
Ontology-Aided Product Classification: A

Nearest Neighbour Approach

Alastair A. Abbott1 and Ian Watson1

Department of Computer Science, University of Auckland,
Auckland, New Zealand

aabb009@aucklanduni.ac.nz, ian@cs.auckland.ac.nz

Abstract. In this paper we present a k-Nearest Neighbour case-based
reasoning system for classifying products into an ontology of classes.
Such a classifier is of particular use in the business-to-business electronic
commerce industry, where maintaining accurate products catalogues is
critical for accurate spend-analysis and effective trading. Universal clas-
sification schemas, such as the United Nations Standard Products and
Services Code hierarchy, have been created to aid this process, but clas-
sifying items into such a hierarchical schema is a critical and costly task.
While (semi)-automated classifiers have previously been explored, items
not initially classified still have to be classified by hand in a costly pro-
cess. To help overcome this issue, we develop a conversational approach
which utilises the known relationship between classes to allow the user
to come to a correct classification much more often with minimal effort.

1 Introduction

In business-to-business (B2B) e-commerce, the problem of classifying products
for the purpose of maintaining electronic product catalogues (EPCs) can be par-
ticularly difficult and costly. Since different suppliers often use different product
classification standards, products from different suppliers need to be reclassified
into the standard required [8]. This is a problem not only affecting businesses
which need to maintain catalogues of products available from various suppliers,
but also in the greater e-procurement industry. Well maintained and classified
EPCs are of particular importance given the movement to electronic business
practices and allow for accurate spend-analysis and increased efficiency in both
finding and selling products [14].

The gold-standard solution would be to have a standardised classification sys-
tem valid across all domains; this is the primary goal of the UNSPSC (United
Nations Standard Products and Services Code) schema.1 However, due to differ-
ing requirements of businesses the UNSPSC standard might not be suitable for
everyone, and other classification schemes such as eCl@ss2 are also widely used.
Further, the process of transferring existing catalogues to a different schema

1 http://www.unspsc.org
2 http://www.eclass-online.com



might simply be too costly and deemed an unjustifiable cost. As such, even for
those businesses using the UNSPSC standard, products from other suppliers
must be re-classified into this standard making this a perpetual issue.

The manual classification of products into a standard such as the UNSPSC
is a time-consuming and costly process: some studies have indicated it can take
5–10 minutes to classify an item into a complex standard such as the UNSPSC,
primarily because of the large number of similar sounding classes [6]. Automated
or semi-automated systems to perform this task are a promising (and perhaps
inevitable) solution since this task fits well within the Machine Learning do-
main, and have significant potential to cut cost and time [2]. Some existing
automatic classification systems have been developed, primarily using statistical
methods [5, 8]. In this paper we develop a k-Nearest Neighbour (kNN) case-
based reasoner to aid this classification task. Since the accuracy of such systems
(particularly on difficult products) is not sufficient to allow fully automated clas-
sification, we use the ontological structure of the classification hierarchy to aid
a conversational approach to classification. This dramatically reduces the cost
to classify new items, and allows an accurate classification to be achieved with
minimal user interaction.

2 Background

2.1 The UNSPSC Schema

The UNSPSC is a four-level hierarchical classification schema [14]. It was de-
signed by the United Nations and Dun & Bradstreet as a universal system to
classify goods and services across all domains and ease spend analysis, finding
and purchasing products, and maintaining product catalogues. Each class, or
“commodity”, is assigned a unique 8-digit code and the schema is designed so
that every product or service should fit uniquely into a class.

The levels of the schema are shown in Fig. 1, and two of the eight digits of
the commodity code come from each level [14]. For example, in the example in
Fig. 2 the commodity “Staplers” would have a commodity code of 44121615.

✄ ✞ ☎ �
Segment

✲✄ ✞ ☎ �
Family

✲✄ ✞ ☎ �
Class

✲✄ ✞ ☎ �
Commodity

Fig. 1. The UNSPSC class hierarchy structure.



