Conversational CBR

CBR systems that engage in a dialogue (conversation) with users

Used for shallow diagnosis, product selection, planning.

Main money earner for CBR

CBR-lite
 - just similarity based retrieval
 - no revision
Conversational CBR

- Pioneer was Inference Corp. with CBR-Express (1993) (copied by others)
 - System lets user create a natural language query
 - Query is matched against case descriptions
 - Matching cases retrieved and confirming questions asked of user (conversation)
 - Uses information gain to order questions
 - Conversation stops when a case’s confidence passes a threshold value
- Case are “authored” not “programmed”

Conversational CBR

- Demo of Help!CPR from The Haley Enterprise
 - www.haley.com

Conversational CBR

- Cases comprise
 - Textual description
 - Set of confirming questions
 - Solution or Action
- Natural language query is matched against case descriptions
 - Uses simple textual comparison
 - Keywords, trigram matching
 - Lexicons, thesauruses & concept hierarchies
Trigram matching

- Word are broken into sets of three letters
 - paper = [[p,a,p],[a,p,e],[p,e,r]]
 - piper = [[p,i,p],[a,p,e],[p,e,r]]
 - approx. similarity = 0.88
- Very good for simple typos
- Letter transposition

Trigram matching

- A trigram space is constructed from all possible trigram combinations of uppercase letter (26^3)
- A string corresponds to a point in the trigram space where its position along each of the 26^3 dimensions represents a constituent trigram
- A sophisticated indexing technique called “Probably Close” indexing folds this high dimensionality down into an index of lower dimensionality (cf. trigram matching.pdf)

Conversational CBR

- Similar cases are retrieved based upon similar descriptions
- An information gain algorithm calculates which question best discriminates between the cases
- A question’s answer alters the confidence (score) of a case
- Questioning continues until a case’s confidence exceeds a threshold
- Or all cases have been excluded
Conversational CBR

- Cases are authored not programmed
- Unlike simple rule-based systems diagnostic systems
- Anyone who can use MS Excel can author cases.
- Significant advantage to end-user companies

Conversational CBR

- Advantages over decision trees
 - Questions are not presented in a fixed order
 - Order is dynamically created at query time
 - Questions do not have to be answered
 - Solutions are available at all times (any-time problem solver)
 - Editing & creating cases is simple – they are independent of each other (unlike a decision tree)

Case representation

- Representation depends on:
 - Requirements of domain and task
 - Structure of available case data
- Flat feature-value list (like a database record)
 - Simple case structure is sometimes sufficient for problem solving
 - Easy to store and retrieve in a CBR system
 - Suitable for shallow technical diagnosis, product recommendation
Case representation

- Object-oriented representations
 - Case: collection of objects (instances of classes) in the sense of OO
 - Required for complex and structured objects
- For special tasks:
 - Graph representations: case = set of nodes and arcs
 - Plans: case = (partially) ordered set of actions
 - Predicate logic: case = set of atomic formulas

Flat case representations

Cases are typically stored in a database

Two types of case-base

- Homogenous
- Heterogenous

Homogenous case-bases:

- All cases contain the same feature-value pairs (note some values may not be known)
- ie they share the same record structure
 - Houses in a real estate case-base
 - Cars in a car dealer’s case-base
- Easy to define a full and sufficient set of case features
Case representation

- Heterogenous case-bases:
 - Cases share some feature-value pairs
 - Cases have some different feature-value pairs
 - Difficult/impossible to define a full and sufficient set of case features
 - Medical record: impossible to define all possible symptoms, tests, diseases, treatments, etc...a person may have

Case representation

- OO representation (structural CBR)
 - A case consists of a set of objects
 - Objects described by a set of features
 - Relations between objects (e.g. part-of)
 - Each object belongs to an object-class.
 - Object-classes are organized in an inheritance hierarchy.
 - Case representation language CASUEL (developed by INRECA project)
Case vocabulary

- Case vocabulary means the features that describe a case
- Sometimes called the case index
- Do NOT confuse with indexing cases for computational efficiency
- Case features (vocab.) should be:
 - Predictive (ie relevant to retrieval)

Case features are:
- Indexed
- Unindexed

Indexed features are:
- used for retrieval
- are predictive of the case’s solution

Unindexed features are:
- not used for retrieval
- not predictive of the case’s solution
- provide valuable contextual information and lessons learned
- Features can change status
Similarity ???

- Purpose of similarity, either:
 - Select cases that can be adapted easily to solve the current problem
 - Select cases that have (nearly) the same solution to the current problem
- Basic assumption:
 - similar problems have similar solutions

Similarity ???

- Degree of similarity = utility or reusability of the solution
- Similarity is an a-priori approximation of reusability
- Goal of similarity modelling:
 - provide a good approximation
 - close to real reusability
 - And easy to compute

Similarity ???

- Assumptions
 - 2 similar problem descriptions have similar solution descriptions
 - It is easier to adapt the solution of a similar problem than the solution of a less similar problem
Similarity ???

- **Assumptions**
 - 2 similar problem descriptions have similar solution descriptions
 - It is easier to adapt the solution of a similar problem than the solution of a less similar problem

Problem Space

- Input problem description

Solution Space

- Description of new problem to solve
- Description of solved problems
- Stored solutions
- New solution created by adaptation

Modeling similarity

- Different approaches depending on case representation
- Similarity measures (metrics):
 - Functions to compare two cases: \(sim(Case_1, Case_2) \) \([0..1]\)
 - Local similarity measure: similarity on feature level
 - Global similarity measure: similarity on case or object level
 - Combines local similarity measures
 - Takes care of different importance of attributes (weights)
Modeling similarity

- Different approaches depending on case representation:
 - (Sub-)Graph isomorphism for graph case-representations
 - Logical inferences