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Abstract: This article analyzes the current state of case-based plan adaptation 

research. Rather than perform an exhaustive literature review, we identify six 

dimensions to classify the various contributions in the field and to analyze 
current issues and trends. These dimensions are: the type of adaptation, the role 

of the case, the case content, the use of case merging, the representation 

formalism, and the computational complexity of the algorithm. Our analysis 

clarifies some common misconceptions about plan adaptation and proposes a set 

of future research directions.  

1. Introduction 

Case-based planning (CBP) is a problem-solving method that uses a library of 

cases, where a case associates a past problem and goal description with a plan that 

solves the problem by achieving the goal (Hammond, 1989). Given a new problem, 

CBP systems retrieve one or more cases whose problem is similar to the current one 

and adapt the plans contained in the retrieved cases to achieve the new goal. Case 

retrieval involves intelligent search of the case library to find cases that are adequate 

to solve the new problem. The result of the plan adaptation process is a plan that 

includes parts derived from the cases (e.g., plan steps copied form the cases) and parts 

derived by other means (e.g., first-principles planning). Although important 

relationships exist between the technology that measures similarity during case 

retrieval to assure adaptable solutions and the technology that performs effective 

adaptation during case reuse (e.g., Lopez de Mántaras et al., 2006), here we 

concentrate the analysis upon the adaptation process itself.  

 

Plan adaptation is simply any problem-solving method that reuses an existing plan 

to solve a new problem. As it was originally conceived in the CHEF system, the plan 

was taken as a whole and modified by using domain-specific adaptation rules 

indicating how to modify parts of the plan (Hammond, 1989; 1990). Prodigy/Analogy 

(Veloso & Carbonell, 1993) and Priar (Kambhampati & Hendler, 1992) were the firsts 

systems to introduce domain-independent plan adaptation. It is interesting to observe 

that over the years, when a new planning paradigm was introduced, a domain-
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independent adaptation algorithm will follow it showing improvements in problem-

solving time over the new planning paradigm by borrowing some of its representation 

and/or inferencing techniques. Such was the case with DerSNLP (Ihrig & 

Kambhampati, 1994) and CAPlan/CbC (Muñoz-Avila & Weberskirch, 1996), which 

were built on a partial-order planner, GPG (Gereveni, & Serenia, 2000), which was 

built on a planner using planning graphs, and, more recently, with an adaptation 

algorithm reported by van der Krogt & de Weerdt (2005), which was built on a 

planner incorporating recent advancements in planning literature such as distance 

based heuristics and reachability analysis. These plan adaptation algorithms are 

included in a wide range of application areas such as manufacturing (Costas & 

Kashyap, 1993), emergency management (Avesani, Perini, & Ricci, 1993), military 

planning (Veloso, Mulvehill & Cox, 1997), route planning (Haigh, Shewchuk & 

Veloso, 1997), academic course scheduling (Grech & Main, 2004), and medicine 

(Salem, Nagaty, & El Bagoury, 2003; Schmidt, Vorobieva, & Gierl , 2003).  

 

Focusing on plan adaptation will prove valuable, because breakthroughs in this 

topic impact more than just case-based reasoning (CBR). For example, derivational 

analogy, first studied in the context of plan adaptation, is used in tutoring systems 

(Weber & Schult, 1998). But most importantly, many important technical issues 

remain to be studied, and key open questions exist that have no complete answers. A 

new analysis holds the promise to place plan adaptation in a clearer light so that new 

answers might be forthcoming. 

 

Although we cite several CBP systems, we will not conduct an exhaustive 

literature review (rather see Cox, Muñoz-Avila, & Bergmann, 2006 and Spalazzi, 

2001). Instead we will analyze current research according to six technical dimensions. 

The goals are to give the reader a clear understanding of the main issues regarding 

plan adaptation and to point out those open questions demanding further investigation. 

Therefore we propose the following dimensions. 

 

• Adaptation type. Refers to the type of plan adaptation used: 

transformational or derivational analogy. 

• Case role. Indicates whether the cases contribute domain knowledge and/or 
control knowledge. 

