Checking and Reasoning about Semantic Web
through Alloy

Jin Song Dong, Jing Sun, and Hai Wang

School of Computing,
National University of Singapore,
dongjs,sunjing,wanghQcomp.nus.edu.sg

Abstract. Semantic Web (SW), commonly regarded as the next gener-
ation of the Web, is an emerging vision of the new Web from the Knowl-
edge Representation and the Web communities. The Formal Methods
community can also play an important role to contribute to SW de-
velopment. Reasoning and consistency checking can be useful at many
stages during the design, maintenance and deployment of SW ontology.
However the existing reasoning and consistency checking tools for SW are
primitive. We believe that formal techniques and tools, such as Alloy, can
provide automatic reasoning and consistency checking services for SW.
In this paper, we firstly construct semantic models for the SW language
(DAML+OIL) in Alloy, and these models form the semantic domain for
interpreting DAML+OIL in Alloy. Then we develop the translation tech-
niques and tools which can automatically map the SW ontology into the
DAML+OIL semantic domain in Alloy. Furthermore, with the assistance
of Alloy Analyzer (AA) we demonstrate that the consistency of the SW
ontology can be checked automatically and different kinds of reasoning
tasks can be supported.

keywords: Semantic Web, Alloy

1 Introduction

In recent years, researchers have begun to explore the potential of associat-
ing web content with explicit meaning so that the web content becomes more
machine-readable and intelligent agents can retrieve and manipulate pertinent
information readily. The Semantic Web (SW) |1] proposed by W3C is one of the
most promising and accepted approaches. It has been regarded as the next gen-
eration of the Web. SW not only emerges from the Knowledge Representation
and the Web Communities, but also brings the two communities closer together.
We believe in the SW development process, there is a role for formal techniques
and tools to play and make important contributions.

In the development of Semantic Web there is a pivotal role for ontology,
since it provides a representation of a shared conceptualization of a particular
domain that can be communicated between people and applications. Reasoning
can be useful at many stages during the design, maintenance and deployment of

K. Araki, S. Gnesi, and D. Mandrioli (Eds.): FME 2003, LNCS 2805, pp. 796-813, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Checking and Reasoning about Semantic Web through Alloy 797

ontology. Because autonomous software agents may perform their reasoning and
come to conclusions without human supervision, it is essential that the shared
ontology is consistent. However, since the Semantic Web technology is still in
the early stage, the reasoning and consistency checking tools are very primitive.

The software modeling language Alloy |9] is suitable for specifying structural
properties of software. SW is a well suited application domain for Alloy because
relationships between web resources are the focus points in SW and Alloy is a
first order declarative language based on relations. Furthermore, Alloy specifica-
tions can be analyzed automatically using the Alloy Analyzer (AA) [10]. Given a
finite scope for a specification, AA translates it into a propositional formula and
uses SAT solving technology to generate instances that satisfy the properties
expressed in the specification. We believe that if the semantics of the SW lan-
guages can be encoded into Alloy, then Alloy can be used to provide automatic
reasoning and consistency checking services for SW. Various reasoning tasks can
be supported effectively by AA.

The remainder of the paper is organized as follows. Section 2 briefly intro-
duces the Semantic Web and Alloy. In section 3 semantic domain and functions
for the DARPA Agent Markup Language (DAML4-OIL) [14] constructs are de-
fined in Alloy. Section 4 presents the transformation from DAML+OIL docu-
ments to an Alloy program. In section 5 different reasoning tasks are demon-
strated. Section 6 concludes the paper.

2 Semantic Web and Alloy Overview

2.1 Semantic Web Overview

The Semantic Web is a vision for a new kind of Web with enhanced functionality
which will require semantic-based representation and processing of Web infor-
mation. W3C has proposed a series of technologies that can be applied to achieve
this vision. The Semantic Web extends the current Web by giving the web con-
tent a well-defined meaning, better enabling computers and people to work in
cooperation. XML is aimed at delivering data to systems that can understand
and interpret the information. XML is focused on the syntax (defined by the
XML schema or DTD) of a document and it provides essentially a mechanism to
declare and use simple data structures. However there is no way for a program
to actually understand the knowledge contained in the XML documents.
Resource Description Framework (RDF) [11] is a foundation for process-
ing metadata; it provides interoperability between applications that exchange
machine-understandable information on the Web. RDF uses XML to exchange
descriptions of Web resources and emphasizes facilities to enable automated pro-
cessing. The RDF descriptions provide a simple ontology system to support the
exchange of knowledge and semantic information on the Web. RDF Schema |2]
provides the basic vocabulary to describe RDF documents. RDF Schema can
be used to define properties and types of the web resources. Similar to XML
Schema which gives specific constraints on the structure of an XML document,

798 J.S. Dong, J. Sun, and H. Wang

Table 1. DAML+OIL constructs (partial)

