
A Case-Based Song Scheduler
for Group Customised Radio?

Claudio Baccigalupo and Enric Plaza

IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
Vox: +34-93-5809570, Fax: +34-93-5809661

Email: {claudio,enric}@iiia.csic.es

Abstract. This paper presents a knowledge-intensive Case-Based Rea-
soning system to generate a sequence of songs customised for a commu-
nity of listeners. To select each song in the sequence, first a subset of
songs musically associated with the last song of the sequence is retrieved
from a music pool; then the preferences of the audience expressed as cases
are reused to customise the selection for the group of listeners; finally
listeners can revise their satisfaction (or lack thereof) for the songs they
have heard. We have integrated this CBR system with Poolcasting, a
social group-based Web radio architecture in which listeners can actively
contribute to the music played and influence the channels programming
process. The paper introduces the Poolcasting architecture, presents the
CBR technique that tailors in real-time the music of each channel for the
current audience, and discusses how this approach may radically improve
the group-satisfaction of the audience for a Web radio.

1 Introduction

Although digital distribution has revolutionised the way in which we buy, sell
and share music, not much has changed in the way we listen to songs in shared
environments. In different situations, groups of people with similar tastes gather
to listen to a unique stream of music, but none of these situations is customised
to the audience. In a music club, for instance, a DJ can be too busy mixing
to check the reaction of the public; in a radio, broadcasters have it difficult to
meet the taste of all the listeners; with a juke-box, the available records can be
very limited for the audience to appreciate; in a home-party, anyone can easily
monopolise the control over the music, and songs can be played in any sequence,
with annoying disruptions between genres.

In this paper, we present an interactive social framework to overcome the
problems of a group scenario similar to the ones above, with the goal to improve
the group-satisfaction of an audience. In short, we propose a novel group-based

? This research is partially supported by the MID-CBR (TIN2006-15140-C03-01)
project and by a MyStrands scholarship.

Web radio architecture, called Poolcasting, where the music played on each chan-
nel is not pre-programmed, but influenced in real-time by the current audience.
In addition, users can submit explicit preferences: via a Web interface they can
request new songs to be played, evaluate the scheduled songs and send feedback
about recently played ones. A main issue is how to guarantee fairness to the
members of the audience with respect to the songs that are broadcast. For this
purpose, we have implemented a CBR technique that schedules songs for each
channel combining both musical requirements (such as variety and continuity)
and listeners’ preferences. In order to keep fairness in the presence of concurrent
preferences, we use a strategy that favours those listeners that were less satisfied
with the last songs played.

The contribution of this paper is two-fold. First we present the Poolcasting
Web radio architecture, where users can interact to influence the music played.
Then we present a CBR technique that, for each Web radio channel, schedules
a sequence of songs customised towards the group-satisfaction of the listeners.

2 Poolcasting

Poolcasting is a novel framework providing a Web radio service, with an architec-
ture based on group customisation and interaction. Poolcasting takes inspiration
from home-parties, where participants can contribute with their own records to
the pool of music and can control in turn which songs are played. In Poolcasting,
any user can share her personal music digital library, adding her songs to Music
Pool, and can interact via a Web interface, to evaluate the songs played and
propose new songs to play (see Fig. 1). These interactions allow the sequence of
songs played on each channel to be customised for the current listeners. Let us
present an example of how a user can interact with a Poolcasting Web radio.

Example 1. Mark checks via the Web interface the list of channels of a Poolcasting
radio and joins the ’80s Music Channel, which has 3 other participants and a pool of
90 songs. The Reflex (Duran Duran) is currently playing, and True Blue (Madonna)
has been scheduled to play next. Mark shares his music library: the songs he owns
become part of the Music Pool of the radio. At some moment, the system has schedule
which song to play after True Blue. First, it retrieves from the Music Pool a subset of
songs that fit the channel context (songs from the ’80s) and are musically associated
with the last scheduled track; these are: Heaven Is A Place On Earth (B. Carlisle),
True Colors (C. Lauper) and Love Shack (The B-52’s). Next, the preferences of each
listener towards these three songs are evaluated; this is done by analysing the content
of each listener’s library. For example, the system discovers that Mark does not have
True Colors in his library, but owns other themes from C. Lauper, and has given them
positive ratings; thus it deduces a preference of Mark for this song over the other two.
Then, the system merges the individual preferences of all the listeners with a strategy
that balances fairness; for instance, it schedules Mark’s preferred song at this turn,
because he has just entered the channel, but will favour someone else on the next turn.

Using the Web interface, Mark sees that True Colors has been scheduled; he ap-
proves of this choice and sends a positive feedback, which is stored as new knowledge
acquired over his preferences. Other listeners give a positive rating to this choice as
well; this reinforces the knowledge that (True Blue, True Colors) is a good association

Fig. 1. The Poolcasting radio Web Interface.

of songs for the ’80s Music Channel. While listening to True Colors, another listener,
Lisa, recalls that her library contains Time After Time (C. Lauper) performed by Miles
Davis, and figures that other participants will like to hear this track, for they will listen
to an uncommon version of a known song from the Eighties. Using the Web interface,
Lisa recommends this song for the channel; her proposal is accepted and after a while
the song is played. Mark gets to listen to one of his favourite songs in a version he
was unaware of, and all the way appreciates very much. He assigns a positive rating
to this choice, increasing both the association between this and the previous song, and
the reputation of Lisa as a good recommender.

