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Abstract

Many lazy learning algorithms are derivatives of the k-nearest neighbor (k-NN)

classi�er, which uses a distance function to generate predictions from stored instances.

Several studies have shown that k-NN's performance is highly sensitive to the de�-

nition of its distance function. Many k-NN variants have been proposed to reduce

this sensitivity by parameterizing the distance function with feature weights. How-

ever, these variants have not been categorized nor empirically compared. This paper

reviews a class of weight-setting methods for lazy learning algorithms. We introduce

a framework for distinguishing these methods and empirically compare them. We ob-

served four trends from our experiments and conducted further studies to highlight

them. Our results suggest that methods which use performance feedback to assign

weight settings demonstrated three advantages over other methods: they require less

pre-processing, perform better in the presence of interacting features, and generally re-

quire less training data to learn good settings. We also found that continuous weighting

methods tend to outperform feature selection algorithms for tasks where some features

are useful but less important than others.

Keywords: lazy learning, k-nearest neighbor, feature weights, empirical comparison

1 Introduction

The k-nearest neighbor (k-NN) classi�er (Dasarathy, 1991) is the basis of many lazy learning

algorithms. k-NN is purely lazy; it simply stores the entire training set and postpones

all e�ort towards inductive generalization until classi�cation time. k-NN generalizes by
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retrieving the k least distant (i.e., most similar) instances of a given query and predicting

their weighted-majority class as the query's class. The quality of k-NN's generalization

therefore depends on which instances are deemed least distant, which is determined by its

distance function.

In Section 2, we argue that k-NN's distance function is biased: it allows redundant,

irrelevant, interacting, or noisy features to have as much e�ect on distance computations as

other features. k-NN can perform poorly when such features are present. This observation

motivated the creation of many k-NN variants that compute feature weights, which we

review in Section 3. Several of these variants improve its accuracy on some learning tasks

(e.g., Kelly & Davis, 1991; Aha, 1992; Wettschereck, 1994). However, many empirical

evaluations frequently compare sophisticated algorithms with standard k-NN (e.g., Gorman

& Sejnowski, 1988; Kohonen et al., 1988; Weiss & Kapouleas, 1989; Bounds et al., 1990;

Yau & Manry, 1991; Bottou & Vapnik, 1992; Wettschereck & Dietterich, 1992; Michie et al.,

1994). While k-NN is frequently shown to have lower classi�cation performance, its own

more sophisticated variants are typically ignored.

This paper de�nes and relates k-NN to the large family of lazy learning algorithms in

Section 2, and then introduces a framework and reviews a subclass of k-NN weight learning

methods in Section 3. Our objective is to bring attention to these weight learning variants,

and their relative merits. No weight learning method can learn optimal weight settings

for all learning tasks since each task requires a di�erent learning bias for optimal perfor-

mance (Mitchell, 1990). Therefore, we empirically evaluate a subclass of weight learning

methods, present general trends that contrast their capabilities, and investigate these trends

in Section 4. We found that weight learning methods which incorporate performance feed-

back from the classi�er showed several advantages, although some weighting methods can

locate good weight settings without such feedback. Section 5 discusses the implications of

our results in the context of the framework described in Section 3, while Section 6 addresses

related work.

2 Context

The focus of our paper is necessarily constrained to a small class of lazy learning algorithms

due to lack of space. We examine this constraint by de�ning the lazy learning paradigm

(Section 2.1), by de�ning a subclass of k-NN classi�ers (Section 2.2), and by explaining

how this subclass relates to this paradigm. Our subsequent review and empirical study in

Sections 3 and 4 examine variants of lazy learners in only this small subclass.

2.1 Lazy Learning Algorithms

Purely lazy learning algorithms are characterized by three behaviors:

1. Defer: They store all training data and defer processing until queries are given that

require replies.
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2. Reply: Queries are answered by combining the training data, typically by using a local

learning approach (Bottou & Vapnik, 1992) in which (1) instances are de�ned as points

in a space, (2) a similarity function is de�ned on all pairs of these instances, and (3) a

prediction function de�nes an answer to be a monotonic function of query similarity.

3. Flush: After replying to a query, the answer and any intermediate results are discarded.

This de�nition is purposely vague; it does not de�ne how training instances are stored or

represented, nor how they are combined during querying, nor even how similarity is de�ned.

Nonetheless, the k-NN classi�er is obviously a \pure" lazy algorithm.

Purity can be compromised in many ways. For example, some training data can be

discarded or permanently combined, such as by averaging into prototypes. Many forms

of pre-processing can be performed, often to enhance e�ciency for incremental learning

tasks (e.g., normalizing continuous data, caching similarity or prediction function parameter

settings, discretizing continuous data, feature construction). Performance feedback might

be recorded and used to guide decision making during query-answering, and intermediate

results can be pro�tably cached for some tasks.

We focus on impure lazy learners in which settings for feature weights are cached (i.e.,

rather than dynamically computed at query time) and, in some cases, updated via per-

formance feedback information. We also constrain our study in two respects. First, we

assume that instances are represented by a set of feature-value pairs rather than, for exam-

ple, directed acyclic graphs, which are sometimes used in the case-based reasoning literature

(Kolodner, 1993). Second, we focus on classi�cation as the performance task and ignore is-

sues concerning function learning (Atkeson et al., 1996a), class density estimation (e.g., using

parzen windows (Duda & Hart, 1973)), or problem solving (Kolodner, 1993). Furthermore,

we assume classes are disjoint.

2.2 The k-NN Classi�er

A classi�er inputs a query instance q and outputs a prediction for its class. Each instance x

= fx1; x2; : : : ; xjFjg is a point in a multidimensional space de�ned by a feature set F whose

class, xc, is a member of a set of classes J. Each feature is either continuous or ranges over

a �xed set of discrete values.

A classi�er's performance objective is to minimize expected loss, or misclassi�cation risk,

for each class cj 2 J:

Rj =
X
c0
j
2J

Lcjcj0
p(cj0jq) (1)

where Lcjcj0
is the loss (cost) associated with mistakenly classifying an instance of class cj

as in class cj0 (j 6= j 0), and p(cj0jq) is the probability of classifying q in class cj0. k-NN

generally assumes that all misclassi�cations have equal cost:

Lcjcj0
=

(
0 j = j 0

1 j 6= j 0
(2)
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Since k-NN is not given q's class, it instead outputs the most probable class:

k-NN(q) = max
cj2J

p(cjjq) (3)

k-NN di�ers from other classi�ers in how it de�nes these posterior class probabilities:

p(cjjq) =

P
x2Kq 1(xc = cj) �K(d(x,q))P

x2Kq K(d(x,q))
(4)

where 1() yields 1 i� its argument is true, K() is a kernel function, here de�ned as

K(d(x,q)) =
1

d(x,q)
; (5)

and where Kq is the set of q's k nearest neighbors among a set X of (previously supplied)

training instances as determined by the distance function d(). That is, k-NN computes the

distance d(x,q) of q to each x2X using:

d(x,q) = (
X
f2F

w(f) � �(xf ; qf )
r)

1

r (6)

where k-NN de�nes r = 2 (i.e., Euclidean distance), function �() de�nes how values of a

given feature di�er:

�(xf ; qf) =

8><
>:

jxf � qf j f is continuous

0 f is discrete and xf = qf
1 f is discrete and xf 6= qf

(7)

and w(f) de�nes the feature weighting function. k-NN de�nes this as a constant function:

w(f) = wf (8)

Finally, k-NN de�nes

8f2F wf = s (9)

for some scalar constant s. Equation 9's strong constraint provides the motivation for our

survey and empirical study.

Some implementation details need mentioning. If there is a tie among the maximal

p(cjjq), then one of the most probable classes is randomly selected. k is set using leave-

one-out cross-validation on X (Weiss & Kulikowski, 1991), where ties are broken in favor of

smaller values for k. We used a standard function (i.e., subtract the minimum and divide by

the observed range) to normalize all continuous values. This ensures that the range of �()

is [0; 1] for all features. Thus, they have equal maximum and minimum potential e�ects on

distance computations. Unfortunately, this also means that each redundant, irrelevant, and

noisy feature has as much potential impact on k-NN's distance function as does any other

feature.
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2.3 Scope of our Review

Arguably, k-NN's description in Section 2.2 is needlessly complex. We had two reasons for

showing this detail for what appears, at �rst, to be a simple classi�er. First, this description

demonstrates that k-NN is, in fact, but one algorithm in the paradigm of lazy learners.

Second, we want to clarify that k-NN's typical description as a non-parametric (except for

k) classi�er is misleading; it simply eliminates many parameters by incorporating them as

design decisions.

For example, k-NN's constant loss function is not class sensitive; its value for Lcjcj0
is

invariant for di�erent pairs of classes. Cost-sensitive learning (Turney, 1995) variants of k-

NN exist (e.g., Tan, 1993) that minimize a locally weighted error criterion (Vapnik, 1992).

The loss function can be arbitrarily complex (e.g., it could vary per class or instance).

