
 1

Case-Based Plan Adaptation: An Analysis and Review

Héctor Muñoz-Avila1 and Michael T. Cox2

1Department of Computer Science and Engineering

Lehigh University

Bethlehem, PA 18015, USA
munoz@cse.lehigh.edu

2Intelligent Computing

BBN Technologies

Cambridge, MA 02138
mcox@bbn.com

Abstract: This article analyzes the current state of case-based plan adaptation

research. Rather than perform an exhaustive literature review, we identify six

dimensions to classify the various contributions in the field and to analyze
current issues and trends. These dimensions are: the type of adaptation, the role

of the case, the case content, the use of case merging, the representation

formalism, and the computational complexity of the algorithm. Our analysis

clarifies some common misconceptions about plan adaptation and proposes a set

of future research directions.

1. Introduction

Case-based planning (CBP) is a problem-solving method that uses a library of

cases, where a case associates a past problem and goal description with a plan that

solves the problem by achieving the goal (Hammond, 1989). Given a new problem,

CBP systems retrieve one or more cases whose problem is similar to the current one

and adapt the plans contained in the retrieved cases to achieve the new goal. Case

retrieval involves intelligent search of the case library to find cases that are adequate

to solve the new problem. The result of the plan adaptation process is a plan that

includes parts derived from the cases (e.g., plan steps copied form the cases) and parts

derived by other means (e.g., first-principles planning). Although important

relationships exist between the technology that measures similarity during case

retrieval to assure adaptable solutions and the technology that performs effective

adaptation during case reuse (e.g., Lopez de Mántaras et al., 2006), here we

concentrate the analysis upon the adaptation process itself.

Plan adaptation is simply any problem-solving method that reuses an existing plan

to solve a new problem. As it was originally conceived in the CHEF system, the plan

was taken as a whole and modified by using domain-specific adaptation rules

indicating how to modify parts of the plan (Hammond, 1989; 1990). Prodigy/Analogy

(Veloso & Carbonell, 1993) and Priar (Kambhampati & Hendler, 1992) were the firsts

systems to introduce domain-independent plan adaptation. It is interesting to observe

that over the years, when a new planning paradigm was introduced, a domain-

 2

independent adaptation algorithm will follow it showing improvements in problem-

solving time over the new planning paradigm by borrowing some of its representation

and/or inferencing techniques. Such was the case with DerSNLP (Ihrig &

Kambhampati, 1994) and CAPlan/CbC (Muñoz-Avila & Weberskirch, 1996), which

were built on a partial-order planner, GPG (Gereveni, & Serenia, 2000), which was

built on a planner using planning graphs, and, more recently, with an adaptation

algorithm reported by van der Krogt & de Weerdt (2005), which was built on a

planner incorporating recent advancements in planning literature such as distance

based heuristics and reachability analysis. These plan adaptation algorithms are

included in a wide range of application areas such as manufacturing (Costas &

Kashyap, 1993), emergency management (Avesani, Perini, & Ricci, 1993), military

planning (Veloso, Mulvehill & Cox, 1997), route planning (Haigh, Shewchuk &

Veloso, 1997), academic course scheduling (Grech & Main, 2004), and medicine

(Salem, Nagaty, & El Bagoury, 2003; Schmidt, Vorobieva, & Gierl , 2003).

Focusing on plan adaptation will prove valuable, because breakthroughs in this

topic impact more than just case-based reasoning (CBR). For example, derivational

analogy, first studied in the context of plan adaptation, is used in tutoring systems

(Weber & Schult, 1998). But most importantly, many important technical issues

remain to be studied, and key open questions exist that have no complete answers. A

new analysis holds the promise to place plan adaptation in a clearer light so that new

answers might be forthcoming.

Although we cite several CBP systems, we will not conduct an exhaustive

literature review (rather see Cox, Muñoz-Avila, & Bergmann, 2006 and Spalazzi,

2001). Instead we will analyze current research according to six technical dimensions.

The goals are to give the reader a clear understanding of the main issues regarding

plan adaptation and to point out those open questions demanding further investigation.

Therefore we propose the following dimensions.

• Adaptation type. Refers to the type of plan adaptation used:

transformational or derivational analogy.

• Case role. Indicates whether the cases contribute domain knowledge and/or
control knowledge.

• Case contents. Characterizes the contents of the case used during adaptation.
Although this typically corresponds to the solution plan, we will show that

other contents have been used.

• Case merging. Refers to whether one or multiple cases are used to solve the

new problem. When more than a single case forms a solution, alternative

methods exist to merge the cases.

• Representation formalism. Refers to the symbolic representation of the

case contents. For example, some plans use a hierarchical representation

while others use partially ordered plans.

