The Omnipresence of Case-Based Reasoning
in Science and Application

David W. Aha
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory, Code 5510
Washington, DC 20375 USA
aha@aic.nrl.navy.mil
http://www.aic.nrl.navy.mil/~aha

Abstract

A surprisingly large number of research disciplines have contributed towards the
development of knowledge on lazy problem solving, which is characterized by its stor-
age of ground cases and its demand driven response to queries. Case-based reasoning
(CBR) is an alternative, increasingly popular approach for designing expert systems
that implements this approach. This paper lists pointers to some contributions in
some related disciplines that offer insights for CBR research. We then outline a small
number of Navy applications based on this approach that demonstrate its breadth
of applicability. Finally, we list a few successful and failed attempts to apply CBR,
and list some predictions on the future roles of CBR in applications.

1 Case-Based Reasoning

Case-based reasoning (CBR) is a multi-disciplinary subject that focuses on the reuse of experiences
(i.e., cases). It is difficult to find consensus on more detailed definitions of CBR because it means
different things to different groups of people. For example, consider its interpretation by the
following three groups:

e Cognitive Scientists: CBR is a plausible high-level model for cognitive processing (Kolodner,
1993a).

e Artificial Intelligence Researchers: CBR. is a computational paradigm for problem solving
(Aamodt & Plaza, 1994).

e FExpert System Practitioners: CBR is a design model for expert systems that can be used in
either stand alone or embedded architectures (Watson, 1997).

To introduce CBR requires identifying it in a particular context. For example, variants of Aamodt
and Plaza’s (1994) problem-solving cycle are frequently used when introducing CBR. to AI re-
searchers. Figure 1 displays a view of five top-level steps that, combined, input a problem descrip-
tion and output a (proposed) solution.

1. Retrieve: Given a problem, retrieve a set of stored cases (e.g., (problem,solution,outcome)
triplets) whose problems are judged as similar.

2. Reuse: Apply one or more solutions from these retrieved cases, perhaps by combining them
with each other or with other knowledge sources.

3. Revise: Adapt the retrieved solution(s), as needed, in an attempt to solve the new problem.

4. Review: Evaluate the outcome(s) when applying the constructed solution to the current
problem. If the outcome is not acceptable, then the solution will require further revision.

5. Retain: Consider adding the new triplet of problem, revised solution, and outcome to the
library as a new case.
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Figure 1: A View of the Case-Based Reasoning Problem Solving Cycle

From the AI perspective, many of today’s most popular CBR research directions interact with
this cycle, involving either methods for refining these top-level steps or in embedding CBR in a
multimodal reasoning architecture.

The cognitive view of CBR was first popularized by Roger Schank and his colleagues during
the late 1970’s and 1980’s at Yale University (Schank & Abelson, 1977; Riesbeck & Schank, 1989).
This lead to three USA DARPA workshops, in 1988, 1989, and 1991, and several AAAl-sponsored
workshops and symposia during 1988-1993. The German CBR community held their first annual
CBR workshop in 1992, the Europeans in 1993, and the United Kingdom in 1995; these meetings
signaled an explosive growth in interest in CBR, but one that focused on artificial intelligence and
expert systems rather than cognitive science. Recent AAAl-sponsored CBR meetings (1994-1998)
have also focused research more on computer science than on cognitive science, as have the first
two international meetings (Veloso & Aamodt, 1995; Leake & Plaza, 1997).

Similarly, while some recent books contain material devoted to cognitive models (e.g., Schank
& Kass, 1994; Leake, 1996), most recent books related to CBR have stressed issues in computer
science, including design (Maher et al., 1995; Gebhardt et al., 1997; Maher & Pu, 1997), expert
systems (Lewis, 1995; Watson, 1997), machine learning (Kolodner, 1993b; Aha, 1997), and appli-
cations (Watson, 1997).

Several other research disciplines (e.g., machine learning, cognitive psychology, process planning,
statistics) have also contributed to a growing body of knowledge on reasoning from cases. However,
few CBR publications relate these other contributions to CBR research. This brief paper, based
on an invited talk at the 1997 SGES International Conference on Knowledge Based Systems and
Applied Artificial Intelligence, begins in Section 2 by surveying some research related to CBR. in
other fields, and how that research can benefit the development of CBR approaches. We also
describe a small set of Navy projects that exemplify a variety of roles in which CBR can be applied



for expert systems tasks. Next, we discuss some successes and failures in practicing CBR. Finally,
we list some focus areas in which CBR approaches are expected to contribute.

2 The Omnipresence of Case-Based Reasoning

The basic notions of case-based reasoning (e.g., storage of experiences, similarity computations,
indexing) are familiar to researchers in several disciplines. Thus, CBR researchers are in a unique
position to learn from advances in these disciplines, which may prove an advantage to those studying
alternative strategies for designing expert systems (e.g., rule-based reasoning). Furthermore, there
are a large variety of roles in which CBR techniques can assist in expert systems. However, we
are not arguing that the complete CBR. problem-solving cycle, especially that of symbolic solution
adaptation, is frequently studied outside of CBR. Rather, we argue that a distinctive characteristic
of CBR, that of lazy problem solving, is what ties CBR research to several other disciplines.