Second, k-NN's equation for computing posteriors (Equation 4) is a form of kernel regres-

sion in statistics (Nadaraya, 1964), or the probability choice model in cognitive psychology

(Luce, 1963). It could take on many other forms, such as by replacing 1() with a function

that relates classes or varies on each instance. Also, many di�erent kernel functions (K())

have been investigated (Atkeson et al., 1996a).

Third, while we examine various distance functions, we only examine the e�ects of re-

placing Equation 9 with weighting functions that assign unequal weights to features. Many

other types of distance functions and weighting methods have been studied. For example,

rather than Euclidean or even Minkowskian, distance could be de�ned using a set-theoretic

de�nition (Tversky, 1977; Biberman, 1994) or by a function other than one which sums

independent contributions of the features. A di�erent distance function could be applied

at each query (query-based) (Atkeson et al., 1996a) or each instance (point-based) (Aha &

Goldstone, 1992). Similarly, the de�nition of feature di�erence (Equation 7) is one of many;

functions other than absolute di�erence for continuous values and more elaborate functions

for de�ning similarity on discrete features have been proposed (Stan�ll & Waltz, 1986).

Finally, many other classes of weight-learning methods have been examined, frequently

in the context of statistical regression, where distance functions on continuous functions

have been carefully examined. For example, we restrict our survey to algorithms that use

a diagonal weight matrix where there is one weight per feature and no interaction between

features. This assumes that the target concept can be best modelled by stretching and

shrinking the instance space along its axes. Upper triangular weight matrices, which permit

oblique warpings of the instance space, are more appropriate for many tasks. The weighting

function (Equation 8) need not be constant, but could be a polynomial or any arbitrarily

complex function (e.q., a connectionist network). Furthermore, instead of employing a single

set of weights for the entire instance space, separate sets of weights could be associated with

speci�c queries, feature values, instances, classes, or some function of them. For example, a

query-speci�c weighting method would modify Equation 6 by de�ning the weighting function

based on the given query:

d(x,q) = (
X
f2F

w(f;q) � �(xf ; qf )
r)

1

r (10)
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Table 1: Dimensions For Distinguishing Feature Weighting Methods

Dimension Possible Values

Bias fPerformance;Presetg

Weight Space fContinuous;Binaryg

Representation fGiven;Transformedg

Generality fGlobal;Localg

Knowledge fPoor; Intensiveg

In summary, many of k-NN's \�xed" design decisions are, in fact, optimizable parame-

ters. However, we will focus on only one such decision: the de�nition of (constant) weighting

functions. This is cause for concern. Ideally, these design decisions, and others such as the

de�nition for normalizing continuous values (Turney, 1993), should be optimized when com-

paring the e�cacy of alternative constant weighting methods. We leave this as a goal for

future research, and �x these other design decisions in our experiments (Section 4). Further

information related to lazy classi�cation algorithms can be found elsewhere (e.g., Vapnik,

1992; Bottou & Vapnik, 1992; Friedman, 1994; Atkeson et al., 1996a).

3 A Framework for Feature Weighting Methods

The feature weighting methods reviewed in this section are embedded in lazy algorithms that

employ variants of the distance function shown in Equation 6. In particular, they di�er in

that they do not enforce the constraint shown in Equation 9 (i.e., they allow weight settings

to di�er among the features). These types of algorithms have been frequently examined in

the machine learning literature, but it is not obvious how they all relate nor on what tasks

their biases are particularly appropriate.

Feature weighting methods can be organized and dichotomized along several dimensions.

We focus on the dimensions shown in Table 1.

By bias, we refer to whether the weight learning bias is guided by feedback from the

performance algorithm (i.e., here, the classi�er) or whether it is instead a preset bias (e.g.,

maximize intra-class similarity and minimize inter-class similarity) that does not incorpo-

rate performance feedback. By weight space, we distinguish feature weighting from feature

selection algorithms. The latter are a proper subset of feature weighting algorithms that em-

ploy binary weights (i.e., 0 or 1), meaning that the feature is either retained or deleted. By

representation, we distinguish algorithms that use the given representation from those that

transform the given representation into one that might yield better performance. Feature

weighting algorithms can also be distinguished by their generality; while most algorithms

learn settings for a single set of weights that are employed globally (i.e., over the entire in-

stance space), other algorithms assume weights di�er among local regions of the instance
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space. Finally, the knowledge dimension distinguishes knowledge-poor algorithms from oth-

ers that employ domain speci�c knowledge to set feature weights.

We use these dimensions to frame our discussion of feature weighting methods in this

section. Further decompositions of algorithms are described as needed. Some alternatives

to feature weighting are mentioned brie
y to provide additional intuition. We elaborate on

related work in Section 6. We include more detail for algorithms distinguished by the �rst

dimension than the others because our empirical study in Section 4 focuses primarily on this

dimension. Space constraints prevent a more detailed discussion for the other dimensions.

3.1 Bias: Performance vs. Preset

The distinction between performance and preset biases is described as open loop and closed

loop in statistics, and as wrapper and �lter models in machine learning (e.g., John et al.,

1994). We view this as an issue of learning bias. Weighting methods that use feedback

from the performance function during training attempt to incorporate the classi�er's bias

during weighting. Those that do not incorporate some alternative, preset bias. We further

distinguish these two biases into several sub-categories, which are described in Sections 3.1.1

and 3.1.2, respectively. We selected one algorithm from each of the following subsections for

our experiments.

3.1.1 Performance Bias

Performance bias methods presumably have an advantage; their search for feature weight

settings is guided by how well those settings perform. Thus, there should be no mismatch

between the biases of the weighting and performance algorithms. We distinguish weighting

methods that incorporate performance feedback into two groups: those that perform online

search in the space of weights (i.e., sequentially processing each training instance once) and

those that perform batch optimization (i.e., repeatedly pass through the training set).

Online Optimizers

Several lazy algorithms optimize feature weight settings using one pass through the train-

ing set. Given a query q to classify, these algorithms iteratively modify feature weights to (a)

decrease its distance to nearby1 instances with the same class and (b) increase its distance

with similar instances in other classes. These algorithms are sensitive to the presentation

ordering of the training data.

An early example of this approach was used by Salzberg (1991) inEACH, a k-NN variant

that updates feature weights by a �xed amount after classifying each training instance.

The objective of feature weighting was to improve EACH's tolerance of noise. For correct

classi�cations, the weights of all matching features are incremented, using

w(f) = w(f) + �; (11)

1As de�ned by the current distance function.

7



and all mismatching features' weights are decremented by this same amount. Incorrect

classi�cations cause the weights of mismatching feature to be incremented, while the weights

of matching features are decremented. This procedure was expected to assign high weights to

relevant features and lower weights to others. Salzberg found that, by selecting good values

for �, this algorithm consistently improved classi�cation performance vs. Equation 9.

Salzberg's algorithm in
uenced the design of IB4 (Aha, 1992), which updates weight

settings using2

w(f) = max

 
CumulativeWeight

f

WeightNormalizerf
� 0:5; 0

!
; (12)

where CumulativeWeightf is assumed to asymptote to half of the WeightNormalizerf for

seemingly irrelevant features. When classifying an instance x with another (training) in-

stance y, the degree to which IB4 updates CumulativeWeightf depends on the concept

distribution. Let �(x;y) = max(p(xc); p(yc)) (i.e., the probability of the more probable class

among x and y's classes). Then CumulativeWeightf is incremented by

CumulativeWeight
f

+
=

(
1� �(xf ; yf) � (1� �(x;y)) if (xc = yc)

�(xf ; yf) � (1� �(x;y)) Otherwise
(13)

and WeightNormalizer is always incremented by (1��(x;y)). This procedure sensitizes IB4

to skewed concept distributions and avoids the need for a �xed weight adjustment parameter.

Aha (1990) reported good results for IB4 vs. 1-NN on tasks involving irrelevant features.

Kira and Rendell (1992) noted that this algorithm assumes a uniform distribution for

irrelevant feature values. They introduced a binary (i.e., feature selection) weighting algo-

rithm named Relief that removes this constraint. It iterates through a weight-updating

procedure m times that (1) selects a random training instance x, (2) locates x's most similar

positive (p) and negative (n) training instances, and (3) updates each feature's weight using

w(f) = w(f)� �(xf ; pf) + �(xf ; nf) (14)

When classifying, Relief maps these weights to binary values; if wf�� , then f 's weight is

mapped to 1, and otherwise 0, where � is a user-speci�ed relevance parameter. Kira and

Rendell reported good results for Relief on parity tasks. Kononenko (1994) reported good

results when modifying Relief to average the contributions of x's k nearest positive and

negative instances, so long as k was properly tuned. He also extended it for application to

noisy, incomplete, and multiclass data.

We selected this modi�cation, Relief-F, for inclusion in our experiments in Section 4.

However, we did not map wf to a value in f0; 1g, and allowed it to process each training

instance only once.