Thus, Poolcasting combines both bottom-up and top-down approaches: users
can contribute to the available music and influence the programming, while the
actual choice of music played is taken by a technique that combines knowledge
about songs’ associations and listeners’ preferences. In the rest of this section, we
will first outline the innovative components of Poolcasting that allow listeners to
influence the music played (Sect. 2.1), and next the requirements for a technique
able to customise the music for the current audience (Sect. 2.2).

2.1 The Poolcasting Web Radio Architecture

The two main components of a typical Web radio are the Music Library (a large
static collection of songs in a digital format) and the Streaming Server (the ma-
chine where users connect from the Internet to listen to the radio). Many Web

radios have several channels; each corresponds to an Internet stream, where the
Streaming Server continuously broadcasts songs from the Music Library. Lis-
teners can connect to these streams with an appropriate stream-enabled media
player. Two more components in a common Web radio are the Song Sched-
uler and the Stream Generator. The first is responsible for determining the se-
quence of songs for each channel, and generally is very simple, either random or
time/genre-related (e.g., from 6pm to 8pm only play classic music). The second
continuously retrieves the next scheduled song from the Music Library, trans-
forms it in an uncompressed audio signal, and loads it to the Streaming Server,
that will broadcast it once the previous song ends.

In the Poolcasting Web radio architecture (see Fig. 2), there is no centralised
collection of audio files, but rather a virtual Music Pool, made of the songs
contained in the personal music libraries shared by the participants. Another
important difference is that the Song Scheduler does not just select each song
to be played, but also has to connect via the Internet to the library containing
that song and to download it in a local Song Buffer, from where the Streaming
Server will read it once the previous song ends. The Song Buffer ensures that an
uninterrupted music stream can be served, without gaps between songs. A central
Database is continuously updated to keep track of the current participants, the
songs they share and the channel they are listening to. Poolcasting offers a Web
Interface where Visitors can check information about channels, and interact to
share libraries, request songs and send feedback. The Poolcasting Administrator
only controls the server components of the Web radio (e.g., restarting servers,
administrating accesses, managing channels).

 I N T E R N E T

Listener

Stream Generator

Streaming Server

uncompressed
audio signal

Listener Admin Visitor

browse
channels

LISTENERS

Song Buffer Web
pages

create
channels

CHANNELS

create streams for channels

list of
listeners

PARTICIPANTS

share library

requests and
evaluations

Song Scheduler

MUSIC POOL

list of
shared songs

knowledge to
schedule songs

Database

Web Interface

request
to join

download song

scheduled song

Participant

Web Interface

MP3 stream (64 kbps) OGG stream (256 kbps)

Fig. 2. Architecture of the Poolcasting Web radio.

2.2 The Task of the Song Scheduler

The Song Scheduler is responsible for programming the sequence of songs for
each channel, following a policy of “scheduling two songs in an advance”: while
song X is playing, and song Y is in the local buffer ready to be played, song
Z is decided by the Song Scheduler to play after Y . Once X ends, song Y is
reproduced, song Z is downloaded to the local buffer (replacing Y), and a new
song is scheduled to play after Z.

The goal of the Song Scheduler is to provide a satisfactory and customised
listening experience to the participants that are simultaneously listening to a
channel. To achieve this goal, we argue that a combination of four properties is
required: 1) no song or artist should be repeated closely on a channel (variety);
2) each song should be musically associated with the song it follows (continuity);
3) each song should match the musical preferences of the current listeners, or at
least of most of them (individual satisfaction); 4) the more a listener is unsatisfied
with the songs recently streamed, the more her preferences should influence the
selection of the next songs that will be played so that, throughout the whole
broadcasting, she will listen to songs she likes (fairness).

The advantage of the Poolcasting architecture is that user interaction allows
the Song Scheduler to model the musical preferences of each listener and exploit
them to customise the content of the channels. In fact, the explicit evaluations
made by the users via the Web interface offer the system an overview of the
listeners’ preferences (e.g., Mark approves of the selection of True Colors, the
system infers that he likes this song). In addition, Poolcasting is able to work
without any user interaction, by exploiting the implicit knowledge contained in
the user shared music libraries in the form of listening experience data.

3 A Case-Based Reasoning Song Scheduler

We present now the Case-Based Reasoning technique we have developed to ac-
complish the task of the Song Scheduler in a Poolcasting Web radio. Let P(t)
be the set of Participants at time t, let L(P) be the set of songs in the library of
a Participant P , and let C(t) be the Music Pool at time t: C(t) =

⋃
P∈P(t) L(P).