✄ ✞ ☎ �
44 Office Equipment and Accessories and Supplies

✲✄ ✞ ☎ �
12 Office Supplies

✲✄ ✞ ☎ �
16 Desk Supplies

✲✄ ✞ ☎ �
15 Staplers

✲✄ ✞ ☎ �
18 Scissors

✲✄ ✞ ☎ �
17 Writing Instruments

✲✄ ✞ ☎ �
04 Ball-point Pens

✲✄ ✞ ☎ �
07 Coloured Pencils

Fig. 2. An example (partial) snapshot of the UNSPSC schema.

2.2 Previous Work

Ding et al. developed a system developed for automatic product classification
into the UNSPSC schema called GoldenBullet [5]. Using a Näıve-Bayes approach,
Ding et al.’s classifier correctly classified products with an accuracy of 78% when
using the top result returned by the classifier. The correct classification was in
the top 10 results a slightly higher 88% of the time. Ding et al. also explored using
a k-Nearest Neighbours classifier, as well as a vector-space model classifier, but
found these were much less accurate. Unfortunately, the nature of the product
catalogue they used is not specified other than that it consisted of 40,000 items
primarily in the electronics domain. Crucial factors such as the quality of the
data or spread of classes encompassed were not mentioned.

Another classifier is described in [8], which also uses the Näıve-Bayes method,
and obtained a similar accuracy of 86% based on the top result returned. Their
data was obtained from an e-procurement database maintained by the Public
Procurement Services of Korea, a government run organisation. This uses a
classification schema based on the UNSPSC hierarchy, and the database that
was used contained almost 500,000 items spread over 7960 classes.

Since the accuracy of a classifier is heavily reliant on the dataset used, the
lack of information or availability of datasets used for these classifiers makes
comparison of results extremely difficult. Certain types of classifier may be in-
clined to work better on particular types of dataset. Further, as was noted in
[8], the quality of the dataset used will significantly affect the accuracy.

3 Classifier Development

This project was carried out in collaboration with with Unimarket,3 a locally
based e-procurement business. In order to provide a good e-procurement service
it is necessary to maintain accurate catalogue data, something which necessarily
entails working with a range of classification systems from various suppliers.
This is crucial for the facilitation of B2B trading and accurate spend analysis

3 http://www.unimarket.co.nz



services where expenses across different classes of commodities and services must
be readily compileable.

While Unimarket are looking to adopt the UNSPSC schema, they currently
use their own classification system. The migration process to the UNSPSC
schema is primarily a mapping rather than classification task and is beyond the
scope of this project—it cannot be done completely automatically from scratch.
Either an initial mapping between classes across schemata is required, or an
initial subset of data would need to be manually classified before a (semi)-auto-
mated system could complete the task. Rather, the task of the project was to
develop a tool to classify new products into the classification schema. This could
not only be used to complete the migration to the UNSPSC hierarchy, but is
necessary for catalogue maintenance where it would be of use in the ongoing
task of adding new products from suppliers correctly and efficiently into the
hierarchy.

3.1 Solution Outline

In this project a k-Nearest Neighbour Instance Based Learner [16] is explored
as a proof-of-concept for a new classification system. In existing systems such
as GoldenBullet the significant 10–20% of misclassified items require the costly
manual classification procedure to be applied. As a result, a degree of user in-
teraction is inevitable; in practice the manual classification of the 10–20% of
products the automated system struggles with is costly and a limiting factor.
To improve on this and handle more constructively the difficult cases, our pro-
posed learner uses a conversational approach to classification. This allows much
greater accuracy to be achieved at the cost of some minor user interaction for
each classification—an overall gain when compared to classifying difficult items
manually from scratch.

To achieve this aim, an ontology of the hierarchical relationship of classes
(in the UNSPSC) is used, allowing intelligent questions to be asked based on
the inferred relationships of candidate classification solutions, in turn aiding the
classification of classes and improving the accuracy in a “mostly-automated”
approach. The goal of the automated classifier is hence to classify correctly with
a minimal number of questions; inevitably some difficult cases will be as bad as
the worst case possibility, but this can be drastically reduced when compared to
existing approaches. This technique is similar to the method of critiquing [9] in
Case Based Reasoning (CBR) recommender systems.

