
Visualising Java Data Structures as Graphs

John Hamer

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland New Zealand
Email: J.Hamer@cs.auckland.ac.nz

Abstract

We present a simple, general-purpose tool for visu-
alising Java data structures. The tool uses Java re-
flection and an open-source graph drawing program
to produce text-book quality depictions of arbitrary
Java objects.

The tool offers certain pedagogical advantages over
other “heavy-weight” visualisation systems. Its sim-
plicity and generality means that students are able
to visualise their own data structures, rather than
passively observing a limited range of “correct” visu-
alisations prepared in advance by the lecturer.

The tool supports an active, exploratory style of
learning, and is ideally suited for use in CS1-level
courses that introduce Java references and arrays, as
well as a range of CS2-level data structure material.
Initial classroom results are encouraging.

1 Origins

Our visualisation tool was originally conceived as
an aid to students learning about linked lists. It
started one evening, when the author wrote a “pretty-
printer” for linked lists that generated a description
suitable for input into the GraphViz graph drawing
utility (see figure 1). GraphViz notation is quite sim-
ple, essentially requiring just the graph edges to be
listed. Node and edge annotations are given in square
brackets. The graph generated from this description
is shown in figure 2. A variety of output formats are
supported by GraphViz, including the widely under-
stood “PNG” (for on-screen viewing) and encapsu-
lated postscript (for printed documents).

The linked list “pretty-printer” turned out to be
of limited use, however. Students could only generate
pictures of “correct” linked lists from code supplied to
them by the lecturer. They were not able to apply the
technique to their own (often buggy) linked list code,
or to view the state of any other data structures. Fur-
thermore, code for generating GraphViz output was
included inside the linked list code, and this tended
to obscure the more important parts of the code.

All of these limitations were eliminated with the
use of Java reflection. Unlike many “statically linked”
languages like C and C++, Java retains a great deal
of type information in its compiled (“.class”) files.
This information includes the names, types and mod-
ifiers1 of each class field. Every Java object maintains

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at Sixth Australasian Computer Science Educa-
tion Conference (ACE’2004), Dunedin, New Zealand. Confer-
ences in Research and Practice in Information Technology, Vol.
30. Raymond Lister and Alison Young, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

1I.e., private, protected, etc.

digraph NoName {
n1 [label="LinkedList|{size: 3}",

shape=record];
n1 -> n2 [label="header"];
n2 [label="Entry|{null}",shape=record];
n2 -> n3 [label="next"];
n3 [label="Entry|{A}",shape=record];
n3 -> n4 [label="next"];
n4 [label="Entry|{B}",shape=record];
n4 -> n5 [label="next"];
n5 [label="Entry|{C}",shape=record];
n5 -> n2 [label="next"];
n5 -> n4 [label="previous"];
n4 -> n3 [label="previous"];
n3 -> n2 [label="previous"];
n2 -> n5 [label="previous"];

}

Figure 1: A graph specified in GraphViz notation

LinkedList size: 3

Entry null

header

Entry A

next

Entry C

previous

previous

Entry B

next previous

next

next

previous

Figure 2: Sample output from GraphViz

a link to its class description2, from which other fields
of the object can be discovered. Reflection thus al-
lows a GraphViz description to be generated for any
arbitrary Java object by traversing the transitive clo-
sure of object references. The code that generates
this description no longer needs to be attached to the
code under study—a simple library call to “gener-
ate a snapshot of this object” is sufficient. A series
of snapshots constitutes an animation (albeit free of
any smooth interpolation between frames).

Some further difficulties presented themselves at
this stage. In particular, some built-in Java types (no-
tably strings) are actually implemented using charac-
ter arrays, although the details of the implementation
are usually kept hidden from the programmer. Java
reflection is sufficiently powerful that these internal
structure are revealed, as shown in 3. Here it can
be seen that a String object consists of a reference
to a (possibly shared) character array. A string is a
subsequence of this array, specified by an offset and
length (a hash value is also stored, to avoid the cost
of recomputation).

java.lang.String

offset: 0

count: 5

hash: 0

H e l l o

value

Figure 3: Exploring String internals

This is an insightful representation of a string that
may prove helpful to students in certain contexts (for
example, explaining the memory consumption of sub-
string operations), but on the whole it provides far too
much detail. The last stage in achieving a practical
visualisation tool was the inclusion of a configurable
drawing context. The tool’s drawing context allows
certain classes to be treated as if they were primitive,
fields to be hidden, and colour, shape and font at-
tributes to be set on graph nodes and edges. In most
cases, a reasonable default context can be compiled
into the visualiser. Changing the context is quite easy,
and provides students with some scope to explore al-
ternative visualisations.