Online optimizers generally assign low weights to completely irrelevant features and out-

perform standard k-NN for some applications with many irrelevant features. However, it is

not clear to what extent they can recognize redundant or highly interacting features. For

2IB4 learns a separate set of weights per concept, but this is ignored here to simplify the presentation.
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example, IB4 performed poorly on a task with many partially relevant features (Aha &

Bankert, 1994).

Batch Optimizers

These weighting methods optimize feature weights by repeatedly processing instances.

Some of these methods require only knowledge of the function value to be approximated

at each problem state (e.g., simulated annealing and genetic algorithms) while others use

knowledge of the function's gradient (e.g., Lowe, 1995).

Kelly and Davis (1991) and Skalak (1994) used genetic algorithms (GAs) to learn contin-

uous feature weights for lazy learning algorithms. GAs loosely mimic processes of biological

evolution. They repeatedly apply genetically-inspired operators (e.g., crossover, mutation)

to a population of current problem solutions in the hope of obtaining higher scores on a given

�tness function, and terminate after a �xed number of iterations or when a heuristic stopping

criterion indicates no recent improvement. Kelly and Davis (1991) designed GA-WKNN

to learn continuous feature weights using �ve genetic operators and a �tness function based

on both the number of misclassi�ed training instances and recency. GA-WKNN attained

lower error rates than k-NN for three datasets.

Skalak (1994) instead used a degenerate GA to select features (i.e., binary weights) for

1-NN. His algorithm repeatedly mutates a single bit sequence, keeps the string with the

higher classi�cation accuracy on the training set, and terminates after a �xed number of

iterations since �nding a new best string. This algorithm attained higher accuracies than

1-NN on four datasets while halving the number of features used to compute distances.

Other batch weight learning methods increase learning speed by exploiting knowledge

of the function's gradient, which can substantially increase learning rates when the target

function is reasonably smooth. Lowe (1995) employed this approach in the variable kernel

similarity metric (VSM), which computes distances using a function similar to Equation 6.

Feature weights are optimized using conjugate gradient (Press et al., 1992) to minimize

summed leave-one-out classi�cation error (LOOCE) on the training set.3 The derivative of

this error with respect to each feature weight is used to guide the conjugate gradient proce-

dure. Lowe reported that VSM performed as well as or better than several other algorithms

on two datasets yet required far less training time than some of the other algorithms.

While we selected a similar weight-optimization method for our empirical evaluation,

we did not chose the VSM because it introduces additional complexity that prevents isola-

tion of its feature-weighting algorithm. That is, the VSM assigns weights to instances as

de�ned by an optimized Gaussian function of their distances, and then uses these weights

to bias classi�cation predictions. We instead selected a simpli�cation of the VSM, named

k-NNV SM (Wettschereck, 1995a), which replaces the Gaussian kernels of Lowe's VSM with

a di�erentiable k-NN function and eliminates the use of pre-assigned instance weights.

k-NNV SM employs a distance-weighted voting scheme (e.g., Dudani, 1975, see also Equa-

3Error is a function of the di�erences between the probabilities computed by the VSM and the target
class. A stabilizing term is added to this error to prevent large weight changes for small training sets.
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tion 4). This algorithm �rst computes the distances between all pairs of training instances

using Equation 9. It then assigns to k the value that minimizes LOOCE on the training

set. Finally, it, like the VSM, uses conjugate gradient to optimize feature weights so as to

minimize LOOCE training error. The error function is

E =
X
x2X

X
cj2J

(1(x2cj)� p(cjjx))
2

(15)

where p(cjjx) is de�ned as in Equation 4. Wettschereck (1995a, 1994) discusses further

details on k-NNV SM , including the derivation of the gradient of E with respect to each

feature weight. He found that k-NNV SM can learn good feature weights in a variety of

domains although a relatively large number of design decisions can heavily in
uence its

performance.

3.1.2 Preset Bias

This section summarizes approaches that do not use feedback from the classi�er to assign

weight settings. Instead, they use a pre-existing model's bias. Three groups of these preset

bias methods are described in this section: those based on (simple) conditional probabilities,

class projection, and mutual information, respectively.

Conditional probabilities

Creecy et al. (1992) introduced two simple feature-weighting methods that use conditional

probabilities to assign feature weights. Both algorithms work only with binary features, so

they discretize continuous features and binarize discrete features (i.e., each discrete feature

f de�ned over a set Vf of values was replaced with jVf j binary features).

First, their cross-category feature importance (CCF) method averages weights across

classes using

w(f) =
X
cj2J

p(cjjf)
2 (16)

Creecy et al.'s (1992) motivation for designing CCF was to assign higher weights to features

that occurred in fewer classes. However, this algorithm is not sensitive to the distribution of

a feature's values across classes (i.e., a feature's weight is independent of the class), which

seems unrealistic for practical applications. Therefore, they designed a second weighting

method, named per category feature importance (PCF), which assigns feature weights using

w(f; cj) = p(cjjf) (17)

That is, the weight value of a feature f for a class cj is de�ned as the conditional probability

that an instance is a member of cj given its value for f , averaged across all values for f . This

algorithm assigns high weight values to features that have high correlations with the given

class. They concluded that their weighted methods outperform non-weighted methods, but

did not compare these two weighting methods.
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Mohri et al. (1993) found that PCF is sensitive to concept distributions; it tends to

classify too many instances according to the majority class. PCF performed poorly in their

experiments (Mohri & Tanaka, 1994). For example, the simpler CCF attained higher accu-

racies than PCF on six of eight tasks.

Class projection

Stan�ll and Waltz (1986) introduced the value-di�erence metric (VDM), a more sophis-

ticated similarity function de�ned for discrete features. This was the predecessor of CCF

and PCF; it assigns higher weights to features whose distribution of values across classes

are highly skewed. Although it also computes conditional probabilities, it does not bina-

rize features. Previously, most similarity functions on discrete values either binarized them

or employed the simple overlap function, which simply counts the number of mismatching

features. In contrast, the VDM allows similarity to vary among individual feature values.

Distance is de�ned as the sum of feature di�erences for two instances using

d(x;y) =
X
f2F

w(f; xf) � �(f; xf ; yf) (18)

w(f; v) =
sX

cj2J

p(x2cjjx2X; xf = v)2 (19)

�(f; v1; v2) =
X
cj2J

(p(x2cjjx2X; xf = v1)� p(x2cjjx2X; xf = v2))
2 (20)

where Equation 19 computes f 's weight when its value is v, and p(x2cjjx2X; xf = v) is the

observed relative frequency that instances in the training set with value v for feature f are

in class cj. Equation 20 computes the di�erence of two values for a given feature. It assigns

greater di�erences to values whose corresponding sets of instances have highly disparate class

distributions. Thus, two instances are similar if they have feature values whose respective

projections on the training set have similar class distributions.

Stan�ll and Waltz (1986) used the VDM on a vowel pronunciation task, but did not

compare it with other weighting methods. A few non-weighting variants of the VDM (e.g.,

Cost and Salzberg's (1993)MVDM and its extension to continuous features by Ting (1994))

have performed well on some tasks. However, surprisingly little evidence exists that feature-

weighting variants of the VDM improve classi�cation performance compared to unweighted

variants. Furthermore, Daelemans and van den Bosch (1992) report that a method that as-

signs weights using information gain (see Section 3.1.2) outperforms theVDM on a grapheme

to phoneme conversion task, and Aha (1990) reported that even the overlap function outper-

forms the VDM on some classi�cation tasks. We also found little performance di�erence for

the MVDM with and without weights in our experiments in Section 4.3. Thus, additional

research is required to determine the conditions under which feature weighting can improve

the classi�cation performance of VDM variants.
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Mutual information

This section describes a third approach for assigning feature weights using conditional

probabilities. Like class projection, discrete features are not binarized. This approach also

easily admits extensions for use with continuous features, which we discuss after describing

the basic algorithm.

A feature weighting algorithm should assign low weights to (less relevant) features that

provide little information for classi�cation and higher weights to features that provide more

reliable information. Towards this goal, the mutual information (MI) (Shannon, 1948;

McGill, 1955) between the values of a feature and the class of the training examples can

be used to assign feature weights. The MI of two variables is the reduction in uncertainty

of one variable's value given knowledge of the other's value (Cover & Thomas, 1991). This

can be computed using

w(f) =
X
v2Vf

X
cj2J

p(cj; xf = v) � log
p(cj; xf = v)

p(cj) � p(xf = v)
(21)

where p(cj) is the frequency of class cj among the training set X and p(xf = v) is the

frequency of value v for f among instances in X. This equation assigns zero to features that

provide no information about the class, and a value proportional to log(jJ j) to features that
completely determine the class (i.e., assuming a uniform distribution on classes).

