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Abstract

This paper asks whether case-based reasoning is an artificial intelligence (AI) technology like rule-based reasoning, neural networks or
genetic algorithms or whether it is better described as a methodology for problem solving, that may use any appropriate technology. By
describing four applications of case-based reasoning (CBR), that variously use: nearest neighbour, induction, fuzzy logic and SQL, the author
shows that CBR is a methodology and not a technology. The implications of this are discussed.q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Artificial intelligence (AI) is often described in terms of
the various technologies developed over the last three or
four decades. Technologies such as logic programming,
rule-based reasoning, neural networks, genetic algorithms,
fuzzy logic, constraint-based programming and others.
These technologies are characterised by specific program-
ming languages or environments (e.g. Prolog or rule-based
shells) or by specific algorithms and techniques (e.g. Ap, the
Rete algorithm or back propagation). Each also has, to a
lesser or greater extent, laid down particular ways or meth-
ods of solving problems (e.g. depth first search, generate and
test) that best use the characteristics of each technology.

Case-based reasoning (CBR) is a relative newcomer to AI
and is commonly described as an AI technology like the
ones listed above. This paper will show, by examining
four very different CBR applications, that CBR describes
a methodology for problem solving but does not prescribe
any specific technology. Section 2 briefly describes CBR
and identifies what characterises a methodology in this
context. Sections 3–6 each describe an application whose
authors felt each could be described as case-based reason-
ers. The paper then concludes by discussing the implications
of viewing CBR as a methodology.

2. Case-based reasoning

CBR arose out of research into cognitive science, most
prominently that of Roger Schank and his students at Yale
University [1–4]. It is relevant to the argument presented in
this paper that CBR’s origins were stimulated by a desire to
understand how people remember information and are in
turn reminded of information; and that subsequently it
was recognised that people commonly solve problems by
remembering how they solved similar problems in the past.
The classic definition of CBR was coined by Riesbeck and
Schank [5]:

“A case-based reasoner solves problems by using or
adapting solutions to old problems.”

Note that this definition tells us “what” a case-based
reasoner does and not “how” it does what it does.
Conceptually CBR is commonly described by the
CBR-cycle (Fig. 1).This cycle comprises four activities
(the four-REs):

1. Retrievesimilar cases to the problem description.
2. Reusea solution suggested by a similar case.
3. Reviseor adapt that solution to better fit the new problem

if necessary.
4. Retain the new solution once it has been confirmed or

validated.

Once again, what is being described here is a methodol-
ogy for solving problems and not a specific technology.
Peter Checkland [7] describes a methodology as:
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“an organised set of principles which guide action in
trying to ‘manage’ (in the broad sense) real-world
problem situations.” [7, p. 5]

The CBR-cycle fits very nicely into this definition of a
methodology as a “set of principles which guide action”.

What then are the set of principles which guide CBR?
The first of these is a desire by the problem solver to solve a
problem by explicitly trying to reuse a solution from a simi-
lar past problem. Thus, a CBR mustretrievecases from a
case-library and in someway assess thesimilarity of cases in
the library to the current problem description. Second, a

CBR system should attempt toreusethe solution suggested
by a retrieved case, either with or withoutrevision. Finally,
a CBR system should seek to increase its knowledge by
retaining new cases.

The subsequent sections will show how four different
applications use this set of principles, defined as CBR, to
solve real-world problems.

3. CBR using nearest neighbour

Nearest neighbour techniques are perhaps the most
widely used technology in CBR since it is provided by the
majority of CBR tools [8]. Nearest neighbour algorithms all
work in a similar fashion. The similarity of the problem
(target) case to a case in the case-library for each case attri-
bute is determined. This measure may be multiplied by a
weighting factor. Then the sum of the similarity of all attri-
butes is calculated to provide a measure of the similarity of
that case in the library to the target case. This can be repre-
sented by the equation:

Similarity�T;S� �
Xn
i�1

f �Ti ;Si� × wi

whereT is the target case;Sthe source case;n the number of
attributes in each case;i an individual attribute from 1 ton; f
a similarity function for attributei in casesT andS; andw
the importance weighting of attributei.

This calculation is repeated for every case in the case-
library to rank cases by similarity to the target. Algorithms
similar to this are used by most CBR tools to perform near-
est neighbour retrieval. Similarities are usually normalised
to fall within a range of zero to one (where zero is totally
dissimilar and one is an exact match) or as a percentage
similarity where 100% is an exact match. The use of nearest
neighbour is well illustrated by the Wayland system [9].