• Computational complexity. Provides additional perspective on formal

results concerning plan adaptation complexity. We describe their impact

on transformational and derivational adaptation methods.

 3

The rest of the article continues as follows. Section 2 presents a case study to

illustrate the adaptation formula and to discuss the formula’s relation with

transformational and derivational adaptation. This section also analyzes some case-

based planners according to our first dimension (i.e., adaptation type). Sections 3-7

present each of the remaining five dimensions and analyze them according to the

adaptation formula. Finally, Sections 8 and 9 discuss future research and conclude.

Before continuing, we note that more than eighty publications exist on the subject of

CBP. Instead of reviewing all of them, our study presents a framework to categorize

them.

2. Abstract Example

A planning problem typically requires achieving a set of specific goals. For

example, if we are preparing a trip, we may specify the destination location and how

much money we wish to retain. The problem also specifies conditions such as known

routes between locations, the starting location, the available means of transportation

(e.g., bus, car, airplane) and costs of transportation. A planning solution is a sequence

of steps achieving the goals under the given conditions. In our travel scenario, a plan

may first take a taxi from the starting destination to a local airport and then take a

flight to another location. The plan will continue until the last step reaches the

destination.

Solving a problem by plan adaptation involves selecting one or more existing plans

and then modifying them to achieve the current goals. In the trip scenario, existing

plans will indicate how passengers transit between various locations and the costs of

these trips. Therefore, a generated plan will contain a route that is divided in various

segments. Some of these segments may be derived from cases and other segments

may be derived by other means (such as first-principles planning). Segments derived

from cases may simply be copied as a whole without changes from the case or may be

copied partially. For example, the original case was going from Cambridge to San

Jose, but during the adaptation we only used an intermediate sub-segment from

Cambridge to San Francisco, or the plan may have been transformed after copying it.

So for example we may have modified the transportation means (e.g., we took the

subway instead of the taxi, because it is cheaper). Additionally because we are low on

money, we add a step to visit a bank machine. Figure 1 sketches a resulting plan.

 4

Figure 1 A plan obtained by adaptation.

3. Adaptation Type

Case adaptation can be classified into two basic categories: transformational and

derivational analogy. In transformational analogy, cases contain the solution plans for

previous problems. These plans are reused in the new situation by making suitable

changes where appropriate (Carbonell, 1983; van der Krogt & de Weerdt, 2005).

Transformation operators are knowledge constructs prescribing how to transform

existing plans into new ones. In the CBP system CHEF, for example, a

transformational operator will indicate that raspberries will be a good substitute for

strawberries when is the latter are not available. Therefore, applying this operator to a

recipe (i.e., cooking plan) for strawberry soufflé will result in a raspberry soufflé

recipe. Transformational analogy does not consider how the reused plan was

originally obtained. Instead, it examines only the plan itself. In contrast, cases in

derivational analogy contain a derivational trace rather than a plan as in

transformational analogy. That is, the trace is a sequence of computational steps a

planner followed to generate a plan. Derivational analogy provides more flexibility,

because the planner can replay the derivational trace relative to the new problem. That

is, no transformational operators are required. However, derivational analogy does

requires the derivational trace to be known.

Figure 2 contrasts a plan and a derivational trace. The left side of the figure shows

a simple plan in the logistics transportation domain (Veloso, 1994). The middle

section lists a possible derivational trace for the plan. This trace corresponds to the

one that a partial order case-based planner (e.g., CAPlan/CbC (Muñoz-Avila, 2001),

derSNLP (Ihrig & Kambhampati, 1994)) would have generated (see Section 5 for a

description of partial order planners). The right side illustrates a portion of the

rationale for the derivation (as adapted from Veloso & Carbonell, 1993, using

Prodigy/Analogy). Rather than adapting the plan directly, the derivation and rationale

allows the planner to reuse portions of the prior search.

Fly to
San
Fran

Get
money
from
machine

Take
shuttle
to San
Jose

add step delete step substitute

parameter

Take
subway

to
Logan

Take
taxi to

hotel

 5

Figure 2 Example of a solution plan (left) and a derivational trace (right)

generating the plan.

For example the prior planning may have tried to establish variable bindings for the

Board operator using the subway as the location from which the person boarded the

plane instead of the airport. The previous search had to backup from this choice,

because the plane cannot use the subway as a destination for the Fly operator. To

adapt this reasoning to the new situation, the planner can simply check the state to see

if the plane is currently located in the subway, otherwise it can automatically avoid

the unnecessary search by using an airport as a binding for where the boarding action

takes place, not a subway.