Let H be a channel of the Web radio; let φ(H) be the Channel Pool of H, that
is, the subset of songs of C(t) that comply with the definition of channel H (e.g.,
the Channel Pool of the ’80 Music Channel contains only songs from 1980 to
1989). Let Y be the last song scheduled on channel H. The task of the Song
Scheduler is to select, among all the songs in φ(H), a song Z to schedule after
Y on channel H that satisfies the four properties above. To fulfil this goal, we
employ a CBR approach that comprises three steps (see Fig. 3):

1. (Retrieve Process) Retrieves from φ(H) a subset of songs (the retrieved set)
either recommended by some participant via the Web interface or that have
not been played recently and are musically associated with Y .

2. (Reuse Process) Ranks the retrieved set combining the preferences of the cur-
rent listeners, giving more importance to those listeners less satisfied with the

REUSEcandidate

songs

CASE BASES

Listener
joins channel

INPUT
(channel pool, last songs

scheduled, current listeners)

RETRIEVAL

Listener requests song

Listener evaluates
scheduled song

REVISE

best ranked

song

Listener
sends feedback

Listeners'
satisfaction

Song Associations
local to the channel

Song and Artist Associations
inferred from public playlists

SONGS PREFERENCE MODELAnalysis

SONGS PREFERENCE MODELAnalysis

SONGS PREFERENCE MODELAnalysis

Fig. 3. The CBR schema.

music recently played on H; the song that best matches the four properties
of Sect. 2.2 is scheduled to play on H after Y .

3. (Revise Process) Listeners can evaluate the songs played on H; a posi-
tive/negative feedback increases/decreases the degree of association of this
song with the previous one played, relatively to channel H.

We consider the library of each participant as a Case Base. Each case is a tuple
(song, artist, preference degree), where the preference degree reflects how much
a participant likes a song. In Sect. 3.1 we will explain how, when a new user joins
a channel, her musical preferences are inferred from the listening experience of
the songs contained in her personal music library. In Sect. 3.2 we will explain
the concept of musical association and how to infer which songs or artists are
associated from the analysis of a large public collection of playlists. In Sect. 3.3
we will present the Retrieve Process, that selects from the Case Bases a subset of
songs to achieve the goals of variety and continuity. In Sect. 3.4 we will detail the
Reuse Process, that combines individual preferences to choose a song that fairly
satisfies the group as a whole. Finally (Sect. 3.5), we will present the Revise
Process, where users can evaluate the songs played on each channel.

3.1 The Participants’ Case Bases

Every Case Base contains the list of songs in the shared library of a Participant,
and a preference degree for each song. We define, for each participant P ∈ P(t),
and for each song S ∈ L(P), a preference degree g(P, S) with values in [−1, 1],
where -1 means P hates S, 1 means P loves S, and 0 reflects indifference. To
assess the preference degrees of P , we use her library to extract information
about her listening experience, namely the rating she assigned to each song and
the number of times she listened to them. We assume that the higher the rating
and the higher the play count, the stronger the preference. However, the absolute
values of rating and play count are not relevant, for a “high” play count or rating
for one user (e.g., 10 times, 3 stars) could be “low” for another user. For this
reason, we normalise both values according to the average listener behaviour, in
the following way. Let %min and %max be the minimum and maximum possible

ratings (e.g., 1 and 5 in iTunes), let %̂ = 1
2 (%max + %min), let %P be the aver-

age rating assigned by P , and let %P,S be the rating assigned by P to S; the
normalised rating n(P, S) of P for S is the function:

n(P, S) =
2

%max − %min

[
%P,S − %̂−

(%P,S − %max)(%P,S − %min)(%P − %̂)
(%P − %max)(%P − %min)

]
that takes values in [−1, 1] and equals 1 (respectively -1) when the absolute rating
for S is %max (respectively %min). For any non-rated song, we define n(P, S) = 0.

Let νmin and νmax be the minimum and maximum play counts in the library
of P , let ν̂ = 1

2 (νmax+νmin), let νP be the average play count of P , and let νP,S
be the play count of song S; the normalised play count m(P, S) of S for P is:

m(P, S) =
2

νmax − νmin

[
νP,S − ν̂ −

(νP,S − νmax)(νP,S − νmin)(νP − ν̂)
(νP − νmax)(νP − νmin)

]
.

We assign m(P, S) = 0 if P has never listened to the song S. For any S ∈ L(P)
present in the library of P , we define the preference degree of P as: g(P, S) =
θn(P, S)+(1−θ)m(P, S), where θ is a parameter in [0, 1] to give more importance
to the rating or to the play count (in our current implementation, θ = 0.5).