The approach taken in developing our classifier was to build a CBR clas-
sifier [1]. In this setup, products in the catalogue are stored as cases in the
case-base. An item to be classified is regarded as a query, and a global similarity
metric is used to find the most similar cases in the case-base, and classify the
query based on these. We opted to use the k-Nearest Neighbour algorithm for
the global similarity metric, which retrieves the k cases (products) which are
most similar to the query based on the similarity of individual attributes. These
k results will then be used to guide the conversational procedure, and with care
can be made to return an optimal range of queries allowing the conversational



procedure to be both accurate and efficient (in terms of number of questions
asked).

An OWL (Web Ontology Language) ontology4 storing the hierarchy of prod-
uct classes was created from Unimarket’s existing classification hierarchy. For
the UNSPSC hierarchy, OWL format ontologies are already available for use.
The ontology stores the hierarchical relationship between different classes which
will be utilised by the classifier in the conversational stage.

In order to implement the CBR classifier, the open-source Java CBR devel-
opment framework jCOLIBRI5 [4, 10] was used. jCOLIBRI allows for flexible
development of various types of CBR systems. It includes functionality for pre-
defined and user-defined global and local similarity metrics, has built-in (and
extendable) functionality for testing the accuracy of the CBR systems, and func-
tionality to integrate with OWL ontoligies via the OntoBridge6 framework [12].
This allowed the class associated with a product in the case-base in our case
representation to be easily and dynamically linked into the hierarchy of classes
stored in the ontology file.

3.2 Unimarket Data

The data initially obtained from Unimarket consisted of approximately 12,000
items classified into a hierarchy of around 3,800 classes (including internal nodes).
Items were not necessarily classified into leaf categories; in contrast the UNSPSC
schema intends products to be assigned a leaf “commodity” class, although this
should not pose particular problems for an intelligent classification system. Some
sample data from Unimarket is shown in Table 1.

Table 1. A snapshot of the Unimarket data.

ID Store Name Description Price Class
26445 122 repositionable adhesive instant spray on adhesive for temporarily 21.24 ID3057

bonding lightweight materials
26444 122 foam fast spray adhesive spray adhesive for bonding foam and 24.45 ID3057

lightweight materials to a range of surfaces
26443 122 bumpons clear bumpon protectors serve as high performance 289.96 ID3057

feet steps or spacers to be place on the. . .
26442 122 pouch tape roll a convenient way to attach invoices packing 27.25 ID3057

slips or documents to parcels or cartons
26441 122 pouch pads padsbox pad the easy effective way to securely attach 3.11 ID3057

documents to parcels or cartons

Unfortunately, several critical issues were identified with the data. Firstly,
around half the items were identified to be near-identical to other items (varying
perhaps, for example, only in the colour of the item). This effect would skew the
results making the accuracy appear falsely high. As such items are likely to be

4 http://www.w3.org/TR/owl-ref/
5 http://gaia.fdi.ucm.es/projects/jcolibri/
6 http://gaia.fdi.ucm.es/grupo/projects/ontobridge/



added to the catalogue (and classified) all at once, fair testing of the system
should work with only one of each such item in the case-base. Further, this can
have a strong detrimental impact on the diversity of results obtained by the
kNN search and thus affect the accuracy of the conversational stage. This is
likely to be a problem in many real-world systems, so a reasonable approach
is to only use one of each group of items as a representative in the case-base
for the classification procedure. Indeed, this approach is motivated by footprint-
based retrieval [13], and although differs in its goal it is similarly based on the
assumption that the joint competence of such groups of cases is no different from
that of the representative chosen.

More critically, over 80% of items were classified as either “Office Supplies”
or “Building & Industrial”. These are both high in the hierarchy indicating ap-
propriate leaf classes had not been used. This lack of class coverage is inhibitory
for testing of the developed system, and even a trivial näıve classifier could ob-
tain extremely high accuracy on such a dataset. Further, since the data seems
not to utilise the classification schema properly the conversational approach can-
not be reasonably evaluated. Unfortunately, a more representative set of data
was unable to be obtained from Unimarket, so alternative sources of data were
explored. Eventually Unimarket intend to switch to the UNSPSC hierarchy, so
the developed system should still be applicable when such a switch is made.