DAML+H4OIL constructs|Description

DAML class classes

DAM L _property properties

DAML_subclass[C] subclasses of C

DAM L_subproperty| P] sub properties of P

instanceo f[C] instances of the DAML+4-OIL class C

RDF Schema provides information about the interpretation of the RDF state-
ments. The DARPA Agent Markup Language (DAML) [14] is an Al-inspired
description logic-based language for describing taxonomic information. DAML
currently combines Ontology Interchange Language (OIL) 3] and features from
other ontology systems. It is now called DAML4OIL and contains richer mod-
elling primitives than RDF. The DAML+OIL language builds on top of XML
and RDF(S) to provide a language with both a well-defined semantics and a set
of language constructs including classes, subclasses and properties with domains
and ranges, for describing a Web domain. DAML+OIL can further express re-
striction on membership in classes and restrictions on certain domains and ranges
values.

Semantic Web is highly distributed, and different parties may have different
understanding of the same concept. Ideally, the program must have a way to
discover the common meanings from the different understandings. It is central to
another important concept in Semantic Web service — ontology. The ontology for
a Semantic Web service is a document or file that formally defines the relations
among terms. The most typical kind of ontology for the Web has taxonomy and a
set of inference rules. Ontology can enhance the functioning of the Web in many
ways, and RDFS and DAML+OIL supply the language to define the ontology.

We summarize some essential DAMLA+OIL constructs in Table 1.

2.2 Alloy Overview

Alloy [9] is a structural modelling language based on first-order logic, for express-
ing complex structural constraints and behavior. Alloy treats relations as first
class citizens and uses relational composition as a powerful operator to combine
various structured entities. The essential constructs of Alloy are as follows:

Signature: A signature (sig) paragraph introduces a basic type and a collec-
tion of relation (called field) in it along with the types of the fields and
constraints on their value. A signature may inherit fields and constraints
from another signature.

Function: A function (fun) captures behaviour constraints. It is a parameter-
ized formula that can be “applied” elsewhere,

Fact: Fact (fact) constrains the relations and objects. A fact is a formula that
takes no arguments and need not to be invoked explicitly; it is always true.

Checking and Reasoning about Semantic Web through Alloy 799

Assertion: An assertion (assert) specifies an intended property. It is a formula
whose correctness needs to be checked, assuming the facts in the model.

The Alloy Analyzer (AA) is a tool for analyzing models written in Alloy. Given
a formula and a scope — a bound on the number of atoms in the universe —
AA determines whether there exists a model of the formula that uses no more
atoms than the scope permits, and if so, return it. It supports two kinds of
automatic analysis: simulation, in which the consistency of an invariant or op-
eration is demonstrated by generating a state or transition, and checking, in
which a consequence of the specification is tested by attempting to generate a
counterexample.

3 DAML+OIL Semantic Encoding

DAML+4OIL has a well-defined semantics which has been described in a set of
axioms |7]. In this section based on the semantics of DAML+OIL, we define
the semantic functions for some important DAML~+OIL primitives in Alloy. The
complete DAML+OIL semantic encoding can be found in the appendix.

3.1 Basic Concepts

The semantic models for DAML+OIL are encoded in the module DAMLOIL. Users
only need to import this module to reason DAML+OIL ontology in Alloy.

module DAMLOIL

All the things described in Semantic web context are called resources. A basic
type Resource is defined as:

sig Resource {}

All other concepts defined later are extended from the Resource. Property,
which is a kind of Resource itself, relates Resource to Resource.

disj sig Property extends Resource
{sub_val: Resource -> Resource}

Each Property has a relation sub_val from set <Property, Resource,
Resource> with type <Resource, Resource, Resource> (since in Alloy sub-
signature does not introduce a new type). This relation can be regarded as a
RDF statement, i.e., a triple of the form
<property(or predicate), subject, value(or object)>.

The class corresponds to the generic concept of type or category of resource.
Each Class maps a set of resources via the relation instances, which contains
all the instance resources. The keyword disj is used to indicate the Class and
Property are disjoint.

disj sig Class extends Resource {instances: set Resource}

800 J.S. Dong, J. Sun, and H. Wang

The DAMLA4-OIL also allows the use of XML Schema datatypes to describe
(or define) part of the datatype domain. However there are no predefined types
in Alloy, so we treat Datatype as a special Class, which contains all the possible
datatype values in the instances relation.

disj sig Datatype extends Class {}

3.2 Class Elements

The subClassOf is a relation between classes. The instances in a subclass are
also in the superclasses. A parameterized formula (a function in Alloy) is used
to represent this concept.

fun subClassOf (csup, csub: Class)
{csub.instances in csup.instances}

The disjointWith is a relation between classes. It asserts that there are no
instances common with each other.

fun disjointWith (cl, c2: Class) {no cl.instances & c2.instances}

3.3 Property Restrictions

A toClass function states that all instances of the class c1 have the values of
property P all belonging to the class c2.