This measure can be extended to songs not included in the library of P ,
following this assumption: if L(P) does not contain a song S but contains other
songs from the same artist of S, then the preference of P for S is estimated as her
average preference for those songs (e.g., Mark has rated positively many songs
by C. Lauper, we assume he will like songs by C. Lauper he doesn’t own as well).
Let S be a song not included in the library of P , and let G(P, S) be the set of
songs in L(P) from the same artist of S: G(P, S) = {S′ ∈ L(P) | a(S′) = a(S)},
where the function a(S) returns the artist of song S. We define the preference
degree of P for any song S as follows:

g(P, S) =


θn(P, S) + (1− θ)m(P, S) if S ∈ L(P),

1
#(G(P,S))

∑
S′∈G(P,S) g(P, S′) if S /∈ L(P) ∧ #(G(P, S)) > 0,

0 otherwise

3.2 Musical Domain Knowledge

One of the goal of the Song Scheduler is to program on each channel a sequence
of musically associated songs (continuity). While a human DJ knows from expe-
rience which songs are associated, we use an automatic process to extract this
knowledge from a large collection of playlists available on the Web. In brief, we
check which songs and artists co-occur more often in these playlists, and assume
that the more the playlists where they co-occur and the closer the distance at
which they occur, the higher their association. Extracting such knowledge from
playlists is much better for our goal than using a content-based method (e.g.,
extraction of acoustic features) because playlists include cultural and social in-
formation that cannot be reduced to audio signal, and also contain songs in a
specific order, which can be preserved when scheduling songs for a radio channel.

Let s(X,Y) ∈ [0, 1] be the song association degree from a song Y to a song Z.
Counting just the frequency with which two songs appear together in a collection
of playlists is not sufficient to estimate their association degree, for some songs
are quite rare, but still are strongly associated with other rare songs. One solution
is to consider the association strength from song X to song Y as the conditional
probability to find song Y , given a playlist that contains song X, i.e., P (Y |X) =
f(X,Y)
f(X) , where f(X) is the popularity ofX (number of playlists whereX appears).

Notice that P (X|Y) 6= P (Y |X): the relation is not symmetric. This measure is
biased towards having high conditional probabilities with songs that are very
popular. That is, P (Y |X) may be high, as a result of the fact that Y occurs
very frequently and not because X and Y are strongly associated. We correct
this problem dividing P (Y |X) by a quantity that depends on the popularity
of Y : if Y is very popular (say, more than the average), the association degree
is decreased, otherwise it is increased; the exact degree of scaling depends on
the playlists and on the distribution of popularity among songs. The following
formula takes into account these factors to compute the association between two
songs X and Y :

f(X,Y)
f(X) · (f(Y)/f)β

(1)

where f is the average song popularity, and β is a parameter that takes a value
between 0 and 1; when β = 0, the function is identical to P (Y |X).

We improve this measure by taking into account how far apart two songs are
in a playlist, and their relative order. We make three assumptions: 1) the farther
two songs occur in a playlist, the smaller is their association; 2) if two songs are
separated by more than a threshold of δ > 1 songs in a playlist, their association
is null; 3) any song X is more associated to the songs it follows in a playlist than
to the songs it precedes. The last point can be explained as follows: our final
goal is to program a channel of music by incrementally adding one song after
the other, and since the order between songs can be meaningful (e.g., the end of
a track mixes into the beginning of the next one), we endeavour to preserve it.

Let Q be a collection of playlists and q ∈ Q be one of these playlists, q =
(S1, S2, . . .). Let X and Y be two songs; we denote as d(q,X, Y) the distance
that separates them in q, e.g., d(q, Si, Sj) = j−i. If either X or Y does not occur
in q, d(q,X, Y) = ∞. The songs X and Y are associated in q if d(q,X, Y) 6 δ;
formally we define their song association degree in q as:

w(q,X, Y) =

 0 if |d(q,X, Y)| > δ
1/|d(q,X, Y)| if |d(q,X, Y)| 6 δ ∧ d(q,X, Y) > 0
α/|d(q,X, Y)| if |d(q,X, Y)| 6 δ ∧ d(q,X, Y) < 0

where α ∈ (0, 1) is a parameter to assign higher associations to post-occurrences
than to pre-occurrences. Finally, to estimate the song association degree between
X and Y , we substitute in Eq. 1 the numerator with

∑
q∈Q w(p,X, Y). That is,

rather than accumulating 1 for each playlist q where X and Y co-occur, we
accumulate w(q,X, Y), which equals 1 only if Y occurs contiguously after X in

q, otherwise 0 6 w(q,X, Y) < 1:

s(X,Y) =

∑
q∈Q w(q,X, Y)

f(X)(f(Y)/f)β
.

With this measure we have estimated the association for every pair of songs
in a large database of playlists retrieved from the Web-based music community
MyStrands (http://www.mystrands.com). We chose MyStrands because it offers
a Web API called OpenStrands that helps us automate the retrieval process. The
average length of the playlists was 17 songs; the average popularity was 37 for
songs and 235 for artists. We set the parameters to: α = 0.75, β = 0.5, δ = 3
and ignored any song that occurred just once, to guarantee a valid statistical
significance. We also discarded associations within the same artist, for their
obviousness. The result was a set of 112,238 distinct songs that have a positive
association with some other song; for instance, the top associated tracks found
for Smoke On The Water (Deep Purple) were: Cold Metal (Iggy Pop), Iron Man
(Black Sabbath), China Grove (The Doobie Brothers), Crossroads (Eric Clapton).

