
A Case-Based Reasoning Application for Engineering
Sales Support using Introspective Reasoning

Ian Watson

AI-CBR
Dept. of Computer Science

University of Auckland
New Zealand

ian@ai-cbr.org

Abstract
This paper describes the implementation of a case-based
reasoning application that supports engineering sales staff.
The application is distributed and operates on the world
wide web using the XML standard as a communications
protocol between client and server side Java applets. The
paper describes the distributed architecture of the
operational prototype, the two case retrieval techniques
used, its implementation, trial, and subsequent
improvements to its architecture and retrieval techniques
using introspective reasoning to improve retrieval
efficiency.

Introduction
Western Air is a distributor of HVAC (heating, ventilation
and air conditioning systems in Australia with a turnover in
1997 of $25 million (US dollars). Based in Fremantle the
company operates mainly in Western Australia, a
geographic area of nearly two million square miles. The
systems supported range from simple residential HVAC
systems to complex installations in new build and existing
factories and office buildings.

Western Air has a distributed sales force numbering
about 100. The majority of staff do not operate from head
office but are independent, working from home or a mobile
base (typically their car). Until recently, sales staff in the
field would gather the prospective customer’s requirements
using standard forms and proprietary software, take
measurements of the property and fax the information to
Western Air in Fremantle. A qualified engineer would then
specify the HVAC system. Typically the engineer would
have to phone the sales staff and ask for additional
information and the sales staff would have to make several
visits to the customer’s building and pass additional
information back to the head office engineer.

Western Air felt that basing a quote on the price of a
previous similar installation gave a more accurate
estimation than using prices based on proprietary software,

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

catalogue equipment prices and standard labor rates. To try
to help engineers make use of all the past installations a
database was created to let engineers search for past
installations. The database contained approximately 10,000
records, each with 60 fields describing the key features of
each installation and then a list of file names for the full
specification. Initially the engineers liked the database and
it increased the number of past installations they used as
references. However, after the honeymoon ended, they
started to complain that it was too hard to query across
more than two or three fields at once. And that querying
across ten or more fields was virtually impossible. In fact
most of them admitted to using the database to laboriously
browse through past installations until they found one that
looked similar to their requirements.

Prototype Development
Western Air decided that merely improving the efficiency
of the engineers in Fremantle would not solve the whole
problem. Ideally they would like the sales staff to be able to
give fast accurate estimates to prospective customers on the
spot. However, they were aware that there was a danger
that the less knowledgeable sales staff might give
technically incorrect quotes.

The solution they envisaged was to set up a web site that
sales staff could access from anywhere in the country.
Through a forms interface the prospect's requirements
could be input and would be passed to a CBR system that
would search the library of past installations and retrieve
similar installations. Details of the similar installations
along with the FTP addresses of associated files would then
be available to the sales staff by FTP. The sales staff could
then download the files and use these to prepare an initial
quote. All this information would then be automatically
passed back to an engineer to authorize or change if
necessary. Once an installation was completed its details
would be added to the library and its associated files placed
on the FTP server.

The development team comprised:
• a senior engineer from Western Air (one of the firms

owners) as project champion,
• an engineer from Western Air to act as project

manager and domain expert,
• a consultant Java/HTML programmer,
• a consultant from AI-CBR to advise on CBR issues

(resident in the UK), and
• a part-time data entry clerk.

Because the project had the direct involvement of one of
the firms owners management commitment was not a
problem. It was decided that creating a partially functional
prototype was sensible and that a carefully controlled and
monitored trial was essential for two reasons:
1. It was still not certain that sales staff could create

technically sound first estimates and therefore a small
carefully monitored trial was essential to avoid losing
the firm money.

2. There were resource implications since although all
sales staff had portable PCs, some were old 486
Windows 3.1 machines and few had modems or
Internet accounts.

A fixed (non-negotiable) budget was given to the project
of $32,000 (US) and it was decided that six months would
be given for development and trial of the system. The
project started in October of 1997 and the trial was planned
for March of 1998.

It was decided initially to deal with moderately complex
residential HVAC systems because it was felt that this
would provide a reasonable test of the system without
undue risk. Western Air felt that it was commercially
unwise to risk experimentation on high value commercial
contracts. Western Air realised they wanted a system that
could find similar installations without making the query
too complex for the engineers. Web-based CBR
applications have been demonstrated for a few years now
such as the FAQFinder and FindME systems [Hammond et
al., 1996] and those at Broderbund and Lucas Arts
[Watson, 1997].