fun toClass (p: Property, cl: Class, c2: Class)
{all r1, r2: Resource | rl in cl.instances <=> r2 in rl.(p.sub_val) =>
r2 in c2.instances}

A hasValue function states that all instances of the class c1 have the values
of property P as resource r. The r could be an individual object or a datatype
value.

fun hasValue (p: Property, cl: Class, r: Resource)
{all r1: Resource | rl in cl.instances => ril.(p.sub_val) = r}

A cardinality function states that all instances of the class c1 have exactly
N distinct values for the property P. The new version of Alloy supports some
integer operations.

fun cardinality (p: Property, cl: Class, N: Int)
{all r1: Resource| rl in cl.instances <=> # ril.(p.sub_val) = int N}

3.4 Boolean Combination of Class Expressions

The intersectionOf function defines a relation between a class c1 and a list
of classes clist. The List is defined in the Alloy library. The class c1 consists
of exactly all the objects that are common to all class expressions from the list
clist.

Checking and Reasoning about Semantic Web through Alloy 801

fun intersectionOf (clist: List, cl: Class)
{all r: Resource| r in cl.instances <=>
all ca: clist.*next.val | r in ca.instances}

The union0f function defines a relation between a class c1 and a list of
classes clist. The class c1 consists of exactly all the objects that belong to at
least one of the class expressions from the list clist. It is analogous to logical
disjunction;

fun unionOf (clist: List, c1: Class)
{all r: Resource| r in cl.instances <=>
some ca: clist.*next.vall r in ca.instances}

3.5 Property Elements

The subProperty0f function states that psub is a subproperty of the property
psup. This means that every pair (subject,value) that is in psup is in the psub.

fun subProperty0f (psup, psub: Property) {psub.sub_val in psup.sub_val}

The domain function asserts that the property P only applies to instances of
the class c.

fun domain (p: Property, c: Class) {(p.sub_val).Resource inc.instances}
The inverseOf function shows two properties are inverse.

fun inverseOf (pl, p2: Property) {pl.sub_val = “(p2.sub_val)}

4 DAML+HOIL to Alloy Transformation

In the previous section we defined the semantic model for the DAML~+OIL con-
structs, so that analyzing DAML4OIL ontology in Alloy can be easily and ef-
fectively achieved. We also constructed a XSLT [15] stylesheet for the automatic
transformation from DAML+OIL file to into Alloy program.

A set of transformation rules transforming from DAML4OIL ontology to
Alloy program are developed in the following presentation.

4.1 DAML+4OIL Class Transformation

C € DAML class
static disj sig C extends Class{}

A DAML_class C will be transferred into a scalar C, constrained to be an elements
of the signature Class.

! The details of the XSLT program and other information on this project can be found
at:
http://nt-appn.comp.nus.edu.sg/fm/alloy/

802 J.S. Dong, J. Sun, and H. Wang

4.2 DAML+OIL Property Transformation

P € DAM L _property
static disj sig P extends Property{}

A DAML_property p will be transferred into a scalar P, constrained to be an
elements of the signature Property.

4.3 Instance Transformation

x € instancesof[Y]

static disj sig x extends Resource{}
fact{ x in Y.instances}

A DAML instance x of class Y will be transferred into a scalar x, constrained to
be an element of the signature Resource. x is a subset of Y.instances.

4.4 Other Transformation

Other DAML+OIL constructs can be easily transferred into the Alloy function
we defined in the previous section. For example the following rule shows how to
transfer the DAML+OIL subclass relation into Alloy code.

subclass|X,Y],X € DAML_class,Y € daml_class

fact{subClassOf(X,Y)}

4.5 Case Study

A classical DAML+OIL ontology, “animal relation” is used to illustrate how
the transformation and analysis could be achieved. The following DAML+OIL
ontology defines two class animal and plant which are disjoint. The eats and
eaten_by are two properties, which are inverse to each other. The domain of eats
is animal. The carnivore is a subclass of animal which can only eat animals.

<daml:Class rdf:ID="animal">
<rdfs:label>animal</rdfs:label> </daml:Class>
<daml:Class rdf:ID="plant">
<rdfs:label>plant</rdfs:label>
<daml:disjointWith rdf:resource="#animal"/></daml:Class>
<daml:0bjectProperty rdf:about="eaten_by">
<rdfs: 1abe1>eaten_by</rdfs :label>
</daml:0bjectProperty>
<daml:0bjectProperty rdf:about="eats">
<rdfs:label>eats</rdfs:label>

Checking and Reasoning about Semantic Web through Alloy 803

<daml:inverseOf rdf:resource="#eaten_by"/>
<rdfs:domain><daml:Class rdf:about="#animal"/>
</rdfs:domain></daml:0bjectProperty>
<daml:Class rdf:ID="carnivore">