3.1. Wayland—setting up aluminium die-casting machines

Wayland is a CBR system that advises on the set up of
aluminium pressure die-casting machines. Wayland was
implemented using a very simple CBR tool calledcaspian
[10], which can be downloaded from the Internet ( ). Pres-
sure die casting involves injecting molten metal at a very
high pressure into a mould (a die), where it cools to make a
casting. Machine settings are critical for successful pressure
die casting, and there is a compromise between factors such
as the cost of producing the casting, maximising the die life
and the quality of the final product. The die parameters are
strongly interrelated, making the problem non-decomposa-
ble. A change in one parameter can be compensated for by
altering another.

CBR is an appropriate technology for this problem,
because each foundry will tend to have a particular way of
working. Engineers refer to records of previous dies with
similar input requirements, and adjust the parameters for a
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Fig. 1. The CBR-cycle after Aamodt and Plaza [6].

Fig. 2. A case from Wayland.



similar die to reflect the different requirements of the new
die being built. The records of previous dies are good exam-
ples of working compromises between the different operat-
ing requirements: such compromises might well have been
found by costly adjustments performed in the foundry after
the die was built.

Wayland automates the identification of past dies with
similar characteristics, alters the die settings to take into
account the differences between the past die and the new
one being designed, and validates that the new solution is
within design limits.

Wayland has a case base of some 200 previous die
designs, extracted from a database of records of actual die
performance maintained at the foundry. Only dies with
satisfactory performance had their values entered into the
case base, so the foundry personnel are confident that each
case provides a good basis for calculating new solutions.
Cases are fixed format records, with a field for each of the
values as shown in Fig. 2. Some of the fields may be blank,
if complete records for a die have not been available.

Cases are retrieved using an algorithm similar to that
described above. Each of the retrieved cases is assigned
an overallmatch valueby assigning a match score to each
field and summing the total. Each field is given a weight
which expresses its significance (e.g. the number of impres-
sions is an important field to match: it specifies how many of
the parts are made at once in the die). The case with the
highest overall mark is thebest match. After a case is
retrieved it then has adaptation rules applied to it in order
to produce the correct machine settings.

Once a case has been accepted, and the die casting has
been found to be successful in practice, the case is entered
into Wayland’s case-base by an engineer, thus, completing
the CBR-cycle.

4. CBR using induction

Induction techniques are commonly used in CBR since
many of the more powerful commercially available CBR
tools provide this facility (e.g.kate from AcknoSoft;
ReCall from ISoft; CBR-Works from TecInno; and ReMind
from Cognitive Systems) [8]. Induction algorithms, such as
ID3, build decision trees from case histories. The induction
algorithms identify patterns amongst cases and partition the
cases into clusters. Each cluster contains cases that are simi-

lar. A requirement of induction is that one target case feature
is defined (i.e. the feature that the algorithm will induce).
Essentially the induction algorithms are being used as clas-
sifiers to cluster similar cases together. It is assumed
(usually correctly) that cases with similar problem descrip-
tions will refer to similar problems and hence similar solu-
tions.

4 1. Troubleshooting CFM 56-3 engines on Boeing 737s

A good example of the use of inductive techniques for
CBR was described by Richard Heider of CFM-interna-
tional [11]. The project, called Cassiopee, developed a deci-
sion support system for the technical maintenance of the
CFM 56-3 engines used on Boeing 737 jets. One of the
business motivations of this project, in addition to improv-
ing problem diagnostics, was to create a corporate memory
of troubleshooting knowledge (theretain part of the CBR-
cycle).

Thirty-thousand cases were obtained from a database of
engine failure descriptions. Each failure report contained
both a structured section that described thefailure symptom
(e.g. high oil consumption, abnormal noise, thrust defi-
ciency etc.), and the faulty equipment (i.e. a list of engine
parts that needed replacing or maintaining), and a free form
text narrative describing the failure event. The textual narra-
tives were analysed by maintenance specialists to identify a
further 70 technical parameters that further defined the fail-
ure symptoms. Eventually 1500 cases were selected by a
specialist as being representative of the range of engine
failures. These became Cassiopee’s case-base.

The induction algorithm of the toolkate generated a fault
tree from these cases extracting relevant decisions knowl-
edge from the case histories. Retrieval of a similar case is
obtained by walking the fault tree to find the cluster of cases
that are most similar to the problem description. Once a fault
tree is generated retrieval is extremely fast.

