Case-Agents: a novel architecture for case-based agents

Assoc. Prof Ian Watson
Dept. of Computer Science
University of Auckland
New Zealand

Contents
- Motivation
- CBR & Agents
- CBR agent architectures
- What if....?
- Case-agents
 - Representation
 - Retrieval
 - Reuse
 - Revision
 - Retention
 - Maintenance
- Example

Motivation
- This research started from a thought exercise
 - what if.....?
- The paper doesn't present an implementation or results
 - I will present some initial findings
- Intended to stimulate people to ask what if....?

CBR & agents
- “intelligent agents are both a distant and unnecessary goal”

CBR & agents
- Given the popularity of CBR & agents from the mid 1990’s onwards it’s surprising there hasn’t been more CBR-agent work
- One reviewer said “there are roughly only ~20-25 publications relevant to this topic…”
 - Enric Plaza’ group
 - Katia Sycara’s group
 - Robin Burke
CBR agent architectures

- Internal-case agents
 - Each agent has its own case-base

- External-case agents
 - Agents share external case-base(s)

- Intra-case agents
 - Both inter- & extra-cases in one system

What if……..

- Each case was an agent?
 - What would this architecture look like?
 - How would it work?
 - Would there be any benefits?
 - Would there be any drawbacks?
 - What sort of problems would be suited?

Case-agents

- Case-representation
 - Basic division of a case into problem description:solution description
 - Structural representations could also be supported
 - But cases with different internal representations could co-exist in the same system
 - Providing each case-agent has a similar interface
 - No real change here then
Case-agents

- Case Retrieval
 - Each case is responsible for assessing its similarity to Target/Query cases
 - Cases can use different similarity metrics
 - Truly local similarity
 - This is different
 - Perhaps "better" retrieval
 - Greater complexity, inefficient, danger of over-fitting

Case-agents - retrieval

Case-agent similarity neighborhood

Target problem

Case-agent similarity neighborhood

Case-agents - retrieval

Case-agents

- Reuse
 - Once cases have determined they are similar to a target
 - They present their solutions to a broker-agent
 - The broker agent could determine the best/cheapest/easiest to adapt solution from those on offer
 - Cases could adapt their own solutions or there may be adaptation-agents (not necessarily case-based)

Case-agents

- Retention
 - Once a new case was created a new agent would be created
 - Need to decide on similarity metrics
 - Perhaps same as agent that created the new case
 - Once a new case-agent was created it would interact with the existing case agents
 - Triggering a maintenance cycle

Case-agents

- Maintenance
Case-agents

- **Maintenance**
 - Interesting dynamic self-organizing behavior possible
- **The lonely case-agent**
 - Never sees any other cases or target problems
 - Programmed to kill or archive itself

Case-agents

- **Maintenance**
 - overcrowded case-agents
 - Negotiate to prune themselves
 - Use competence models (Smyth et al)
- **Case-agent tuning**
 - Agents could tune their similarity metrics and adaptation methods with respect to their neighbours
 - and their success in having brokers choose their solutions
 - Case-agents are competitive
 - Populations of case-agents
 - Evolutionary case-agents

Case-agents

- **Maintenance**
 - sparse case-agents
 - Negotiate fill competence holes (Smyth et al)

Case-agents

- **travel case-base**
 - Different similarity metrics across ~1100 agents
 - The case-agents are aware of time
 - As their holiday’s commencement date approaches they:
 - reduce their similarity threshold
 - discount their price
 - If their date expires they expire
Thank You

Questions?