We have mined the same collection of playlists from MyStrands to gather
knowledge about associated artists. Given a playlist q = (S1, S2, . . .) and two
artists A and B, we denote as d′(q,A,B) the minimum distance that separates a
song of A and a song of B in q, e.g., if a(Si) = A and a(Sj) = B, d′(q, A,B) = j−
i. If q does not contain both a song from A and a song from B, then d′(q, A,B) =
∞. We define the artist association degree in q from A to B as: w′(q,A,B) =

1
|d′(q,A,B)| if |d′(q, A,B)| 6 δ′, otherwise w′(q, A,B) = 0. Notice that the order
is not important when we deal with artists. To estimate the artist association
degree from any artist A to any artist B, we use an approach similar to the one
used for the song association degree: we substitute in Eq. 1 the numerator with∑
q∈Q w

′(q,A,B) in the following way:

s′(A,B) =

∑
q∈Q w

′(q, A,B)

f ′(A)(f ′(B)/f ′)β

where f ′(A) is the number of playlists where any song by A appears, and f ′

is the average artist popularity. From the dataset of MyStrands, using δ′ = 2
as the maximum distance, α = 0.75, β = 0.5, and ignoring any artist that
occurred just once, we have obtained that 25,881 distinct artists have a positive
association with some other artist. The value β = 0.5 was decided after several
experiments, in order to obtain a nice mix of more and less popular artists in
these associations. For instance, the top associated artists found for Abba were:
Agnetha Faltskog, A-Teens, Chic, Gloria Gaynor, The 5th Dimension. Notice
that the first two names (Agnetha Faltskog and A-Teens) are not very popular,
but are very much associated with Abba: the first was their lead singer, the
second is a cover band of Abba. As the sequence continues, more popular names
appear, still associated with Abba, but in a weaker degree.

3.3 The Retrieve Process

This process has two subsequent steps: first each song Z ∈ φ(H) is rated with a
relevance value r(Y,Z) in [0, 1] that expresses how much a song Z satisfies the
conditions of variety and continuity; then the κ best rated songs are retrieved.

For every song Z requested via the Web interface, r(Y,Z) = 1, these songs
are always retrieved. For every song Z either recently scheduled on H (namely,
within the last ι songs) or from an artist recently scheduled on H (namely, within
the last ζ songs), r(Y, Z) = 0, these songs are never retrieved. Notice that the
values of ι and ζ are defined for each channel; for instance a “Frank Sinatra
only” channel would be created with ζ = 0 (artists repeated without reserve),
while a “Nice Dance Mix” channel would probably have a high value for ι (songs
rarely repeated).

For any other song Z (neither requested nor repeated), we define the rele-
vance value on the basis of the musical association between Y and Z, as follows:
r(Y, Z) = s(Y,Z) + εu(Y,Z) + ε2v(Y,Z) + ε3s′(a(Y), a(Z)), where s(Y,Z) mea-
sures the song association from Y to Z, u(Y,Z) evaluates the association from
songs of the artist of Y to Z, v(Y,Z) evaluates the association from songs of
artists associated with the artist of Y to Z, s′(a(Y), a(Z)) measures the associa-
tion from the artist of Y to the artist of Z, and the parameter ε in [0, 1] controls
the decreasing importance of these four conditions. Precisely, u(Y,Z) is the aver-
age song association degree from every song whose artist is a(Y) to Z: u(Y,Z) =

1
#(U(Y,Z))

∑
W∈U(Y,Z) s(W,Z), where U(Y, Z) = {W ∈ C(t) | s(W,Z) > 0 ∧

a(Y) = a(W)}, and v(Y,Z) is the average song association degree from every
song whose artist is associated with a(Y) to Z, combined with the relative artist
association degree: v(Y, Z) = 1

#(V(Y,Z))

∑
W∈V(Y,Z) (s(W,Z) s′(a(W), a(Y))),

where V(Y, Z) = {W ∈ C(t) |s(W,Z) > 0 ∧ s′(a(W), a(Y)) > 0}.
The Retrieve process returns the first κ songs of φ(H) ranked along r(Y,Z).

3.4 The Reuse Process

This process ranks the retrieved set according to the preferences of the cur-
rent listeners of the channel and their “group satisfaction”, and returns the best
ranked song as the next song to be scheduled on the channel. The most criti-
cal challenge is how to combine different individual preferences into one group
satisfaction value. To guarantee fairness among listeners, we propose a weighted
average of the individual preferences, where the weight associated to each listener
depends on her satisfaction about the last scheduled songs.

Let O(H, t) ⊆ P(t) be the Participants who are listening to channel H at
time t; let R(H, t) ⊆ C(t) be the retrieved songs, and let S ∈ R(H, t) be one
of these songs. The group preference of O(H, t) for S is a function G(S,H, t) in
[−1, 1] defined by two cases:

(Average) if none of the current listeners hates song S (that is, all the individ-
ual preferences for S are beyond a threshold µ), then the group preference

is calculated as a weighted average of the individual preferences:

G(S,H, t) =
1

#(O(H, t))

∑
P∈O(H,t)

g(P, S) (1− ω(P,H, t)) (2)

(Without Misery) otherwise, if ∃P ∈ O(H, t) : g(P, S) < µ, then the group
preference is set to the minimum possible value: G(S,H, t) = −1.