Daelemans and van den Bosch (1992) introduced an extension of this approach that

assigns a feature's (normalized) information gain (Quinlan, 1986) as its weight rather than

Equation 21:

w(f) = �
X
cj2J

p(cj) log(p(cj))�
X
v2Vf

X
cj2J

�p(cjjxf = v) log p(cjjxf = v)p(xf = v) (22)

This equation subtracts the average information entropy of a feature from the information

entropy of the training set X. They reported that this weighting method substantially im-

proved k-NN's accuracy on a word hyphenation task. Subsequently, van den Bosch and

Daelemans (1993) found similarly good results for this weighting method on a grapheme-to-

phoneme conversion task, and Daelemans et al. (1993) reported that it obtained the best

performance, among three algorithms, for a stress assignment task.

These two equations do not de�ne how to compute the MI for continuous features.

Wettschereck and Dietterich (1995) used a simple approach to do this; it divides contin-

uous features into a pre-determined number I of intervals, treating all values within a given

interval as equal. They found that this batch weighting method improved the performance of

EACH (Salzberg, 1991) compared to its online algorithm for setting weights (Equation 11).

We use a similar approach in Section 4 that avoids the need to predetermine I. Features are

instead discretized using Fayyad and Irani's (1993) algorithm4 and then treated in the same

4This discretization algorithm computes the entropy of a set of possible discretization points and recur-
sively accepts binary splits that yield maximal entropy reduction as long as the minimum description length
principle is satis�ed.
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manner as discrete features. Both Mohri and Tanaka (1994) and Ting (1994) have shown

the utility of this discretization method for lazy learning algorithms.

3.2 Weight Space: Weighting vs. Selection

In Section 3.1, we discussed the �rst dimension for distinguishing feature weighting algo-

rithms (i.e., whether they tune weights using feedback from the classi�er). This section

addresses the second dimension, which concerns the space of values explored for assigning

feature weights.

Feature selection algorithms assign binary weights to features. Thus they are restricted

to a subset of the weight assignments learnable using continuous feature weights. Feature

selection has been studied for several decades (e.g., Fu, 1968; Mucciardi & Gose, 1971; Cover

& van Campenhout, 1977). Several researchers have recently used various feature selection

methods for lazy learning algorithms. These methods select features using

� an induced decision tree (Cardie, 1993; Kibler & Aha, 1987),

� random mutation hill-climbing (Skalak, 1994),

� parallel search (Moore & Lee, 1994),

� beam search with stepwise selection (Aha & Bankert, 1994), and

� stepwise feature removal in oblivious decision trees (Langley & Sage, 1994).

The �rst of these methods employs a preset weighting bias while the others exploit per-

formance feedback. All report accuracy and/or speed improvements over 1-NN or k-NN.

Feature selection algorithms can often reduce the dimensionality of a learning task. If the

de-selected features are completely irrelevant, then this could signi�cantly increase an algo-

rithm's learning rate.

Aha and Bankert (1994) reported that their feature selection algorithm had bene�ts over

IB4, the online feature weighting algorithm, for a task with a large number (204) of features.

They hypothesized that IB4 fares poorly under such conditions because it trades o� learning

rate for a much larger space of continuous weights. Thus, its learning rate is slow.

More recently, Kohavi et al. (1995) empirically compared a weighting and selection

method. Their DIET algorithms, performance biased methods that respectively use best

�rst and hill climbing searches through a constrained space of feature weights, outperformed

a similar feature selection algorithm in tasks where features vary in their relevance for clas-

si�cation. They also anticipate the tradeo� between learning rate and weight space size.

In summary, these studies and similar ones using other learning algorithms suggest that

feature selection algorithms perform best when the features used to describe instances are

either highly correlated with the class label or completely irrelevant. Feature weighting is

more appropriate for tasks where features vary in their relevance, but such methods search

larger spaces of weight assignments. Additional research is required to further investigate

this tradeo�.
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3.3 Representation: Given vs. Transformed

A third dimension for distinguishing feature weighting algorithms concerns whether the set

of features used to represent the instances is transformed (i.e., replaced with a di�erent

set) before weighting. A substantial shortcoming of all methods that simply assign weights

to individual features is their insensitivity to interacting or correlated features. This can

be addressed either by using distance functions that combine weights (e.g., using upper

triangular weight matrices) or by transforming the given representation before weighting

features.

QM2m (Mohri & Tanaka, 1994) is an example of this latter approach. It assigns the

absolute values computed by Quanti�cation Method II (QM2) (Hayashi, 1952) to set its

feature weights in the following variant of Equation 6:5

d(x;q) =

vuuutX
f2F

0
@ X
f 02F'

jw(f 0; f)j � �(xf ; qf)

1
A
2

(23)

where F0 is the set of transformed (i.e., new) features and w(f 0; f) is the weight of the given

feature f for the transformed feature f 0. This representation transformation is performed

using QM2, which is a supervised version of principal components analysis (PCA).6 QM2

locates a new set of features such that the sums of the squared distances of each instance to

its projections on the successive feature dimensions are minimized. The value of transformed

feature f 0 for transformation of x is computed using

X
f2F

w(f 0; f)xf (24)

where these weights are calculated to maximize, for each new feature f 0, the ratio of the

variance between each class' instances to the variance of all instances. Kawaguchi (1978)

describes this algorithm in more detail.

Mohri and Tanaka (1994) reported good performance for QM2m. QM2 can be used to

reduce the dimensionality of the data by removing the transformed features with the lowest

variation (Mohri & Tanaka, 1995; Wettschereck, 1994). Mohri and Tanaka (1995) investigate

how to determine the number of transformed features that can be removed.

Mohri and Tanaka (1994; 1995) also introduced QM2y, which uses a di�erent distance

function:

d(x;q) =
X
f 02F'

0
@X
f2F

w(f 0; f)xf �
X
f2F

w(f 0; f)qf

1
A
2

(25)

5Symbolic features with Vf values are replaced with jVf j binary features before this transformation.
6QM2 is preferable to PCA, which can lose information since (1) PCA orders principal components

by decreasing functions of their input data variations and (2) the variable with the lowest variation might
actually be the one with the highest predictive relevance (Kshirsager, 1972). QM2 also is sensitive to concept
skew when ordering the new variables.
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This algorithm performed best among their selected set of lazy algorithms, but hypotheses

explaining why have not yet been investigated.

Another lazy learning algorithm that supports feature transformation is IB3-CI (Aha,

1991). This is a knowledge-intensive extension of the noise-tolerant IB3 algorithm (Aha

et al., 1991). It uses a Bayesian approach, adapted from (Schlimmer, 1987), to direct its

search through a space of logical feature combinations, and uses a competitive feature se-

lection approach to assign binary weights. Aha (1991) reported good results for IB3-CI in

comparison with lazy algorithms that do not perform representation change. However, it

requires domain-speci�c knowledge to constrain and intelligently prune the space of feature

combinations.

A signi�cant disadvantage of feature transformation methods is that the transformed

features are often not meaningful. This can constitute a signi�cant shortfall of these methods

if inspection of the (transformed) classi�er is necessary (i.e., additional constraints on the

transformation process are required to guarantee comprehensibility).

3.4 Generality: Global vs. Local

A fourth dimension for distinguishing feature weighting algorithms concerns whether the

weights apply globally (i.e., over the entire instance space) or locally (i.e., di�er in di�er-

ent parts of the instance space). Although many feature-weighting algorithms use a global

scheme, their assumption that feature relevance is invariant over the instance space is con-

straining and sometimes inappropriate.

Two types of local weighting schemes are popular. The �rst assigns a di�erent weight

to each value of a feature (e.g., the VDM (Section 3.1.2)). Although this allows feature

relevance to vary over the values of a feature, it still constrain weights to be identical for

all instances with the same feature value. The second local weighting scheme removes this

constraint by allowing feature weights to vary as a function of the instance. We discuss

several examples of this approach below.

The asymptotic error rate of �rst nearest neighbor is no more than twice that of the

Bayes optimal classi�er (Cover & Hart, 1967). Short and Fukunaga (1980; 1981) and Fuku-

naga and Flick (1982; 1984) utilized this fact to compute feature weights for a weighted

distance function. They estimated the �nite sample risk from the local neighborhood of a

given instance. They then minimized the di�erence between the �nite sample risk and the

asymptotic risk to obtain a local distance function for each instance. Hence, to classify a

query the authors �rst �nd its k nearest neighbors, as de�ned by k-NN, and then compute

each neighbor's local distance function to �nd the nearest neighbor. Myles and Hand (1990)

extended this approach for multiclass problems.

Fukunaga and Flick (1984) noted two disadvantages of this local weighting approach.

First, it lacks regularization; one noisy sample can cause an improper distance computa-

tion. Second, the large number of distinct local distance functions can obscure useful feature

information. Therefore, they propose a global distance function that combines the informa-

tion from all local functions into one global set of weights for a weighted Euclidean distance
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function.