The solution they envisaged was to set up a web site that
sales staff could access from anywhere in the country.
Through a forms interface the prospect's requirements
could be input and would be passed to a CBR system that
would search the library of past installations and retrieve
similar installations. Details of the similar installations
along with the FTP addresses of associated files would then
be available to the sales staff by FTP. The sales staff could
then download the files and use these to prepare an initial
quote. All this information would then be automatically
passed back to an engineer to authorise or change if
necessary. Once an installation was completed its details
would be added to the library and its associated files placed
on the FTP server.

Since a simple nearest neighbour retrieval algorithm
would suffice implementing our own system was a viable

option. Java (Visual Café) was chosen as the
implementation language for both the client and server side
elements of the CBR system. XML (eXtensible Markup
Language) [WWW Consortium, 1997] was used as the
communication language between client and server-side
applets. The World-Wide Web Consortium (W3C)
finalised XML 1.0 in December 1997 as a potential
successor to HTML.

www browser

Java
applet

Access
dbase

10K records

Java
servlet

XML
query

XML
cases

retrieve set of
cases and convert

into XML

www server

ftp server

download project files

Windows NT Server

Internet

client

rank cases using
nearest neighbour

Figure 1. System Architecture

System Architecture
On the sales staff (client) side a Java applet is used to
gather the customer’s requirements and send them as XML
to the server. On the server side another Java applet (a
servlet) uses this information to query the database to
retrieve a set of relevant records. The Java servlet then
converts these into XML and sends them to the client side
applet that uses a nearest neighbour algorithm to rank the
set of cases.

Case Representation
Cases are stored within a database. Each record (case)
comprises 60 fields used for retrieval and many more used
to describe the HVAC installations. In addition, links to
other files on the FTP server are included to provide more
detailed descriptions. Once retrieved from the database the
records are ranked by a nearest neighbour algorithm and
dynamically converted into XML for presentation to the
client browser. An XML case representation is used by our
system [Shimazu, 1998]. XML pages can contain any
number of user defined tags defined in a document type
definition (DTD) file. Tags are nested hierarchically from a
single root tag that can contain any number of child tags.
Any child tag in turn can contain any number of child tags.
Each tag contains a begin statement (e.g. <Case>) and an
end statement (e.g. </Case>).

Mech_htg_cool

T1_RV_source

T10_gas_fired

T11_coal_fired

T14_altern_fue

T12_electrode_

T13_heatpump

T2_heat_dist_ut

T20_M_L_tmp_

T21_radiators

T22_udr_flr_in

T23_steam

T3_htg_util

T30_warm_air_h

T34_radiant_

T32_convect_htg

T33_dual_duct_

T31_fan_coil

U31A_Atholl_B23

U32A_Atholl_B24

U35A_TFR_Rea

U33A_Sperry_4_

U34A_Sperry_4_

Figure 2. A Portion of the Symbol Hierarchy for Mechanical Heating & Cooling Systems

Case Retrieval
Case retrieval is a two stage process. In stage one the
customer’s requirements are relaxed through a process of
query relaxation. This process takes the original query and
relaxes terms in it to ensure that a useful number of records
are retrieved from the database. This is similar to the
technique used by Kitano & Shimazu [1996] in the
SQUAD system at NEC, although as is discussed later, we
have improved it efficiency using an introspective learning
heuristic.

For example, assume we are trying to retrieve details of
installations using Athol B25 equipment. An SQL query
that just used “Athol_B25” as a search term might be too
restrictive. Using an ordered symbol hierarchy (as in Figure
2) our system knows that “Athol B25” is a type of “Fan
Coil” system so the query is relaxed to “Where
(((EquipmentReference) = “T31_fan_coil””)..)). This query
will include equipment from Athol, Sperry and TFR. An
ordering of each set of symbols in the hierarchy is obtained
through the reference number suffixes to each symbol (e.g.
T10, T11, T12, T13, T14 as shown in Figure 2). The
symbol hierarchies are stored in tables in the database.

Other specific criteria, elevations or temperatures that
are numbers (integers or reals) can be relaxed by using
simple ranges (e.g. a temperature of 65° F. could be
relaxed to “Between 60 and 70”). Knowledge engineering
was required to determine by what amounts numeric
features should be relaxed. The relaxation is expressed as a
term ± a percentage (e.g., “Relax_Temp = ± 10%”). These
relaxation terms are stored in tables in the database.
 In the second stage the small set of retrieved records are
compared by the client-side applet with the original query
and similarity is calculated using the simple nearest
neighbour algorithm shown in Figure 3. The resulting
similarity measure is normalized to give a percentage range
of 0% (i.e. completely dissimilar) to 100% (i.e. completely
similar). The weighting on the features by default is set to 1

(i.e., all features are by default considered of equal
importance) However, the sales engineers can change the
feature weightings to reflect client priorities or their own
preferences.