The weight ω(P,H, t) ∈ [0, 1] in Eq. 2 is a function that biases the average
in favour of the listeners more unsatisfied with the songs recently scheduled
on channel H. Hereafter, we explain how the weight ω(P,H, t)) is calculated.
First, let us remark two important properties of this Average Without Misery
[8] strategy: it is Pareto optimal (if at least one listener prefers S to S′ and
nobody prefers S′ to S, then G(S,H, t) > G(S′, H, t)) and it avoids misery: if at
least one listener has a bad preference for S′ (lower than a threshold µ), and no
listener has a bad preference for S (lower than µ), then G(S,H, t) > G(S′, H, t).

The measure ω(P,H, t) estimates the individual channel satisfaction degree
of a participant P at time t. To evaluate ω(P,H, t) we first need to know the
satisfaction degree of P for each of the songs scheduled on H while P was
listening. Let X (P,H, t) = (X1, X2, . . . , Xz) be this set of songs (X1 is the song
scheduled when P entered the channel, Xz the last song scheduled), and let Xi ∈
X (P,H, t) be one of these songs, scheduled at a time t̂ < t; we define the song
satisfaction degree of P for Xi as: e(P,Xi, H) = g(P,Xi)−maxS∈R(H,t̂) g(P, S)+
1. This function takes values in [−1, 1] and equals 1 only when the scheduled
song Xi was the most preferred song by P in the retrieved set R(H, t̂).

By combining the song satisfaction degrees of P for the songs in X (P,H, t)
we can estimate the value of ω(P,H, t). Since satisfaction is an emotion that
wears off with time, we combine the satisfaction degrees assigning more impor-
tance to the most recent songs. To achieve this goal we use a geometric series:∑z
i=1 χ

z−i e(P,Xi, H), where χ ∈ [0, 1] measures the decay rate of satisfaction
over time (e.g., χ = 0.8). Since this series has values in [−1, 1], and we require
ω(P,H, t) to have values in [0, 1], we rewrite the series normalised to this interval
of values, and finally define the channel satisfaction degree for P as:

ω(P,H, t) =
1
2

(∑z

i=1

χz−i+1

1− χ
e(P,Xi, H) + 1

)
.

Depending on this value, the individual preferences of P have more or less
impact on the group preference at time t: the less satisfied is a listener with the
songs previously scheduled on channel H, the more the Reuse Process endeav-
ours to satisfy her with the current selection. This strategy is much fairer than
a common Plurality Voting strategy, which would always select the item with
more individual preferences, independently from the past satisfaction of users.
The strategy we propose guarantees that every listener will eventually be sat-
isfied during the broadcasting; Plurality Voting, on the other hand, would only
satisfy the majority, eventually leaving the minority totally unsatisfied with the
scheduling of a channel. We show this case with an example.

Example 2. A channel H has a Channel Pool of 8 songs φ(H) = (S1, . . . , S8) and 3
listeners (P1, P2, P3), whose individual preferences g(Pi, Sj) are shown in the tables:

g(Pi,Sj) S1 S2 S3 S4

P1 0.8 -0.2 0 0.2
P2 0.6 0.2 0.6 -0.8
P3 -0.2 1 0.4 0.8

G(Sj,H,t1) 0.4 0.3 0.3 -1

g(Pi,Sj) S5 S6 S7 S8

P1 0.6 0.4 -0.4 -0.6
P2 0.6 -0.2 0 0.4
P3 0 0.8 1 -0.8

G(Sj,H,t2) 0.08 0.15 0.17 -1

At a time t1, the Retrieve Process returns the set R(H, t1) = (S1, S2, S3, S4), from
which we have to select a song to schedule. First, we calculate the group preference
degree G(Sj,H, t1) for each of these songs (we set µ = −0.75 and the initial channel
satisfaction weights to 0.5), and schedule S1 because it is the most preferred song
by the group: G(S1, H, t1) = 0.4. Then we calculate the listeners’ satisfaction degrees;
since S1 is the preferred song of both P1 and P2, their satisfaction degree is maximum:
e(P1, S1, H) = e(P2, S1, H) = 1; however S1 is not the most preferred song of P3, so
her satisfaction degree is smaller: e(P3, S1, H) = −0.2− 1 + 1 = −0.2.
At a time t2 > t1, the new retrieved set is R(H, t2) = (S5, S6, S7, S8). This time,
the channel satisfaction weights are not equal for all listeners: since P3 was previously
unsatisfied, P3 is the listener with the smallest channel satisfaction: ω(P3, H, t2) =
0.42, while ω(P1, H, t2) = ω(P2, H, t2) = 0.9 (we set χ = 0.8). After calculating the
group preference degree G(Sj,H, t2) for each song in R(H, t2), we schedule S7 because
it is the most preferred song by the group: G(S7, H, t2) = 0.17. Notice that S7 is the
preferred song of P3, who fairly gets the highest satisfaction degree at this turn. On
the contrary, a Plurality Voting strategy would have selected S5 in order to satisfy the
majority of listeners (S5 is the preferred song at this turn of both P1 and P2), without
memory of the fact that they had already been satisfied on the previous turn.