In this vein, Aha and Goldstone (1992) combined local with global distance functions to

compute instance-speci�c weights for their GCM-ISW algorithm. Distance for continuous

features was de�ned as

d(x;q) =
sX

f2F

w(f;x;q) � �(xf ; qf)2 (26)

where instance speci�c weights are dynamically assigned using

w(f;x;q) = w(f;x) �
q
1� jxf � qf j+ w(f) �

�
1�

q
1� jxf � qf j

�
(27)

Equation 27 adds the contributions of stored instance x's instance-speci�c weight w(f;x)

and the global weight w(f). As the di�erence between the values of f for these instances

decreases, x's instance-speci�c weight contributes more to the dynamically assigned weight

w(f;x;q). Likewise, the global weight w(f) is used more as this di�erence increases. Thus,

this distance function depends more on instance-speci�c weights when the new instance is

similar to the stored instance, and depends more on the global weights when they are not

similar. Similarly, the updating algorithm for instance-speci�c weights has more in
uence

when these instances are similar.

GCM-ISW was shown to correlate signi�cantly better with subject data than did its

non-weighting and global weighting variants (Aha & Goldstone, 1992). The subjects' target

concept was designed such that feature relevance varied in di�erent parts of the instance

space.

GCM-ISW's de�nition of similarity is not symmetric; frequently, it yields d(x;y) 6=
d(y;x). Ricci and Avesani (1995) noted that asymmetric local similarity functions de�ned

on continuous features have another degree of freedom: a feature's weight can di�er de-

pending on whether a query's value for that feature is greater or less than the value of the

stored instance. Assuming that a feature f is continuous, they de�ned an anisotropic and

asymmetric distance measure with directed weight settings using

w(f;x;q) =

(
wxf>

if xf � qf

wxf<
if xf < qf

(28)

where wxf<
and wxf<

are the weights of instance x at feature f on the respective \sides" of xf .

They obtained favorable results with their local weighting scheme as compared to standard

1-NN and Salzberg's (1991) EACH on four datasets from the UCI repository (Murphy, 1995).

Other purely local (and lazy) approaches were recently introduced by Hastie and Tib-

shirani (1994) and by Friedman (1994). Hastie and Tibshirani (1994) compute a separate

distance metric for each query through an iterative process. The main idea is to employ

discriminant analysis to shrink the neighborhood around each query in directions orthogonal

to the decision boundary (i.e., thus giving greater weight to features whose axes are closer

to perpendicular with this boundary). Their weighting algorithm works as follows:

1. Initialize a weight matrix D with the identity matrix.
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2. Find Kq, the k nearest neighbors to a query q using D.

3. Use Kq to compute the weighted within and between

sum of squares matrices W and B.

4. Update the weight matrix using D =W
�1=2[W�1=2

BW
�1=2 + �I]W�1=2,

where � is a user-chosen parameter. (Steps 2-4 can be repeated inde�nitely.)

5. Use D to classify q using k-NN.

The local statisticsW and B used to compute the new local metric about q are the deviation

of each pattern from its class-mean (W) and the deviation of each of the class-means from

the mean of all k nearest neighbors (B).

A computationally more e�cient approach is taken by Friedman (1994). He employs

recursive partitioning to �nd the k nearest neighbors to a query. His scythe algorithm

recursively zooms in on the query along the most relevant feature. That is, the most relevant

feature is scaled at each step such that a �xed fraction of the given training examples fall

outside of a predetermined range around the query. The training examples outside of that

range are then discarded, the new \most relevant" feature is determined, and the process

is repeated until only k training examples remain. The (local) relevance of each variable is

estimated from the estimated reduction in prediction error that the knowledge of the value

of that variable would yield.

Both Hastie and Tibshirani (1994) and Friedman (1994) report favorable results for their

local approaches, in comparison to unweighted k-NN, on synthetic and \real" data sets.

Atkeson, Moore, and Schaal (1996a; 1996b) survey the literature on locally weighted learning

algorithms and report similar results for several robotic control tasks using locally weighted

regression (LWR) algorithms for learning numeric functions. They distinguish point-based

and query-based weighting methods, based on whether distances are computed for each stored

instance or dynamically, for a speci�c query, as is done in LWR algorithms (Cleveland &

Loader, 1994). Finally, several case-based reasoning researchers have advocated using local

distance functions with pre-determined weight assignments (e.g., Ashley & Rissland, 1988;

Skalak, 1992). We expect that local weighting methods will continue to be a fruitful area

for future research.

3.5 Knowledge: None vs. Domain-Speci�c

The �fth, �nal, and most important dimension for distinguishing feature weighting algo-

rithms concerns their use of domain-speci�c knowledge. Such valuable information is fre-

quently used to constrain the representation of instances and selection of features (e.g., Stan-

�ll & Waltz, 1986). Several researchers have also demonstrated the utility of using knowledge

to assign feature weights (e.g., Ashley & Rissland, 1988; Skalak, 1992). Approaches more

closely related to the focus of this paper are algorithms that combine automated weight-

learning components with domain intensive knowledge or heuristics (e.g., the set of possible

transformations assumed when de�ning tangent distance functions (Simard et al., 1993)).
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We described some knowledge-intensive algorithms earlier (e.g., IB3-CI), and brie
y detail

two more below.

Cain et al. (1991) use a domain theory of rules to assign instance-speci�c weights. Like

other algorithms that de�ne local distance functions, their CBR+EBL algorithm combines

instance-speci�c with global feature weights. They assign instance-speci�c weights to discrete

features using an explanation-based learning (EBL) approach (Mitchell et al., 1986). Any

feature appearing in an EBL tree that was generated to explain the instance's class is assigned

a weight of 1. All other features for that instance are assigned an instance-speci�c weight

of 0. Their distance function is

d(x;q) = �similarity(x;q) (29)

where

similarity(x;q) =

P
f2F �� (1� �(xf ; qf)) +

P
f2F � � w(f;x) � (1� �(xf ; qf))

�jFj+
P

f2F � � w(f;x)
(30)

where � determines the degree to which the nearest neighbor algorithm is used to classify

instances and � determines the degree to which EBL-determined feature weights are used to

in
uence its similarity function. That is, previous instances are ignored when � = 0 while

the domain theory is ignored when � = 0. In an experiment with a sparse dataset (i.e., 50

instances, 76 features), they reported substantial leave-one-out accuracy improvement when

using both previous instances and the domain theory in comparison with using only one

of these. Thus, they demonstrated the utility of using knowledge to set instance-speci�c

weights for a lazy learning algorithm.

PROTOS (Porter et al., 1990) is a sophisticated case-based reasoning system designed

initially for a clinical audiology classi�cation task. It builds a semantic network whose links

relate features, instances, and classes. It uses feedback from the user to re�ne its knowledge.

The initial settings for PROTOS' instance-speci�c feature weights are determined from the

certainty with which the feature's presence can be inferred from category membership when

PROTOS builds explanations of a given instance's classi�cation. Knowledge-based pattern

matching is used to generate these explanations; it determines whether two values of a feature

match by searching for chains of relations in the semantic network linking the two instances'

features. Domain-speci�c heuristics help determine the degree to which two features match.

Feature weights can be subsequently modi�ed by the domain expert whenever PROTOS

fails to retrieve the correct case to a query. PROTOS' distance function uses a variant

of the context model (Medin & Scha�er, 1978): it subtracts, from 1.0, the contributions

of non-matching features according to their relevance weights. Bareiss (1989) reported that

PROTOS recorded higher accuracies than did knowledge-poor k-NN on the audiology task.

In summary, knowledge can be used to assign feature weights for use in a k-NN variant,

as in CBR+EBL, or through an expert's critique of the algorithm's predictions for feature

relevance, as is done in PROTOS. In both cases instance-speci�c weights are used, and we

expect this trend to continue in knowledge-intensive approaches.
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Table 2: Algorithms Selected for Experimentation
Name Category Sub-category

k-NN Control {

Relief-F Performance Online Optimizer

k-NNV SM Performance Batch Optimizer

CCF Preset Conditional probabilities

VDM Preset Class projection

MVDM Preset Class projection

MI Preset Mutual information

4 Comparative Evaluation

It is di�cult to predict the comparative behavior of feature weighting methods for lazy

learning algorithms. Although large scale empirical comparisons exist for other classes of

algorithms (e.g., Michie et al., 1994), they do not exist for this class. Instead, most previous

comparisons among feature weighting algorithms tend to focus on a speci�c pair of algorithms

(e.g., Wettschereck & Dietterich, 1995; Kohavi et al., 1995).

In this section we investigate the comparative capabilities of some of the algorithms

described in Section 3. The purpose of this empirical study is to formulate and evaluate a

set of trends7 regarding the relative strengths and weaknesses of groups of feature weight

learning algorithms. We focus on the �rst two dimensions described in Section 3 (i.e., bias

and weight space), ignoring the others due to space constraints. The following subsections

describe the selected algorithms, the selected datasets, our empirical methodology, and the

results. We then summarize these results with explanatory hypotheses and evaluate them.

Section 5 includes a discussion on our �ndings with respect to our framework in Section 3.

4.1 Selected Algorithms

No weight learning algorithm will perform best for all applications since each implements a

di�erent bias; they will have substantially di�erent performance on some problems (Mitchell,

1990; Scha�er, 1994). We selected one weight-learning method from each sub-category of

the bias dimension (Section 3.1) to compare their capabilities. These algorithms, including

the baseline k-NN algorithm, are shown in Table 2.