• Case contents. Characterizes the contents of the case used during adaptation. 
Although this typically corresponds to the solution plan, we will show that 

other contents have been used.  

• Case merging. Refers to whether one or multiple cases are used to solve the 

new problem. When more than a single case forms a solution, alternative 

methods exist to merge the cases. 

• Representation formalism. Refers to the symbolic representation of the 

case contents. For example, some plans use a hierarchical representation 

while others use partially ordered plans. 

• Computational complexity. Provides additional perspective on formal 

results concerning plan adaptation complexity. We describe their impact 

on transformational and derivational adaptation methods. 
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The rest of the article continues as follows. Section 2 presents a case study to 

illustrate the adaptation formula and to discuss the formula’s relation with 

transformational and derivational adaptation. This section also analyzes some case-

based planners according to our first dimension (i.e., adaptation type). Sections 3-7 

present each of the remaining five dimensions and analyze them according to the 

adaptation formula. Finally, Sections 8 and 9 discuss future research and conclude. 

Before continuing, we note that more than eighty publications exist on the subject of 

CBP. Instead of reviewing all of them, our study presents a framework to categorize 

them. 

2. Abstract Example 

A planning problem typically requires achieving a set of specific goals. For 

example, if we are preparing a trip, we may specify the destination location and how 

much money we wish to retain. The problem also specifies conditions such as known 

routes between locations, the starting location, the available means of transportation 

(e.g., bus, car, airplane) and costs of transportation. A planning solution is a sequence 

of steps achieving the goals under the given conditions. In our travel scenario, a plan 

may first take a taxi from the starting destination to a local airport and then take a 

flight to another location. The plan will continue until the last step reaches the 

destination.  

 

Solving a problem by plan adaptation involves selecting one or more existing plans 

and then modifying them to achieve the current goals. In the trip scenario, existing 

plans will indicate how passengers transit between various locations and the costs of 

these trips. Therefore, a generated plan will contain a route that is divided in various 

segments. Some of these segments may be derived from cases and other segments 

may be derived by other means (such as first-principles planning). Segments derived 

from cases may simply be copied as a whole without changes from the case or may be 

copied partially. For example, the original case was going from Cambridge to San 

Jose, but during the adaptation we only used an intermediate sub-segment from 

Cambridge to San Francisco, or the plan may have been transformed after copying it. 

So for example we may have modified the transportation means (e.g., we took the 

subway instead of the taxi, because it is cheaper). Additionally because we are low on 

money, we add a step to visit a bank machine. Figure 1 sketches a resulting plan.  
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Figure 1 A plan obtained by adaptation. 

3. Adaptation Type 

Case adaptation can be classified into two basic categories: transformational and 

derivational analogy. In transformational analogy, cases contain the solution plans for 

previous problems. These plans are reused in the new situation by making suitable 

changes where appropriate (Carbonell, 1983; van der Krogt & de Weerdt, 2005). 

Transformation operators are knowledge constructs prescribing how to transform 

existing plans into new ones. In the CBP system CHEF, for example, a 

transformational operator will indicate that raspberries will be a good substitute for 

strawberries when is the latter are not available. Therefore, applying this operator to a 

recipe (i.e., cooking plan) for strawberry soufflé will result in a raspberry soufflé 

recipe. Transformational analogy does not consider how the reused plan was 

originally obtained. Instead, it examines only the plan itself. In contrast, cases in 

derivational analogy contain a derivational trace rather than a plan as in 

transformational analogy. That is, the trace is a sequence of computational steps a 

planner followed to generate a plan. Derivational analogy provides more flexibility, 

because the planner can replay the derivational trace relative to the new problem. That 

is, no transformational operators are required. However, derivational analogy does 

requires the derivational trace to be known. 

Figure 2 contrasts a plan and a derivational trace. The left side of the figure shows 

a simple plan in the logistics transportation domain (Veloso, 1994). The middle 

section lists a possible derivational trace for the plan. This trace corresponds to the 

one that a partial order case-based planner (e.g., CAPlan/CbC (Muñoz-Avila, 2001), 

derSNLP (Ihrig & Kambhampati, 1994)) would have generated (see Section 5 for a 

description of partial order planners). The right side illustrates a portion of the 

rationale for the derivation (as adapted from Veloso & Carbonell, 1993, using 

Prodigy/Analogy). Rather than adapting the plan directly, the derivation and rationale 

allows the planner to reuse portions of the prior search.  
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Figure 2 Example of a solution plan (left) and a derivational trace (right) 

generating the plan. 