Similarity T S f T S wi i i
i

n

(,) (,)= ×
=
∑

1

where:
T is the target case
S is the source case
n is the number of features in each case
i is an individual feature from 1 to n
f is a similarity function for feature i in cases T and S
and
w is the importance weighting of feature I

Figure 3 The Nearest Neighbour Algorithm

 Once an HVAC installation is completed its details are
added to the database and its associated files placed on the
FTP server. Having a database management system for the
case repository has proved essential since it makes it easier
to generate management reports and ensure data integrity.
It would be almost impossible to maintain a collection of
10,000 cases without a DBMS.

Interface Design
The interface to the system is a standard Java enabled web
browser (Netscape or Internet Explorer). The forms within
the Java applet were designed to look as similar to the
original forms, HVAC specification tools and reports that
the sales staff were already familiar with. Microsoft
FrontPage 98 and Macromedia’s DreamWeaver were the
primary tools used to create the web site.

Testing
Two weeks before trial five test scenarios were created that
were representative of the range of more complex
residential installations the system would be expected to
handle in use. These were given to the five sales staff who
would initially use the system and they were asked to test
the system. Out of the 25 tests (5x5) 22 were correct.
Although the remaining three were not specified as
expected they were felt to be technically acceptable
solutions.

The prototype was rolled out for trial to the five sales
staff in March of 1998. Acceptance of the system from the
five sales staff was very good once they understood what it
was doing. During the month’s trial the system dealt with
63 installations all of which were felt to be technically
sound. The sales staff had not had to use the expertise of
the HVAC engineers at all for this work although the
engineers checked the final specifications.
 During the trial month the five sales staff were able to
handle 63 installation projects without having an HVAC
engineer create the specification. This resulted in a
considerable saving in engineers time allowing them more
time to deal with complex high value commercial HVAC
contracts.

Prototype Enhancements
Since its test the original prototype of the system has
experienced increasing load performance problems. The
Java servlet approach suffered from poor performance
because the web server loads, executes and terminates a
new servlet program for each user access. Large data sets
and complex queries especially burden the system because
data querying takes place via the Java servlet program
rather than directly via the database. This coupled with the
fact that MS Access is not a particularly fast database
caused time out problems as the server load increased. To
rectify this problem the database was ported to mySQL
(http://www.mysql.org) a freeware database with much
better performance. In addition Netscape’s LiveWire
database integration tool was used. This product has
excellent database query functions, and importantly,
because the LiveWire engine runs within the Netscape Web
Server process it can share database connections across all
Web accesses.

Introspective Learning
The initial query relaxation method of first performing a
precise query and then relaxing the query through
successive iterations until a sufficiently large set of cases
was retrieved also compounded the performance problems.
A suggestion was made to turn this process around –
namely, why not relax the initial query far enough to ensure
that a large set of cases would be retrieved (e.g. several

hundred cases) and then refine the query to reduce the sub-
set to around twenty cases). The obvious speed advantage
in this approach is that only a small sub-set of the whole
case-base is used in any subsequent iterations as opposed to
the entire case-base in the original query relaxation
approach.

However, deciding how much to relax the query was not
straightforward so an introspective learning approach was
taken. This is an approach in CBR where the reasoning
system itself learns over time to modify its internal
representation to improve its performance [Markovitch &
Scott, 1993]. For example, CBR systems may learn to
modify feature weights, adaptation rules [Leake, et al.,
1995; Hanney & Keane, 1996], or even learn to forget
redundant cases [Smyth & Cunningham, 1996].

A decision was made to log each time a feature was
relaxed during the query relaxation process. When the
same query term is encountered again the query is
automatically relaxed by one of three methods:
1) by the precise amount it was relaxed the previous time,
2) by the average amount it was relaxed the previous N

times it had been relaxed (where n is the total number
of times it has been relaxed), and

3) by the mean amount it was relaxed the previous N
times it had been relaxed.

