Contents

- Competence Models (cont.)
 - The retrieval problem
 - Case footprints
 - Footprint-based retrieval
 - An experiment
- Case-Based Maintenance
- Project ideas

Retrieval

- the retrieval problem
 - Efficiency vs. Accuracy
- the bottom line ...
 - We'd prefer not to examine every case during retrieval but don't want to miss the best case!
Retrieval
- case-base reduction
 - nearest-neighbor editing techniques (CNN, RNN, ...)
 - reduced search costs
 - optimality/quality sacrifices
- footprint-based retrieval
 - competence-directed search
 - search reduction without quality sacrifices

Competence
- what is competence?
 - the set of target problems that a case can solve
 - ... and vice versa
 - the set of cases that can solve a target problem
- the representativeness assumption
 - treat the case-base as a representative sample of the target problem space

The coverage set of a case is the set of target problems that it can solve.

\[
\text{coverage set}(\text{case}) = \{ \text{target set} \}
\]

... or, by the representativeness assumption ...

The coverage set of a case is the set of cases that it can solve.

\[
\text{coverage set}(\text{case}) = \{ \text{case set} \}
\]
The reachability set of a target is the set of cases that can solve it.
reachabilityset() = { 'o's }

... or, by the representativeness assumption ...

The reachability set of a case is the set of cases that can solve it.
reachabilityset() = { 'o's }

coverage & footprints

footprint cases

non-footprint case

footprint case

non-footprint case

footprint case
Footprint retrieval

- an eager/lazy perspective
 - stage 1 is based on an edited subset of the case-base that has been compiled in an eager fashion
 - stage 2 benefits from a local search of a set of cases compiled in a lazy fashion, with respect to a specific target problem.
- adaptive search
- how important is the lazy component?

An experimental analysis

- evaluation criteria
 - efficiency - what is the computation cost of footprint-based retrieval?
 - competence - how often does footprint-based retrieval lead to an acceptable solution?
 - quality - what is the quality of the solutions found by footprint-based retrieval?
 - optimality - how often are these solutions optimal?
Datasets

- travel domain (AI-CBR)
 - 1400 case travel data-set
 - 100 sets of 1000 cases and 400 targets
 - each set is used to produce incrementally larger case-bases from 100 to 1000 cases in steps of 100

Algorithms compared

- traditional
 - Standard (brute force nearest neighbour)
 - CNN (search CNN-edited case-base)
- footprint-based
 - FP (search footprint set only - stage 1)
 - FPRS (full footprint-based approach)

Efficiency

- objective
 - efficiency - number of cases examined during a retrieval
- method
 - for each algorithm and the test case-base we measure the mean number of cases examined during retrieval for a given case-base size
 Competence

- objective
 - efficiency vs. competence trade-off?
 - competence - percentage of retrieved cases capable of solving the target
- method
 - for each algorithm and the test case-base we measure the mean percentage of correct retrievals per case-base size
Quality

- **objective**
 - quality ∝ similarity between retrieved case and target problem

- **method**
 - for each algorithm and the test case-bases we measure the mean similarity between target problem and retrieved case for each case-base size

travel domain
Optimality

- objective
 - optimality - percentage of retrievals that return the closest case
- method
 - for each algorithm and the test case-bases we measure the mean optimality during retrieval for a given case-base size

Discussion

- central contribution
 - a novel retrieval technique informed by a explicit model of case competence
- results
 - the competence, quality and optimality characteristics of brute-force retrieval
 - the efficiency benefits of an edited case-base search such as CNN
Characterising Maintenance

- **Categorizing Case-Base Maintenance:**

Case-Base Maintenance

- **Definition:**
 - Case-base maintenance implements policies for revising the organization or contents (representation, domain content, accounting information, or implementation) of the case-base in order to facilitate future reasoning for a particular set of performance objectives (Leake & Wilson, 98).

Case-Base Maintenance (CBM)

- Performance objectives should include
 - Retrieval accuracy or precision
 - Efficiency
 - And usability metrics
- Performance objectives may change over time
CBM Policies

- A CBM Policy determines
 - When a CBR system is maintained
 - How it is maintained
- CBM policies describe
 - What data is gathered
 - How maintenance activities are triggered
 - The types of maintenance operations available
 - How selected operations are executed

Data Collection

- gathers information about individual cases, about the case base in part or as a whole, and/or about the overall processing behaviour of the CBR system
- Data collection about individual cases might record the number of times a case has been successfully used or the number of times it has failed
- Data collection about the case base as a whole could involve, for example, monitoring the size of the case base

Type of data collected:

- None – no data recorded, decisions are made independent of the present or past state of the case-base
- non-introspective
CBM Policies

- Type of data collected:
 - Introspective
 - Synchronic – a single snapshot in time – e.g., should the new case be added based upon the current state of the case-base
 - Diachronic – creates a sequence over time enabling trends to be studied – e.g., recording retrieval time to identify the onset of the utility problem

- Timing
 - Periodic – done at regular periods w.r.t. the CBR-cycle
 - Continuous – every time the CBR-cycle is completed
 - Conditional – upon some event – a retrieval failure or when the case base exceeds a set size
 - Ad hoc – just done when ever (e.g., monthly) or triggered by some event external to the CBR system itself (e.g., end of a sales quarter or a SMEs decision)

- Integration
 - On-line – during the reasoning process (as a background activity)
 - Off-line – during a break in reasoning (e.g., at night or between query sessions)
CBM Policies

- Data Collection results in **Triggering** causing maintenance to occur or not
- Conditional Triggering may be in response to a well defined event – eg a retrieval failure
 - Space-based – w.r.t. the case-base size
 - Time-based – w.r.t. retrieval time
 - Result-based – w.r.t. some result (eg retrieval failure)

CBM Policies

- **Scope of Maintenance**
 - Broad – applies to the entire case-base or majority of cases
 - Narrow – applies to an individual case or competence group

CBM Policies

- **Operation types:**
 - Target types:
 - Indexing structures
 - Domain contents
 - Maintenance policies
 - Revision levels:
 - Implementational level (eg algorithm code)
 - Representational level (eg feature names)
 - Knowledge level (eg adding removing cases)
CBM Policies

- Execution timing
 - None – eg maintenance is flagged for a person to attend to
 - Periodic – performed on a regular basis
 - Conditional – held until a triggering event (eg when enough changes have accumulated)

CBM Policies

- Execution integration
 - Off-line
 - On-line

- Execution scope
 - Broad – changes to a single case
 - Narrow – global changes

CBR project ideas

- Create an interesting CBR system to do X
- Ensemble retrieval – create a CBR system that combines several ML retrieval algorithms to improve retrieval accuracy (or efficiency) – would require comparative evaluations
- CBR for email filtering – either as an anti-SPAM devise or to answer student/client emails
- CBR for game playing – investigate the use of CBR within gaming