For example the prior planning may have tried to establish variable bindings for the 

Board operator using the subway as the location from which the person boarded the 

plane instead of the airport. The previous search had to backup from this choice, 

because the plane cannot use the subway as a destination for the Fly operator. To 

adapt this reasoning to the new situation, the planner can simply check the state to see 

if the plane is currently located in the subway, otherwise it can automatically avoid 

the unnecessary search by using an airport as a binding for where the boarding action 

takes place, not a subway. 

 

Prodigy/Analogy typifies all derivational CBP systems including derSNLP (Ihrig 

& Kambhampati, 1994) and CAPlan/CbC (Muñoz-Avila & Weberskirch, 1996) 

among others. Another system in this category is CLAM (Melis & Whittle, 1999). 

CLAM constructs analogy-driven proof plans. Derivational analogy is used to 

reformulate the source plans and to apply case replay. CLAM uses first-principles to 

complete the unsolved goals. Other systems in this category include Paris and HICAP. 

Paris (Bergmann & Wilke, 1995) also uses first-principles planning. The 

distinguishing characteristic of Paris is that it stores and reuses abstract plans. 

Abstract plans use actions with aggregate granularity. So for example abstract blocks-

world plans may refer to piles of blocks rather than individual blocks as with concrete 

plans. Another system here is HICAP, which is an interactive hierarchical CBP 

system (Muñoz-Avila, Paulokat & Wess, 1999). Similar to adaptation by derivational 

analogy, HICAP extends retrieved cases by using first-principles planning, although 

its cases are plan fragments rather than derivational traces. All these systems use first-

principles to adapt the plan obtained during replay. But systems also exist using 

domain-specific plan adaptation rules (e.g., (Napoli & Lieber, 1994)). This highlights 

a common misconception, because derivational systems do not all require domain-

independence. 
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CHEF, the first CBP system, implemented transformational analogy. This category  

also includes DIAL (Leake, Kinley, & Wilson, 1996). DIAL performs plan adaptation 

in two steps: first, it removes sources of conflicts in the case relative to the current 

situation, and second it uses transformational operators to transform the case. SPA 

(Hanks & Weld, 1995) also implements transformational analogy. However, what 

distinguishes SPA from other transformational systems is that it is domain 

independent. That is, the transformational operators are independent of any particular 

domain. SPA’s adaptation algorithm is provably correct. In this category we include 

also the Priar system (Kambhampati & Hendler, 1992). Priar is a hierarchical case-

based planning system that laso implements domain-independent transformation 

rules. This category is particularly interesting because it is sometimes believed that 

transformational analogy systems are domain-specific. SPA and Priar show that this is 

not true. 

 

Derivational analogy is frequently preferred to transformational analogy, because it 

reduces the search space by pruning fruitless past choices and because it substitutes 

revalidation of past rationale for search in the plan adaptation space. The technique is 

appropriate when most past plans require extensive adaptation and when the cost of 

saving rationale is low. However, it presupposes that the derivational traces exist. 

When this is not possible, transformational analogy is the better choice, because the 

plans themselves can be used for adaptation. 

4. Case Role 

Cases perform three roles; they can provide domain knowledge, search control 

knowledge, or both. For example, the plan depicted in Figure 1 might be the only 

knowledge that we have for going from Cambridge to San Jose. Here the case 

provides domain knowledge. In a different situation, we may have general knowledge 

about how to generate plans, but the planner may not know the right ordering between 

steps. Here the particular step ordering in the plan represents search control 

knowledge. 

 

When cases provide domain knowledge, adaptation is typically transformational. In 

this situation, transformational operators will allow the system to generate new 

knowledge about the domain by transforming the existing cases. The CHEF system 

represents this category.  