Prodigy/Analogy typifies all derivational CBP systems including derSNLP (Ihrig

& Kambhampati, 1994) and CAPlan/CbC (Muñoz-Avila & Weberskirch, 1996)

among others. Another system in this category is CLAM (Melis & Whittle, 1999).

CLAM constructs analogy-driven proof plans. Derivational analogy is used to

reformulate the source plans and to apply case replay. CLAM uses first-principles to

complete the unsolved goals. Other systems in this category include Paris and HICAP.

Paris (Bergmann & Wilke, 1995) also uses first-principles planning. The

distinguishing characteristic of Paris is that it stores and reuses abstract plans.

Abstract plans use actions with aggregate granularity. So for example abstract blocks-

world plans may refer to piles of blocks rather than individual blocks as with concrete

plans. Another system here is HICAP, which is an interactive hierarchical CBP

system (Muñoz-Avila, Paulokat & Wess, 1999). Similar to adaptation by derivational

analogy, HICAP extends retrieved cases by using first-principles planning, although

its cases are plan fragments rather than derivational traces. All these systems use first-

principles to adapt the plan obtained during replay. But systems also exist using

domain-specific plan adaptation rules (e.g., (Napoli & Lieber, 1994)). This highlights

a common misconception, because derivational systems do not all require domain-

independence.

Board(p1,plane1,Logan)

Fly(plane1,Logan, SFO)

Deplane(p1,plane1,SFO)

1. Create action, a1, flying

plane1 from Logan to SFO

2. Create action, a2, boarding

passenger p1 into plane1

3. Create action, a3, deplaning

p1 from plane1

4. Order a2 before a1

5. Order a1 before a3

Rationale at

step 1:

:alt-pruned

Board
(p,pl,subw) no
ops for state

at(pl,subw)

 6

CHEF, the first CBP system, implemented transformational analogy. This category

also includes DIAL (Leake, Kinley, & Wilson, 1996). DIAL performs plan adaptation

in two steps: first, it removes sources of conflicts in the case relative to the current

situation, and second it uses transformational operators to transform the case. SPA

(Hanks & Weld, 1995) also implements transformational analogy. However, what

distinguishes SPA from other transformational systems is that it is domain

independent. That is, the transformational operators are independent of any particular

domain. SPA’s adaptation algorithm is provably correct. In this category we include

also the Priar system (Kambhampati & Hendler, 1992). Priar is a hierarchical case-

based planning system that laso implements domain-independent transformation

rules. This category is particularly interesting because it is sometimes believed that

transformational analogy systems are domain-specific. SPA and Priar show that this is

not true.

Derivational analogy is frequently preferred to transformational analogy, because it

reduces the search space by pruning fruitless past choices and because it substitutes

revalidation of past rationale for search in the plan adaptation space. The technique is

appropriate when most past plans require extensive adaptation and when the cost of

saving rationale is low. However, it presupposes that the derivational traces exist.

When this is not possible, transformational analogy is the better choice, because the

plans themselves can be used for adaptation.

4. Case Role

Cases perform three roles; they can provide domain knowledge, search control

knowledge, or both. For example, the plan depicted in Figure 1 might be the only

knowledge that we have for going from Cambridge to San Jose. Here the case

provides domain knowledge. In a different situation, we may have general knowledge

about how to generate plans, but the planner may not know the right ordering between

steps. Here the particular step ordering in the plan represents search control

knowledge.

When cases provide domain knowledge, adaptation is typically transformational. In

this situation, transformational operators will allow the system to generate new

knowledge about the domain by transforming the existing cases. The CHEF system

represents this category.

When cases provide control knowledge, systems frequently perform derivational

analogy. Planners such as Prodigy/Analogy, Paris, and derSNLP are in this role

category, because they have a complete domain theory that enables plans generated

from scratch. The role of the cases for these systems is to provide meta-knowledge

about how to use the domain theory to produce such plans. Interestingly, although

both Priar and SPA perform transformational adaptation, their cases can also be seen

as providing control knowledge, because both systems assume that a complete domain

theory exists, and therefore, could generate solutions when cases are available.

 7

HICAP, like systems in the previous category, uses a first principles planner to

extend/adapt the partial solutions obtained from the cases. However cases in HICAP

provide knowledge by filling gaps in its incomplete domain theories. These cases can

be seen as instances of an unknown complete domain theory. Under this perspective,

cases may indicate alternative paths to a solution using the unknown domain theory.

Cases therefore provide search control knowledge.

In summary, the scope of the available domain theory determines the case role.

Without a domain theory, cases necessarily fill the role of providing domain

knowledge. With a complete domain theory, cases fill the role of providing search

control knowledge. Finally, if a domain theory only models the domain partially,

cases can fill both roles of bridging knowledge gaps and providing search control.