The MVDM (i.e., VDM without feature weights) is also included so we can evaluate

the in
uence of the modi�ed feature di�erence function (Equation 20) independent of the

feature weighting method (Equation 19) on VDM's behavior.8

To allow for controlled experimentation along the second dimension (i.e., continuous

7We prefer the term \trend" over \hypothesis" to indicate that the design and execution of this as well as
many other empirical studies does not allow the formulation of hypotheses that withstand statistical scrutiny.

8This is necessary since the VDM is the only method that di�ers from k-NN in more than the de�nition
of Equation 9.

19



vs. binary weight space), selected experiments were conducted with one preset bias method

(MI) and one performance bias method (Relief-F).9 In these experiments, we set a varying

number of the lowest-valued weights to 0 and all other weights to 1.

4.2 Selected Data Sets

We selected fourteen datasets for our study. Ten of these were chosen to evaluate the selected

algorithms' capabilities under controlled conditions for speci�c data characteristics. These

were designed to evaluate the selected algorithms in the context of tasks with irrelevant

features, interacting features, redundant features, and/or features with varying relevance.

Four of these datasets were created for this study, three of which are shown in Figure 1:

� The banded task has axis-parallel decision boundaries. The horizontal dimension of

this task is completely irrelevant.

� The decision boundary in the sinusoidal task is a sine curve. The vertical dimension

in this task is nearly completely irrelevant.

� The gauss-band task was constructed by combining the input features of the banded

task and four Gaussian distributions (variance 0.025). A �fth boolean feature indicates

whether the inputs from the banded task or the Gaussian distribution determine the

output. Therefore, this task is an example of a task with interacting features.

� Another task with highly interacting features is the parity problem. We selected a

parity task with 11 boolean features; seven are irrelevant while the sum of the other

four determines the output (i.e., if the sum is an even number, then the class is 1 and

otherwise is 0).

The remaining datasets were drawn from the UC Irvine Repository (Murphy, 1995). Some

characteristics of these datasets are shown in Table 3. Additional dataset characteristics that

are relevant to the evaluation are:

� The LED Display and Waveform datasets are also constructed from a data generator.

The relevant features of the LED task are interacting, which allows us to further

compare the abilities of performance and preset bias methods on such tasks. Some

features in the Waveform task are more relevant than others; we will use this knowledge

to examine the e�ect of continuous vs. binary feature weights.

� The Waveform-40 (LED-7+17B, LED-7+17C) task is identical to the Waveform-21

(LED-7) task with the addition of 19 (17) irrelevant features (i.e., having random

values). These tasks were chosen to compare how well di�erent feature weighting

algorithms tolerate irrelevant features when a relatively large number of features are

irrelevant.

9These two were selected because they are the most computationally e�cient methods in their respective
categories.

20



banded sinusoidal gauss-band (features 3 and 4)

Figure 1: The distribution of examples from the di�erent classes in three two-dimensional

arti�cial data sets. The banded task has ten classes. Sinusoidal is a binary classi�cation

task. The rightmost graph depicts two of the �ve features of the gauss-band task with data

points drawn from four Gaussian distributions (variance = 0.025), where di�erent symbols

indicate di�erent classes. Lines represent the decision boundaries used to label the data.

� The Cleveland, Hungarian, and Voting databases contain redundant features (i.e., some

features can be removed in these datasets without any signi�cant e�ect on the perfor-

mance of k-NN (Wettschereck, 1994)). In contrast, some datasets have no redundant

features (e.g., Waveform, Isolet, and NETtalk).

Table 3: Characteristics of the selected datasets. B = Boolean, C = Continuous, D = Dis-

crete. The relevant features in the datasets located above the horizontal divider are approx-

imately equally relevant.
Domain Set Size Number Number of

and Type Irrelevant
Training Test of Features Features Classes

Banded 350 150 2 C 1 10
Sinusoidal 350 150 2 C 1 2
Gauss-band 350 150 4 C, 1 B 2 14
Parity 350 150 11 B 7 2
LED-7 Display 200 1000 7 B 0 10
LED-7+17B 200 1000 24 B 17 10
LED-7+17C 200 1000 7 B, 17 C 17 10

Waveform-21 300 100 21 C 0 3
Waveform-40 300 100 40 C 19 3
Cleveland 212 91 5 C, 3 B, 5 D 0 2
Hungarian 206 88 5 C, 3 B, 5 D 1 2
Voting 305 130 16 B 0 2
Isolet 1040 1040 617 C 0 26
NETtalk� 5000 2500 7 D 0 54

� Phonemes only

21



In summary, these datasets were selected to evaluate the selected algorithms' ability

to tolerate di�erent types of problematic features. We suspect that performance feedback

methods will attain higher accuracies than the preset bias weighting methods discussed in

Section 3.1 for datasets with interacting or redundant features because these preset bias

methods compute weights independently for each feature.10 Feature weighting methods

should outperform feature selection methods for datasets with no irrelevant or redundant

features (e.g., the NETtalk, Isolet, and Waveform-21 datasets). Finally, irrelevant features

are often seen as the cause for k-NN's poor performance. Hence, several datasets with

di�erent numbers and types of irrelevant features were selected. However, we expect no

substantial performance di�erences among the di�erent feature weight learning algorithms

for datasets with completely irrelevant features since such features are easily detected.

4.3 Methodology and Initial Results

We used the training/test set methodology to evaluate the generalization performance of the

selected learning algorithms. Each dataset was randomly partitioned into a training and a

test set. After training, the percentage of correct classi�cations on the test set was measured.

This procedure was repeated 25 times to reduce statistical variation. The same training and

test sets were used for each algorithm.

Leave-one-out cross-validation was used to tune the free parameters of the selected algo-

rithms for all but the two largest datasets. Due to computational restrictions, the training

sets for the NETtalk and Isolet datasets were split into two subsets: a sub-training and a

cross-validation set. The algorithms were then trained on the sub-training set with various

parameter settings and tested on the cross-validation set. The best parameter settings were

then employed during classi�cation in combination with the entire training set. The optimal

value of k was estimated for all preset bias methods after feature weights were computed

and for all performance feedback methods before and after learning feature weights. For

k-NNV SM , the number of training epochs was limited to the number of epochs required for

minimization along one conjugate direction (see Press et al., 1992, Wettschereck, 1995a).

CCF, VDM, and MVDM have no free parameters. Fayyad and Irani's (1993) discretiza-

tion algorithm was used to discretize continuous features for CCF, VDM, MVDM, MI

(i.e., during feature weight computation), and Relief-F (i.e., when computing distance in

the presence of missing feature values).

Using this methodology, we applied each algorithm to each dataset. Table 4 summarizes

the results.

10John, Kohavi, and P
eger (1994) argued that performance feedback (wrapper) methods are preferable
for feature selection algorithms, and empirical evidence now exists that supports their hypothesis (e.g., Doak,
1992; Aha & Bankert, 1994).
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Table 4: The e�ect of di�erent feature weight learning algorithms on the generalization

accuracy of k-NN. Shown are the average accuracy (and standard deviations) of k-NN with

uniform feature weights and the relative percentage point di�erences in average accuracy

attained by several feature weighting variants. We use boldfaced numbers in our tables to

indicate that di�erences between the weighted and unweighted approach are more than three

standard errors.
Feature Weight Learning Algorithm

Control Performance Bias Method Preset Bias Method
Dataset none Relief-F k-NNV SM CCF VDM MVDM MI

Banded 83.0�0.4 11.2 12.8 12.8 12.8 12.8 10.8

Sinusoidal 74.2�0.8 5.9 14.4 -9.1 -9.1 -9.2 -4.6

Gauss-band 78.3�0.5 8.6 16.6 14.9 15.5 17.5 12.1

Parity 67.3�0.1 32.7 32.7 1.3 1.7 1.9 2.2
LED-7 Display 72.7�0.4 -1.0 0.0 -1.5 -1.4 -1.3 -1.2
LED-7+17B 52.5�0.5 19.2 15.5 9.2 19.4 18.9 19.4

LED-7+17C 68.8�0.6 3.3 2.0 -5.6 2.0 2.3 3.6

Waveform-21 82.1�0.4 0.3 -0.5 -6.1 -3.7 -3.9 0.5
Waveform-40 81.3�0.9 1.7 1.2 -3.4 -0.7 -0.4 1.0
Cleveland 82.4�0.8 -0.5 0.0 -1.3 0.2 0.7 -0.6
Hungarian 82.6�0.7 -2.5 -0.4 -0.1 0.1 0.0 0.1
Voting 92.6�0.7 2.9 2.5 1.0 2.1 2.1 2.0

Isolet 84.2�0.3 0.4 1.9 -1.1 -3.9 1.6 1.6

NETtalk 69.6�0.2 9.2 6.6 7.7 10.0 12.1 9.7

4.4 Summary: Trends and their Evaluation

These results, combined with additional insights gained during informal testing, suggest the

following trends,11 which we investigate later in this section:

� T1: Preset bias methods can su�er substantially when the data are not carefully pre-

processed.