<rdfs:label>carnivore</rdfs:label>
<rdfs:subClass0f rdf:resource="#animal"/>
<rdfs:subClass0f>

<daml:Restriction> <daml:onProperty rdf:resource="#eats"/>

<daml:toClass rdf:resource="#animal"/>

</daml:Restriction>

</rdfs:subClass0f></daml:Class>

This DAML4OIL ontology will be transferred into Alloy as follow,

module animal

/*import the library module we defined*/

open DMALOIL

/* plant and animal are translated to two class instances, the key
word static is used to a signature contains exactly one element.*/
static disj sig plant, animal extends Class {}

/* The disjoin element was transferred into fact in Alloy */
fact {disjointWith(plant, animal)}

/* eats, eaten_by are translated to two property instances */
static disj sig eats, eaten_by extends Property {}

fact {inverseOf(eats, eaten_by)}

fact {domain(eats, animal)}

static disj sig carnivore extends Class{}
fact{subClass(animal, carnivore)}
fact{toClass(eats, carnivore, animal)}

We can check the consistency of the DAML+OIL ontology and do some
reasoning readily.

5 Analysing DAML+OIL Ontology

Reasoning is one of the key tasks for the semantic web. It can be useful at many
stages during the design, maintenance and deployment of ontology.

There are two different levels of checking and reasoning, the conceptual level
and the instance level. At the conceptual level, we can reason about class proper-
ties and subclass relationships. At the instance level, we can do the membership
checking (instantiation) and instance property reasoning. The DAML4OIL rea-
soning tool, i.e. FaCT [§], can only provide conceptual level reasoning, while AA
can perform both. The FaCt system originally is designed to be a terminological
classifer (TBox) which concerns only about the concepts, roles and attributes,
not instances. The semantic web reasoner based on the FaCT, like OILED, does
not support instance level reasoning well.

804 J.S. Dong, J. Sun, and H. Wang

& animal.als - Alloy Analyzer (beta release)

File Edit Tools Commands Options Help
[} asT qlstartic dis] zig tastyPlant extends Clazs{}
?_ facrt {sublClaszs0f (animal, carniwvore)}

: act {subClass0f (plant, tastyPlant)}

act {disjoinWith(plant, animal)}

act {dizjoinWith(carniwvore, tascyPlant))

tatic dis] sig eats, eaten by extends Property {}

act {domain(eats, animal)}

act {inverse0f(eats, eaten byj}
act{toClass(eats, carnivore, animal)}
act{toClass(eaten by, tastyPlant, carniwore)}
act { some eats.sub_wal . (tastyPlant.instances)}

£ " No solutions

Ho solutions Tound.

T

[1 Salution

fe)
I

Fig. 1. Inconsistence example

5.1 Class Property Checking

It is essential that the ontology shared among autonomous software agents is
conceptually consistent. Reasoning with inconsistent ontology may lead to erro-
neous conclusions. In this section we give some examples of inconsistent ontology
that can arise in ontology development, and demonstrate how these inconsisten-
cies can be detected by the Alloy analyzer. For example, we define another class
tastyPlant which is a subclass of plant and eaten by the carnivore. There is
an inconsistency since by the ontology definition carnivores can only eat animals.
Animals and plants are disjoint.

<daml:Class rdf:ID="tastyPlant">
<rdfs:label>tastyPlant</rdfs:label>
<rdfs:subClass0f rdf:resource="#plant"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#eat_by"/>
<daml:toClass rdf:resource="#carnivore"/>
</daml:Restriction></rdfs:subClass0f>
</daml:Class>

We transform the ontology into an Alloy program, add some facts to remove
the trivial models (like everything type is empty set) and load the program into
the Alloy Analyzer. The Alloy Analyzer will automatically check the consistency.
We conclude that there is an inconsistency in the animal ontology since Alloy
can not find any solutions satisfying all facts within the scope (Figure [I]). Note
that when Alloy can not find a solution, it may also be due to the scope being
too small. By picking a large enough scope, “no solution found’ is very likely to
mean that an inconsistency has occurred.

Checking and Reasoning about Semantic Web through Alloy 805

Let us take another example. Suppose we define that the polyphagic_animal
eats at least two kind of things i.e polyphagic_animal objects have at least
two distinct values for the property eats. There is also one kind of animal called
picky_animal which only eats one other kind of animal. The ontology will be
defined as follows:

<daml:Class rdf:ID="polyphagic_animal">
<rdfs:label>polyphagic_animal</rdfs:label>
<rdfs:subClass0f rdf:resource="#animal"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#eats"/>
<daml:minCardinality> 2 </daml:minCardinality>
</daml:Restriction></rdfs:subClass0f></daml:Class>
<daml:Class rdf:ID="#picky_animal">
<rdfs:label>picky_animal</rdfs:label>
<rdfs:subClass0f rdf:resource="#animal"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#eats"/>
<daml:Cardinality> 1 </daml:Cardinality>
</daml:Restriction></rdfs:subClass0f></daml:Class>

From the above ontology we can infer that the picky_animal is not a kind of
polyphagic_animal, otherwise it would be an inconsistency that AA can easily
pick up.

