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Eager Learning

= ML algorithms like ID3, C4.5 or Neural

Networks are eager learners

= Use a training data set to

= Generalize rules, induce a tree or a
function that can be applied to categorize
future inputs

= Processing time is done up-front before
query time

= After querying they discard any inputs
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Eager learning methodology

Obtain data set

Identify target (output) attribute (this is what
we want to predict)

Analyse input features

= Estimate which are predictive of target

= Are combinations of input features required (eg a
simple ratio of two inputs)

Analyse data set and remove noisy items
= Divide data set in training and test sets
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Eager learning methodology

niversity
of Auekland

= Identify possible ML algorithms based
on:
= Data types (discrete, continuous)
= Classification or regression task

= Type of output required
= Function
= Decision tree
= Neural network
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Eager learning methodology

= Run algorithm(s) on training data

= Validate on test data

= Better still do 10 fold cross validation
= Tweak parameters of algorithm

= Repeat validation

= Consider using an ensemble of
algorithms
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Lazy learners

= Lazy learners have three characteristics:

= They defer all (most) processing until
query/run-time

= They discard any generated
functions/answers

= They retain the query with the stored data
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Lazy vs. Eager

= Lazy learners have low computational
costs at training (~0)

= But may have high storage costs

= High computational costs at query

= Lazy learners can respond well to
dynamic data where it would be
necessary to constantly re-train an
eager learner
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Instance-based learners

= store a//the training data

= when a new query instance is
encountered, a set of related instances
are retrieved from memory and used to
classify the instance

= can construct a different approximation
function of the target function for each
distinct query instance
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M Eager learners

A complex hypothesis
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Lazy learners

k-nearest neighbour
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Lazy learners

k-nearest neighbour
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Lazy learners
k-nearest neighbour
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Instance-based learners

= significant advantage

= when the target function is potentially
very complex

= but can be described by a collection of
simple local approximations
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Instance-based learners

= Disadvantages
= cost of classifying new instances can be
high, so efficiently indexing training
instances very important

= Similarity has to be determined for each
attribute or feature
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B Instance-based learners

of Auekland

= Nearest neighbour (k-NN)
= most basic method - all instances are
points in an n-dimensional space

= distance is defined as standard Euclidean
distance

= K-NN finds the nearest neighbours to a
query in the n-dimensional space

= values may be discrete or real
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Nearest Neighbour

n
Similarity(T,S) = > f(T,,S) xw,
i=1

where:

Tis the target case
Sis the source case
nis the number of attributes in each case

/is an individual attribute from 1 to n

fis a similarity function for attribute /in cases 7 and Sand
wis the importance weighting of attribute /
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= imagine a decision with two factors thlat

influence it S

= should you grant a person a loan? - {
= net monthly income

= monthly loan repayment

ian@cs.auckland.ac.nz
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Nearest Neighbour

these factors can be used as axes for a
graph
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Nearest Neighbour

a previous loan can be plotted against
these axes
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Nearest Neighbour

of Auekland

and a second loan
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Nearest Neighbour

and more loans
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Nearest Neighbour

and even more loans
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monthly loan repayment
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Nearest Neighbour

past cases (loans) may form clusters
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Nearest Neighbour

iy

of Auekland

past cases (loans) may tend to form
clusters
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Nearest Neighbour

past cases (loans) may tend to form
clusters
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Nearest Neighbour

a new loan prospect can be plotted on
the graph
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Nearest Neighbour

iy

of Auekland

a new loan prospect can be plotted on
the graph
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Nearest Neighbour

and the distance to its nearest
neighbours calculated
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Nearest Neighbour

and the distance to its nearest
neighbours calculated
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Nearest Neighbour

and the distance to its nearest
neighbours calculated
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bl Nearest Neighbour

ian@cs.auckland.ac.nz

© University of Auckland www.cs.auckland.ac.nz/~ian/

12



37

Nearest Neighbour

the best matching past case is the closest
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Nearest Neighbour

this suggests a precedent
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Nearest Neighbour

this suggests a precedent
the loan will be successful
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Nearest Neighbour

over time the prediction can be

validated
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Nearest Neighbour
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over time the prediction can be

validated
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Nearest Neighbour

the system is learning to differentiate
good and bad loans better
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Nearest Neighbour

as more cases are acquired its
performance improves
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The weight of the X axis (income) is increased case B
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Nearest Neighbour

= Require a unique similarity function for each
attribute or feature (not always a trivial
problem) — /local similarity f(T,S,)

= Local similarities are combined to give a
global similarity — sim(7,S)

= k-NN Requires every feature of the query to
be compared to every feature of every
instance/case at run-time

= Not very efficient ®
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Nearest Neighbour

niversity
of Auekland

= distance weighted k-Nearest neighbour is a
highly effective algorithm for many practical
problems robust to noisy data if the training
set is large enough

= bias is that the classification of an instance is
most similar to other instances that are
nearby in Euclidean distance

= But then again that's the point
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Nearest Neighbour

= because distance is calculated on all
attributes - irrelevant attributes are a problem
- curse of dimensionality

= some approaches weight attributes to
overcome this - stretching the Euclidean
space — determined automatically using
cross-validation

= alternatively eliminate the least relevant
attributes - they used leave-one out cross-
validation — ideal for IBL
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Nearest Neighbour

= could locally stretch an axis...but more
degrees of freedom...so more chance of
overfitting...useful if problem space is not
uniform...problem of over fitting

= much less common, but it is used in CBR

= efficient indexing of instances can be done
with kd-trees (we'll discuss later)

= possible to pre-compute a position of each
instance in the Euclidean space then simply
position query in the space
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Summary

= IBLs (k-NN is an IBL) delay processing until
prediction time they form a different local
approximation for each query instance

= can model complex functions by a combination of
less-complex local approximations

= information present in the training data is never lost

= can be computationally expense to label new
instances

= finding appropriate distance metric can be difficult
= irrelevant attributes can have a negative impact
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