Lazy problem solving is a form of problem solving where computation is performed on a demand-
driven basis. We define purely lazy problem solvers to display the following three behavior: (all
beginning with “D”)

1. Defer: They do not process their inputs (i.e., data) until given information requests.
2. Data-driven: They respond to requests by combining information from the stored data.

3. Discard: They dismiss any temporary intermediate results created during problem solving.

In contrast, eager algorithms compile their inputs into an intensional data structure (i.e., discarding
their inputs), reply to information requests using this a priori compiled abstraction, and retain it
for future requests. For example, in the context of supervised learning algorithms, the k-nearest
neighbor classifier is a lazy algorithm, while algorithms that greedily induce decision trees (e.g.,
C4.5 (Quinlan, 1993a)) are eager.

This lazy/eager distinction exhibits many interesting tradeoffs. For example, the following
benefits of lazy problem solving approaches exist:

1. Elicitation: Lazy approaches require the availability of cases rather than difficult-to-extract
rules. (This is also true for most machine learning approaches.) This can significantly refocus
knowledge acquisition efforts on how to structure cases.

2. Problem Solving Bias: Because cases are in raw form, they can be used for several different
problem solving purposes. In contrast, rules and other abstractions can generally be used for
only the purpose that guided their compilation.

3. Incremental Learning: Lazy approaches typically have low training (i.e., data processing)
costs in comparison with approaches that attempt to compile data into concise abstractions.
However, the tradeoff often exists that lazy approaches require more work to answer infor-
mation queries, although smart caching schemes can be used to decrease this workload (e.g.,
Clark & Holte, 1992).

4. Disjunctive Solution Spaces: Lazy approaches are often most appropriate for tasks whose
solution spaces are complex, making them less appropriate for approaches that replace data
with abstractions (Aha, 1992).

5. Precedent Explanations: By virtue of storing rather than discarding case data, lazy approaches
can generate precedent explanations (i.e., based on the retrieved cases). Characteristic (i.e.,
abstract) explanations, if requested, can always be derived from the stored set of cases in a
demand-driven manner.



Table 1: Some Research Areas Related to Lazy Problem Solving
Research Area, ‘ Topic ‘

Cognitive Psychology | Exemplar models

Pattern Recognition | Edited k-nearest neighbor classifiers

Machine Learning More than just instance-based approaches

Cognitive Science CBR, Analogy

Information Retrieval | Document retrieval

Statistics/Robotics Locally weighted regression

Data Structures Recent variants on k-d trees

Software Engineering | Software reuse

Process Planning Variant process planning

6. Sequential Problem Solving: Sequential tasks often benefit from the storage of a history in
the form of the states that lead to the current state. Lazy approaches are used to store this
information, which can then be used, for example, to disambiguate states (e.g., McCallum,
1995).

However, perhaps the most compelling reason for using a lazy problem solving approach is that it
is highly intuitive; experts often relate their problem solving behavior in ways that suggest a form
of case-based reasoning. We discuss these and other benefits of lazy approaches throughout this
section. See (Aha, 1997) for a collection of articles focussed on lazy learning.

Lazy problem solving is a distinguishing characteristic of CBR approaches: they perform
demand-driven reasoning from a stored library of cases. We will use this perspective when de-
scribing the impact of research in other disciplines on CBR research in Section 2.1, and also when
exemplifying some roles of CBR techniques in applications in Section 2.2.

2.1 Omnipresence in Science

There are a variety of ways in which research contributions on reasoning from cases, from sev-
eral related disciplines, can benefit performance tasks, and to promote awareness of this body of
knowledge. For example, some research in the areas listed in Table 1 clearly relate to CBR. Due to
time constraints, we only briefly describe some of this research here with the objective of providing
pointers to relevant research.

2.1.1 Cognitive Psychology

Related research in cognitive psychology has focused on human concept representation. Some
CBR researchers have claimed that algorithms based on nearest neighbor retrieval have support in
human subject studies. This claim is misleading. While Smith and Medin’s (1981) book, which
has inspired several CBR researchers, argued that support exists for “exemplar models,” they
were referring to algorithms based on the probability choice model, in which similarities from all
stored cases contribute towards categorization predictions based on their similarity to the new
“probe.” Medin and Schaffer’s (1978) Context Model was based on this approach. Implicit in their
model was what Shepard (1987) called the Universal Law of Generalization, which states that the
probability that human subjects will confuse two stimuli is an exponentially decreasing function
of their distance (i.e., in a psychological space). Shepard showed how this law accounted for 30



years of human subject data, and it was Nosofsky (1986) who, in his Generalized Context Model,
clarified how the Context Model employed this assumption. Medin, Nosofsky, their colleagues,
and several others have reported enormous support for the psychological plausibility of models
that claim humans base categorization (and other) decisions on stored cases (i.e., “exemplars”).
For example, Hintzman and Ludlam (1984) showed that this approach, embodied in Minvera II,
accounts for prototypicality effects, among others. And Krushke (1992) showed how exemplar
models can account for yet more behaviors in human subject data in a neural network architecture
based on radial basis functions. This is one of many demonstrations, across many disciplines, of
how CBR behavior can be captured in alternative problem-solving architectures.