5.2 Subsumption Reasoning

The task of subsumption reasoning is to infer a DAML4OIL class is the subclass
of another DAML+OIL class. We use the relationship between the fish, shark
and dolphin as a example to demonstrate this kind of reasoning task. In the
animal ontology a property breathe_by is defined. A fish class is a subclass
of the animal which breathe by the gill. Since the purpose of this paper is
to demonstrate ideas, we keep the ontology simple. In reality there are some
animals such as frogs and toads, which can respire by use of gills when they are
young and by lungs when they reach adult stage. Also we do not consider the
animals which respire by use of the pharyngeal lining or skin, like newborn Julia
Creek dunnarts.

<daml:0ObjectProperty rdf:ID="breathe_by"/>
<daml:Class rdf:ID="gill">
<rdfs:label>gill</rdfs:label></daml:Class>

<daml:Class rdf:ID="fish">
<rdfs:label>fish</rdfs:label>

<rdfs:subClass0f rdf:resource="#animal"/>
<rdfs:subClass0f>

<daml:Restriction>

<daml:onProperty rdf:resource="#breathe_by"/>

<daml:toClass rdf:resource="#gill"/>

</daml :Restriction></rdfs:subClass0f></daml:Class>

806 J.S. Dong, J. Sun, and H. Wang

t1.als - Alloy Analyzer (beta release)

File Edit Tools Commands Options Help:

T T]

Solution Flisubsumption examiple I
static disj sig gill extends Class{}

§§ static disj sig fish exdends Class{}

static disj sig breathe_hy extends Property {}
fact{subClassOffanimal, fish)}

§§ factitoClassihreathe_tw, fish, gillh}

§§ static disj sig shark extends Class{}

fact {suhClassOficarnivare, shark)}

§§ fact{toClass(breathe_by, shark, gill)}

assert sharklsFish {subClassOfifish, shark)}
“ltheck sharklsFish for 14

§ L7 No solutions

@ Mo solutions found.

3 prces) && (aFe
checkisFishCarnivare for 14

[¥]
Line 138, Column 3

Fig. 2. Subsumption example

We also define a class shark, a subclass of carnivore which breathe by the
gill.

<daml:Class rdf:ID="shark">
<rdfs:label>shark</rdfs:label>
<rdfs:subClass0f rdf:resource="#carnivore"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#breathe_by"/>
<daml:toClass rdf:resource="#gill"/>
</daml :Restriction></rdfs:subClass0f></daml:Class>

Several of the classes were upgraded to being defined when their definitions
constituted both necessary and sufficient conditions for class membership, e.g.,
a animal is a fish if and only if it breathes by the gill. Additional subclass
relationships can be inferred i.e. the shark is also a subclass of fish. We transfer
this ontology into an Alloy program and make an assertion that the shark is
the subclass of fish. The Alloy analyzer will check the correctness of this asser-
tion automatically (Figure [2]). The Alloy Analyzer checks whether an assertion
holds by trying to find a counterexample. Note that “no solution” means no

Checking and Reasoning about Semantic Web through Alloy 807

i-,,,tﬂ st1.als - Alloy Analyzer (beta release)

File Edit Tools Commands Options Help

e WP e e e e e e e g
Solution g]

& [Class static disj sig gill, lung extends Class{)

@ [ListClass e o

&] Property & Solution found.

@] Resource
@ [Resourced
& [Thing

& [animal

@] breathe_by

@ [carnivore -
@ 7 dolphin fract{subClassOfianimal, dolphiny

@ [T eaten_by factitoClassiureathe_by, dolphin, lungy}
&] eats |pssert dolphinisFish {subClassOffish, dolphin)}
@] fish check dolphinlsFish for 14

& [aill
@ [luny

Solution found.

-

[»]
Line 130, Column 1

Fig. 3. Dolphin is not a fish

counterexample found, in this case, it indicates that the assertion is sound. To
make it more interesting, we define classes dolphin and lung. The Dolphin is a
kind of animal which breathe by lungs. The classes gill and lung are disjoint.
Furthermore the breathe_by is a unique property.

<daml:Class rdf:ID="lung">

<rdfs:label>lung</rdfs:label>

<daml:disjointWith rdf:resource="#gill"/></daml:Class>

<daml:Class rdf:ID="dolphin">

<rdfs:label>dolphin</rdfs:label>

<rdfs:subClass0f rdf:resource="#animal"/> <rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource="#breathe_by"/>
<daml:toClass rdf:resource="#lung"/>
</daml:Restriction></rdfs:subClass0f></daml:Class>

Suppose we make an assertion that the dolphin is a kind of fish, the Alloy
Analyzer will refute it since some counterexample was found (Figure [3)). If we
add that dolphin is a fish as a fact in the module, the AA will conclude that an
inconsistency has arisen.

