Case-Based Reasoning 6
Dr. Ian Watson

Contents
- Testing & evaluation
 - Leave one out
 - Leave one in
 - Global system metrics
- Case competence
 - The Competence Issue
 - A Competence Model for CBR
 - Case Discovery – competence holes
 - Discussion

Testing
- Testing an ML algorithm is easy (boring but easy)
 - Obtain a data set
 - Divide into training & test data
 - Train your classifier
 - Run the classifier on the test set
- Not so straightforward with CBR
Testing

What are we testing?
- The retrieval (classification) accuracy?
 - Then ML methodology is appropriate
- The adaptation accuracy?
 - Validate the accuracy of the generated solution
- The combined accuracy (retrieval & adaptation)
- What about efficiency, speed?
- Also a case-base changes with time....

The performance of a CBR system is the product of a combination of processes
To test one in isolation may give spurious results
Difficult to scientifically test all together
But there are some useful simple tests

Leave one out testing
- For $i = 1$ to n (where $n =$ No. cases)
- Remove case, and use as a query case
Useful for finding outlying cases
Useful for finding dense areas of the case-base
Testing

- Leave one in testing
 - For $i = 1$ to n (where $n = \text{No. cases}$)
 - Do NOT Remove case, but use as a query case
 - query-case should exactly match case,
 - Also useful for finding outlying cases
 - Also useful for finding dense areas of the case-base

Testing

- Global system tests
 - Considers accuracy as well as performance issues
 - Since a case-base changes with time
 - Create a reference set of cases
 - Log performance data using this reference set over time
 - Useful way of monitoring relative performance

System Performance

- Ratings
 - retrieval speed
 - retrieval precision
 - adaptation accuracy
 - users' perception
Testing

- No point in testing if you know you have a "bad" case-base
- The best retrieval and adaptation algorithms will not work well on a "bad" case base
- But what is a bad or a good case-base?

Characterizing a case-base

- Motherhood statements.....
 - The case-base should be "representative"
 - The cases should be "well" distributed
 - Cases should be useful
- Doesn't really help us much
- Hence case competence models
 - University College Dublin (Barry Smyth)

What is performance

- Performance = Competence + Efficiency
- In pure CBR
 - Cases contribute to both competence and efficiency
Recent Developments in CBR

- Real-World Applications
 - Large Scale Case-Bases
 - On-Line Learning
- Emerging Issues
 - The Utility Problem
 - More cases decreases the utility of individual cases
 - Case-Base Maintenance & Case Quality Issues
 - Authoring & Learning Support

Open Questions

- Quality Issues
 - Good vs Bad Cases / Useful vs Redundant Cases
- Controlling Case-Base Growth
 - Building & Maintaining Quality Case-Bases
- Authoring Tools
 - Case-Based Visualization
 - Authoring Guidance
 - Case Discovery – competence holes

Case Competence: The Basics

- Case Coverage & Case-Base Coverage

Target Problem Space, T

Uncovered Problem

Covered Problems

Case Coverage
Mapping Case Competence

- The Top-Level
 - Problem Space
 - Cases & Target Problems
- Case Coverage
 - Competence vs Efficiency
 - The Utility Problem

Mapping Case Competence

- Competence Groups
 - Independent regions of related competence
 - The fundamental unit of competence

Mapping Case Competence

- Case Competence
 - Competence categories
- Footprint Cases
 - Cases that provide equivalent coverage to the group as a whole
- Non-Footprint Cases
 - Redundant?
Mapping Case Competence

- Competence Holes
 - Uncovered regions and problems

The coverage set of a case is the set of target problems that it can solve.

\[
\text{coverageset} = \{s\}
\]

The coverage set of a case is the set of cases that it can solve.