� T2: Performance bias methods attain higher accuracies than preset bias methods for

tasks with interacting features.

� T3: Performance bias methods have faster learning rates than preset bias methods.

� T4: Feature weighting algorithms achieve higher generalization accuracies than feature

selection algorithms for tasks where some features are useful but less important than

others.

We also found that most feature weight learning algorithms can tolerate completely irrel-

evant features unless there are many highly interacting features, which agrees with �ndings

from previous studies of weight learning algorithms (e.g., Aha, 1992; Kira & Rendell, 1992).

An exception is the performance of the preset bias methods on the sinusoidal task, which

11Of course, these trends may be limited to the datasets tested.
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we investigate in T1 below. A further interesting result was obtained for the Waveform-40

task; k-NN's average performance dropped by less than one percentage point when the 19

irrelevant continuous features were added. Simultaneously, the relative accuracies of all the

feature weighting algorithms increased as expected. However, despite the large number of

irrelevant features, and that Relief-F, k-NNV SM , and MI correctly computed low weights

for them (e.g., Figure 2), none of the algorithms substantially outperformed k-NN. We sur-

mised that k-NN's surprisingly good performance was because 300 training instances su�ce

to create a densely populated manifold in the instance space for this task. Therefore, we

ran experiments on this task with a smaller training set (i.e., 100 training examples). The

results (Table 5) reveal that 300 training examples are indeed too many to illustrate the

faster learning rates of feature weighting algorithms for these Waveform tasks.
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Figure 2: Feature weights computed by MI for the Waveform-40 task.

Table 5: Average accuracies for the Waveform-21 and Waveform-40 tasks for di�erently sized

training sets.
Feature Weight Learning Algorithm

Training control Performance bias method Preset bias method
Set Size none Relief-F k-NNV SM MI

Waveform-21
300 82.1�0.9 82.4 81.6 82.6
100 77.0�1.0 79.1 77.2 78.0

Waveform-40
300 81.3�0.9 83.0 82.5 82.3
100 73.4�1.0 78.4 76.7 78.6

T1: This trend explores an explanation for the poor performance of the preset bias methods

on the sinusoidal task. One form of pre-processing involves discretizing continuous features,

which is required by the four preset bias algorithms (i.e., CCF, VDM, MVDM, and MI).

Inspection of the discretizations computed by Fayyad and Irani's (1993) method revealed

that features were improperly discretized for the sinusoidal task.12 The comparatively lower

12The vertical, more relevant, dimension was generally split into only three intervals of which one interval
covered nearly the entire range.
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accuracies recorded by these four methods on this task (i.e., in comparison to k-NNV SM)

indicates their dependence on proper pre-processing methods, in this case discretization.

To test this hypothesis, we repeated our experiments for the sinusoidal task but manually

provided the correct discretizations (i.e., 16 (4) equally sized intervals for the horizontal

(vertical) feature, see Figure 1). The accuracies of all four preset bias methods then improved

from at least three standard errors below k-NN's accuracy to at least three standard errors

above (Table 6). Discretization had no positive e�ect on either k-NNV SM 's or Relief-F's

performance.

Table 6: Average accuracies for the sinusoidal task with Fayyad and Irani (1993) discretiza-

tion intervals and manually assigned discretization intervals.
Feature Weight Learning Algorithm

Discretization control Performance bias method Preset bias method
Method none k-NNV SM CCF VDM MVDM MI

none 74.2�0.7 88.6

Irani & Fayyad 65.1 65.1 65.0 69.6

Manually 81.6 82.8 83.3 88.5

T2: The accuracy di�erences between the performance and preset bias methods for the

parity task indicate that a main advantage of performance bias methods might be higher

accuracy in the presence of interacting features. An additional experiment in a boolean task

with ten input features, where the output was computed as the parity of a varying number of

input features, supported this trend; k-NNV SM substantially outperformed MI when using

two to four parity features. For larger numbers of interacting features, both algorithms

had di�culty learning the concept given the small training set employed (i.e., 50 training

examples).

T3: The experiment described in Table 5 showed that, for one task, feature weighting

methods may have a substantially higher learning rate than k-NN. An issue closely related

to this is whether di�erent weighting methods have di�erent learning rates. In particular,

we hypothesize that performance bias methods have faster learning rates than preset bias

methods. We selected the two most computationally e�cient methods from each of these

categories (i.e., MI and Relief-F) to investigate this hypothesis. We selected three tasks

where these two methods achieved approximately equal accuracies as reported in Table 4.

Results from these experiments indicate that the generalization accuracy of Relief-F is

indeed higher than MI's for small training sets (Figure 3).

T4: The second dimension for distinguishing feature weighting methods as described in

Table 1 is the weight space employed by the algorithms. Kohavi et al. (1995) describe

evidence that feature weighting methods lead to superior performance as compared to feature

selection methods for tasks where some features are useful but less important than others.

We investigated this hypothesis by examining the performance of Relief-F andMI with

continuous vs. binary weight settings (i.e., feature selection), where we removed an increasing
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Figure 3: Learning curves for MI and Relief-f from three tasks.

number of lowest-weighted features. They were applied to two learning tasks: Waveform-

40 (19 irrelevant, 21 relevant features, where feature relevance varies) and LED-7+17B (17

irrelevant features, seven others with approximately equal relevance). Figure 4 displays the

results for Relief-F. Similar results were achieved for MI (not shown). For both tasks,

the weighted approach is generally superior to the feature selection approach. The only

improvement achieved by feature selection methods was for the LED-7+17B task when all

17 irrelevant features were removed. These results provide further support for T4. Our

evidence suggests that, despite searching a larger weight space, feature weighting methods

may outperform feature selection methods even in domains that are thought to be most

suited to feature selection methods, i.e., domains that contain either approximately equally

relevant or completely irrelevant features. This claim might hold unless the correct subset of

(relevant) features is located by the feature selection methods. Additional research is needed

to investigate this claim.

4.4.1 Intra-model comparisons

This section addresses di�erences in performance within the families of performance feedback

and preset bias methods.
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Figure 4: The performance ofRelief-F when an increasing number of features with the low-

est computed weights are removed. The remaining features are either continuously weighted

(�) or assigned a weight value of 1 (2).

Performance bias methods

Relief-F and k-NNV SM had substantial performance di�erences on several datasets.

We suspect that one cause is that k-NNV SM appears to be insu�ciently biased towards

giving zero weight to irrelevant features. We tested this hypothesis by varying the number of

irrelevant features in the LED-7 task, and our results supports this claim. When the num-

ber of irrelevant features is increased from zero to 17, k-NNV SM 's performance is initially

superior, but Relief-F outperforms k-NNV SM when there are more than two irrelevant

features. Furthermore, several experiments showed that Relief-F has a faster learning rate

than k-NNV SM .

Preset bias methods

VDM, MVDM, and CCF performed poorly compared with MI on the Waveform and

sinusoidal tasks. A possible cause is that these methods retain the discretization of con-

tinuous features even after feature weights are learned. We tested this claim using the

Waveform tasks. When feature values are left discretized for MI, even after feature weights

are computed, its performance drops by 6.0% and 3.8% for the Waveform-21 and Waveform-

40 tasks, respectively. This indicates that a substantial amount of information is lost when

these datasets are discretized. Ting (1994) reported that discretization in lazy learning algo-

rithms can be useful for noisy tasks. Further research is needed to explain why discretization

does not improve performance for these noisy Waveform tasks.

A comparison of VDM and MVDM's accuracies in Table 4 reveals that the feature

weights computed by Equation 19 have no bene�cial e�ect on VDM's performance. Fur-

thermore, feature weights computed via mutual information (Equation 21) did not improve

MVDM's performance for the banded , sinusoidal , and Waveform tasks. The MVDM's

good performance for the banded , Led-7+17B, and Led-7+17C tasks indicates that the class

projection method is an alternative to using feature weights when irrelevant features are
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present and continuous features are properly discretized. MVDM recorded the best result

for the NETtalk task, which is not surprising since the VDM was designed for this task.

4.4.2 Summary

In summary, these results provide strong but sometimes incomplete evidence for our four

trends. For example, our evidence for trend T1 requires additional investigations with other

forms of pre-processing steps that could decrease the performance of the preset bias methods

(e.g., normalization).

Our trends were designed to help determine which algorithms should perform well for

some given task characteristics. Speci�cally, these trends predict the behavior of several

feature weight learning algorithms - in the presence of irrelevant, redundant or interact-

ing features, or features with varying relevance - according to their categorization in our

framework in Section 3.

5 Discussion and Implications

The dimensional framework in Section 3 can be used to relate di�erent methods for weight-

ing features, motivate experiments to distinguish their comparative abilities, and suggest

future work (e.g., combining multiple approaches, such as a feature selection followed by a

weighting algorithm). For example, new weighting methods could be categorized accord-

ing to this framework, which could simplify their comprehension and provide a context for

understanding their comparative abilities.