2 Objectives and non-objectives

In designing the visualisation tool, we have been
mindful of the serious pitfalls cited in the literature.
Foremost amongst these is the need to actively engage
students: “Visualisation technology . . . is of little ed-
ucational value unless it engages learners in an active
learning activity” (Naps, Rößling, Almstrum, Dann,
Fleischer, Hundhausen, Korhonen, Malmi, McNally,
Rodger & Velźquez-Iturbide 2003), a view echoed by
Hundhausen & Douglas (2000): “the more actively
involved learners are in the visualisation process, the
better they perform.” Also of concern “is the time
and effort required for instructors to integrate the
technology into their curriculum” (Naps et al. 2003).
This effort includes not only the time required to learn
new tools and to develop and/or adapt appropriate
visualisations, but the costs of installing (often unre-
liable) software.

Active learning typically involves students creat-
ing visualisations of their own programs. Here, two

2Primitive types, such as int, boolean, etc., are linked to stan-
dard “wrapper” classes (Integer, Boolean, etc.) that describe these
built-in types.

immediate difficulties present themselves. First, class
time is lost in explaining the use of the tools. Second,
students are notoriously open to distraction, making
it all too easy for the substantive course material to
be sidelined as students become absorbed with the
intricacies of the visualisation tool. We argue that
an effective visualisation tool must therefore be ex-
tremely simple to use and provide limited scope for
experimentation. A similar view is expressed by Naps
(1998).

Our tool:

• is trivial to setup and easy to use3;

• engages students in active participation;

• helps students connect their program code with
the Java data model;

• is usable on any Java program, without requir-
ing any specific programming conventions to be
followed;

• allows “wrong” data structures to be viewed as
well as correct ones;

• can be configure to elide unnecessary detail;

• allows incorporation of visualisations in reports
and other presentations.

The tool presents all of its visualisations in terms
of the Java data model. It is not possible to visu-
alise, say, arrays as bar-charts, or incorporate other
such abstractions. We have also consciously resisted
complicating the tool to support, for example, visuali-
sation of object-oriented (class inheritance) relations.
Simplicity has been the overriding concern.

3 Overcoming student misconceptions

Java has a complicated data model that includes
primitive types, object types, references to objects,
arrays of primitives, arrays of object references, etc.
Little wonder then that students routinely become
confused. We have found that our visualisation tool
is highly effective in clarifying student misconceptions
about Java object semantics.

For example:

String is not primitive Java goes to some trou-
ble to create the illusion that String is a prim-
itive type. A special syntax for constructing
and initialising static strings is provided (double-
quotes), which gives a strong impression that no
objects are involved. The default context for our
visualisation tool partially plays along with this
illusion, presenting Strings as objects with no in-
ternal structure. The illusion can be revealed,
however, by using an “empty” context, in which
no elision is performed; e.g., the graph in fig. 3
was produced with the code fragment:

drawGraph(newContext(), "Hello");

Assignment does not create a new object
The difference between value and reference
assignment is an eternal source of confusion for
students. The visualisation tool clearly shows
shared references as links to the same object
(fig. 4(a)).

3To install the system, the system administrator will need to
make sure GraphViz is available on the execution PATH. Students
need just copy a single Java source file into their working direc-
tory. No changes to the Java environment, such as setting the
classpath, are required. Creating a snapshot is a call to a single
static method. Standard image viewers are perfectly adequate for
watching the visualisations.

In the code that generated this example, an ini-
tialised object array is used to include two objects
in a single graph. This is a general technique that
can be trivially extended to any number of ob-
jects.

String x = "Hello";
String y = x;
drawGraph(new Object[]{ x, y });

The alternative to reference assignment is a copy
assignment, exemplified by the code fragment be-
low (fig. 4(b)).

String x = "Hello";
String y = new String(x);
drawGraph(new Object[]{ x, y });

Hello

0 1

(a) Reference assign-
ment

Hello

0

Hello

1

(b) Value assignment

java.lang.String

offset: 0

count: 5

hash: 0

0

java.lang.String

offset: 0

count: 5

hash: 0

1

H e l l o

value value

(c) Shallow copying

Figure 4: Reference and value assignment

Alternatively, an “empty” context can be used
to reveal the extent to which copying of strings
actually occurs (fig. 4(c)). Examples such as this
are useful for introducing the concept of “shal-
low” versus “deep” copying.