808 J.S. Dong, J. Sun, and H. Wang

5.3 Instantiation

Instance level reasoning is one of the main contributions for reasoning over
DAML+OIL ontology using Alloy. Currently some successful DAML~+OIL rea-
soners like FaCT are designed for description logics (DL) T-box reasoning, which
lacks support for instances. In Alloy every expression denotes relations. The
scalars will be represented by singleton unary relations - that is, relations with
one column and one row. The instance level reasoning can be supported readily
in Alloy.

Instantiation is a reasoning task which tries to check if an individual is an
instance of a class. For example, we define two resources aFeralAnimal and
aMeekAminal as the instances of class animal. aGill is an instance of class
gill. aFeralAnimal eats aMeekAnimal and breathes by aGill. People may
want to check if aFeralAnimal is a carnivore and a fish.

<animal rdf:ID="aMeekAnimal">
<rdfs:label>aMeekAnimal</rdfs:label> </animal>
<gill rdf:ID="aGill"> <rdfs:label>aGill</rdfs:label></gill>
<animal rdf:ID="aFeralAnimal'">
<rdfs:label>aFeralAnimal</rdfs:label>
<breathe_by rdf:resource="aGill"/>
<eats rdf:resource="aMeekAnimal"/> </animal>

We transfer the ontology into an Alloy program and make an assertion as
following:

static disj sig aFeralAnimal, aMeekAnimal extends Resource{}
static disj sig aGill extends Resource{}
fact {aFeralAnimal in animal.instances &&
aMeekAnimal in animal.instances}
fact {aGill in gill.instances}
fact {(aFeralAnimal->aMeekAnimal) in eats.sub_val}
fact {(aFeralAnimal->aGill) in breathe_by.sub_val}
assert isFishCarnivore
{(aFeralAnimal in fish.instances) &&
(aFeralAnimal in carnivore.instances)}
check isFishCarnivore for 15

AA concludes that this assertion is correct.

5.4 Instance Property Reasoning

Instance property reasoning (often regarded as knowledge querying) is important
in Semantic Web applications. Since one of the promising strengths of Semantic
Web technology is that it gives the agents the capability to do more accurate
and more meaningful searches. The agent can answer some questions for which
the answer is not explicitly stored in the knowledge base.

For example, the emerge_early and emerge_later are two properties, which
are inverse to each other. Animal A emerged early then B if the species of A

Checking and Reasoning about Semantic Web through Alloy 809

emerges earlier than the species of B on the earth. emerge_early is transi-
tive. Three animal instances firstDinosaur, firstApe and firstHuman are
defined. firstDinosaur emerge_early firstApe and firstApe emerge_early
firstHuman. One possible question people may ask is that whether firstHuman
is emerge_later firstDinosaur. With the assistance of Alloy reasoner, such
questions can be answered.

fact{TransitiveProperty(emerge_early)}
static disj sig firstDinosaur, firstApe, firstHuman extends Resource{}
fact { firstDinosaur in animal.instances
&& firstApe in animal.instances
&& firstHuman in animal.instances}
fact {(firstDinosaur->firstApe) in emerge_early.sub_val}
fact {(firstApe->firstHuman) in emerge_early.sub_val}
assert hum {(firstHuman->firstDinosaur) in emerge_later.sub_val}
check hum for 14

AA concludes that this assertion is correct.

6 Related Work and Conclusion

The main contribution of this paper is that it develops the semantic models for
DAMLAOIL language constructs in Alloy and the systematic transformation
rules and (XSLT) program which can translate DAML+OIL ontology to Alloy
automatically. With the assistance of Alloy Analyzer (AA), we also demonstrated
that the consistency of the SW ontology can be checked automatically and dif-
ferent kinds of reasoning tasks can be supported. Alloy is chosen over other
modeling techniques because

— Alloy is based on relations, where relations between web resources are the
focus issues in SW.
— Alloy has an impressive automatic tool support.

We believe SW is a new novel application domain for Alloy. Recently, the tech-
nique/tool developed in this paper was successfully applied to a military case
study [6]. Alloy was used to check and reason a plan ontology [12] developed by
a research team at DSO National Laboratories in Singapore.

Recently, some researchers have begun to explore the potential of combining
Web technologies and SE technologies together, e,g. [13]. However there has not
been much work done on the application of formal techniques for semantic-web.
In our previous work [5] we tried to extract web ontology from Z requirement
models, which is a very different approach from the techniques demonstrated in
this paper — checking and reasoning web ontology by encoding the semantics of
DAML+OIL into the Alloy system.

From a completely different direction, i.e., applying SW to build software
modeling environment, we recently investigated how RDF and DAML4OIL can
be used to construct a Semantic Web environment for supporting, extending and

810 J.S. Dong, J. Sun, and H. Wang

integrating various specification languages [4]. We believe SW can contribute to
the new developments for the software modeling environment.