 

When cases provide control knowledge, systems frequently perform derivational 

analogy. Planners such as Prodigy/Analogy, Paris, and derSNLP are in this role 

category, because they have a complete domain theory that enables plans generated 

from scratch. The role of the cases for these systems is to provide meta-knowledge 

about how to use the domain theory to produce such plans. Interestingly, although 

both Priar and SPA perform transformational adaptation, their cases can also be seen 

as providing control knowledge, because both systems assume that a complete domain 

theory exists, and therefore, could generate solutions when cases are available.  



 7 

 

HICAP, like systems in the previous category, uses a first principles planner to 

extend/adapt the partial solutions obtained from the cases. However cases in HICAP 

provide knowledge by filling gaps in its incomplete domain theories. These cases can 

be seen as instances of an unknown complete domain theory. Under this perspective, 

cases may indicate alternative paths to a solution using the unknown domain theory. 

Cases therefore provide search control knowledge.  

 

In summary, the scope of the available domain theory determines the case role. 

Without a domain theory, cases necessarily fill the role of providing domain 

knowledge. With a complete domain theory, cases fill the role of providing search 

control knowledge. Finally, if a domain theory only models the domain partially, 

cases can fill both roles of bridging knowledge gaps and providing search control. 

5. Case Contents 

There are two basic kinds of content that any case includes: indexing and 

adaptation content. The adaptation content typically consists of the solution, which for 

CBP corresponds to a plan. Systems such as SPA, Priar, and CHEF perform 

transformational analogy and obviously need to store the solution plans. Other CBP 

systems (e.g., HICAP, Paris) that do not use transformational analogy also include 

plans. The travel example of Figure 1 illustrates one such a plan that can be stored in 

the case. 

 

CBP systems that perform derivational adaptation include the derivational trace in 

addition to the plan itself. Examples are Prodigy/Analogy, CAPlan/CbC, and 

derSNLP. Dial’s memory search cases also fit into this category, because they include 

the trace of the search process. The derivational trace for a travel plan shown on the 

right side of Figure 2 is stored as part of the case for derivational analogy systems. 

 

A third category is CBP systems that include adaptation information in their cases. 

This includes Dial’s adaptation cases, which include information for applying 

transformations. Prodigy/Analogy and CAPlan/CbC are also in this category because 

derivational traces contain annotations, which are used during the memory search 

process to prune the search space. Not all CBP systems that perform derivational 

analogy have such annotations (e.g., derSNLP). An example of such annotation is 

illustrated in Figure 1, where the step Take shuttle to San Jose is deleted form the 

plan. Table 3 summarizes this classification.   

 

These three categories of case adaptation content, namely, the plan, the trace, and 

adaptation information typically require increasing levels of knowledge engineering 

effort. Plans have the lowest knowledge engineering effort, as they are presumably 

readily available if the decision was to use a CBR approach to problem-solving. 

Derivational traces require an additional knowledge engineering effort to obtain the 

sequence of decisions that led to a plan. This can be manually done as in the ELM 
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system, where a domain expert enters the traces that can lead to pieces of LISP code. 

Alternatively, derivational traces can be generated automatically as in 

Prodigy/Analogy. However, this requires a domain theory and the corresponding 

automated planner that can reason with this theory. Having this domain theory 

available can require a significant knowledge engineering effort. Additional 

adaptation information can be added manually as in the DIAL system, or 

automatically as in Prodigy/Analogy, but for the latter a complete domain theory is 

once again required. 

5. Case Merging 

CBR often assumes a filter mechanism to select a single best case from a retrieval 

set. Yet for planning, a casebase may not contain any one solution for a novel goal 

set. Trivially a case may contain a plan to achieve a goal, G1, and a disjoint plan to 

achieve another goal, G2, such that neither plan is sufficient to cover the new problem 

of achieving G1 and G2. In such situations, a planner should retrieve both of the old 

cases and plan adaptation should be able to merge or combine the two solutions. In 

the travel example, the plan depicted in Figure 1 could be the result of merging two 

cases: one indicating how to travel from Cambridge to the airport in San Francisco, 

and the second indicating how to travel form the airport in San Francisco to the hotel. 

