hasBFS3 1 (= 0 hasCycl¢)

However, RACER again complains that concépis inconsistent. The source of
this inconsistency does not come fr@tronglyConnectedHowever, it is caused by the

ol

File Edit Project OWL Wicards Code Window Help

A= Bos FF 5 e BR[EE = @@@'@pmrégé

FOR PROJECT @ GPL_Pro.. |[FOR ¢LASS (CJE (instance of owl:Class)

MName =
| & Connected to Racer 1.7.23
E____

Compuling inconsistent concepts: Updating Protege-OWL...

LS1 ol Thing

© oPLAIgarithims

(© sPLAGorihmsRule
©spLBFS

© sPLBFSRUIe

(©) 6L Connected

(O 6PLConnectedRule
© spLCycle

(© sPLCycleRule
©opLDFS
(©6PLOFSRUE

(© 6PLDirected

(O 6PLDirectedRule

RDFS:COMMENT:

Reasoner log
9. ize: reasoner

Time to clear knowledgebase = 0.016 seconds

[Asserted | inferred | * Time for DIG conversion = 0.047 seconds

ASSERTED CONDITIONS: * Time 1o update reasoner = 0 594 seconds

* Time to synchronize = 0.672 seconds
{33 GPLhasAlgaritims GPL:Algoritl |$ # Check concept consistency

|33 GPLhasBFS GPLEFS % Time to build query = 0.015 seconds
{53 GPLhasConnected GPL:Conne

| = GPLhasCytle = 0 # Time to send and receive from reasoner = 0157 seconds
= hasCytle =

9 @ Inconsistent concepts

©opLopL | =) 6PLhasOFE =0
(© oPLGPLRUI & beCrechiaie
. = (33 CPLhasGmplTyne GRLGHH # Time to update Protege-OWL = 0.031 seconds
5 z o
@ [OPLhaoMST=0 # Total time: 0.953 seconds

{33 GPLhashumber GPL:Number
{33 GPLhasSearch GPL:Search
=) GPL:hasShortest=0

{33 GPLhasStronglyCannected GP

o | cancel || o

(©) 6PL:GraphType
(E) GPL GraphTypeRule

Fig. 2. RACER detects an inconsistency.

fact that featur€€onnectedequiredUndirected which is absent from the configuration.
Then we realize that featur&tronglyConnectedndConnectedre mutually exclusive
in any valid configuration since they require different teas from a set oélternative
features.

After we removeConnectedrom the configuration o, RACER confirms that the
ontology is consistent, hence the configuration is valid.

Working on OWL DL, RACER can identify the inconsistency of anfiguration
with full automation. As pointed out in [5], with the growtti oumber of features in a
feature diagram, manual checking of the consistency of igumation is very laborious
and highly error-prone. Since ontology reasoning toolsdeseeloped to reason about
knowledge bases with enormous size, this approach is vatalde. The automated
approach we adopt here is thus very advantageous.

4 A Tool Support for Feature Modeling in OWL

In the previous section, we present that OWL can be used torpefeature modeling.
However it will be a tedious job for software engineers toiglesheir system at such
low level details. In this section we present a visual CAS@ tbat provides a high-
level and intuitive environment for constructing featuredals in OWL. Our feature
modeling tool was built based on the meta-tool Pounamu P@Jnamu is a meta-case
tool for developing multi-view visual environment. Fig. Basvs the GPL feature model
defined by the tool. From it we can see that the GPL feature hovatibe defined easily
by creating instances of the pre-defined model entities asdcations.

Model Lhings with your awn tool

Fig. 3. A CASE tool for Feature Modeling, showing the GPL feature diagram.

Note that additional constraints among the features carbalspecified in the “con-
straints” attribute of a concept. By triggering the defineerg handler menu item in the
tool, it transforms all the default XML format of each feaun the diagram into a sin-
gle OWL representation of the feature model and save it foRINEER reasoning.

5 Conclusion

In this paper, we propose a Semantic Web environment toreeatodeling and veri-
fication. We use the ontology language OWL DL to representifeanodels and con-
figurations in a formal and unambiguous way. By represerféatures as OWL classes
and feature relations as OWL properties, the consistencgatiife configurations can
be automatically checked by Semantic Web reasoning engudsas RACER.

To facilitate visual development and analysis of featurelets, we also developed a
CASE tool that enables drawing feature diagrams and expgeadditional constraints
on various features. Feature diagrams are then conver®iMo syntax, made ready
for online interchange and analysis. We used the Graph Ethdhe case study, a stan-
dard problem in the feature engineering community, througithe paper to illustrate
our approach.

There have been similar works on applying description ltpcconfiguration prob-
lems [17,7] and UML diagrams [1]. Compared to the descriptimgics works, our
approach has the following advantages.

— Compared to description logics, ontology languages anid thefine mechanisms
for management of ontologies. Hence, using ontology laggder feature model-
ing makes the tasks of integrating, sharing, importingsiegring and maintaining
feature models easy.

— Feature modeling languages can be enriched to support thelimg of features
and feature relations of a higher complexity, beyond theresgivity of OWL.
However, the expressiveness of the OWL language can be eatdiyded with the
development of upper-layer languages such as the rulesateSWRL FOL [2].
With the development of tool support of these languagesenomplex queries
and checking can be performed for large-scale and compégurie models.