This area is rich in topics covered, including modeling selective attention via feature weight-
ing, context-dependent classification, correlated features, and frequent empirical comparisons with
models that use other representations for concepts. However, for several decades, it was inundated
by studies that focused on cognitively plausible representation models for concepts (e.g., prototype,
feature frequency, exemplar). Researchers would show that an extension of their favorite model
would outperform (i.e., correlate better with subject data) than previous models using alternative
representations (i.e., by introducing ever more numbers of free parameters in their models, and as-
suming that a process model existed that would set these parameters to values that could allow the
model to closely correlate with subject behavior). This would be followed by promising extensions
of the other models. In fact, these competitions were futile; as Barsalou (1989) noted, exemplar
models can be designed to closely imitate abstraction models, and visa versa. The emphasis of
study should be on the combination of process model and representation rather than on represen-
tation alone. This should alert CBR researchers to the fact that they can design their approaches
to take advantage of advances in eager problem-solving methodologies, and that lazy variants of
these approaches also exist.

2.1.2 Pattern Recognition

Related pattern recognition research on lazy algorithms has, as in cognitive psychology, frequently
focused on classification. However, pattern recognition research on this topic began much earlier,
and it focused on process models in addition to representation issues. For example, Fix and Hodges
(1951) are generally credited with discovering the simple k-nearest neighbor (k-NN) case-based
classifier, which predicts that a new case’s class is determined as a function of its £ most similar
stored cases.

CBR researchers can benefit from studies in pattern recognition on case deletion. Several
researchers have investigated variants of edited k-NN classifiers. For example, one research line
followed Wilson’s (1972) lead, in which incorrectly classified cases were deleted (e.g., Wagner,
1973; Koplowitz & Brown 1981). This research emphasized the introduction of algorithms whose
probability of error more closely approached the Bayes optimal rate than previous algorithms. The
intuition was that these classifiers deleted only atypical cases, and that they could deliver reasonable
accuracy for both typical and atypical cases. Alternatively, Hart (1968) popularized the study of
algorithms that deleted correctly classified cases, arguing that the atypical cases provided more
information on class boundaries. This line of research has been more empirically inclined, with
a focus on thresholding (Sebestyen, 1962), iterative deletion (Gates, 1973), and domain-specific
feature selection (Kurtzberg, 1987). Naturally, a combination of these two strategies has also been
investigated in detail (e.g., Voisin & Devijer, 1987). Dasarathy’s (1991) collection contains several
classic papers related to this research.

Interest in the ATl community on case deletion is strong. For example, the 1995 IJCAI best
paper award was given to a paper on this topic (Smyth & Keane, 1995). Thus, it is probable that



several of the advances in pattern recognition on this topic are of interest to CBR researchers.
Furthermore, work by Dasarathy (1980) and others on learning when to not make predictions from
stored cases should also be of interest. Advances in unsupervised approaches and data structures
have also been made in this research area. Finally, pattern recognition research on learning in
the limit analyses of edited k-NN classifiers should be of interest to formalists studying case-based
retrieval. In general, many related and earlier contributions in pattern recognition continue to be
re-invented in other communities.

2.1.3 Machine Learning

Research in machine learning (ML) on lazy problem solving has, as with both cognitive psychology
and pattern recognition, frequently focused on classification. However, many of the advances on
lazy learning can be modified for use in the CBR problem solving cycle, and other research advances
on lazy learning exist (e.g, in problem solving, clustering). In addition, many concerns of the CBR
researcher are also addressed in related ML research, such as forms of indexing, tolerating noise
and missing values, feature selection, incremental updating, and related issues.

Many contributions in ML related to lazy problem solving can be roughly dichotomized accord-
ing to whether they concern incorporating eager characteristics into lazy algorithms or visa versa.
Additionally, several researchers have investigated less closely integrated combinations of lazy and
eager approaches.

1. Eager realizations of lazy approaches:

Few ML researchers are working with purely lazy algorithms; they are needlessly memory and cpu
intensive. Instead, ML research has focused on different methods for caching information with lazy
algorithms.