 

When the goals that different cases achieve are independent, the manner in which a 

planner performs the merge matters little. CBP can adapt either plan first and then 

adapt the second, concatenating the result as the combined solution. A sequential 

merge strategy simply performs the adaptation in the retrieval order of the cases 

(Veloso, 1997). However step order is often crucial to assure correct plan behavior, 

especially when goals interact.  

 

Veloso (1997) identified two additional merge strategies. They are the ordering-

based interleaved strategy and the choice-and-ordering-based interleave strategy. 

Both strategies begin the merge with an arbitrary case in the retrieval set. The former 

strategy performs plan adaptation by replaying the plan derivation until it encounters a 

step ordering constraint. It then reasons about the relative ordering of steps in the 

current plan and in alternative cases. New steps are added and old steps deleted 

according to any single-case adaptation policy. The latter strategy takes into 

consideration operator choice as well as step ordering to determine the next partial 

case to use for adaptation. The Prodigy/Analogy system implements these merge 

strategies. All other systems choose a single best case from among the candidates 

returned during case retrieval and so need not perform case merging. 

 

Case merging is most appropriate when planners must solve conjunctive sets of 

goals and when distinct subplans exist in the plan library that can be combined in 

multiple ways to solve different goals. Under these conditions few goal conjuncts will 

be solvable using a single case. Rather than replan large portions from first principles, 

the retrieval component should retrieve a set of cases that together cover the problem 
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description. Merging these cases will prove more efficient than planning from scratch, 

if the subplans minimally interact. 

6. Representation Formalism 

Independent from the actual contents of a case is the choice of the formalism used 

to represent those cases. For the purposes of this discussion we concentrate on the 

following first-principles planning techniques, which determine the case 

representation: 

 

• Total order planning. This is one of the earliest forms of planning. At 

any point in the planning process the system has a partial solution that 

consists of a totally ordered plan. An important advantage of this form 

of planning, which has been “re-discovered” recently, is that, by 

dynamically maintaining the state, better search control rules can be 

written that increase planning efficiency (Vidal & Regnier, 1999). The 

main drawback is that they cannot easily generate solution plans that 

require interleaved sub-plans. Figure 3 illustrates a total order plan. 

 

Figure 3 Total order representation of travel plan 

 

• Partial order planning. This form of planning resulted in part as a way 

to handle interleaving between sub-plans. At any point of time a plan is 

maintained that is partially ordered. Partial order planning does not 

commit to any orderings unless it is necessary to solve conflicts. Their 

main disadvantage is that they can be very inefficient. Figure 4 

illustrates the travel plan from Figure 1 as a partial order plan assuming 

only that they money has to be acquired sometime before arriving at the 

hotel. 
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Figure 4 Partial order representation of travel plan 

 

• Hierarchical/Abstract planning. Hierarchical planning is based on the 

idea of refining complex tasks into simpler ones. Abstract planning 

follows the same idea, except that the language used for expressing tasks 

at the higher levels of the abstraction may differ from the one used at the 

lower levels (Bergmann & Wilke, 1995). An important advantage of 

hierarchical planning is that it has been proven to be strictly more 

expressive than STRIPS planning, which has been used in both total and 

partial order planning systems (Erol, Hendler, & Nau, 1999). A 

disadvantage of hierarchical planning is that it complicates search 

control. 

 

Figure 5 shows a hierarchical plan in the travel domain we  

have been discussing. The top level task is to travel  

from Cambridge to San Francisco. This task is decomposed  

intro two subtasks: Take enough money and do the travel. The travel 

itself is decomposed into three subtasks: travel from home to Logan, Fly  

from Logan to SFO, the San Francisco airport, and  

travel from SFO to the hotel. Each of these are also decomposed until 

primitive operators appear at leaves such as boarding the plane. 
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Figure 5 Hierarchical representation of travel plan 

 

• Planning graphs. This is one of the newest forms of planning. A so-

called planning graph is dynamically constructed that contains 

alternative levels of atom nodes and action nodes. Each atom node at 

level i represent several possible states at time step i. Action nodes at 

level i represent actions transitioning states from level i to states at level 

i+1. At each planning cycle a new level is added and a test is performed 

to determine whether a solution plan is contained in the current planning 

graph (Blum & Furst, 1997). Planning graphs have been shown to be 

more efficient than other forms of STRIPS planning but encoding 

domain-specific control rules into graphs is difficult. 