Experiments were then conducted to see which, if any, of
these simple heuristics most improved retrieval efficiency.
This of course required that we decided what we meant by
efficiency, was it:
• Time efficiency, i.e. purely a measure of retrieval

speed, or
• Accuracy, i.e., a measure of the quality of the final

suggested set of cases.
 It was felt by us that both metrics were important so both
were considered. Because of problems due to network and
server loads and the way command stacks were executed it
was difficult to directly measure retrieval speed accurately
so the concept of precision was used as an analogue. That
is, how many cases were returned in the set of retrieved
cases. The fewer the number the more precise. A smaller
number of cases would always be processed faster by the
system, hence retrieval time would be quicker (unless
network traffic beyond our control slowed down the
exchange of information).
 Therefore, if the query relaxation algorithm returned a
single case that was a 100% match to the target case we
would have an accuracy rating of a perfect 100% with a
precision of 100%. It is worth remembering that this only
tests the first stage of retrieval. In the second stage a
nearest neighbour algorithm selects the most similar case
from the retrieved set.

Testing
Tests were conducted by partitioning the case-base.
Approximately one fifth of the cases (2000) were removed
at random from the case-base. These were then used in a
random sequence as probes to query the case-base. Our
hypothesis therefore was that if the introspective learning
algorithm worked either the precision or accuracy or both
of the system should improve over time.

Results
Three methods were used by the introspective learning
algorithm to learn how to relax the query:
1) precise relaxation – i.e., relax query features by the

precise amount they were relaxed the previous time.
2) average relaxation – i.e., relax query features by the

average amount they were relaxed the previous N
times they had been relaxed (where N is the total
number of times it has been relaxed), and

3) mean relaxation – i.e., relax query features by the
mean amount they had been relaxed the previous N
times they had been relaxed.

 The results for percentage accuracy were entirely
inconclusive. Percentage accuracy did not improve using
either of the three introspective learning algorithms. This is
not surprising since the objective of the query relaxation
method is not to retrieve the “best” matching case but
rather to retrieve a set of good candidate cases upon which
the nearest neighbour algorithm can work. However,
conversely there was no evidence that introspective
learning reduced the accuracy of the set of retrieved cases.

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19

Generation

%
 P

re
ci

si
on

Figure 4 % Precision for Mean Relaxation

(Generation is in 100s)

The results for precision were more encouraging, except
for when the precise retrieval learning algorithm was used.
It’s results unsurprisingly showed wild fluctuations as each
query relaxation was based purely on the previous query
relaxation. Sometimes this worked and sometimes it didn’t;
in effect the learning algorithm had no long term memory.
However, the average and mean relaxation results showed
improvement with time. Precision for average relaxation
improved from about 64% to 84%, whilst with mean
relaxation percentage precision improved from about 64%

to 94%. In addition, mean relaxation showed smaller
fluctuations because this method is less perturbed by
outliers. This shows that the system has been able to
improve its precision (i.e., retrieve a smaller set of
candidate cases) without harming its accuracy. This would
improve the system’s overall retrieval time.

Conclusions
This implementation has shown how a distributed CBR
system can be created on the web in a relatively short space
of time (six months). Implementing the system for web
delivery will make the system much more viable. Just a few
years ago we would have had to install the entire system
(including the database of 10,000 records) on each of the
sales staffs PCs. We would then have had to regularly send
them updates to the database. This would significantly
increase the operational costs of the system. Thus the web
is an ideal medium for delivering intelligent support of all
types.

The project was most certainly helped by having a ready
made case library. Although knowledge engineering work
was still required in determining valid ways of relaxing the
SQL queries and creating similarity metrics. This was not
surprising as the similarity measure is one of the most
important knowledge containers of any CBR system
[Richter, 1998].

XML is a useful communications protocol enabling large
packets of formatted information to be exchanged thereby
reducing network traffic. As a possible replacement to
HTML it should help the web support intelligent
applications [Hayes, et al., 1998; Doyle, et al., 1998].
However, we have demonstrated that implementing a
simple CBR system is not difficult and is a viable
alternative to purchasing a commercial tool. We will see
CBR systems playing an increasingly important role in
product selection and specification on-line, since similarity-
based retrieval is very useful for Internet e-commerce
systems [Wilke, et al., 1998].

However, under increasing use the prototype’s
performance started to become an issue that would reduce
its effectiveness. Several measures were taken to improve
performance including using a faster database to store the
cases, improving the way database access was managed on
the server side and improving the way the query relaxation
algorithm worked. This later improvement was significant
because it involved the use of an introspective learning a
accuracy of the algorithm that learns by how much to relax
case features during the relaxation process. Our
experimental findings show that although the learning
algorithm does not improve the accuracy of the system it
does improve its precision. For the future we would like to
find a way to make the learning algorithm consider the
interaction of case features. Currently features are
considered in isolation which is obviously a weakness since

there are certainly both strong and weak dependencies
between case features.