3.3 Amazon Data

Given the inability to use the data obtained from Unimarket, data were collected
from Amazon7 through the Amazon Product Advertising API.8 These data are
hierarchically structured and representative of a large number of classes. Since
Amazon allows products to be classified under more than one category, care was
taken to only sample a product once. This hints at some of the difficulties of
classification as a product may reasonably fit into more than one category. The
Amazon class hierarchy is not as consistent as the UNSPSC hierarchy: classes at
the same depth in the hierarchy may not be of comparable generality. However,
given the size of the case-base and the reasonably good quality of the data, an
automated system should be able to function fairly well, and the conversation
stage should help deal with some of the issues with the class structure. This
reiterates the benefits of adopting a unified schema such as the UNSPSC, and
the classifier is only expected to function better on such an organised hierarchy.

An important step was to determine which attributes should be used for clas-
sification. The Amazon data is attribute-rich, but most attributes were deemed
irrelevant for classification—indeed, too many attributes can be detrimental if
they are not relevant enough to the classification. The majority of attributes
were deemed to be irrelevant either by mere consideration, or were found to
contribute little, if at all, to the accuracy of the classifier during initial testing.
Care was also taken to choose attributes which one would expect to be present in

7 http://www.amazon.com
8 http://affiliate-program.amazon.com/gp/advertising/api/detail/main.html



most kind of catalogues; in particular they were also attributes in the Unimarket
data, allowing much easier portability of the system. The attributes which were
eventually determined to be useful for classification were:

Store (supplier) Often the supplier will give a good indication of the type of
product supplied.

Product Name Clearly this contains information about the class a product
should belong to.

Product Description As for Product Name.

A primary case base consisting of over 23,000 items was obtained, with items
classified into approximately 140 classes (over 3 top-level classes). Sample data
is shown in Table 2. The issue discussed in relation to the Unimarket data
of near-identical cases was also present, although to a much lesser extent, in
the Amazon data. So that testing would more accurately mimic the real world
situation where such similar items would be classified together, the dataset was
pre-processed. The pre-processing removed near identical items—i.e. those from
the same supplier with similarity above an empirically determined threshold. A
conservative approach was taken as it is better to accidentally remove unique
items from the case-base than to leave similar items in the case base, potentially
skewing results.

Table 2. A snapshot of the Amazon data.

ID Store Name Description Class
B002EA1EZE Ultimark ultimark pre inked stock ensure efficient communication ID490540011

message stamp faced. . . and provide clear instructions. . .
B000V27TCO Sato sato industrial labels. . . by sato industrial labels ID490540011

per roll
B002ZHQ3KW Discount self inking christmas spread a little holiday cheer ID490540011

Rubber. . . rubber stamp. . . with christmas rubber stamps. . .
B0006HX78Y Pendaflex pendaflex pressboard pt pressboard includes a xyz ID490540011

end tab guides. . . and mc tabs
B00007LP9W Avery avery clip style rigid each kit includes clear plastic ID490540011

laserink jet badges. . . badge holders and sheets of. . .

All textual data (which is the primary focus in classification) was stripped of
punctuation, numbers and product dimensions (e.g. width, height, weight etc.)
automatically, as descriptions often contained these technical details of a product
that are of little value in determining the class a particular item belongs to.

3.4 Classification Details

The k-Nearest Neighbours (kNN) algorithm was used as the global similarity
metric of choice, assigning a value in [0, 1] to a pair of cases based on their
similarity. This is calculated as the weighted sum over the local similarity metrics
of the supplied query attributes. If i indexes the n attributes of the cases and fi



is the local similarity metric for the ith attribute, the kNN similarity between
two cases Q and T is calculated as

Similarity(Q,T ) =

�n
i=1 fi(Qi, Ti)× wi�n

i=1 wi

.

The k items with the highest similarity to the query are selected, and the con-
versational stage of the classification procedure is entered. In our setup we chose
to use a value of k = 10, which seemed to strike a good balance between the
number of choices the user was given based on these results, and the accuracy
of the classification.