String x = "Hello";
String y = new String(x);
drawGraph(newContext(), new Object[]{ x, y });

Object arrays hold references An array of inte-
gers and an array of strings are modelled very
differently in Java. Our visualisation tool clearly
captures this distinction, displaying primitive
values inline and displaying object values as sep-
arate nodes (fig. 5).

drawGraph(new Object[]{
new String[]{ "a", "b", "c" },
new int[]{ 1, 2, 3 } });

2-dimensional arrays A very simple illustration of
how 2-dimensional arrays are represented in the
Java data model is given in fig. 6. The code that
produced this visualisation is trivial; it simply
create a rectangular 2-d array (so that the row
and column ordinates can be deduced).

0

1 2 3

1

a

0

b

1

c

2

Figure 5: Object and primitive arrays

0 0 0 0 0

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

Figure 6: Java 2d arrays

drawGraph(new int[4][5]);

Static fields are not part of any object This
fact is reinforced in every visualisation. Static
fields are not displayed except in the (unusual)
case of an explicit reference to a static object.

We have found this an especially helpful property
of the visualisation tool, as students quickly re-
frain from adding spurious static modifiers to
fields when they find nothing appears in their
graph!

We have also found that the visualiser helps
discourage students from declaring unnecessary
fields, since these add clutter to all their graphs.

4 Customising the drawing context

A drawing context is used to control the appearance
of graph nodes and edges, to elide classes and fields,
and to control the format and naming of output files.

A default drawing context can be configured to
give reasonable defaults, such as ignoring inaccessible
fields or treating system classes as primitive types.

Configuration of the drawing context is ongoing.
The operations currently supported include:

setClassAttribute, setFieldAttribute
Attributes include border and font colour,
font size, fill style, etc. For example, a binary
tree node can be made bright pink and different
colours given to the left and right links as
follows:

Context ctx = getDefaultContext();
ctx.setClassAttribute(Node.class, "color=pink");
ctx.setFieldAttribute("left", "color=red");
ctx.setFieldAttribute("right", "color=blue");

The available attributes are determined by the
GraphViz tool.

Fields can be set by name (as above) or by spe-
cific reference.

treatAsPrimitive The specified class is treated as
a primitive value; i.e., the result of calling
toString on the object is displayed in-line,
rather than showing the object as a separate
node.

This is a surprisingly effective mechanism for re-
ducing the amount of clutter in a visualisation.
Most Java classes provide a toString method
that conveys the content of the object as a string.
This includes all the Java collection types (lists,
maps, etc.). Ellipsis (“. . . ”) can be inserted to
replace the middle of excessively long strings.

ignoreField Suppresses display of the given field.

ignorePrivateFields A boolean value. If set (the
default), fields that are not normally accessible
are not displayed. This includes protected fields
in other classes, and package-visible fields from
other packages.

showFieldNamesInLabels Determines whether
field names should be displayed in nodes or not.

qualifyNestedClassNames Nested classes are
given compound names by the Java compiler;
e.g., a class Entry nested in a class LinkedList
will be named LinkedList$Entry. Normally,
only the last part of these names is displayed.
Setting this option results in the full name being
used.

outputFormat This string field determines the out-
put format. The default is png, a widely used
image format. The ps (encapsulated postscript)
format can also be used for generating high-
resolution scalable graphs suitable for including
in reports.

baseFileName A numeric suffix is added to give
a unique name for each output graph (e.g.,
graph-0.png, graph-1.png, etc.) The set of
graphs so generated can then be viewed as a slide
show using a standard image viewer.

5 Data structure examples

We present several visualisations generated by our
tool for the major data structures studied in a CS2-
level course.

The first example (fig. 2) is a visualisation of the
standard Java linked list class, and was generated
from the following code fragment.

List xs = new LinkedList();
xs.add("A");
xs.add("B");
xs.add("C");
defaultContext().ignorePrivateFields = false;
drawGraph(xs);

A deque data structure is shown in fig. 7. The
snapshot, taken after 8 elements were added and then
3 removed, shows the relationship between the deque
indexes (_startM, etc.) and the map and element
buffers. The free space at both ends of the deque and
the contiguous storage of elements are clearly appar-
ent.

A red-black tree is shown in fig. 8. This exam-
ple suggests the need for a drawing context that will
select the colour attribute from an object field.

Finally, we present a chained hash map (fig. 9).
This diagram was obtained from the Java library
class, using a display context that included private
fields.