In summary, there is a clear synergy between SW languages and software
modeling techniques. The investigation of the links between those two paradigms
will lead to great benefits for both areas.

Acknowledgements

We would like to thank Hugh Anderson, DSTA staffs and anonymous refer-
ees for many helpful comments. We also would thank Daniel Jackson and Ilya
Shlyakhter for providing useful info and demo on Alloy. This work is supported
by the Defence Innovative Research grant Formal Design Methods and DAML
from Defence Science & Technology Agency (DSTA) Singapore.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

2. D. Brickley and R.V. Guha (editors). Resource description framework
(rdf) schema specification 1.0. http://www.w3.org/TR/2000/CR-rdf-schema-
20000327/, March, 2000.

3. J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks. Adding formal
semantics to the web: building on top of rdf schema. In ECDL Workshop on the
Semantic Web: Models, Architectures and Management, 2000.

4. J. S. Dong, J. Sun, and H. Wang. Semantic Web for Extending and Linking
Formalisms. In L.-H. Eriksson and P. A. Lindsay, editors, Proceedings of Formal
Methods Europe: FME’02, Copenhagen, Denmark, July 2002. Springer-Verlag.

5. J. S. Dong, J. Sun, and H. Wang. Z Approach to Semantic Web Services. In
C. George and H. Miao, editors, International Conference on Formal Engineering
Methods (ICFEM’02). LNCS, Springer-Verlag, October 2002.

6. J. S. Dong, J. Sun, H. Wang, C. H. Lee, and H. B. Lee. Analysing web ontol-
ogy in alloy: A military case study. In Proc. 15th International Conference on
Software Engineering and Knowledge Engineering: SEKE’03, San Francisco, USA,
July 2003.

7. Richard Fikes and Deborah L. McGuinness. An axiomatic semantics for rdf, rdf
schema, and daml+oil. Technical Report KSL-01-01, Knowledge Systems Labora-
tory, 2001.

8. 1. Horrocks. The FaCT system. Tableauz’98, Lecture Notes in Computer Science,
1397:307-312, 1998.

9. D. Jackson. Micromodels of software: Lightweight modelling and analysis with
alloy. Available: http://sdg.lcs.mit.edu/alloy/book.pdf, 2002.

10. D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
Proc. 22nd International Conference on Software Engineering: ICSE’2000, pages
730-733, Limerick, Ireland, June 2000. ACM Press.

11. O. Lassila and R. R. Swick (editors). Resource description framework (rdf)
model and syntax specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/, Feb, 1999.

Checking and Reasoning about Semantic Web through Alloy 811

12. C. H. Lee. Phase I Report for Plan Ontology. DSO National Labs, Singapore,
2002.

13. Cecilia Mascolo, Wolfgang Emmerich, and Anthony Finkelstein. XML technologies
and software engineering. In International Conference on Software Engineering,
pages 775-776, 2001.

14. F. van Harmelen, P. F. Patel-Schneider, and 1. Horrocks (editors). Reference
description of the daml+oil ontology markup language. Contributors: T. Berners-
Lee, D. Brickley, D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler,
O. Lassila, D. McGuinness, L. A. Stein, ..., March, 2001.

15. World Wide Web Consortium (W3C). Xsl transformations (xslt) version 1.0.

http://www.w3.org/TR/xslt, 1999.

A Completed DAML+OIL Semantic Encoding

A.1 Basic concepts

The semantic models for DAML4OIL are encoded in the module DAMLOIL. The
semantic encoding for the basic concepts was summarized in the table 2.

module DAMLOIL

Table 2. DAML+OIL Semantic encoding (basic concepts)

DAMLA+OIL primitive|Alloy semantic function
Resource sig Resource {}
DAML_Property disj sig Property extends Resource
{sub_val: Resource — Resource}

DAML Class disj sig Class extends Resource
{instances: set Resource}
Datatype disj sig Datatype extends Class {}

All the things described in Semantic web context are called resources. All
other concepts defined later like Property and Class are extended from the
Resource.

A.2 Class Elements

The semantic encoding for the class elements was summarized in the table 3.
It includes constructs like subClassOf, disjointWith, disjointUnionOf and
sameClassAs.

A.3 Property Restrictions

The semantic encoding for the property restrictions was summarized in the ta-
ble 4. A property restriction defines the class of all objects that satisfy the
restriction. For example the toClass function states that all instances of the
class c1 have the values of property P all belonging to the class c2. The other
constructs include hasValue, hasClass, cardinality etc..