5. Case Contents

There are two basic kinds of content that any case includes: indexing and

adaptation content. The adaptation content typically consists of the solution, which for

CBP corresponds to a plan. Systems such as SPA, Priar, and CHEF perform

transformational analogy and obviously need to store the solution plans. Other CBP

systems (e.g., HICAP, Paris) that do not use transformational analogy also include

plans. The travel example of Figure 1 illustrates one such a plan that can be stored in

the case.

CBP systems that perform derivational adaptation include the derivational trace in

addition to the plan itself. Examples are Prodigy/Analogy, CAPlan/CbC, and

derSNLP. Dial’s memory search cases also fit into this category, because they include

the trace of the search process. The derivational trace for a travel plan shown on the

right side of Figure 2 is stored as part of the case for derivational analogy systems.

A third category is CBP systems that include adaptation information in their cases.

This includes Dial’s adaptation cases, which include information for applying

transformations. Prodigy/Analogy and CAPlan/CbC are also in this category because

derivational traces contain annotations, which are used during the memory search

process to prune the search space. Not all CBP systems that perform derivational

analogy have such annotations (e.g., derSNLP). An example of such annotation is

illustrated in Figure 1, where the step Take shuttle to San Jose is deleted form the

plan. Table 3 summarizes this classification.

These three categories of case adaptation content, namely, the plan, the trace, and

adaptation information typically require increasing levels of knowledge engineering

effort. Plans have the lowest knowledge engineering effort, as they are presumably

readily available if the decision was to use a CBR approach to problem-solving.

Derivational traces require an additional knowledge engineering effort to obtain the

sequence of decisions that led to a plan. This can be manually done as in the ELM

 8

system, where a domain expert enters the traces that can lead to pieces of LISP code.

Alternatively, derivational traces can be generated automatically as in

Prodigy/Analogy. However, this requires a domain theory and the corresponding

automated planner that can reason with this theory. Having this domain theory

available can require a significant knowledge engineering effort. Additional

adaptation information can be added manually as in the DIAL system, or

automatically as in Prodigy/Analogy, but for the latter a complete domain theory is

once again required.

5. Case Merging

CBR often assumes a filter mechanism to select a single best case from a retrieval

set. Yet for planning, a casebase may not contain any one solution for a novel goal

set. Trivially a case may contain a plan to achieve a goal, G1, and a disjoint plan to

achieve another goal, G2, such that neither plan is sufficient to cover the new problem

of achieving G1 and G2. In such situations, a planner should retrieve both of the old

cases and plan adaptation should be able to merge or combine the two solutions. In

the travel example, the plan depicted in Figure 1 could be the result of merging two

cases: one indicating how to travel from Cambridge to the airport in San Francisco,

and the second indicating how to travel form the airport in San Francisco to the hotel.

When the goals that different cases achieve are independent, the manner in which a

planner performs the merge matters little. CBP can adapt either plan first and then

adapt the second, concatenating the result as the combined solution. A sequential

merge strategy simply performs the adaptation in the retrieval order of the cases

(Veloso, 1997). However step order is often crucial to assure correct plan behavior,

especially when goals interact.

Veloso (1997) identified two additional merge strategies. They are the ordering-

based interleaved strategy and the choice-and-ordering-based interleave strategy.

Both strategies begin the merge with an arbitrary case in the retrieval set. The former

strategy performs plan adaptation by replaying the plan derivation until it encounters a

step ordering constraint. It then reasons about the relative ordering of steps in the

current plan and in alternative cases. New steps are added and old steps deleted

according to any single-case adaptation policy. The latter strategy takes into

consideration operator choice as well as step ordering to determine the next partial

case to use for adaptation. The Prodigy/Analogy system implements these merge

strategies. All other systems choose a single best case from among the candidates

returned during case retrieval and so need not perform case merging.

Case merging is most appropriate when planners must solve conjunctive sets of

goals and when distinct subplans exist in the plan library that can be combined in

multiple ways to solve different goals. Under these conditions few goal conjuncts will

be solvable using a single case. Rather than replan large portions from first principles,

the retrieval component should retrieve a set of cases that together cover the problem

 9

description. Merging these cases will prove more efficient than planning from scratch,

if the subplans minimally interact.

6. Representation Formalism

Independent from the actual contents of a case is the choice of the formalism used

to represent those cases. For the purposes of this discussion we concentrate on the

following first-principles planning techniques, which determine the case

representation:

• Total order planning. This is one of the earliest forms of planning. At

any point in the planning process the system has a partial solution that

consists of a totally ordered plan. An important advantage of this form

of planning, which has been “re-discovered” recently, is that, by

dynamically maintaining the state, better search control rules can be

written that increase planning efficiency (Vidal & Regnier, 1999). The

main drawback is that they cannot easily generate solution plans that

require interleaved sub-plans. Figure 3 illustrates a total order plan.