Perhaps the earliest research on lazy learning reported at a ML meeting was by Bradshaw
(1986; 1987), who introduced the phrase instance-based learning (IBL)! while working on his 1985
dissertation. He focused on the task of recognizing spoken letters, and introduced an instance-
averaging algorithm named disjunctive spanning that attempted to locate centroids of disjuncts.
Kibler and Aha (1987) later introduced /B2, a similar algorithm that performs instance filtering
(i.e., by retaining only correctly classified cases) rather than instance averaging (Kibler & Aha,
1988). Both of these algorithms were, not surprisingly, highly similar to earlier research on pattern
recognition. In particular, disjunctive spanning is closely realted to Sebestyen’s (1962) algorithm
(i.e., but without pre-determined thresholds), and IB2 is a simplification of CNN (Hart, 1968).2

Since these early efforts, lazy algorithms have undergone dramatic design enhancements. Re-
searchers have studied several lazy learning topics, including

e case selection (Zhang et al., 1997),

e concept distribution skew (Cardie & Howe, 1997),

e concept shift (Salganicoff, 1997),

e cost-sensitive learning (Tan & Schlimmer, 1990; Turney, 1993),
e discretization (Ting, 1997; Wilson & Martinez, 1997a),

!Several synonyms have been used to describe these algorithms. For example, these include
{case,exemplar,instance,memory }-based {learning,reasoning}. These names reflect a focus on representation to the
exclusion of processing. This is one reason why we prefer the phrase lazy learning; it implies both.

2CNN was also rediscovered elsewhere. For example, see (Kurtzberg, 1987).



e feature selection and weighting (Kelly & Davis, 1991; Cain et al., 1991; Cardie, 1993; Skalak,
1994; Ricci & Avesani, 1995; Kohavi et al., 1997; Domingos, 1997; Ling & Wang, 1997; Maron
& Moore, 1997; Wettschereck et al., 1997; Howe & Cardie, 1997),

e information theory (Lee, 1994; Cleary & Trigg, 1995; Wettschereck & Dietterich, 1995),
e noise (Stanfill, 1987; Aha & Kibler, 1989; Aha et al., 1991; Ting, 1997),

e parallel implementations (Stanfill & Waltz, 1986),

e preference learning (Branting & Broos, 1994),

e speedup techniques (Deng & Moore, 1995; Grolimund & Ganascia, 1996; Daelemans et al.,
1997),

e storage reduction (Zhang, 1992; Cameron-Jones, 1992; Skalak, 1994; Wilson & Martinez,
1997b),

e symbolic features (Cost & Salzberg, 1993; Biberman, 1994), and
e voting techniques (Alpaydin, 1997; Skalak, 1997; Ricci & Aha, 1997).

This is an incomplete list, and we do not attempt to relate these approaches here. Most publications
focused on improvements concerning speed, accuracy, storage, and/or scope of applicability.

Some of the most interesting research on this topic has investigated the use of alternative
representations with lazy approaches. For example, Salzberg (1991), Wettschereck & Dietterich
(1995), and Domingos (1995), among others, have investigated algorithms that generalize cases
to rules. Elliot and Scott (1991) examined how to define similarity using hierarchical structures.
Emde and Wettschereck (1996) described a lazy algorithm for first-order case representations, while
Langley et al. (1997) examine a matrix representation of probabilities for cases.

A significant amount of ML research on lazy algorithms has focused on robotic control tasks
(e.g., Connell & Utgoff, 1987; Maes & Brooks, 1990; Moore, 1990). See (Atkeson et al., 1997a) for
an excellent survey on this subject, and its relationship to statistics. They strongly advocate a fairly
pure lazy approach where an impressive amount of parameter tuning is performed during prediction
tasks. An important lesson for CBR researchers is that the set of parameters typically considered
in AI research on lazy learning is often a small subset of the possible parameters considered in
research on statistics.

Several researchers have described formal analyses of lazy algorithms, most of which have been
inspired by the PAC learning framework (e.g., Albert & Aha, 1991; Lin & Vitter, 1994). Turney
(1994) analyzed cross-validation error and voting, while several researchers have now addressed
average case studies (e.g., Langley & Iba, 1993; Griffiths, 1996; Okamoto & Yugami, 1997; see Grif-
fith’s dissertation for additional references, in particular his work with colleagues). Fewer formal
studies have yet to appear on case retrieval, adaptation, and other issues related to CBR research.
However, those who endeavor to pursue such analyses would do well to consider the contributions
of this line of research.

2. Lazy realizations of eager approaches:

An interesting branch of research, only recently pursued, is that of investigating the benefits of
using a lazy approach for what have previously been thought of as eager algorithms. For example,
Friedman (1994), Smyth and Cunningham (1994), and Friedman et al. (1996) have described the
benefits of using a lazy approach for decision tree induction. The primary advantage is that the
trees (really, paths) created by these algorithms are query-specific (Atkeson et al., 1997a); the only
features in the tree are those pertinent to the query and missing values are never considered. Other



benefits include increased classification accuracy. Webb (1996), among others, are now investigating
a similar idea for rule-induction algorithms. The lesson for CBR researchers is that query-specific
approaches for CBR may impact the design of indexing strategies.

Planning can also be viewed as a lazy task. For example, Epstein and Shih (1997) demonstrated
that lazy reasoning using sequences of cases can improve planning performance for a bridge playing
task.

3. Loose integrations of lazy and eager approaches:

This section describes a few examples of less-closely coupled integrations between eager and lazy
learning approaches. We categorize these contributions according to the eager data structure em-
ployed in these integrations.