Acknowledgements
I would like to acknowledge the cooperation of Western
Air in the development of this system and in particular their
permission to publish. Hideo Shimazu provided valuable
information on the use of XML and David McSherry had
the idea to improve the efficiency of the query relaxation
algorithm.

References
Doyle, M., Ferrario, M.A, Hayes, C., Cunningham, P.,
Smyth, B. (1998). CBR Net: Smart Technology Over a
Network, Internal Report Trinity College Dublin, TCD-CS-
1998-07.
http://www.cs.tcd.ie/Padraig.Cunningham/publications.html

Hammond, K.J., Burke, R., & Schmitt, K. (1996). A Case-
Based Approach to Knowledge Navigation. In, Case-Based
Reasoning: Experiences, Lessons, & Future Directions.
Leake, D.B. (Ed.) pp.125-136. AAAI Press/The MIT Press
Menlo Park, Calif., US.

Hanney, K. & Keane, M. (1996). Learning Adaptation
Rules From a Case-Base. Advances in Case-Based
Reasoning, Smith, I. & Faltings, B. (Eds.) Lecture Notes in
AI # 1168 pp.179-192. Springer-Verlag, Berlin.

Hayes, C., Doyle, M., Cunningham, P., (1998). Distributed
CBR Using XML, Internal Report Trinity College Dublin,
TCD--CS-1998-06.
http://www.cs.tcd.ie/Padraig.Cunningham/publications.html

Kamp, G. Lange, S. & Globig, C. (1998). Case-Based
Reasoning Technology: Related Areas. In, Case-Based
Reasoning Technology: From Foundations to Application.
Lenz, M. et al (Eds.) LNAI # 1400 pp.325-351. Springer-
Verlag, Berlin.

Kitano, H., & Shimazu, H. (1996). The Experience Sharing
Architecture: A Case Study in Corporate-Wide Case-Based
Software Quality Control. In, Case-Based Reasoning:
Experiences, Lessons, & Future Directions. Leake, D.B.
(Ed.) pp.235-268. AAAI Press/The MIT Press Menlo
Park,Calif., US.

Leake, D.B., Kinley, A. & Wilson, D. (1995). Learning to
Improve Case Adaptation by Introspective Reasoning and
CBR. In, Case-Based Reasoning Research & Development,
Veloso, M. & Aamodt, A. (Eds.), Lecture Notes in AI #
1010, pp.229-240. Springer-Verlag, Berlin.

Markovitch, S. & Scott, P.D. (1993). Information Filtering.
Selection mechanisms in Learning Systems. Machine
Learning, 10, pp.113-151.

Richter, M. (1998). Introduction - the basic concepts of
CBR. In, Case-Based Reasoning Technology: from
foundations to applications. Lenz, M., Bartsch-Sporl, B.,
Burkhard. H-D. & Wess, S. (Eds.). Lecture Notes In AI #
1400 Springer-Verlag, Berlin.

Shimazu, H. (1998). Textual Case-Based Reasoning
System using XML on the World-Wide Web. To appear in
the Proc. Of the 4th European Workshop on CBR
(EWCBR98), Springer Verlag LNAI.

Smyth, B., & Cunningham,). (1996). The Utility Problem
Analysed: A Case-Based Reasoning Perspective. Advances
in Case-Based Reasoning, Smith, I. & Faltings, B. (Eds.)
Lecture Notes in AI # 1168 pp.392-399. Springer-Verlag,
Berlin.

Watson, I. (1997). Applying Case-Based Reasoning:
techniques for enterprise systems. Morgan Kaufmann
Publishers Inc. San Francisco, CA.

Watson, I. (1998). Case-Based Reasoning is a
Methodology not a Technology. Research & Development
in Expert Systems XV, Mile, R., Moulton, M. & Bramer,
M. (Eds.), pp.213-223. Springer-Verlag, London.

Wilke, W. Lenz, M. Wess, S. (1998). Intelligent Sales
Support with CBR. In, Case-Based Reasoning Technology:
from foundations to applications. Lenz, M., Bartsch-Sporl,
B., Burkhard. H-D. & Wess, S. (Eds.). Lecture Notes In AI
1400 91-113. Springer-Verlag, Berlin.

World Wide Web Consortium, (1997). Extensible Markup
Language 1.0, recommendation by W3C:
www.w3.org/TR/PR-xml-971208

http://www.cs.tcd.ie/Padraig.Cunningham/publications.html
http://www.w3.org/TR/PR-xml-971208