Figure 3 Total order representation of travel plan

• Partial order planning. This form of planning resulted in part as a way

to handle interleaving between sub-plans. At any point of time a plan is

maintained that is partially ordered. Partial order planning does not

commit to any orderings unless it is necessary to solve conflicts. Their

main disadvantage is that they can be very inefficient. Figure 4

illustrates the travel plan from Figure 1 as a partial order plan assuming

only that they money has to be acquired sometime before arriving at the

hotel.

Fly to
San
Fran

Get
money
from
machine

Take
taxi to
hotel

Take
subway
to
Logan

 10

Figure 4 Partial order representation of travel plan

• Hierarchical/Abstract planning. Hierarchical planning is based on the

idea of refining complex tasks into simpler ones. Abstract planning

follows the same idea, except that the language used for expressing tasks

at the higher levels of the abstraction may differ from the one used at the

lower levels (Bergmann & Wilke, 1995). An important advantage of

hierarchical planning is that it has been proven to be strictly more

expressive than STRIPS planning, which has been used in both total and

partial order planning systems (Erol, Hendler, & Nau, 1999). A

disadvantage of hierarchical planning is that it complicates search

control.

Figure 5 shows a hierarchical plan in the travel domain we

have been discussing. The top level task is to travel

from Cambridge to San Francisco. This task is decomposed

intro two subtasks: Take enough money and do the travel. The travel

itself is decomposed into three subtasks: travel from home to Logan, Fly

from Logan to SFO, the San Francisco airport, and

travel from SFO to the hotel. Each of these are also decomposed until

primitive operators appear at leaves such as boarding the plane.

Start

Get
money
from

machine

Take
subway
to

Logan

Fly to
San
Fran

Take
taxi to
hotel

Finish

 11

Figure 5 Hierarchical representation of travel plan

• Planning graphs. This is one of the newest forms of planning. A so-

called planning graph is dynamically constructed that contains

alternative levels of atom nodes and action nodes. Each atom node at

level i represent several possible states at time step i. Action nodes at

level i represent actions transitioning states from level i to states at level

i+1. At each planning cycle a new level is added and a test is performed

to determine whether a solution plan is contained in the current planning

graph (Blum & Furst, 1997). Planning graphs have been shown to be

more efficient than other forms of STRIPS planning but encoding

domain-specific control rules into graphs is difficult.

As shown in Table 1, CBP systems have been proposed using each of these

planning techniques and even combinations of those techniques such as in Paris and

Priar. This table lists a new case-based planner named CPG (Gerevi & Serina, 2000)

that combines both transformation and memory search. CPG’s transformation process

involves simply removing actions that are not applicable in the new situation. The

bulk of its adaptation effort is done during memory search, where it identifies

inconsistencies and revises the plan.

Trip to
San
Francisco

Do travel Take
enough

money

Get
money
from
machine

Get to
airport

Get
between
airports

Get to
hotel

Board
plane1

Fly from
Logan

to SFO

Deplane
plane1

 12

The kind of planner to use in a given situation remains an open question, and

contradicting answers have been given at various times. Total-order planning was the

earliest form of automated planning. Then, partial-order planning was proposed and

for some time was believed to be the best performing approach. Graph-based planning

and other so-called neo-classical planners followed with performance that improved

upon partial order planners. However, recently there has also been a resurgence of

total order planners, because they enable the definition of search control heuristics

that can result in significant performance. Hierarchical planners can encode search

control knowledge in their domain theories that can led to good running-time

performance. However in addition to the standard collection of operators, designing a

hierarchical domain description also requires a set of methods indicating how to

generate hierarchies.

Table 1. Classification of the representation formalism.

Planner Total

Order

Partial

Order

Hierarchical Plan

Graph

Prodigy/Analogy1 �

CAPlan/CbC �

Paris � �

Priar � �

CPG �

7. Complexity of Plan Adaptation

Nebel & Koehler (1995) proved that plan adaptation can be harder than first-

principles planning. This result is frequently stated as evidence that plan adaptation is

an inadequate problem solving strategy. However, a closer look at their proof reveals

an assumption that does not hold for many CBP systems. It assumes that the new

solution is obtained by minimally modifying the retrieved plan. The authors refer to

this second assumption as a conservative approach.