Decision trees: Several ML researchers have explored the benefits of integrating lazy and eager
approaches to enhance learning performance. For example, Indurkhya and Weiss (1995) and Torgo
(1997), among others, have investigated decision tree induction where lazy algorithms are used at
the leaves. Ting (1994) examined the utility of lazy learning for small disjuncts, where a decision
tree was used to determine where small disjuncts existed and to answer queries otherwise. Quinlan
(1993b) examined how decision tree predictions could be used to modify the prediction of a lazy
learner. Utgoff (1989), among others, has examined how decision trees can be efficiently incremen-
tally updated by storing cases at its leaves. This is reminiscent of how unsupervised algorithms,
such as COBWEB (Fisher, 1989), use evaluation functions to update their hierarchies. Similar
approaches might prove useful for guiding the incremental modifications of indexing structures for
case retrieval.

Rule induction: Widmer’s (1993) description of how a rule-induction can be used to cluster sets of
cases is related to similar research on clustering using decision trees, as mentioned above. Zhang
and Michalski (1995) instead described an extension of the AQ approach for rule induction in which
specific cases were stored with the rule set.

Genetic algorithms: Some researchers have described feature weighting and selection approaches
for lazy algorithms using genetic algorithms (e.g., Kelly & Davis, 1991; Skalak, 1994; Wilson &
Martinez, 1996). Sheppard and Salzberg (1997) instead investigated how a genetic algorithm can
provide good examples for a lazy classifier in the context of a missile evasion task.

Neural networks: Volper and Hampson (1987) described early research on the utility of using spe-
cific instance nodes in multilayer neural networks. Lazy classifiers have a close relationship with
radial basis networks (Moody & Darken, 1988; Broomhead & Lowe, 1988), which employ Gaussian,
rather than sigmoidal, hidden units that are fixed on a specific location in the instance space.

Bayesian reasoning: Breese and Heckerman (1995) describe how a three-level case-based Bayesian
network can be used for diagnosis tasks, but do not specifically focus on learning issues. Similarly,
Tirri et al. (1996), among others, have described a Bayesian framework for CBR. However, fewer
integrations of these approaches than might be expected have focused on learning issues.

Reinforcement learning: Moore and Atkeson (1993) described the use of prioritized sweeping to
speed up the reinforcement learning process. The general idea is to focus learning effort as guided
by previous interesting experiences. In contrast, McCallum (1995) explained how storing case his-



tories of exploration traces can help to solve state aliasing problems.

Analytic learning: Some research on explanation-based learning has examined the utility of lazy
approaches for deduction (e.g., Tadepalli (1989); Clark & Holte (1992)). More recently, Borrajo and
Veloso (1997) have shown that a lazy learning approach can be used to efficiently acquire control
knowledge in an incremental planning process.

2.1.4 Summary

This section briefly described investigations of research related to CBR in a few disciplines, but
neglected research in many others. For example, closely related research has been pursued in
cognitive science on computational analogy (Gentner & Forbus, 1991), in information retrieval on
inference networks (Callan et al., 1995), in physics on provably correct retrieval, similarity, and
adaptation functions for a set of domains (Rudolph & Hertkorn, 1997), in software engineering on
software reuse, and in statistics on recursive partitioning (Friedman, 1994) and tangent distance
functions (e.g., Hastie and Tibshirani, 1994). An enormous amount of research on reasoning from
cases has appeared in research published in many disciplines.

A few application areas are particularly good matches for the biases of lazy approaches. For
example, research on natural language learning (e.g., Daelemans et al., 1997) often involves working
with data sets whose concepts are highly disjunctive. In such circumstances, it is well known that
lazy approaches have benefits vs. eager approaches (e.g., Aha, 1992). This suggests further study of
lazy realizations of eager approaches for natural language learning tasks. Another good application
area concerns robotic control. See (Atkeson et al., 1997b) for a survey on selected lazy approaches
for control tasks.

Given this discussion of related research, several lessons suggest how to decide whether to use
case-base vs. alternative reasoning approaches. For example:

e Incremental learning: Case-based approaches are suited for incremental learning tasks because
they prevent the premature selection of summary abstractions. For more information, see
(Matheus, 1987).

e Highly disjunctive spaces: Case-based approaches are particularly suited for tasks where ab-
stractions tend to yield over-generalizations. For example, in highly disjunctive spaces (e.g.,
several natural language processing tasks), eager approaches often combine disjuncts repre-
senting different solutions, and thereby will reduce task performance.

e Sequence-based reasoning: Temporal reasoning from sequences has proven effective for such
diverse tasks as selecting moves in two-person games (Epstein & Shih, 1997) and for disam-
biguating states (McCallum, 1995). The potential of CBR for other types of sequential tasks
is worth investigating.

e Query-specific reasoning: Lazy approaches provide the enormous benefit of using local infor-
mation to characterize states and generate predictions (e.g., Friedman et al., 1996). Because
abstraction approaches attempt to fit all cases simultaneously, they may lose information that
is crucial for specific queries.

e Training speed: Case-based approaches are usually much cheaper to use when storing infor-
mation. Thus, CBR is preferable for tasks where storage speed is valued more highly than
query-response speed, and/or when efficient caching mechanisms can be used to reduce the
time to respond to subsequent information requests.



o Missing values: Lazy approaches, whether for use in a case-based, decision tree, or other
algorithm, are useful for tolerating missing values because lazy methods exist that require
processing only the values known for the given query.

e Precedent explanations: By retaining specific cases, decision aids systems that reason from
these cases can always use them to explain system behavior. This is not possible with ap-
proaches that discard cases, yet characteristic explanations (i.e., based on abstractions from
the cases) can always be generated from a set of cases upon demand.