 

As shown in Table 1, CBP systems have been proposed using each of these 

planning techniques and even combinations of those techniques such as in Paris and 

Priar. This table lists a new case-based planner named CPG (Gerevi & Serina, 2000) 

that combines both transformation and memory search. CPG’s transformation process 

involves simply removing actions that are not applicable in the new situation. The 

bulk of its adaptation effort is done during memory search, where it identifies 

inconsistencies and revises the plan.  
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The kind of planner to use in a given situation remains an open question, and 

contradicting answers have been given at various times. Total-order planning was the 

earliest form of automated planning. Then, partial-order planning was proposed and 

for some time was believed to be the best performing approach. Graph-based planning 

and other so-called neo-classical planners followed with performance that improved 

upon partial order planners. However, recently there has also been a resurgence of 

total order planners, because they enable the definition of search control heuristics 

that can result in significant performance. Hierarchical planners can encode search 

control knowledge in their domain theories that can led to good running-time 

performance. However in addition to the standard collection of operators, designing a 

hierarchical domain description also requires a set of methods indicating how to 

generate hierarchies.  

 

Table 1. Classification of the representation formalism. 

Planner Total 

Order 

Partial 

Order 

Hierarchical Plan 

Graph 

Prodigy/Analogy1 �    

CAPlan/CbC  �   

Paris �  �  

Priar  � �  

CPG    � 

7. Complexity of Plan Adaptation 

Nebel & Koehler (1995) proved that plan adaptation can be harder than first-

principles planning. This result is frequently stated as evidence that plan adaptation is 

an inadequate problem solving strategy. However, a closer look at their proof reveals 

an assumption that does not hold for many CBP systems. It assumes that the new 

solution is obtained by minimally modifying the retrieved plan. The authors refer to 

this second assumption as a conservative approach.  

 

Nebel and Koehler’s result on plan adaptation does not hold for CBP systems 

whose plan adaptation strategy is not guaranteed to be non-conservative. In particular, 

adaptation by derivational replay, as implemented in Prodigy/Analogy, derSNLP, or 

CAPlan/CbC, is in the worst case as hard as planning from first principles with their 

respective first-principles planning systems (Au, Muñoz-Avila, & Nau, 2002). This 

follows from the simple observation that, during a case replay step, a CBP system acts 

as an oracle for the underlying first-principles planning system; among the possible 

choices that the underlying planning system can take, the oracle (i.e., the current step 

in the derivational trace) chooses one.  

                                                           
1 Prodigy4.0, the first-principles planning component of Prodigy/Analogy, can generate partial 

plans as well as totally ordered plans. However the system cannot adapt partially ordered 

plans. 
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A more interesting question is that of average-case complexity. No theoretical 

analysis of average-case performance exists, because no clear definition exists for an 

“average case”; it depends largely on the problem being solved and on how the 

planning algorithm decides what path to search next. For example, even if 

derivational replay reduces the size of a planning algorithm’s search space, it is 

conceivable that for some planning problems and some planning algorithms, the 

algorithm might search a larger part of this reduced search space than it would have 

searched if derivational replay had not been used. A similar point is made for SPA 

system, which as explained before implements transformational analogy. For such 

reasons, average-case analyses of planning algorithms are typically done 

experimentally rather than theoretically. In all of the experimental studies that we 

know of, derivational replay has run significantly on the average faster than planning 

from scratch (Veloso & Carbonell, 1993; Ihrig & Kambhampati, 1996, Muñoz-Avila 

& Weberskirch, 1996). Recently, similar performance gains were reported for an 

algorithm based on transformational analogy (van der Krogt & de Weerdt, 2005). 

 

8. Future Research Directions 

As part of our study we have identified some issues that have not been addressed 

sufficiently and that point toward new directions for research. Note that much current 

research related to case adaptation in the CBR community is known by other names or 

associated with related research topics. 