Nebel and Koehler’s result on plan adaptation does not hold for CBP systems

whose plan adaptation strategy is not guaranteed to be non-conservative. In particular,

adaptation by derivational replay, as implemented in Prodigy/Analogy, derSNLP, or

CAPlan/CbC, is in the worst case as hard as planning from first principles with their

respective first-principles planning systems (Au, Muñoz-Avila, & Nau, 2002). This

follows from the simple observation that, during a case replay step, a CBP system acts

as an oracle for the underlying first-principles planning system; among the possible

choices that the underlying planning system can take, the oracle (i.e., the current step

in the derivational trace) chooses one.

1 Prodigy4.0, the first-principles planning component of Prodigy/Analogy, can generate partial

plans as well as totally ordered plans. However the system cannot adapt partially ordered

plans.

 13

A more interesting question is that of average-case complexity. No theoretical

analysis of average-case performance exists, because no clear definition exists for an

“average case”; it depends largely on the problem being solved and on how the

planning algorithm decides what path to search next. For example, even if

derivational replay reduces the size of a planning algorithm’s search space, it is

conceivable that for some planning problems and some planning algorithms, the

algorithm might search a larger part of this reduced search space than it would have

searched if derivational replay had not been used. A similar point is made for SPA

system, which as explained before implements transformational analogy. For such

reasons, average-case analyses of planning algorithms are typically done

experimentally rather than theoretically. In all of the experimental studies that we

know of, derivational replay has run significantly on the average faster than planning

from scratch (Veloso & Carbonell, 1993; Ihrig & Kambhampati, 1996, Muñoz-Avila

& Weberskirch, 1996). Recently, similar performance gains were reported for an

algorithm based on transformational analogy (van der Krogt & de Weerdt, 2005).

8. Future Research Directions

As part of our study we have identified some issues that have not been addressed

sufficiently and that point toward new directions for research. Note that much current

research related to case adaptation in the CBR community is known by other names or

associated with related research topics.

• Interactivity. Some initial work has been done to enable user interactions

during plan adaptation. In Muñoz-Avila (1998), the user interactions are

limited to deleting actions after the plan is generated. In such situations, the

underlying CBP procedure generates alternative plans, if possible. In Cox &

Veloso (1997), the user can make planning choices in the plan generation

process that Prodigy 4.0 normally performs, but not in the derivational

analogy process that Prodigy/Analogy performs. Research is needed to

address the following outstanding issues: (1) The user can modify the plan

during plan adaptation, and (2) the user can dynamically modify the facts

defining the current situation. Both of these require addressing user interface

problems such as how to present intermediate planning states. Cox (2004)

reports preliminary progress in these issues.

• Information gathering. Planning for information gathering is a frequent

research topic, in particular in connection with search over the Web. Current

research concentrates primarily on plan generation. Algorithms need to be

developed to adapt information gathering plans to solve new search

problems.

• Inference procedures. Whereas many CBP systems have been built on top

of first-principles planners, other inference techniques (e.g., constraint

satisfaction or genetic algorithms) have rarely been used. Constraint

 14

satisfaction techniques could be useful for dynamic re-planning, in

particular for interactive case adaptation, where the effects of the user

interactions can be propagated to evaluate how they affect the current plan.

• Plan recognition. Adaptation can occur when using past cases to

understand an observed plan execution. Plan recognition is the task of

finding a match in a case library that corresponds to the current observations

and using it to predict the subsequent behavior of an agent. When search

fails to find an identical match, a case-based plan recognition system can

choose a close one and adapt it to predict the behavior (Cox & Kerkez,

2006). Yet many undecided issues remain with such novel techniques such

as how to control the combinatorics of adapted operator variable bindings.

• Quality issues. Planning from scratch under quality constraints is known to

be a difficult problem (Perez & Carbonell, 1994). So far no work has been

done that considers plan quality during plan adaptation. In the context of the

travel planning example that we have used in this paper, the various

planning steps might have different costs. Depending on how the plan is

modified, plans with different costs may be generated for the same problem.

The problem might become complicated if conflicting quality criteria must

be considered. For example, a plane is faster but more expensive than taking

the train.

9. Concluding Remarks

In this paper we present an analysis of the state of the art for plan adaptation that

transcends the traditional dichotomy between transformational and derivational

analogy. In addition to this dimension, we categorize case-based planning systems

among five other dimensions: the role of the case, the contents of the case, the use of

case merging, the representation formalism, and the computational complexity.

We first clarified a misconception that sometimes arises, namely, that

transformational analogy systems are all domains-specific whereas derivational

analogy systems are domain-independent. We provide examples of domain-specific

systems that perform derivational analogy and domain-independent systems that

perform transformational analogy.