However, CBR approaches have their limitations. For example, they tend to have larger storage
requirements, and demand attention for the definitions of case retrieval and adaptation. We strongly
encourage that practitioners use a comparative analysis of the pros and cons for whether a CBR
approach is well-suited for their task.

2.2 Omnipresence in Application

Case-base approaches have been applied to a broad spectrum of problems in various roles. Readers
interested in details should consult (Watson, 1997) or certain CBR-related WWW pages (e.g.,
AI-CBR, U. Kaiserslautern’s page, or our own). Rather than repeating what others have written,
we instead discuss a small number of Navy CBR applications, focusing on the different roles that
case-based models can play.

2.2.1 Feature selection

Bankert and Aha (1996) describe an eager realization of a lazy approach for feature selection.
Bankert (1994) had previously reported an application of a traditional feature selection algorithm
for a cloud classification task. He used a clustering algorithm to evaluate the quality of a feature
subset, along with a neural network classifier. Although he reported what seemed to be reasonable
performance, we found that a wrapper approach (John et al., 1994), in which the same algorithm was
used for both the feature subset evaluator and the classifier, was preferable. In particular, we used
a case-based classifier for both components, and it significantly increased classification accuracies.
Thus, the algorithm cached information as to what features to focus on during classification. Thus,
it is not purely lazy, but rather is an eager realization of a lazy approach. A lesson we learned is
that the low training costs required by a CBR approach are particularly useful in a feature selection
algorithm, which must evaluate a large number of feature subsets and, therefore, training speed is
a concern. This eliminated any hope of using an expensive eager approach.

More recently, we examined the use of an alternative output representation for these tasks (Aha
& Bankert, 1997). In particular, we found that error-correcting output codes (ECOCs), a type of
distributed representation, can further enhance accuracy, though at the cost of speed and storage.
It is feasible that ECOCs can also be of use to case retrieval tasks (i.e., to assist in distinguishing
cases during retrieval), although this has not yet been investigated.

2.2.2 Robotic Navigation

Grefenstette (1996) describes a loose integration of lazy and eager problem solving approaches for
a robotic navigation task. He focused on anytime learning issues, where the world’s state was
available through sensor inputs. Previous research had shown that genetic algorithms could learn
rules to control the robots behavior (i.e., its actuators), and they could be used to guide the robot
to solve navigation tasks. However, Grefenstette was interested in developing an extension of this
research where sensor failures could be tolerated. He pursued this by learning one rule population
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per world state, where a state corresponded to a subset of the sensors that were working properly.
A monitor was available to indicate changes in sensor availability, and was used to trigger the
algorithm to select the top-performing rules from appropriate populations.

Thus, Grefenstette viewed the multiple rule populations as a case library, where each case was
a population. His approach selected and imported parts of each case to the “current” rule-learning
population as triggered by the world state monitor. This case-based approach allowed the robot
to gracefully recover from sensor failures, or other changes in the world state, significantly more
quickly than when multiple rule populations were not cached. This approach is being pursued
in ongoing projects at the Naval Research Laboratory’s Center for Applied Research in Artificial
Intelligence.

2.2.3 Interactive Troubleshooting

Naval personnel working on weapons systems often have challenging troubleshooting tasks. In
particular, some systems have several volumes dedicated to troubleshooting scenarios. These are
difficult to master, particularly when short billets dictate that personnel have little time to master
the machinery they work with.

Conversational CBR approaches (Aha & Breslow, 1997) have been used to assist naval personnel
with troubleshooting complex systems. Omne application works as follows: Onboard personnel
contact one of the four Fleet Technical Service Centers with troubleshooting questions. Personnel
at the center have access to a conversational CBR tool that, given answers concerning the situation,
can walk them through to a solution. This requires only a short conversation where the system
troubleshooter answers a few system-prompted questions. At any point in the conversation, the
system permits the troubleshooter to answer any of a small set of questions, thus allowing the
system to continue processing even when some pertinent answers are unknown.

A fielded version of this approach has been in use since 1995. It required the construction of
a conversational case library, which included some cached information, such as relevance weights
on questions. Between two and ten calls per week are handled by Naval personnel at the Centers.
This is a successfully applied example of an eagerly realized lazy approach.