The weighting used placed relative weights of Store: 2, Product Name and
Product Description: 5 each, determined to give the best results in testing. In
cases where data was missing for a particular attribute, the attribute is given a
weighting of 0 so that it is not taken into consideration. This was empirically
determined to produce better results than treating this as a local similarity value
of 0, which would instead indicate that the cases were actually dissimilar with
respect to this attribute.

As for the global similarity metric, the local similarity metrics fi assign a
value in [0, 1] to a pair of cases based on the similarity of the ith attribute. The
local similarity metrics used for each attribute were as follows:

Store (supplier) A similarity of 1 is assigned if and only if the suppliers of the
cases are identical. In all other cases a score of 0 is used, as the similarity be-
tween suppliers cannot otherwise be quantified without auxiliary knowledge
on the type of products various suppliers supply.

Product Name Since this is a textual attribute, textual similarity methods
must be used. For this application it is necessary to employ domain inde-
pendent textual retrieval similarity methods. We opted to use the Lucene
textual comparison engine,9 based on information retrieval techniques, for
which jCOLIBRI includes built-in functionality [11]. The Lucene textual
comparison is detailed more fully in the following paragraphs.

Product Description As for Product Name, the Lucene textual comparison
engine was used.

Since two out of three attributes consists entirely of textual data (and these
are the most heavily weighted attributes, accounting for 10/12ths of the weight-
ing), the textual comparison methods are critical and hence deserve further
discussion. While textual CBR usually refers to the situation in which the cases
themselves are stored as blocks of text [15], techniques from textual CBR are
equally applicable for use in classifying products when combined with a kNN
global similarity function [11]. As such, textual methods suitable for the type of
data which product descriptions consist of should be chosen appropriately.

In particular, textual similarity functions must be domain independent, as
the product data is not confined to a particular domain. Further, suppliers do not

9 http://lucene.apache.org/



necessarily provide structured paragraphs of information—the data may consist
of lists, technical data and other unstructured text. Hence, semantic similarity
functions would also be inappropriate. This limits the ability to compare cases,
but is an inherent feature a classifier for this problem must cope with. As such,
the obvious option is to use a statistical approach.

The Lucene engine used is based on a combination of the Vector Space Model
from the Information Retrieval domain and a Boolean model [7, 11]. It is a key-
word based search method, which analyses the relative frequencies of the terms
in the query in the cases in the case-base. In order to perform this efficiently,
the case-base is pre-processed on startup to extract the statistical information
required, and then the search query is analysed against this [7, 11].

Advanced techniques and modifications were also investigated, such as check-
ing if nodes in the ontology were present as words in the text, as this is a strong
indicator for narrowing the search. However, the effect of this was not significant,
especially given the extra cost incurred in the search procedure.

The final, important part of the classification process is, of course, the con-
versational stage of the process. It is this stage which differentiates this proposal
most strongly from existing proposals (although also based on different classifi-
cation algorithms), and has the most significant impact on the most costly phase
of classification: when the top or most common result is not the correct classi-
fication. The ontology which represents the hierarchy of relationships between
classes can be regarded as a rooted tree where the depth of each leaf is iden-
tical, leaf nodes correspond to individual classes (commodities in the UNSPSC
hierarchy), and internal nodes correspond to higher level classes. The root itself
can be regarded as a “Thing” class, although presumably nothing is classified
under this category directly. Given the k cases returned by the kNN algorithm,
the m ≤ k classes present in these results are extracted as potential classes.

The nodes corresponding to these classes are identified within the ontology
tree, and the subtree that these induce is extracted. In other words, all classes
which are not an ancestor of one of the m candidate classes are removed from the
tree. In general, however, this still leaves many classes which are not one of the m
candidate classes in the extracted subtree. To reduce this to a minimal structure,
all edges between nodes (except the root) of degree two are contracted, i.e. non-
candidate nodes which are not “important” to the subtree structure are removed.
This leaves a tree which contains only the ontological relationship between the
m candidate classes, and no others. In general, this is no longer a complete tree,
although the average depth of a node is much lower than before. All candidate
classes have maximal depth in the original ontology, but in the extracted tree,
they can be direct children of the root “Thing” class.