We also observed that when cases provide domain knowledge, they frequently

perform transformational adaptation, and when cases provide control knowledge they

frequently perform derivational adaptation. However, we note that SPA performs

transformational adaptation even though cases provide control knowledge. We also

cite examples of systems in which cases provide domain knowledge but the bulk of

the effort is expended during memory search.

We identified three kinds of content for cases used by CBP systems: plans, traces,

and adaptation information. Plans are contained in several CBP systems, including

those performing transformational adaptation. Traces are contained in CBP systems

 15

performing derivational analogy. Some systems also include adaptation information to

reduce the search effort.

CBP systems cover a wide spectrum of representation formalisms, namely, totally

ordered plans, partially ordered plans, hierarchical and abstract plans, and planning

graphs. Furthermore, some systems combine representations such as hierarchical and

totally ordered plans.

Finally we examined results on the worst-case complexity of plan adaptation and

observed that conservative adaptation is a rather restrictive requirement. We point to

other results showing that plan adaptation with derivational analogy is not

conservative. We also point out that a more interesting analysis would be average-

case complexity. However this remains a significant open problem.

References

Avesani, P., Perini, A. & Ricci, F. (1993) Combining CBR and Constraint Reasoning

in Planning Forest Fire Fighting. Proceedings of First European Workshop on

Case-based Reasoning (EWCBR-93). Kaiserslautern: Technical Report. AG

Richter. University of Kaiserslautern.

Au, T.C., Muñoz-Avila, H., & Nau, D.S. (2002) On the Complexity of Plan

Adaptation by Derivational Analogy in a Universal Classical Planning

Framework. In Proceedings of the Sixth European Conference on Case-Based

Reasoning. Berlin: Springer.

Bergmann R., & Wilke W. (1995). Building and refining abstract planning cases by

change of representation language. Journal of Artificial Intelligence Research. 3,

53--118.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis.

Artificial Intelligence, 90.

Carbonell, J.G. (1983) Learning by analogy: formulating and generalizing plans from

past experience. Machine Learning: An Artificial Intelligence Approach. R.S.

Michalski, J. G. Carbonell, and T. M. Mitchell (Eds.). Tioga, Palo Alto,

California.

Carbonell, J.G. (1986) Derivational analogy: A theory of reconstructive problem

solving and expertise acquisition. Machine Learning.

Costas, T, & Kashyan, P. (1993) Case-based reasoning and learning in manufacturing

with TOTLEC planner. IEEE Transactions on Systems, Man, and Cybernetics.

23(iv) July/August

Cox, M. T. (2004). Mixed-initiative case replay. In the Proceedings of the 17th

International FLAIRS Conference (pp. 166-171), Menlo Park, CA: AAAI Press.

Cox, M., & Kerkez, B. (2006). Case-based plan recognition with novel input.

International Journal of Control and Intelligent Systems. 34(2): 96-104.

Cox, M. T., Muñoz-Avila, H., & Bergmann, R. (2006). Case-based planning.

Knowledge Engineering Review. 20(3): 283-287.

 16

Cox, M. T., & Veloso, M. M. (1997). Supporting combined human and machine

planning: An interface for planning by analogical reasoning. In D. B. Leake & E.

Plaza (Eds.), Case-Based Reasoning Research and Development: Second

International Conference on Case-Based Reasoning (pp. 531-540). Berlin:

Springer.

Cunningham, P., & Slattery, S. (1994) Modeling of Engineering Thermal Problems -

An implementation using CBR with Derivational Analogy. Proceedings of First

European Workshop on Case-based Reasoning (EWCBR-93). Kaiserslautern:

Springer.

Erol, K; Hendler, J; & Nau D.S. (1994). HTN Planning: Complexity and Expressivity.

In Proceedings of the National Conference on Artificial Intelligence (AAAI-94).

AAAI Press.

Gereveni, A, & Serenia, I. (2000). Fast Plan Adaptation through Planning Graphs:

Local and systematic search techniques. Proceedings of the Fifth International

Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000).

Breckenridge, CO: AAAI Press.

Grech, A., & Main, J. (2004). Case-Base Injection Schemes to Case Adaptation Using

Genetic Algorithms In Advances in Case-Based Reasoning: 7th European

Conference, ECCBR 2004. Berlin: Springer.

Haigh, K. Z., Shewchuk, J. R., & Veloso, M. M. (1997). Exploiting Domain

Geometry in Analogical Route Planning, Journal of Experimental and

Theoretical Artificial Intelligence. 9: 509-541.

Hanks, S. and Weld, D. (1995). A domain-independent algorithm for plan adaptation.

Journal of Artificial Intelligence Research, 2.

Hammond, K. J. (1989). Case-based planning: Viewing planning as a memory task.

San Diego, CA: Academic Press.