2.2.4 Summary

In addition to the three Navy CBR applications mentioned above, some ongoing projects are also
targeting the use of a CBR approach for Navy applications. For example, one involves comparing
two records of processing in an empirical software testing task. The task is to determine whether
the revised module exhibits any significant behavioral anomalies. Another application will involve
using conversational CBR technology to train users on how to operate a transmission electron
microscope.

3 Successes and Failures of Case-Based Reasoning
This section briefly describes some successful and failed CBR ventures. We concentrate on real-

world experiences rather than those that are purely academic, in large part because these experi-
ences usually contain lessons that suggest pursuing important research directions.
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3.1 Swuccesses

This section lists three categories of tasks where CBR has been successfully applied. For each
category, we mention a company whose products focus on these tasks. For more information on
other companies who are pursuing these and other interesting tasks (e.g., AcknoSoft), and on other
successful CBR ventures, please see (Watson, 1997).

3.1.1 Interactive Troubleshooting

By far the most extensive application of CBR technology has been in the area of interactive trou-
bleshooting. In particular, Inference Corporation (www.inference.com) has over 650 corporate con-
tracts with organizations who are using Inference’s CBR Content Navigator products for help desk
and WWW self-help applications. These products are based on the conversational CBR (CCBR)
approach that was mentioned in Section 2.2.3, and have been extremely successfully applied. For
example, on the first day of Broderbund’s release of Riven, their followup of the extremely popular
PC game Myst, approximately 3000 clients used Broderbund’s WW W-mounted self-help server to
answer their troubleshooting questions rather than phone Broderbund for help. Thus, this appli-
cation helps Broderbund to lower its cost for call center support.

One reason for Inference’s success is that they have targeted a niche that is a good fit for
CBR. In remote troubleshooting tasks, clients often can answer some information concerning their
problem, but perhaps not all information. Thus, an approach that prompts them with only one
question (e.g., a standard decision tree approach) is often not suitable for these clients. In contrast,
this is a design focus of CCBR tools.

Perhaps the most significant concern regarding CCBR systems is that they demand a learning
curve for authoring case libraries. Our group’s research focuses on simplifying the case authoring
task for CCBR systems. We created a system, named NaCoDAFE (Navy Conversational Decision
Aids Environment), for this purpose (Breslow & Aha, 1997). We are pursuing specific methods for
simplifying case authoring:

1. Library Revision: Aha and Breslow (1997) describe Clire, a component of NaCoDAE that
enforces case authoring guidelines for a given case library. It does this by revising the case
library, editing the cases by first re-representing them in a modified decision tree hierarchy,
which simplifies the editing process. We found that the Clire-transformed libraries we tested
showed significant increases in retrieval precision and efficiency. This decreases the burden
on case authors to design case libraries, thus simplifying their task.

2. Question Weighting: Few methods for weighting questions exist for case retrieval algorithms
other than those used for classification tasks. We have investigated a limited linear program-
ming approach to automatically assign weights, and are comparing it to a more promising
method based on extracting weights from a Clire tree. By eliminating the need to assign
question weights, we simplify the task of the case author.

3. Dialogue Inferencing: CCBR systems begin by inputting a natural language text description
of a user’s problem. Unfortunately, current methods for interpreting that text do not easily
relate it to the case library. In particular, the text typically implicitly answers some questions
in the case library. Although some CCBR systems permit users to insert rules that relate
text to questions, and relate questions to other questions, these rules can be huge in number.
We advocate a different strategy whereby the case author interactively guides the system in
building a model of the objects in the case library and a model of how the questions relate
to the object model. Given the current problem description (i.e., the user’s text and their
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answered questions), these models can be used by a relational database retrieval engine to
answer other questions in the case library. We are currently examining how Parka can support
this process (Aha & Maney, 1997).

More information on our CBR research activities can be viewed at

www.aic.nrl.navy.mil/~aha/cbr/practical-advances.html.

3.1.2 Recommenders

Firefly (www.firefly.com) is one of the first companies to begin marketing software development
tools that use a CBR component to make recommendations to clients. For example, consider an
application that is supposed to recommend books for you to read. The system would begin by
inserting some of your likes and dislikes, based on your past reading experiences and interests.
It then would consult a large case library of similar inputs from other book readers, along with
detailed facts concerning available books. The system could then respond to you with a set of
suggested books, derived from similar reading preferences exhibited in the case library. Not sur-
prisingly, Barnes and Noble developed an application of Firefly’s Passport Office system that has
this functionality.

Recommender systems are not limited to suggesting book preferences. For example, they could
be used for more challenging tasks, such as electronic dating services. Kris Hammond’s group is
exploring similar ideas at the University of Chicago (see www.cs.uchicago/groups/ai).

3.1.3 Internet Commerce

TecInno (www.tecinno.de) is focusing on developing products that are closely related to recom-
mender systems, but are geared for internet commerce tasks. In particular, their CBR-Works
Online tool has been used for such tasks as sales support, consulting systems, and product cat-
alogues. CBR-Works extracts product requirements from clients, uses them to retrieve product
announcements, and revises them according to a model of the client’s interests. This model is up-
dated according to feedback the model provides on the product announcements retrieved for them.
Thus, learning user models is a distinguishing characteristic of this knowledge-intensive approach
to case-based reasoning.