Once the candidate subtree has been extracted, the conversational stage pro-
ceeds as follows: Starting at the root, the user is presented, as options, all the
children of the root. If the user selects an option which is a leaf class, the classi-
fication is complete and the item can be stored in the case-base with the chosen
class. If the chosen option is not a leaf class, the user is then presented the chil-
dren of the chosen class as options. This proceeds until either a classification



is made, or the user chooses an option specifying that none of the presented
options are correct.

In this case that a classification cannot be made based on the top k results,
the general approach is to resort to manual classification. The idea of the con-
versational approach utilising all k of the top k results (rather than the most
common or top one) significantly reduces how often this occurs. However, if
the user makes some choices before they determine that none of the sub-classes
presented are correct, this means that the top k results contained items which,
while they were not in the correct class, were somewhat similar to the query in
the fact that they belong to the same more general classes. This information can
be used to speed up manual classification by only requiring the user to classify
within this subtree, aiding the manual classification somewhat. The benefit of
this is, unfortunately, a little harder to quantify as it needs to be measured in
time taken by a user—something harder to approximate from the stats alone.

Case-base

OWL 
OntologyCase-base 

Storage

Classifier

Lucene Engine

Pre-processing 
text

User 
Interaction

Input 
Product

Conversation 
Tree Manager

Conversation 
Manager

Fig. 3. Architecture diagram of the CBR system.

In Figs. 4 and 5 some stages of the classification procedure for the developed
classifier are shown. In Fig. 4, the query can be seen for the product to be
classified—in this case a switchbox, an item of office hardware. Once the kNN
classifier determines the top k classes, the conversational stage begins. Figure 5
shows the question asked at a particular point in the conversational stage for
this particular item.



Fig. 4. A sample query for a product to be classified.

Fig. 5. A view of the conversational stage of classification.

Table 3. Datasets used for classification

Dataset Description
DS1 Full dataset, not pre-processed
DS2 Full dataset, pre-processed
DS3 Revised dataset, not pre-processed
DS4 Revised dataset, pre-processed



4 Results

As previously discussed, the Amazon classification hierarchy is not ideal and is
inconsistent in some instances. Specifically, in some categories the classes are
much more specific than others, and categories with large amounts of overlap
(e.g. “Office Lighting” and “Lamps”). The UNSPSC hierarchy is much more
consistent and less ambiguous, so to try and eliminate the difficulty this would
cause for the classifier a second slightly smaller dataset of 13,000 items with some
manual cleaning was also used. Specifically, some over-specific or ambiguous
classes were removed, and the generality of the classes remaining match more
closely (although still only roughly) that of the UNSPSC hierarchy.

Datasets both with and without these classes removed were tested, and a
summary of the datasets used is given in Table 3. We also tested the effect of
the pre-processing to remove near-identical items, so a total of four datasets were
tested.

Testing was performed using 10-fold cross-validation: the case-base is ran-
domly split into 10 folds, and in turn each fold is used for querying the case-base
consisting of the other 9 folds. The complete case base was used in all results,
although randomly chosen subsets of each fold were used for preliminary testing
and are an necessity if testing is to be performed on larger cases bases since clas-
sification of each item took approximately 1 second. Indeed, the classification
time is O(n) for kNN retrieval [3], so this will only further increase the testing
time for larger case bases.

Four test metrics were used:

“kNN” accuracy This is the standard metric for kNN classifiers, and records
the percentage of queries for which the most common class among the k

returned was the correct classification. Since the purpose of the project is
to use and assess a conversational approach where all k results are utilised,
this is probably not the most accurate metric, but gives a useful idea of the
quality of the classifier.

“top-one” accuracy The percentage of queries for which the top result was
the correct classification. This metric is largely included to aid comparison
to the previous product classifiers which used this metric.

“top-k” accuracy This records the percentage of queries for which one of the
top k results was the correct classification. This indicates the item would
have been successfully classified in the conversational stage by the user, and
is a more important metric given the application. A value of k = 10 was
used in our testing.