Map hm = new HashMap(4, 1.0f);
hm.put("one", new Integer(1));
hm.put("two", new Integer(2));
hm.put("three", new Integer(3));
getDefaultContext().ignorePrivateFields = false;
drawGraph(hm);

Deque

startM: 1

startB: 4

finishM: 2

finishB: 4

map

null null null null H

1

G F E D null

2

Figure 7: Visualising a Deque

TreeMap
size: 4

modCount: 4

Entry

key: three

value: 3

color: true

root

Entry

key: one

value: 1

color: true

left

Entry

key: two

value: 2

color: true

rightparent

Entry

key: four

value: 4

color: false

left parent

parent

Figure 8: Visualising a red-black tree

HashMap

size: 3

threshold: 8

loadFactor: 2.0

modCount: 3

table

Entry

key: three

value: 3

hash: -741826716

0

Entry

key: two

value: 2

hash: -1000502134

2

Entry

key: one

value: 1

hash: -953555362

next

Figure 9: Visualising a Hash table

6 Related and future work

GraphViz is just one of many many free and com-
mercial graph drawing tools currently available (e.g.,
see (Google.com 2003)). GraphViz was chosen be-
cause of its ease of installation, simple interface,
and the aesthetic quality of the generated graphs.
DaVinci (Fröhlich & Werner 1994), another popular
graph drawing tool, can be driven through an API,
making it better suited to displaying graphs while the
program is running. Unfortunately, this would nec-
essarily require setting up a non-standard Java envi-
ronment, thus violating one of our stated aims.

North & Koutsofios (1994) presents a survey of
graph visualisation applications, which includes men-
tion of a prototype visual debugger, vdbx. vdbx sits
on top of the widely used dbx debugger, and con-
tains a parser that translates dbx-syntax C “structs”
(i.e., records) into graph notation, allowing pointer
structures to be browsed graphically while debugging.
This is an appealing idea, although the tool itself ap-
pears to have fallen into disuse.

Recent releases of Java include a “platform debug-
ger interface” (Sun Microsystems 2003) that is used
by a wide variety of debugging tools. We are currently
investigating adapting one of these tools to display
graph visualisations along the lines of vdbx.

Gestwicki & Jayaraman (2002) present JIVE, an
interactive Java object “inspector.” JIVE incorpo-
rates some novel ideas for representing inheritance
relations, and for displaying the currently executing
source line next to the displayed objects. The cur-
rent implementation of JIVE requires a source code
transformation step, which the authors hope to re-
place with direct calls to the Java platform debugger.

Pedagogically, Naps’s Visualiser class (Naps
1998) shares much in common with the work pre-
sented here, with both approaches emphasising the
need for a tool simple enough for students to use with-
out unnecessary distraction. Our visualiser is more
general, does not require any special configuration to
handle new data structures, and is slightly easier to
use. Naps’s approach allows greater freedom in the
presentation of data (e.g., bar charts for integer ar-
rays) and supports arbitrary customisation.

7 Availability

The visualisation tool, comprising a single Java source
file, can be requested by emailing the author.

The GraphViz utility can be downloaded for free
from http://www.graphviz.org .

References

Fröhlich, M. & Werner, M. (1994), Demonstration
of the interactive graph visualization system
daVinci, in R. Tamassia & I. Tollis, eds,
‘Proceedings of DIMACS Workshop on Graph
Drawing ‘94’, Vol. 894, Springer Verlag, Prince-
ton (USA).
URL: ftp:// ftp.Uni-Bremen.DE/pub/
graphics/ daVinci/ papers/ lncs.ps.gz

Gestwicki, P. & Jayaraman, B. (2002), Interactive vi-
sualization of Java programs, in ‘Symposia on
Human Centric Computing Languages and Envi-
ronments (HCC’02)’, IEEE, Arlington, Virginia,
USA, pp. 226–235.

Google.com (2003).
URL: http:// directory.google.com/Top/
Science/Math/Combinatorics/ Software/
Graph˙Drawing/

Hundhausen, C. & Douglas, S. (2000), Using visu-
alizations to learn algorithms: Should students
construct their own, or view an expert’s?, in
‘IEEE International Symposium on Visual Lan-
guages’, pp. 21–30.

Naps, T. (1998), A Java visualizer class: Incorporat-
ing algorithm visualizations into students’ pro-
grams, in ‘Proceedings of ITiCSE’98’, Dublin,
Ireland, pp. 181–184.

Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A.,
Malmi, L., McNally, M., Rodger, S. & Velźquez-
Iturbide, J. A. (2003), ‘Exploring the role of vi-
sualization and engagement in computer science
education’, ACM SIGCSE Bulletin 35(2), 131–
152.

North, S. C. & Koutsofios, E. (1994), Application of
graph visualization, in ‘Proceedings of Graphics
Interface ’94’, Banff, Alberta, Canada, pp. 235–
245.
URL: citeseer.nj.nec.com/221206.html

Sun Microsystems (2003).
URL: http:// java.sun.com/products/ jpda/