So far, the Reuse Process works without any interaction from the listeners.
The retrieved set is ranked using only the implicit knowledge contained in the
user personal libraries, and the best ranked song is scheduled. From this moment,
participants can interact to explicitly state whether they like the selection made
or not. As explained in Sect. 2.2, a certain time has to pass from when a song Z
is scheduled to when it is actually broadcast. During this time, any listener P
can send via the Web interface her explicit preference towards Z. If this occurs,
the implicit preference g(P,Z) that was stored in the Case Base of P (inferred
from the music library) is replaced with this new explicit evaluation provided.
For example, if P disapproves of the scheduling of Z, then the implicit value of
g(P,Z) in the Case Base of P is replaced with the explicit value −1. Next, since
the Case Base has changed, the retrieved set is re-ranked to include this new
value in the evaluation of the group preferences. This can lead to Z not being
the most group-preferred song anymore; in this case, the scheduled song changes
to the one that maximises the group preference. This process (user evaluations
and re-ranking) continues until song Y starts playing on the channel. Then, Z
is downloaded to the local buffer, and the CBR component restarts, to schedule
the next song.

3.5 The Revise Process

While a song is playing on a channel, the Web interface shows its title, artist,
cover-art, remaining time, and allows listeners to rate whether they like that song

or not (see Fig. 1). The assumption is that if a user rates positively (respectively
negatively) a song played on a channel, then she likes (dislikes) that song and/or
the song fits (does not fit) in the sequence of music programmed for that channel.
Using this feedback, Poolcasting updates both the listeners’ preference models
and the musical knowledge about song associations.

When a listener sends a feedback about a song, the preference model in the
Case Base of P is updated with this new explicit evaluation. For example, if
P had never listened to song Z and sends a positive (resp. negative) feedback
about it, the system learns that P has a high (low) preference for Z, and stores
in her Case Base a new preference degree g(P,Z) = 1 (g(P,Z) = −1). As a
result, the Reuse Process will be influenced by this new value, and eventually
will (will not) schedule other songs associated with Z.

The feedback from the listeners is also used to revise the song associations
extracted from the collection of playlists, and to customise them for the current
channel. Indeed, two songs can be associated in one context, and not in another;
for instance (True Blue, True Colors) is a meaningful association for a ’80 Music
channel, but not for a Cheerful Tunes channel. For this reason, Poolcasting
builds a local domain knowledge model for each channel, where song associations
relative to that channel are stored. Initially this domain model is empty, and
only the associations inferred from the external playlists are used. As long as
listeners send feedback about songs played on the channel, this model is updated
accordingly. For example, if song Z is played after song Y on channel H, and
listeners send negative feedback about it, the system learns that (Y , Z) is not
a good song association relatively to channel H and locally updates the value of
s(Y,Z). As a result, the Retrieve Process for channel H will be influenced by
this new value, and eventually will refrain from re-selecting song Z as a good
successor for song Y on that channel.

4 Related Work

SmartRadio [5] employs a CBR approach to provide listeners with individual
personalised radio channels; however the goal of Poolcasting is to provide group-
customised radio channels. AdaptiveRadio [3] is a group-based Web radio where,
if a listener shows discontent for a song, no other song from that album is broad-
cast. Thus, interaction is limited to vetoing songs, while Poolcasting users can
also promote songs. Also, musical associations exist only for songs within an
album, while in this paper we have expanded the approach introduced in [2]
to build an extended musical associations model that contains song and artist
association degrees, inferred from the co-occurrency analysis of a large collection
of playlists. Virtual Jukebox [4] is another group-based radio, where the major-
ity of votes (positive or negative) determines the preference of the group for
the currently playing song. Poolcasting strategy is to combine all the listeners’
preferences, favouring users less satisfied in the recent past. This mechanism in-
creases fairness and is also easily understandable by the public — a favourable
property for a group-aggregation technique according to [7].

MusicFX [9], CoCoA-Radio [1] and Flycasting [6] are three more systems fo-
cused on generating a sequence of songs that maximises the satisfaction of a
group of listeners. The first broadcasts music in a gym centre attempting to max-
imise the “mean happiness” of the group; the second adapts the programming of
a Web radio station according to the public; the third generates a playlist for an
online radio based on the listeners’ request histories. Users wishing to influence
the music in these systems need to explicitly state their preferences, either by
manually rating genres/songs, submitting a playlist as a proposal or requesting
specific songs to be played. Poolcasting, on the other hand, allows users to both
implicitly influence the music played (by sharing one’s personal music library)
and evaluate the proposed songs, which are substituted in real time for the next
best candidates in the Reuse step if the feedback is strongly negative.