“average-depth” This is the average depth of the conversation tree. In other
words, it records the average number of questions the user would have to be
asked to successfully classify the product based on the returned results. If
none of the top k results are the correct classification, the maximum possible
depth is recorded to represent unsuccessful completion of the conversation
stage.



Note that the average-depth metric needs to be interpreted with the relevant
value of k in mind. Since the maximum depth is equal to the number of levels
in the schema (3 for the Amazon schema used, 4 for the UNSPSC schema),
even if the whole ontology was used for the conversational stage (as opposed
to the extracted subtree), the depth would still be very small. However, the
number of options (answers for the questions) presented to the user would by
overwhelming, and would not be practical. Thus, the average-depth scores need
to be interpreted with it in mind that no more that k (10 in our case) options
will ever be presented to the user, and usually much less than this.

The results of these tests are presented in Table 4, and are discussed in detail
in the following section.

Table 4. Results of the evaluation of the classifier.

Dataset kNN top-one top-k average-depth
DS1 80% 82% 95% 1.31
DS2 68% 69% 92% 1.51
DS3 77% 77% 94% 1.38
DS4 71% 70% 94% 1.46

5 Discussion

As can be seen from the evaluation, the top-one metric shows that top result
returned is the correct classification around 70% of the time on the dataset DS4,
which we consider the best indicator of the actual quality of the classifier. This is
less than the top-one accuracy obtained by the Näıve classifiers GoldenBullet [5]
and the one described in [8] by around 15%. However, since the datasets are
different it is rather difficult, if not impossible, to compare results meaningfully.
It is likely that the fact that items can reasonably belong to more than one class
in the Amazon hierarchy, as well as the similarity and lack of consistency between
class definitions limits the top-one accuracy from being better than we obtained,
and a more structured classification schema such as the UNSPSC should work
better with the classifier.

The results for the top-k metric are very promising. In DS4, for 94% of
items, one of the top 10 results was a correct classification, indicating that the
conversation stage would have resulted in a correct classification. This result
is higher than obtained by the GoldenBullet [5] classifier for top-10 accuracy,
although the other Näıve Bayes classifier [8] does not quote any results for top-
10 accuracy. Because of the nature of the intended functionality of this classifier,
we believe this is the more informative accuracy measure.

The average-depth results are fairly stable. These show that even though
10 results were returned by the kNN search, the user only had to answer 1.4
questions on average to classify the item. This is a significant improvement over



presenting the user with the top classes and asking them to pick the correct one.
This should result not only in a saving of time, but by asking simple questions
and having the user look over less options this should reduce the rate of human
error in classification, resulting in a more accurate product catalogue.

As we can see, the top-10 accuracy of the classifier increases slightly for DS4
compared to DS2. This is consistent with our prediction that the accuracy of the
classifier is negatively affected by the inconsistencies within the Amazon class
system, and while there will always be ambiguities and difficult classifications in
such a dataset—this is part of the problem the classifier should solve—but it is
unlikely to be made worse on the UNSPSC dataset, and if anything we would
expect the more logical structure of the hierarchy to be beneficial.

Also note that the accuracy decreases when pre-processing is applied. This
is not a negative effect, but rather the “false” positives of nearly identical items
being classified correctly are removed, meaning the accuracy metric reflects the
actual accuracy of the system in a more realistic manner. This effects the top-
one accuracy much more than the top-10 accuracy, since the top result should
generally remained unchanged after pre-processing (recall one of the multiple
similar cases are retained), whereas the top ten results cover a wider range of
classes rather than being populated with cases similar to the query.

An interesting point is the suitability of various values of k for use in the
classifier. We chose k = 10 because it seemed to be a good balance between
accuracy and number of questions to answer. The value of k used will impact the
top-k accuracy and thus the average number of questions that must be answered
by the user, so should be considered carefully in a commercial application. A
larger value of k will result in slightly more user interaction (on average) for each
classification, but would increase the accuracy and thus decrease the instances
in which costly complete manual classification is required. Thus, the value of k
should be chosen to balance the time required to classify an item from scratch
and the time spent on each individual item to be classified. This will depend on
the size and nature of the dataset, and classification schema used.