In use, airline maintenance crews are prompted (via
dialogs) to select a failure symptom and to provide addi-
tional information about the symptom. The system uses the
induced fault tree to find the case or cluster of cases that are
most similar to the problem description and provides a list
of possible solutions. The cases that provide the solutions
can be browsed by the users to help them confirm or reject
the solutions.

5. CBR using fuzzy logic

Fuzzy logics are a way of formalising the symbolic
processing of fuzzy linguistic terms, such asexcellent,
good, fair andpoor, which are associated with differences
in an attribute describing a feature [12]. Any number of
linguistic terms can be used. Fuzzy logics intrinsically
represent notions of similarity, since good is closer (more
similar) to excellent than it is to poor. For CBR, a fuzzy
preference function can be used to calculate the similarity of
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a single attribute of a case with the corresponding attribute
of the target.

For example, in Fig. 3, a difference of 1 unit in the values
of an attribute would be considered excellent, a difference of
2 would be good, 3 would be fair and 4 would be poor. The
result of using fuzzy preference functions is a vector, called
the fuzzy preference vector. The vector contains a fuzzy
preference value for each attribute. The values in this vector
can be combined, through weighted aggregation, to produce
a robust similarity value. The use of fuzzy preference func-
tions allows for smooth changes in the result when an attri-
bute is changed unlike the large changes that are possible
when step functions are used. A fuzzy preference function is
used to transform a quantifiable value for each attribute into
a qualitative description of the attribute that can be
compared with the qualitative description of other attri-
butes. Thus, a fuzzy preference function allows a compar-
ison of properties that are based on entirely different scales
such as cost measured in cents per pound and spectral curve
match measured in reflection units.

5.1. Colour matching plastics at General Electric

A case-based reasoning system for determining what
colorants to use for producing a specific colour of plastic
was created at General Electric (GE) and has subsequently
been patented by them. The selection of colorants needs to
take many factors into consideration. A technique that
involved fuzzy logic was used to compare the quality of
the colour match for each factor. The system has been in
use for two years at a growing number of GE Plastics sites
and has shown significant cost savings [13].

When presented with a required colour for a new batch of
plastic, engineers at GE would select the closet match from
samples on thousands of colour swatches in a reference
collection. The colour formulae of dies from the closest
matching swatch would be reused or adapted slightly to
produce the required new colour. A swatch of the new
colour would then be created and added to the reference

collection. This is a pure case-based process being
performed by people.

Based on discussions with experts and work to classify
previous matches into various sets of linguistic terms, GE
were able to create fuzzy preference function for each of the
following attributes of the colour match:

• colour similarity;
• total colorant load;
• cost of colorant formula;
• optical density of colour;
• colour shift when moulded under normal and abusive

conditions.

Each of the above properties including spectral colour
match, loading level, cost, optical density and colour shift
due to processing conditions, is based on different scales of
units. But, by mapping each of these properties to a global
scale through the use of fuzzy preferences and linguistic
terms such as excellent, good, fair and poor, it was possible
to compare one attribute with another. Then these values
were input into a typical nearest neighbour algorithm to
provide a summed, weighted and normalised score for
each colour sample. Thus, fuzzy logic is being used to assess
similarity in this system.

6. CBR using database technology

At its simplest form, CBR could be implemented using
database technology. Databases are efficient means of stor-
ing and retrieving large volumes of data. If problem descrip-
tions could make well formed queries it would be
straightforward to retrieve cases with matching descrip-
tions. The problem with using database technology for
CBR is that databases retrieve using exact matches to the
queries. This is commonly augmented by using wild cards,
such as “WESTp” matching on “WESTMINSTER” and
“WESTON” or by specifying ranges such as “, 1965”.
The use of wildcards, Boolean terms and other operators
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within queries may make a query more general, and thus
more likely to retrieve a suitable case, but it is not a measure
of similarity.

However, by augmenting a database with explicit knowl-
edge of the relationship between concepts in a problem
domain, it is possible to use SQL queries and measure simi-
larity.

6.1. squad—sharing experience at NEC

The squad system was developed at NEC, Japan as a
software quality control advisory system [14]. Real-world
deployment imposed several key constraints on the system.
Of these, one in particular forced the developers to consider
database technology: the system had to be part of the corpo-
rate information system and provide a fast response time to
over 150 000 users. The use of a commercialrdbms as a
case-manager, where each case is represented as a record of
a relational database table, offered several key advantages
such as: data security, data independence, data standardisa-
tion and data integrity.