812 J.S. Dong, J. Sun, and H. Wang

Table 3. DAML+OIL Semantic encoding (class elements)

DAMLAOIL primitive|Alloy semantic function
subClassO f fun subClassOf(csup, csub: Class)
{csub.instances in csup.instances}
disjointWith fun disjointWith (c1, ¢2: Class)
{ no cl.instances & c2.instances}
disjointUnionO f fun disjointUnionOf(clist: List, c1: Class)
{cl.instances = clist.*next.val.instances
all disj cal, ca2: clist.*next.val |
no cal.instances & ca2.instances }
sameClassAs fun sameClassAs(c1, c¢2: Class)
{cl.instances = c2.instances}

Table 4. DAML+OIL Semantic encoding (Property restrictions)

DAMLAHOIL primitive

Alloy semantic function

toClass

fun toClass (p: Property, cl: Class, ¢2: Class)
{all r1, r2: Resource | rl in cl.instances <=>
r2 in rl.(p.subval) => 12 in c2.instances}

hasValue

fun hasValue (p: Property, cl: Class, r: Resource)
{all r1: Resource | rl in cl.instances =>
rl.(p.sub_val)=r }

hasClass

fun hasClass (p: Property, cl: Class, c¢2: Class)
{all r1: Resource | rl in cl.instances =>
some rl.(p.sub_val) & c2.instances}

cardinality

fun cardinality (p: Property, cl: Class, N: Int)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub_val) = int N}

mazCardinality

fun maxCardinality (p: Property, c1: Class, N: Int)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub_val) =< int N }

minCardinality

fun minCardinality (p: Property, cl: Class, N: Int)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub_val) >=int N }

cardinalityQ

fun cardinality@Q (p: Property, c1l: Class, N: Int, ¢2: Class)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub-val) & c2.instances = int N }

mazCardinalityQ

fun maxCardinalityQ (p: Property, cl: Class, N: Int, c2:
Class)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub-val) & c2.instances =< int N }

minCardinalityQ

fun minCardinalityQ(p: Property, cl: Class, N: Int, c2:
Class)
{all r1: Resource | rl in cl.instances <=>
rl.(p.sub-val) & c2.instances >= int N}

Checking and Reasoning about Semantic Web through Alloy 813

A.4 Boolean Combination of Class Expressions

The semantic encoding for the boolean combination of class expression was sum-
marized in the table 5.

Table 5. DAML+OIL Semantic encoding (Boolean combination)

DAMLA4OIL primitive|Alloy semantic function
intersectionO f fun intersectionOf (clist: List, c1: Class)
{all r: Resource| r in cl.instances <=>
all ca: clist.*next.val | r in ca.instances}
unionO f fun unionOf (clist: List, c1: Class)
{all r: Resource| r in cl.instances <=>
some ca: clist.*next.val| r in ca.instances}

A.5 Property Elements

The semantic encoding for the property elements was summarized in the table 6.
It includes subProperty0f, samePropertyAs etc..

Table 6. DAML~+OIL Semantic encoding (Property elements)

DAMLAHOIL primitive|Alloy semantic function

subPropertyO f fun subPropertyOf (psup, psub: Property)
{psub.sub_val in psup.sub_val }
domain fun domain (p: Property, c: Class)
{(p.sub_val).Resource in c.instances }
range fun range (p: Property, c: Class)

{Resource.(p.sub_val) in c.instances }

samePropertyAs fun samePropertyAs(pl, p2: Property)

{pl.sub_val=p2.sub_val }

inverseO f fun inverseOf (pl, p2: Property)

{pl.sub_val = (p2.sub_val)}

TransitiveProperty |fun TransitiveProperty(p: Property)

{all x, y, z: Resource |

y in (p.sub_val).x && z in (p.sub_val).y =>

z in (p.sub_val).x }

UniqueProperty fun UniqueProperty (p: Property)

{all x : Resource | sole x.(p.sub_val) }

UnambigousProperty |fun UnambigousProperty(p: Property)

{all x : Resource | sole (p.sub_val).x}

	Checking and Reasoning about Semantic Web through Alloy
	1 Introduction
	2 Semantic Web and Alloy Overview
	2.1 Semantic Web Overview
	2.2 Alloy Overview

	3 DAML+OIL Semantic Encoding
	3.1 Basic Concepts
	3.2 Class Elements
	3.3 Property Restrictions
	3.4 Boolean Combination of Class Expressions
	3.5 Property Elements

	4 DAML+OIL to Alloy Transformation
	4.1 DAML+OIL Class Transformation
	4.2 DAML+OIL Property Transformation
	4.3 Instance Transformation
	4.4 Other Transformation
	4.5 Case Study

	5 Analysing DAML+OIL Ontology
	5.1 Class Property Checking
	5.2 Subsumption Reasoning
	5.3 Instantiation
	5.4 Instance Property Reasoning

	6 Related Work and Conclusion

	References
	A Completed DAML+OIL Semantic Encoding
	A.1 Basic concepts
	A.2 Class Elements
	A.3 Property Restrictions
	A.4 Boolean Combination of Class Expressions
	A.5 Property Elements