A Web-based group-customised CBR system is CATS [10], that helps a group
of friends find a holiday package that satisfies the group as a whole. The task of
CATS is to provide a good one-shot solution customised for the group, while the
task of Poolcasting is to provide a good sequence of solutions, customised for the
group over time. Also, CATS contains one CBR process, while in Poolcasting
there are multiple CBR processes (one for each channel). Finally, the group
of users in CATS does not change during the recommendation process, while
Poolcasting participants are free to enter or leave at any moment.

5 Conclusions

The contribution of this paper is two-fold: we present a novel Web radio archi-
tecture called Poolcasting and a CBR technique to customise the content of each
radio channel for the current audience. Poolcasting proposes a new paradigm for
Web radios, shifting from a classical monolithic approach where “One controls,
many listen”, to a new decentralised approach where “Many control, many lis-
ten”. The system is robust in the sense that it generates satisfactory results both
for passive users (inferring their implicit preferences), and for active users (result-
ing in more customised channels). We have developed the internal components
with open source software (Apache, MySQL, icecast, liquidsoap, tunequeue)1, and
the CBR process using Perl and PHP. A Poolcasting Web radio is currently run-
ning in our Intranet with three music channels and about 20 users. Our first tests
show that users are willing to listen to songs not contained in their libraries to
possibly discover new music they might like; however further tests are required,
possibly in a public Internet environment, to deeply evaluate properties such
as average user satisfaction, individual satisfactions, or user loyalty to channels.
According to the existing copyright legislation, public Web radios pay a license
fee related to the number of listeners or streamed songs, but independent from
where the songs are stored. As such, deploying a public Poolcasting Web radio
would require the same fees currently applied to Web radios.

Our contribution to CBR has several aspects. First, the Song Scheduler works
with multiple participants’ case bases and with domain knowledge acquired from
1 Available at: apache.org, mysql.com, icecast.org, savonet.sf.net and tunequeue.sf.net.

playlists containing listening experiences of a large number of users. Moreover,
the collection of case bases is open and dynamic: when a user enters (resp.
leaves), the system immediately integrates (removes) her case base from the sys-
tem, hence it responds at each moment to the current radio audience. Another
contribution is using the Reuse process to combine data and preferences coming
from different case bases (modelling users’ listening experiences). Moreover, the
goal of the Reuse process is to generate a globally good sequence of solutions over
a period of time — not just one valid “group solution” for one problem. Our ap-
proach has been to view this solution as a trade-off between desirable properties
for a radio channel (variety, continuity) and community-customisation properties
such as individual satisfaction and fairness. Finally, both intensive knowledge
and musical preference models are used in the Retrieve and Reuse processes,
while user feedback is used in the Revise process to improve the customisation
by updating these models in the CBR system.

Future work includes: testing the system with different parameters, evaluat-
ing the quality of the proposed technique, dealing with the issues of copyright
and privacy, introducing a reputation degree for the listeners of a channel, ex-
tending the users’ preference models with other listening experience data (e.g.,
personal playlists, time since a song was last played). Although the work we have
described is specific to Web radio, we believe that the proposed idea of satisfying
a group by guaranteeing both individual preferences and fairness among users
can be applied to many other contexts where a group of persons gathers to listen
to the same stream of music.

References

1. P. Avesani, P. Massa, M. Nori, and A. Susi. Collaborative radio community. In
Proc. of Adaptive Hypermedia, 2002.

2. C. Baccigalupo and E. Plaza. Case-Based Sequential Ordering of Songs for Playlist
Recommendation. In Proc. of the ECCBR ’06 Conference, 2006.

3. D. L. Chao, J. Balthrop and S. Forrest. Adaptive Radio: Achieving Consensus
Using Negative Preferences. In Proc. of the GROUP ’05 Conference, 2005.

4. C. Drews and F. Pestoni. Virtual Jukebox. In Proc. of the 35th Hawaii Intl. Conf.
on System Sciences, 2002.

5. C. Hayes, P. Cunningham, P. Clerkin and M. Grimaldi. Programme-Driven Music
Radio. In Proc. of the ECAI ’02 Conference, 2002.

6. D. B. Hauver and J. C. French. Flycasting: Using Collaborative Filtering to Gen-
erate a Playlist for Online Radio. In Proc. of the WEDELMUSIC ’01 Conf., 2001.

7. A. Jameson and B. Smyth. What a Difference a Group Makes: Web-Based Rec-
ommendations for Interrelated Users. In P. Brusilovsky, A. Kobsa, and W. Nejdl
(eds.) The Adaptive Web: Methods and Strategies of Web Personalization, 2007.

8. J. Masthoff. Group modeling: Selecting a sequence of television items to suit a
group of viewers. User Modeling and User-Adapted Interaction, 14:37–85, 2004.

9. J. F. McCarthy and T.D. Anagnost MusicFX: An Arbiter of Group Preferences
for Computer Supported Collaborative Workouts. In Proc. of the 1998 Computer
Supported Cooperative Work Conference, 1998.

10. K. McCarthy, L. McGinty, B. Smyth and M. Salamó. The Needs of the Many: A
Case-Based Group Recommender System. In Proc. of the ECCBR ’06 Conf., 2006.