3.2 Failures

This short list of failures concerning applying CBR should be familiar to expert systems researchers
and practitioners.

3.2.1 Corporate Support

The most important objective of any AI application should be to obtain corporate support for
the project. Without it, otherwise successful applications will not flourish. For example, Marc
Goodman (1994) created an application of projective visualization for Nestle/UK’s coffee roaster
machines. These expensive machines were suffering from downtime costs when sensor readings
indicated that they had to be shut down to prevent irreparable damage. At such times, the
machines had to be diagnosed and their current contents (i.e., slop) had to be discarded.

To reduce this problem, Goodman’s system compared the current state of a coffee machine
to previously recorded states, and also had access to a simulator so that it could predict future
states. It would notify users whenever sensor problems were anticipated with high probability. This
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application was well-received by its users; it was responsible for greatly reducing the costs of using
these roasters.

Unfortunately, corporate support was not behind this project due to corporate politics. The
result was that it killed the near-term possibility of future CBR applications at Nestle/UK. Kitano
et al. (1992) emphasize the necessity of corporate support in large-scale CBR projects.

3.2.2 Knowledge Acquisition

CBR is not a magic bullet for the expert systems community. It is a technology that demands
attention to the process of case engineering, which bears resemblance to knowledge engineering.
However, the emphasis here is on developing case libraries that can deliver solutions to clients.
While some commercial CBR tools can sometimes be successfully applied to client tasks “out of
the box,” more often then not the clients recognize that case authoring skill is required to create a
successful CBR application.

Under those circumstances, clients have, in general, three options. First, they can turn to the
CBR company for consulting services. This is an expensive proposition. Second, they can develop
in-house expertise, as has been done at many client companies. However, some companies do not
have need for such expertise, and decide to pursue the third option: abandon the CBR application.
Not surprisingly, several client companies have chosen this third option. Thus, simplifying the case
authoring task is of great practical value to prospective clients of commercial CBR tools.

3.2.3 Scope of Applicability

Finally, a third CBR failure concerns mismatching the capabilities of a CBR tool with its intended
task. Some tasks are such that they do not match well with CBR tools. For example, they may not
draw on the benefits of CBR (see Section 2), and other tools might be more practical for the task.
This has made some potential client companies wary of investing in CBR technology. For those
clients, their best strategy is to become informed about the types of problems for which CBR is
particularly suited, and to examine whether their problems have similar characteristics. Given that
CBR approaches have a particularly broad scope of application, we anticipate that analyses of this
kind will often reveal that a CBR component has a useful role in many industry and government
problem solving applications.

4 Predictions for Case-Based Reasoning

The CBR research and commercial communities are thriving. Given their current activities, we
can predict some trends for future CBR applications.

1. Continuing Current Trends: Applications in help-desk, self-service, and recommender systems
(i.e., including internet commerce) will thrive. The continuing focus will be on reducing
user requirements (e.g., by simplifying the case authoring tasks), broadening problem-solving
abilities by integrating case-based with eager approaches, and on using learning to model
(and subsequently exploit) user preferences.

2. Information Retrieval: Cases represent structured information, at least with respect to com-
paratively unstructured data sources such as the WWW, document collections, and many
databases. Thus, there will be increased activity on extracting information in less structured
forms and recording them as cases. This caching approach will simplify answering future,
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similar information requests. Inference Corporation, among others, is pursuing this strategy
in their recent product designs.

3. System Monitoring: There is an increased need to solve sequential problem solving tasks by
recording history information. CBR is well-suited to assist in these tasks; comparisons can
be made between histories to direct decision aids activities.

4. Knowledge Management: A primary concern of corporate entities is in recording and reusing
the knowledge of their employees. The motivation is clear; employee turnover means loss of
knowledge, and thus loss of intellectual capital (Stewart, 1997). This is an excellent applica-
tions area for case-based reasoning technology that is only now beginning to be pursued.

Naturally, given the content of this talk, a remaining prediction must be made: there will be an
increase in interdisciplinary research (and perhaps applications) between case-based reasoning and
other disciplines. For example, various advances in CBR could influence the directions of research
on variant process planning, information retrieval, and machine learning. Likewise, contributions
could be drawn from rather than exported to these communities.

5 Summary

This paper briefly presented an argument that case-based reasoning (CBR) research is not alone
in the universe. Rather, the lazy problem solving model that underlies the CBR problem-solving
cycle is endemic to many research disciplines, although only parts of the cycle are typically of
interest in those disciplines. Furthermore, there are a large assortment of ways in which case-based
approaches can contribute to an integrated multimodal reasoning architecture. We briefly discussed
some of the benefits of using a CBR approach, CBR successes, failures, and future trends. For more
information, we encourage readers to examine the references and, perhaps more importantly, review
the compiled WWW sites on CBR (e.g., AI-CBR, the University of Kaiserslautern’s pages, or our
own).
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