— The syntactic well-forcedness of OWL also makes it easy twsftam feature on-
tologies to other useful formats for the purpose of viswdion, concrete represen-
tation, etc.

— Being an open standard ontology language, potentially OW4 tha advantage of
ample reasoning support, which may not be restricted targietiem logics domain.
For example, automated theorem provers (ATP) such as Varfili have already
been implemented to support reasoning OWL ontologies. M@reoomplex prop-
erties that cannot be handled by tools such as RACER may bedsby combined
approaches such as [6].

We believe that Semantic Web can play important roles in dlomregineering, and
we will continue exploring the synergies between them. mnftliture, we plan to de-
velop an integrated environment based on the current tabstipports the construction,
analysis and exchange of the feature models in OWL.

Acknowledgement

The second author would like to thank Singapore Millenniupnrdation it t p: //
www. snf - schol ar. or g/) for the financial support. This work was supported in
part by HyOntUse Project (GR/S44686) funded by the UK Engjiimg and Physical
Science Research Council.

References

1. D. Berardi. Using dlIs to reason on uml class diagramsProrc. of the 2002 Workshop on
Applications of Description Logics (ADL 20Q2achen, Germany, September 2002. CEUR
(http://ceur-ws.org/.

2. Harold Boley, Mike Dean, Benjamin Grosof, lan Horrocks, PetaelPschneider, Said
Tabet, and Gerd Wagner. SWRL FOL (November 2004j.t p: / / ww. dami . or g/
2004/ 11/ f ol / , November 2004.

3. Krysztof Czarnecki and Ulrich Eisenecké&enerative Programming: Methods, Tools, and
Applications Addison-Wesley, MA., 2000.

4. D. Brickley and R.V. Guha (editors). Resource description fraonke\irdf) schema specifi-
cation 1.0.ht t p: / / www. W3. or g/ TR/ r df - schenwa/ , February 2004.

5. Sybren Deelstra, Marco Sinnema, and Jan Bosch. Experienceffwa®& Product Families:
Problems and Issues During Product Derivation. In Robert L. Neddor, SPLC volume
3154 ofLecture Notes in Computer Scienpages 165—-182. Springer, 2004.

6. J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. A Combined Appro&ciChecking Web
Ontologies. InProceedings of 13th World Wide Web Conference (WW\WjiE)es 714—
722, New York, USA, May 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Michael Eisfeld. Model construction for configuration designPtoceedings of Workshop

on Applications of Description Logics (ADL 2002002.

. M. Griss, J. Favaro, and M. d’Alessandro. Integrating featurdatitog with the RSEB. In

The 5th International Conference on Software Repages 76—85, Vancouver, BC, Canada,
June 1998.

. Volker Haarslev and Ralf Bller. Practical Reasoning in Racer with a Concrete Domain

for Linear Inequations. In lan Horrocks and Sergio Tessaris, editaoceedings of the
International Workshop on Description Logics (DL-200Zpulouse, France, April 2002.
CEUR-WS.

Volker Haarslev and Ralf Bler. RACER User’s Guide and Reference Manual: Version
1.7.6 December 2002.

lan Horrocks, Peter F. Patel-Schneider, and Frank van HarmfeélemSHZ © and RDF to
OWL: The making of a web ontology languagk.of Web Semantic$(1):7-26, 2003.

Kyo C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Petersaturiéeoriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-90TR-21,t®%afe Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, November 1990.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, Miodnhang Huh.
FORM: A Feature-Oriented Reuse Method with Domain-Specific Refer@nchitectures.
Annals of Software Engineerin§:143-168, 1998.

Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-Odi@nteluct Line Engineer-
ing. IEEE Software9:58-65, 2002.

Roberto E. Lopez-Herrejon and Don S. Batory. A standard profde evaluating product-
line methodologies. IRProceedings of the Third International Conference on Generative and
Component-Based Software Engineeripgges 10-24, Erfurt, Germany, September 2001.
Springer-Verlag.

M. Dean and G. Schreiber (editors). OWL Web Ontology LanguagferBnce. ht t p:

/1 www. W3. or g/ TR/ 2004/ REC- oM - r ef - 20040210/ , February 2004.

Deborah L. McGuinness. Configuration. In Franz Baader, Dieglvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editessription Logic Hand-
book pages 388—405. Cambridge University Press, 2003.

M. Minsky. A framework for representing knowledge. In J. Helagd, editorMind Design:
Philosophy, Psychology, Artificial Intelligengeages 95-128. MIT Press, Cambridge, MA,
1981.

Daniele Nardi and Ronald J. Brachman. An introduction to descrifiigies. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,etad Patel-Schneider,
editors, The description logic handbook: theory, implementation, and applicatipages
1-40. Cambridge University Press, 2003.

Alexandre Riazanov and Andrei Voronkov. Vampire. In Haradah@nger, editorAutomated
Deduction — CADE-16, 16th International Conference on Automated Qiesh L NAI 1632,
pages 292-296, Trento, Italy, July 7-10, 1999. Springer-Verlag.

F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks (sjlitReference description of
the DAML+OIL ontology markup language. Contributors: T. BerneegLD. Brickley, D.
Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, Gsilay D. McGuinness,
L. A. Stein, et. al., March, 2001.

Nianping Zhu, John Grundy, and John Hosking. Pounamu: a to@téer multi-view vi-
sual language environment construction.Piloceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC,®R9me, Italy, September 2004.