... or, by the representativeness assumption ... (ie we assume the case-base is representative)

Case-Competence: The Basics

- An Ideal Measure of Case Coverage
 - For a case-base CB and a target problem set T
 - \(\text{Coverage}(c) = \{t \in T : \text{Solves}(c, t)\}\)

- A Practical Measure of Case Coverage
 - CB is a representative sample of T
 - \(\text{Coverage}(c) = \{c' \in CB : \text{Solves}(c, c')\}\)
Case Competence: The Basics

- Approximating Coverage Sets

\[\text{CoverageSet}(c) = \{ x, y, z \} \]

Case Competence: The Basics

- Case-Base Coverage
 - How does the coverage of the case-base depend on the coverage of its cases?
 - Unique & Redundant Coverage

A Competence Model

- Competence Groups
 - Maximal clusters of cases exhibiting shared coverage.
 - "Connectedness" of cases
A Competence Model

- Computing Competence Groups
 - \(c_1 \) & \(c_2 \) share coverage iff their case competence overlap
 - \(c_1 \), \(c_2 \) & \(c_3 \) are a Competence Group iff they share coverage

The Importance of Competence Groups

- Independent regions of coverage
 - \(\Rightarrow \) Independent competence contributions

Fundamental Unit of Competence?

Group Coverage - The Basic Idea

- Case Density \(\propto \) Coverage Redundancy \(\propto ^{-1} \) Group Coverage

- Regularity Assumption - Similar Problems \(\Rightarrow \) Similar Solutions
What is a Competence Hole?

- What is a competence hole?
 - Any uncovered region of the target space
- What makes a competence hole interesting?
 - Size of the hole
 - Relevance to target problems

Two Types of Competence Holes

Type 1
- Insufficient cases within the case-base.
- Lost coverage.

Type 2
- Due to domain constraints – impossible value combinations.
- No lost coverage

Identifying Interesting Holes

- Methodology
 - Competence groups that are close to each other may ultimately merge into a single group
 - The missing cases are competence rich spanning cases
 - Search for new spanning cases in the regions between nearby competence groups
Identifying Interesting Holes

- **Boundary Cases**
 - Each pair of groups G, H has a corresponding pair of boundary cases, g_H, h_G with maximal similarity.
 - Each group has a set of $n-1$ boundary cases corresponding to the $n-1$ other groups in the case-base.

Interesting Holes

- For each group we can search for new spanning cases between it and its nearest neighbour group.

Case Generation (Boundary Method)

- **Methodology**
 - Generate a new case from the feature values of the related sets of the boundary pair cases.
 - **Nominal Features**
 - Most frequent value
 - **Continuous Features**
 - Mean value
Discussion

- Applications
 - Authoring & Maintenance
- Related Work
 - Competence Categories (Smyth & Keane, IJCAI 1995)
- Assumptions & Applicability
 - Representational Biases

Case Authoring

- Current Tools
 - Poor modelling & visualisation techniques
- Authoring Guidance
 - Identification of redundant cases and inefficient groups of cases
 - Identification of regions of poor competence
 - Predictive measures of competence and performance

CASCADE

- Case Authoring Support & Development Environment
 - Traditional Authoring Functionality (defining & editing cases)
- Visualisation & Modelling Tools
 - Competence Groups (coverage & density analysis)
 - Competence Graphs
Group Size vs. Coverage

Related Work

- Competence Categories (Explanatory Model)
 - Pivotal, Spanning, Support, Auxiliary Cases
 - Coarse Grained Competence Patterns
- Current Model (Predictive Model)
 - Fine Grained Competence Measures
 - Above categories are found within competence groups. Eg, singleton competence groups hold pivotal cases.

Assumptions

- Representativeness
 - Case-base is a representative sample of the target problem space \(\Rightarrow\) tractable coverage estimates.
- Regularity & Uniformity
 - Density models assume that regions of the problem space are regular and uniform.
- Real World Case-Bases
 - If these assumptions do not hold then the quality of our competence predictions will degrade (gracefully?).
Conclusions

- A Competence Model for CBR
 - Positive initial results
- Future Work
 - Further experiments
 - Authoring & maintenance applications
 - Visualising case-bases