

CS760

Instance-Based Learning Dr. Ian Watson

© University of Auckland

www.cs.auckland.ac.nz/~ian/

Instance-based learners

- store all the training data
- when a new query instance is encountered, a set of related instances are retrieved from memory and used to classify the instance
- can construct a different approximation function of the target function for each distinct query instance

Instance-based learners

www.cs.auckland.ac.nz/~ian/

Instance-based learners

- significant advantage
- when the target function is very complex
- but can be described by a collection of less complex local approximations

Instance-based learners

www.cs.auckland.ac.nz/~ian/

Instance-based learners

© University of Auckland

www.cs.auckland.ac.nz/~ian/

Instance-based learners

Disadvantages

- cost of classifying new instances can be high, so efficiently indexing training instances very important
- uses all/many attributes in determining similar training instances...so irrelevant or redundant attributes are a problem

Instance-based learners

- Algorithms
 - Nearest neighbour (k-NN)
 - Locally weighted regression
 - Radial Bias functions (used in ANNs)

Instance-based learners

- Nearest neighbour (k-NN)
 - most basic method all instances are points in an *n*-dimensional space
 - distance is defined as standard Euclidean distance
 - K-NN finds the *nearest* neighbours to a query in the *n*-dimensional space
 - values may be discrete or real

- imagine a decision with two factors that influence it
- should you grant a person a loan
 - net monthly income
 - e monthly loan repayment

 these factors can be used as axes for a graph nonthly loan repayment net monthly income

 a previous loan can be plotted against these axes

and a second loan

and more loans

© University of Auckland

and even more loans

past cases (loans) may form clusters

past cases (loans) may tend to form clusters

past cases (loans) may tend to form clusters

 a new loan prospect can be plotted on the graph monthly loan repayment net monthly income www.cs.auckland.ac.nz/~ian/

 a new loan prospect can be plotted on the graph monthly loan repayment new case net monthly income www.cs.auckland.ac.nz/~ian/ ian@cs.auckland.ac.nz

and the distance to its nearest neighbours calculated

and the distance to its nearest neighbours calculated

and the distance to its nearest neighbours calculated

the best matching past case is the closest

Nearest Neighbour

the best matching past case is the closest

• this suggests a precedent

© University of Auckland

www.cs.auckland.ac.nz/~ian/

this suggests a precedentthe loan will be successful

over time the prediction can be validated

over time the prediction can be validated

the system is learning to differentiate good and bad loans better

 as more cases are acquired its performance improves

Nearest Neighbour

© University of Auckland

© University of Auckland

Similarity $(T, S) = \sum_{i=1}^{n} f(T_i, S_i) \times w_i$

where:

T is the target case *S* is the source case *n* is the number of attributes in each case *i* is an individual attribute from 1 to *n f* is a similarity function for attribute *i* in cases *T* and *S* and *w* is the importance weighting of attribute *i*

net monthly income

www.cs.auckland.ac.nz/~ian/

- Require a similarity function for each attribute or feature (not always a trivial problem
- Requires every feature of the query to be compared to every feature of every instance/case
- Not very efficient

- distance weighted k-Nearest neighbour is a highly effective algorithm for many practical problems robust to noisy data if the training set is large enough
- bias is that the classification of an instance is most similar to other instances that are nearby in Euclidean distance
- But then again that's the point

- because distance is calculated on all attributes - irrelevant attributes are a problem
 curse of dimensionality
- some approaches weight attributes to overcome this - stretching the Euclidean space – determined automatically using cross-validation
- alternatively eliminate the least relevant attributes - they used leave-one out crossvalidation – ideal for IBL

of Auckland

- could locally stretch an axis...but more degrees of freedom...so more chance of overfitting...useful if problem space is not uniform...problem of over fitting
- much less common, but it is used in CBR
- efficient indexing of instances can be done with kd-trees (we'll discuss later)
- possible to pre-compute a position of each instance in the Euclidean space then simply position query in the space

Instance-based learners

Locally weighted regression

- algorithm for learning continuous nonlinear mappings from real-valued input vectors to real-valued output vectors.
- particularly appropriate for learning complex highly non-linear functions of up to about 30 inputs from noisy data

Instance-based learners

- Locally weighted regression
 - construct an approximation *f* from the training examples in the neighborhood of *x_i* then calculate F(xi), *f* can then be deleted
 - Assumes that each local function is a linear function
 - Computation grows linearly with # of training instance

This graph shows a global linear regression in progress: the sum of squares of the unweighted residuals is minimized.

© University of Auckland

www.cs.auckland.ac.nz/~ian/

Locally weighted regression

- During locally weighted regression a query point x_{query} is supplied
- A linear map is constructed where data points close to the query point have more weight
- A common weighting function is Gaussian
- Moving the query allows the regression algorithm to follow complex fucntions

Locally weighted regression

- broad range of methods for distance weighting the training examples range of methods for locally approximating target functions
- function is usually constant, linear, or quadratic because (1) cost of fitting more complex functions is too high and (2) simple approximations model the target function well over a sufficiently small sub-region

Lazy learning

- Most ML algorithms are *eager* learners
 - Use a training data set to
 - Generalize rules, induce a tree or a function (ANN) that can be applied to categorize future inputs
 - Processing time is done up-front before query time
 - After querying they discard any inputs

Lazy learning

- Lazy learners have three characteristics:
 - They defer processing until query/run-time
 - They discard any generated functions/answers
 - They retain the query with the stored data

Lazy vs. Eager

- Lazy learners have low computational costs at training (~0)
- But have high storage costs
- High computational costs at query
- Lazy learners can respond well to dynamic data where it would be necessary to constantly re-train an eager learner

Summary

- IBLs delay processing until prediction time they form a different local approximation for each query instance
- can model complex functions by a combination of less-complex local approximations
- information present in the training data is never lost (is this a benefit!!!)
- computationally expense to label new instances
- finding appropriate distance metric can be difficult and negative impact of irrelevant attributes