We also used this framework to organize our investigation in Section 4, whose purpose

was to investigate the comparative abilities of feature weighting methods for a subclass of

lazy algorithms with respect to two of this framework's dimensions. However, instead of

simply reporting case study results (i.e., from applying each algorithm to each dataset), we

also introduced and brie
y evaluated trends that attempt to explain these results.

First, we introduced trends T1, T2, and T3 to address the �rst dimension. That is, they

concern the distinctive capabilities of performance and preset bias methods. Although we

provide some evidence for them, they are limited to the selected algorithms and datasets.

For example, trend T2 suggests performance biases are preferred for tasks with interacting

features. This trend could be invalidated by methods that use preset biases designed to ac-

count for such features (e.g., a mutual information method that considers all combinations

of features). Thus, in situations when a preset bias might otherwise be preferable (e.g.,

for computational reasons), yet the task is known to involve interacting features with high

probability, steps can be taken to either modify the dataset's characteristics through rep-

resentation change or on designing a preset bias method that tolerates such characteristics.

The initial studies described in Section 4.4.1 likewise require further investigation since their

implications might also be limited to the algorithms and datasets involved.

Second, trend T4 addresses the second dimension of our framework de�ned in Section 3.

Like Kohavi et al. (1995), we found some evidence that weighting is preferable to binary
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selection in some tasks where feature relevance varies. This provides motivation for designing

algorithms that explore the tradeo�s of searching larger weight spaces, as done by continuous

weighting algorithms, versus the computational e�ciency gained by reducing the size of this

space.

Finally, our framework can be used to suggest and direct future research e�orts. For

example, we envision algorithm designs that pro�tably exploit aspects of multiple framework

dimensions. Algorithms could be designed to address the space/time tradeo� mentioned

above by locally estimating where continuous weighting could be pro�tably explored. Larger

weight spaces could then be searched for those regions of instance space. Alternatively, this

could provide a focus for extracting domain-speci�c knowledge (i.e., for those local regions)

(e.g., Domingos, 1996), or for applying local feature transformation methods so as to reduce

the size of the weight space (e.g., Hastie & Tibshirani, 1994).

As another example, comparative evaluations could be focussed according to the sub-

category structure. Our trends did not address di�erences within sub-categories of the

framework (i.e., a comparison of two types of preset bias methods), although we brie
y

addressed these issues in Section 4.4.1. More detailed studies of this nature, which are

strongly suggested by our framework, are left for future research.

6 Related Work

6.1 Similar Studies

Several studies have introduced feature weighting algorithms. Some compared new algo-

rithms to unweighted k-NN (e.g., Kelly & Davis, 1991; Aha, 1992). Some studies have also

compared weighting algorithms in a speci�c context. For example, Wettschereck and Di-

etterich (1995) showed that a mutual information method traded o� higher computational

complexity for higher accuracies when compared with an online algorithm in the context

of learning hyperrectangles (Salzberg, 1991). Mohri and Tanaka (1994) reported a more

extensive comparison, in which they review several feature weighting algorithms while moti-

vating the introduction of QM2. This algorithm assigns weight values by optimizing speci�c

statistical criteria. They reported that two lazy variants of QM2 attain good results in

comparison with four other feature weighting algorithms, although they (also) have higher

computational costs.

6.2 Performance vs. Preset Biases

Doak (1992), among others, noted the utility of using the classi�er to guide feature selec-

tion. John et al. (1994) clari�ed this distinction. Aha and Bankert (1994), among others,

subsequently provided additional empirical evidence for preferring performance feedback bi-

ases, and Kohavi et al. (1995) advocated using performance biases for continuous weighting

methods.
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Kohonen's (1990) learning vector quantization (LVQ) algorithm employs a hill-climbing

performance bias method to cluster instances de�ned by continuous features. Although

no current LVQ variant explicitly computes weights for input features, one could argue

that these algorithms implicitly learn the relevance of features. Wettschereck and Diet-

terich (1992) showed how LVQ-type algorithms can be used to adjust the coordinates of

irrelevant input features for all stored exemplars such that they are identical, which e�ec-

tively eliminates them. They showed this for generalized radial basis networks (Poggio &

Girosi, 1990), where the centers of basis functions are moved during training. After train-

ing, the mean distances between the center locations' features re
ected the relevance of the

original input features.

6.3 Information Theory

In Section 3.1.2 we described feature weighting algorithms that use preset biases based on

information theory. Several other learning algorithms have a similar basis. Quinlan (1986)

used an information gain measure to select features when inducing decision trees in ID3.

Wolpert (1990; 1994) used an information theoretic approach to set feature weights for a

four-nearest neighbor algorithm and reported favorable results in comparison with Back-

propagation on a word pronunciation task. Bakiri (1991) employed a modi�cation of a MI

weighting procedure proposed by Lucassen and Mercer (1984) that ranked features. This

ranking was then used to determine which ones were used to induce decision trees.

TheMI approach described in Section 3.1.2 assumes that features are independent (i.e., in

their correlation with class). This can lead to inferior performance for tasks with interacting

or redundant features. Battiti (1994) describes an approach that addresses this problem

by �rst computing the MI between each pair of features and then decreasing the weight of

highly interacting features.

Another concern is that the MI computed for many-valued features will frequently be

larger than the MI of features with few distinct values, even if both features carry the same

amount of information. This can be counteracted by normalizing each feature's MI value

by a function of its number of possible values. However, this can still lead to sub-optimal

behavior, such as when two continuous features di�er greatly in relevance, yet the more

relevant feature is discretized into a much larger number of intervals.

6.4 Instance Weighting

The topic of this paper concerns methods that set parameter values (i.e., feature weights) in

the distance functions in a subclass of lazy learning algorithms. An alternative and frequently

used approach for enhancing distance functions involves assigning weights to instances them-

selves. Weights can be assigned either before computing distances (e.g., Salzberg, 1991; Aha

et al., 1991) or afterwards (e.g., Connell & Utgo�, 1987; Atkeson, 1989). Both approaches

bias the prediction of lazy algorithms by emphasizing the contributions of some instances

over others. Wettschereck (1995b) described evidence that non-equal instance weights are
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often preferable. Atkeson et al. (1996a) survey alternative kernel functions, which e�ectively

modify instance weightings. We expect that future research will determine which feature

weighting methods are also useful for weighting instances.

6.5 Alternative Architectures for Lazy Algorithms

Finally, we note that several lazy learning algorithms have been implemented using alter-

native computational architectures. For example, connectionist network architectures have

been used to implement many lazy learning algorithms. Volper and Hampson (1987) were

early advocates of using speci�c instance information in such networks. Radial basis net-

works (e.g., Poggio & Girosi, 1990; Broomhead & Lowe, 1988) are closely related to lazy

learning algorithms that cache weight settings; they replace a sigmoidal squashing function

with a Gaussian whose activation is a function of its distance to the inputs. Kruschke (1992),

among others, reported that his modi�ed radial basis network correlates signi�cantly well

with a surprising amount of subject data collected over several decades. Carpenter et al.

(1992) modi�ed and implemented Salzberg's (1991) EACH algorithm as a connectionist

network. Several of these systems use some form of feature weighting that could be more

closely compared with the algorithms reviewed here.

Several other algorithms blur the distinction between lazy and eager processing. For

example, some incremental decision tree induction algorithms retain speci�c instances (e.g.,

Utgo�, 1989), and some algorithms combine rules with speci�c instances to represent con-

cepts (e.g., Zhang, 1990). Each architecture highlights a unique perspective on weighting

features, which may provide insights not easily obtained when using a traditional k-NN

architecture.

7 Conclusions

In this paper we investigated issues on estimating feature weight parameters for the distance

functions in a subclass of lazy learning algorithms. We reviewed several such feature weight-

ing methods, outlined a framework composed of �ve dimensions for distinguishing them,

and described example algorithms de�ned by each dimension. Our empirical evaluation

compared several such algorithms, and suggested several trends. We described additional

supporting evidence for each trend.

These trends suggest certain directions for future research. For example, since most of

the algorithms tested successfully assign low weights to irrelevant features, empirical demon-

strations of new feature weighting algorithms in the presence of irrelevant features are not

particularly valuable. Instead, they should be compared with existing feature weighting al-

gorithms, where the framework used in our review can be used to both categorize the new

algorithm and motivate the selection of algorithms in empirical comparisons. Alternatively,

researchers could use some of these trends to motivate the design of algorithms that contra-

dict them (i.e., by avoiding some problems with their predecessors). Finally, we investigated
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only the �rst two dimensions of our framework, and did not address function learning tasks.

This suggests additional research directions based on this framework.

This article focussed on empirical evaluations. Although several mathematical analyses

exist for lazy learning algorithms (e.g., Cover & Hart, 1967; Langley & Iba, 1993) few

address feature weighting (e.g., Satoh & Okamoto, 1994; Ling & Wang, 1996). Therefore, a

theoretical analysis of these algorithms would provide a valuable companion for this article.
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