The developers ofsquad were able to create a set of SQL
expressions for similarity-based retrieval by referring to
abstraction hierarchies as in Fig. 4.

By referring to the abstraction hierarchies for concepts in
the problem domainsquad, can generate a set of similarity
values associated with a set of SQL expressions as in Table
1. If a user with a problem identified ADA as thelanguage
and VAX as themachine, the SQL specifications shown in
Table 1 would be generated and sent to therdbms as
queries. In this way,squad is able to assess the similarity
of records (cases) returned by therdbms.

Over 3000 cases were added tosquad each year
while it was in use resulting in over 25 000 cases,
which were accessed by employees all over the global
organisations. The developers at NEC believe that this
would not have been possible without the scalability,
security and robustness provided by a commercial
rdbms system.

7. Conclusion

Each of the systems described above uses different tech-
nologies but they all follow the same set of guiding princi-
ples:

• each explicitly attempts to solve problems by reusing
solutions to old problems;

• the retrieval of past problems (cases) involves assessing
the similarity of the problem to cases in a case-library;
and

• once a new problem is solved it is added to the case
library to retain the problem solving experience for
future reuse.

The developers of the systems described above were there-
fore correct to describe their systems as case-based reason-
ers since they adhere to the CBR methodology.

“It has become clear that CBR is a generic methodol-
ogy for building knowledge-based systems, rather
than an isolated technique that is capable of solving
only very specific tasks.” [15, p. 327]

If you now accept that CBR is a methodology for problem
solving and not a technology, you may now be able to see
ways of applying it using techniques other than those
described here. However, if you now think that CBR can
use the nearest neighbour, induction, fuzzy logic or database
technology, you have missed the point of this paper. A case-
based reasoner can useany technology provided the system
follows CBR’s guiding principles. This is analogous to
agent research as agent systems typically adhere to a set
of principles or characteristics (e.g. agents typically exhibit:
autonomy, communication, collaborationand intelligence)
but can be implemented using any number of techniques
[16].

This view of CBR as a methodology also has implications
for hybridsystems. It is not uncommon in the CBR literature
to see systems that combine nearest neighbour retrieval with
rules for adaptation described as hybrid systems. Unfortu-
nately, this distinction is unsupportable if CBR is viewed as
a methodology, because CBR systemsmustuse other tech-
nologies; since CBR has no technology to call its own per se
(e.g. nearest neighbour derives from operational research,
inductive indexing from machine learning). Thus, a
hypothetical CBR system that used nearest neighbour to
index and retrieve cases, neural networks and fuzzy logic
to assess similarity, and rules and constraint satisfaction to
adapt cases would not be a hybrid CBR system, although
(perhaps confusingly) it would be a hybrid AI system. A true
hybrid CBR system is one that combines two or more
problem solving methodologies. For example, a medical
system that used CBR to diagnose a patient’s illness and
then used a rule-based system to design a unique treatment
regime based upon a deep causal knowledge of treatments
and their effects.
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Table 1
SQL specifications fromsquad (after Kitano and Shimazu [14])

Rank Similarity SQL specification (only
WHERE clause is shown)

1 1.00 (language� ada) and
(machine� vax)

2 0.89 (language� ada) and (machine
in (sun, news,…))

3 0.66 (language in (c, c11, cobol,
cobol/s)) and (machine� vax)

4 0.54 (language� ada) and (machine
in (mips, ews4800,…))

4 0.54 (language in (c, c11, cobol,
cobol/s)) and (machine in (sun,
news,))



I believe that viewing CBR as a methodology and not a
technology is important to its continued development. If
CBR is viewed just as a technology, it might seem that
research into CBR is largely completed since, for example,
nearest neighbour and inductive retrieval (the most
commonly used techniques) are mature and reliable techni-
ques. But if CBR is viewed as a methodology, researchers
have the challenge of applying any number of technologies.
For example, it has been proposed that neural networks can
be used to assess similarity since a neural network can tell
us, with a degree of certainty, whether two patterns (such as
finger prints) are similar [17]. Thus we can redraw the CBR-
cycle and indicate where different technologies may be
used.

Fig. 5 is not a complete diagram; I’m sure you could add
other technologies to the cycle. Moreover, AI will surely
develop new technologies in the future, some of which may
prove very suitable for use in the CBR-cycle. Consequently,
it is as a methodology that CBR’s future is ensured.
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Fig. 5. Technologies and the CBR-cycle.
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