Taking the results and relevant considerations into account, we believe the
classifier is a successful proof-of-concept, and shows much promise to be used in a
commercial setting. The primary issue in a company such as Unimarket wishing
to adopt such a classifier is that it already requires their data to be classified
into a useful classification schema, at least in part. If this is the case, then the
classifier described can aid in significantly reducing the cost of classifying new
items and maintaining the quality of the electronic product catalogue for efficient
business practices.

Acknowledgements

We would like to thank Unimarket for providing us with data and helping fund
this project, as well as S. Datt for helpful comments.



References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AICom - Artificial Intelligence Communications
7(1), 39–59 (1994)

2. Abels, S., Hahn, A.: Reclassification of electronic product catalogs: The “apricot”
approach and its evaluation results. Informing Science Journal 9, 31–47 (2006)

3. De Mántaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson,
I.: Retrieval, resuse, revision and retention in case-based reasoning. The Knowledge
Engineering Review 20(3), 215–240 (2005)

4. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J.A., Sánchez-Ruiz-
Granados, A.A.: Building CBR systems with jCOLIBRI. Science of Computer
Programming 69, 68–75 (2007)

5. Ding, Y., Korotkiy, M., Omelayenko, B., Kartseva, V., Zykov, V., Klein, M., Schul-
ten, E., Fensel, D.: Goldenbullet in a nutshell. In: FLAIRS-02 Proceedings (2002)

6. Grabowski, H., Lossack, R., Weißkopf, J.: Datenmanagement in der Produkten-
twicklung [Data management in product development]. Hanser-Verlag (2002)

7. Hatcher, E., Gospodnetić, O., , McCandless, M.: Lucene in Action. In Action Series,
Manning Publications Co., 2nd edn. (2004)

8. Kim, Y., Lee, T., Chun, J., Lee, S.: Modified Näıve Bayes classifier for e-catalog
classification. In: et al., J.L. (ed.) LNCS 4055. vol. DEEVS 2006, pp. 246–257
(2006)

9. McGinty, L., Smyth, B.: Improving the performance of recommender systems that
use critquing. In: Mobasher, B., Anand, S.S. (eds.) LNAI 3169. vol. ITWP 2003,
pp. 114–132 (2005)

10. Recio-Garćıa, J.A., Sánchez-Ruiz, A.A., Dı́az-Agudo, B., González-Calero, P.A.:
jCOLIBRI 1.0 in a nutshell: A software tool for designing cbr systems. In: Petridis,
M. (ed.) Proccedings of the 10th UK Workshop on Case Based Reasoning. pp. 20–
28. CMS Press,University of Greenwich (2005)

11. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Textual CBR in jCOL-
IBRI: From retrieval to reuse. In: Wilson, D.C., Khemani, D. (eds.) Proceedings of
the ICCBR 2007 Workshop on Textual Case-Based Reasoning: Beyond Retrieval.
pp. 217–226 (August 2007)

12. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A., Sánchez-Ruiz, A.A.:
Ontology based CBR with jCOLIBRI. In: Ellis, R., Allen, T., Tuson, A. (eds.)
Applications and Innovations in Intelligent Systems XIV. Proceedings of AI-2006,
the Twenty-sixth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence. pp. 149–162. Springer, Cambridge, United
Kingdom (December 2006)

13. Smyt, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.D., Bergmann, R.,
Branting, L.K. (eds.) Case-Based Reasoning Research and Development, Lecture
Notes in Computer Science, vol. 1650, pp. 719–719. Springer Berlin/Heidelberg
(1999)

14. UNSPSC: Better supply managment with UNSPSC. Electronic,
www.unspsc.org/AdminFolder/Documents/adopting-unspsc.pdf

15. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. The
Knowledge Engineering Review 20(3), 255–260 (2005)

16. Wettschereck, D., Aha, D.W., Mohri, T.: A review and emperical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artificial Intel-
ligence Review 11, 273–314 (1997)


