CS760

Instance-Based Learning
Dr. Ian Watson
Instance-based learners

- store all the training data
- when a new query instance is encountered, a set of related instances are retrieved from memory and used to classify the instance
- can construct a different approximation function of the target function for each distinct query instance
Instance-based learners
Instance-based learners

- significant advantage
- when the target function is very complex
- but can be described by a collection of less complex local approximations
Instance-based learners
Instance-based learners

f1

f2

f3

f?
Instance-based learners

- Disadvantages
 - cost of classifying new instances can be high, so efficiently indexing training instances very important
 - uses all/many attributes in determining similar training instances...so irrelevant or redundant attributes are a problem
Instance-based learners

- Algorithms
 - Nearest neighbour (k-NN)
 - Locally weighted regression
 - Radial Bias functions (used in ANNs)
Instance-based learners

- Nearest neighbour (k-NN)
 - most basic method - all instances are points in an n-dimensional space
 - distance is defined as standard Euclidean distance
 - K-NN finds the nearest neighbours to a query in the n-dimensional space
 - values may be discrete or real
Nearest Neighbour

- imagine a decision with two factors that influence it
- should you grant a person a loan?
 1. net monthly income
 2. monthly loan repayment
Nearest Neighbour

- these factors can be used as axes for a graph

- net monthly income

- monthly loan repayment
Nearest Neighbour

- a previous loan can be plotted against these axes
Nearest Neighbour

- and a second loan

- Graph showing relationship between net monthly income and monthly loan repayment.
Nearest Neighbour

- and more loans

![Graph showing net monthly income vs. monthly loan repayment with several data points representing different scenarios.](image)
Nearest Neighbour

- and even more loans

![Graph showing monthly loan repayment vs. net monthly income with data points scattered across the graph.](image-url)
Nearest Neighbour

- past cases (loans) may form clusters

![Graph showing net monthly income vs. monthly loan repayment, with clusters of points in red and yellow.]
Nearest Neighbour

- past cases (loans) may tend to form clusters
Nearest Neighbour

- past cases (loans) may tend to form clusters

![Graph showing clusters of good and bad loans](image)
Nearest Neighbour

- A new loan prospect can be plotted on the graph.
Nearest Neighbour

- a new loan prospect can be plotted on the graph
and the distance to its nearest neighbours calculated
Nearest Neighbour

- and the distance to its nearest neighbours calculated
and the distance to its nearest neighbours calculated
Nearest Neighbour

- the best matching past case is the closest
Nearest Neighbour

- the best matching past case is the closest
Nearest Neighbour

- this suggests a precedent
Nearest Neighbour

- this suggests a precedent
- the loan will be successful
Nearest Neighbour

- over time the prediction can be validated
Nearest Neighbour

- over time the prediction can be validated

Net monthly income vs. monthly loan repayment

- it was a good loan
Nearest Neighbour

- the system is learning to differentiate good and bad loans better
Nearest Neighbour

- As more cases are acquired, its performance improves.
Nearest Neighbour

The diagram illustrates the concept of nearest neighbour in the context of loan repayment and net monthly income. Points A and B represent different cases, with A being closer to the origin (case T) than B, indicating it is the nearest neighbour.
Nearest Neighbour

Net monthly income

Case A

Case T

Case B

Loan repayment

Monthly income

Net monthly income
Nearest Neighbour

\[
\text{Similarity}(T, S) = \sum_{i=1}^{n} f(T_i, S_i) \times w_i
\]

where:
- \(T\) is the target case
- \(S\) is the source case
- \(n\) is the number of attributes in each case
- \(i\) is an individual attribute from 1 to \(n\)
- \(f\) is a similarity function for attribute \(i\) in cases \(T\) and \(S\)
- \(w\) is the importance weighting of attribute \(i\)

net monthly income
Nearest Neighbour

- Require a similarity function for each attribute or feature (not always a trivial problem)
- Requires every feature of the query to be compared to every feature of every instance/case
- Not very efficient
Nearest Neighbour

- distance weighted k-Nearest neighbour is a highly effective algorithm for many practical problems robust to noisy data if the training set is large enough
- bias is that the classification of an instance is most similar to other instances that are nearby in Euclidean distance
- But then again that’s the point
Nearest Neighbour

- because distance is calculated on all attributes - irrelevant attributes are a problem - curse of dimensionality
- some approaches weight attributes to overcome this - stretching the Euclidean space – determined automatically using cross-validation
- alternatively eliminate the least relevant attributes - they used leave-one out cross-validation – ideal for IBL
Nearest Neighbour

- could locally stretch an axis...but more degrees of freedom...so more chance of overfitting...useful if problem space is not uniform...problem of over fitting
- much less common, but it is used in CBR
- efficient indexing of instances can be done with kd-trees (we’ll discuss later)
- possible to pre-compute a position of each instance in the Euclidean space then simply position query in the space
Instance-based learners

- Locally weighted regression
 - Algorithm for learning continuous non-linear mappings from real-valued input vectors to real-valued output vectors.
 - Particularly appropriate for learning complex highly non-linear functions of up to about 30 inputs from noisy data
Instance-based learners

- Locally weighted regression
 - construct an approximation \(f \) from the training examples in the neighborhood of \(x_i \), then calculate \(F(x_i) \), \(f \) can then be deleted
 - Assumes that each local function is a linear function
 - Computation grows linearly with \# of training instance
Locally weighted regression

This graph shows a global linear regression in progress: the sum of squares of the unweighted residuals is minimized.
Locally weighted regression

This graph shows a locally weighted linear regression. The weighted sum of squared residuals is minimized, where the thickness of the lines indicates the strength of the weight.
Locally weighted regression

- During locally weighted regression a query point x_{query} is supplied.
- A linear map is constructed where data points close to the query point have more weight.
- A common weighting function is Gaussian.
- Moving the query allows the regression algorithm to follow complex functions.
Locally weighted regression

- broad range of methods for distance weighting the training examples range of methods for locally approximating target functions

- function is usually constant, linear, or quadratic because (1) cost of fitting more complex functions is too high and (2) simple approximations model the target function well over a sufficiently small sub-region
Lazy learning

- Most ML algorithms are *eager* learners
 - Use a training data set to
 - Generalize rules, induce a tree or a function (ANN) that can be applied to categorize future inputs
 - Processing time is done up-front before query time
 - After querying they discard any inputs
Lazy learning

- Lazy learners have three characteristics:
 - They defer processing until query/run-time
 - They discard any generated functions/answers
 - They retain the query with the stored data
Lazy vs. Eager

- Lazy learners have low computational costs at training (~0)
- But have high storage costs
- High computational costs at query
- Lazy learners can respond well to dynamic data where it would be necessary to constantly re-train an eager learner
Summary

- IBLs delay processing until prediction time. They form a different local approximation for each query instance.
- Can model complex functions by a combination of less-complex local approximations.
- Information present in the training data is never lost (is this a benefit!!!)
- Computationally expensive to label new instances.
- Finding appropriate distance metric can be difficult and negative impact of irrelevant attributes.