
Case-Based Recommendation

Case-Based Recommendation
Barry Smyth

P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The
Adaptive Web, LNCS 4321, pp. 342376, 2007

Recommendation

Smyth describes two approaches to
recommendation:

I Collaborative filtering: Each user rates items,
the system recommends items users with
similiar rating patterns have liked in the past.
No data about items themselves.

I Explicit
I Implicit

I Content-based: Recommend based on similiar
items (eg. to what the user has liked in the
past).

Case-based Recommendation

Case-based recommenders implement a particular
style of content-based recommendation,
distinguished by:

I Product representation: Structured instead of
unstructured (eg. recommending news articles
based on keywords and textual search).

Case-based Recommendation

I Similarity: Case-based can use more
sophisticated similarity because of structured
data, compare keyword-based search for the
query “$1000 6 mega-pixel DSLR”

I Specialised feature level similarity knowledge

Very well suited to product recommendation
domains (esp. e-commerce) where detailed
feature-based product “cases” are readily available.

Aside: A similarity metric

sprice(pt , pc) = 1− pt − pc
max(pt , pc)

Feature weight learning

Obvious place to apply machine learning of weights:
The user can play the role of trainer: the product
the user selects in the list of recommendations
should have been placed at the top of the list.

Collaborative filtering applications
Normally a collaborative filtering recommender
system can only evaluate the similarity between two
profiles if they share ratings.
Consider a TV program recommender. If one user
rates ER and another Frasier they can’t be directly
compared.
O’Sullivan et al. point out that global ratings
patterns can be analysed to estimate the similarity
between programmes like ER and Frasier. Using
data-mining techniques shows, eg., 60% of the
people who have liked ER also liked Fraiser, and
they use this as a proxy for the similarity between
these two programmes.

Similarity vs. Diversity

The most similar cases will usually lack diversity.
Eg. top vacation recommendations might all be at
the same hotel in different weeks.

Diverse selection strategies

I Bounded random selection: select at random
from kb nearest. Performs poorly.

I Similarity layers: adds little diversity.

I Bounded greedy selection

I Replace nearest neighbour case retrieval (more
later)

I Others . . .

Similarity layers
When some of the nearest cases have near-equal
similarity to query, we can increase diversity without
trading off similarity.
Better suited to returning large number of
recommendations.

Bounded greedy selection 1

Bounded greedy selection 2

For k diverse recommendations from the bk nearest
(where b is the bound)

C ′ ← nk-nearest neighbours to query
R ← {}
for i = 1 to k do

move c ∈ C ′ with highest Quality(t, c ,R) to R
end for

Compromise-driven retrieval

Definition :“A given case is more acceptable than
another if it is more similar to the user’s query and
it involves a subset of the compromises that the
other case involves”
Build a list of recommendations so that no
recommendation is more acceptable than any other.
Provides “full coverage”: when something is left out
a better recommendation is included.
Unknown number of cases need to be retrieved.

Other retrieval/ranking techniques

I Shimazu’s: Find a set of similar cases, then
pick 3:
c1 : most similar
c2 : most dissimilar to c1
c3 : most dissimilar to c1 and c2

I Order-based retrieval

Single-shot recommendation

Recommendations based on a single query. If users
don’t find what they want, they have to start again.

Conversational Recommenders

I Navigation by asking. (Typical Conversational
CBR) “How much optical zoom do you need?”
Narrow down case base until finally reaching
recommendations.
Symth says not always appropriate: users may
not tolerate long exchanges of direct questions,
or may not know answers.

I Navigation by proposing. Iteratively present
possible recommendations.

Navigation by proposing

3 feedback alternatives:

I Ratings-based feedback (untypical)

I Preference-based feedback: Just pick a
recommendation.

I Critique-based feedback: Specify how to
modify recommendation

Critique-based feedback

Recommender provides recommendations
one-at-a-time, the user provides feature constraints,
eg. “cheaper”, which act as filters on the set of
cases most similar to the current recommendation.
Critiques need not map directly onto single features.
Suggest compound critiques based on remaining
cases to speed progress.

Preference-based feedback

It’s hard to infer reasons for the user’s preference of
one choice over another. Also want to be efficient:
not waste user time.

I Most straighforward: take the user’s choice as
the new query and find similar cases. Don’t
gain much.

I Transfer features from the user’s selection to
the query if they distinguish the selection.

I Modify feature weights by guessing which
features are reponsible for the selection, eg.
statistical inferencing.

Technique combination

“Natural” to combine critique-based and
preference-based feedback.
Can add increased diversity to recommendations if
the user doesn’t think they are improving.

Are recommendations failing to improve?

Include the last product which was
selected/recommended in the new batch. If the user
reselects, supposedly there was no improvement.
Shown to potentially reduce recommendation
sessions.

Personalisation

If a recommender can learn a repeat user’s
long-term preferences, should be able to determine
some constraints or query features automatically.
Also, can personalise the ranking of retrieved cases
eg. CASPER uses the similarity of each
recommendation to recommendations the users has
previously rated or accepted, based on their rating.

	Recommendation
	CBR
	Recommendation retrieval and ranking
	Conversation