Hammond, K. (1990). Explaining and repairing plans that fail. Artificial Intelligence,

45: 173-228.

Ihrig, L.H., & Kambhampati, S. (1994). Derivational replay for partial order planning.

Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI-94). Seattle, WA: AAAI Press, 1994.

Kambhampati, S., & Hendler J. A. (1992). A Validation Structure-Based Theory of

Plan Modification and Reuse. Artificial Intelligence, 55.

Leake, D. B, Kinley, A., & Wilson, D. (1996). Learning to Improve Case Adaptation

by Introspective Reasoning and CBR. In Case-Based Reasoning: Experiences,

Lessons, and Future Directions. Menlo Park, CA: AAAI Press/MIT Press,

Menlo Park, CA.

Lopez de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,

Faltings, B., Maher, M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., &

Watson, I. (2006). Retrieval, reuse and retention in case-based reasoning.

Knowledge Engineering Review, 20(3), 215-240.

Melis, E. & Whittle, J. (1999). Analogy in inductive theorem proving. Journal of

automated reasoning. 22: 2.

Muñoz-Avila, H. (1998). Integrating Twofold Case Retrieval and Complete Decision

Replay in CAPlan/CbC. PhD Thesis. AG Richter. University of Kaiserslautern.

 17

Muñoz-Avila, H. (2001) Case-Base Maintenance by Integrating Case Index Revision

and Case Retention Policies in a Derivational Replay Framework.

Computational Intelligence. Blackwell Publishers.

Muñoz-Avila, H., McFarlane, D., Aha, D.W., Ballas, J., Breslow, L.A., & Nau, D.S.

(1999). Using guidelines to constrain interactive case-based HTN planning.

Proceedings of the Third International Conference on Case-Based Reasoning

(pp. 288-302). Munich: Springer.

Muñoz-Avila, H & Weberskirch. (1996) Planning for manufacturing workpieces by

storing, indexing and replaying planning decisions. Proceedings of the

International Conference on AI Planning Systems (AIPS-96). Edinburgh: AAAI

Press.

Napoli, A., & Lieber, J. (1994). A first study on case-based planning in organic

synthesis. Proceedings of First European Workshop on Case-based Reasoning

(EWCBR-93). Kaiserslautern: Springer.

Nebel, B. and J. Koehler, (1995) Plan Reuse versus Plan Generation: A Theoretical

and Empirical Analysis, Artificial Intelligence (Special Issue on Planning and

Scheduling), 76(1-2): 427-454.

Perez, A., & Carbonell, J. (1994). Control knowledge to improve plan quality.

Proceedings of the International Conference on AI Planning Systems (AIPS-96).

(AIPS-94). Chicago: AAAI Press.

Salem, A.-B. M., Nagaty, K. A., & El Bagoury, B. (2003). A Hybrid Case-Based

Adaptation Model for Thyroid Cancer Diagnosis. In ICEIS 2003, Proceedings of

the 5th International Conference on Enterprise Information Systems (pp. 58-65).

Angers, France, April 22-26.

Spalazzi, L. (2001). A survey on case-based planning. Artificial Intelligence Review

16: 3–36.

Schmidt, R., Vorobieva, O., & Gierl, L. (2003). Case-based Adaptation Problems in

Medicine. 2nd German Workshop on Experience Management. April.

van der Krogt, R.P.J. and de Weerdt, M.M.. (2005) Plan Repair as an Extension of

Planning. In Proceedings of the 15th International Conference on Automated

Planning and Scheduling (ICAPS-05).

Veloso, M.M. (1994). Planning and learning by analogical reasoning. Berlin:

Springer.

Veloso, M.M. & Carbonell, J.G. (1993). Planning and learning by analogical

reasoning. Machine Learning, 10.

Veloso, M.M. (1997). Merge strategies for multiple case plan replay. In Proceedings

of the Fourteenth National Conference on Artificial Intelligence and Ninth

Innovative Applications of Artificial Intelligence Conference (pp. 413-424).

Menlo Park, CA: AAAI Press / The MIT Press.

Veloso, M. M., Mulvehill, A. M., & Cox, M. T. (1997). Rationale-supported mixed-

initiative case-based planning. In Proceedings of the Fourteenth National

Conference on Artificial Intelligence and Ninth Innovative Applications of

Artificial Intelligence Conference (pp. 1072-1077). Menlo Park, CA: AAAI

Press / The MIT Press.

Vidal, V. & Regnier, P. (1999). Total order planning is more efficient than we

thought. Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI-1999). Orlando, FL: AAAI Press.

 18

Weber, G. & Schult T. J. (1998). CBR for Tutoring and Help Systems. In: Case-

Based Reasoning Technology: From Foundations to Applications. Springer.