 

• Interactivity. Some initial work has been done to enable user interactions 

during plan adaptation. In Muñoz-Avila (1998), the user interactions are 

limited to deleting actions after the plan is generated. In such situations, the 

underlying CBP procedure generates alternative plans, if possible. In Cox & 

Veloso (1997), the user can make planning choices in the plan generation 

process that Prodigy 4.0 normally performs, but not in the derivational 

analogy process that Prodigy/Analogy performs. Research is needed to 

address the following outstanding issues: (1) The user can modify the plan 

during plan adaptation, and (2) the user can dynamically modify the facts 

defining the current situation. Both of these require addressing user interface 

problems such as how to present intermediate planning states. Cox (2004) 

reports preliminary progress in these issues.  

• Information gathering. Planning for information gathering is a frequent 

research topic, in particular in connection with search over the Web. Current 

research concentrates primarily on plan generation. Algorithms need to be 

developed to adapt information gathering plans to solve new search 

problems. 

• Inference procedures. Whereas many CBP systems have been built on top 

of first-principles planners, other inference techniques (e.g., constraint 

satisfaction or genetic algorithms) have rarely been used. Constraint 
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satisfaction techniques could be useful for dynamic re-planning, in 

particular for interactive case adaptation, where the effects of the user 

interactions can be propagated to evaluate how they affect the current plan. 

• Plan recognition. Adaptation can occur when using past cases to 

understand an observed plan execution. Plan recognition is the task of 

finding a match in a case library that corresponds to the current observations 

and using it to predict the subsequent behavior of an agent. When search 

fails to find an identical match, a case-based plan recognition system can 

choose a close one and adapt it to predict the behavior (Cox & Kerkez, 

2006). Yet many undecided issues remain with such novel techniques such 

as how to control the combinatorics of adapted operator variable bindings. 

• Quality issues. Planning from scratch under quality constraints is known to 

be a difficult problem (Perez & Carbonell, 1994). So far no work has been 

done that considers plan quality during plan adaptation. In the context of the 

travel planning example that we have used in this paper, the various 

planning steps might have different costs. Depending on how the plan is 

modified, plans with different costs may be generated for the same problem. 

The problem might become complicated if conflicting quality criteria must 

be considered. For example, a plane is faster but more expensive than taking 

the train.  

9. Concluding Remarks 

In this paper we present an analysis of the state of the art for plan adaptation that 

transcends the traditional dichotomy between transformational and derivational 

analogy. In addition to this dimension, we categorize case-based planning systems 

among five other dimensions: the role of the case, the contents of the case, the use of 

case merging, the representation formalism, and the computational complexity.  

 

We first clarified a misconception that sometimes arises, namely, that 

transformational analogy systems are all domains-specific whereas derivational 

analogy systems are domain-independent. We provide examples of domain-specific 

systems that perform derivational analogy and domain-independent systems that 

perform transformational analogy. 

 

We also observed that when cases provide domain knowledge, they frequently 

perform transformational adaptation, and when cases provide control knowledge they 

frequently perform derivational adaptation. However, we note that SPA performs 

transformational adaptation even though cases provide control knowledge. We also 

cite examples of systems in which cases provide domain knowledge but the bulk of 

the effort is expended during memory search. 

 

We identified three kinds of content for cases used by CBP systems: plans, traces, 

and adaptation information. Plans are contained in several CBP systems, including 

those performing transformational adaptation. Traces are contained in CBP systems 
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performing derivational analogy. Some systems also include adaptation information to 

reduce the search effort. 

 

CBP systems cover a wide spectrum of representation formalisms, namely, totally 

ordered plans, partially ordered plans, hierarchical and abstract plans, and planning 

graphs. Furthermore, some systems combine representations such as hierarchical and 

totally ordered plans.  

 

Finally we examined results on the worst-case complexity of plan adaptation and 

observed that conservative adaptation is a rather restrictive requirement. We point to 

other results showing that plan adaptation with derivational analogy is not 

conservative. We also point out that a more interesting analysis would be average-

case complexity. However this remains a significant open problem. 
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