Case-Based Learning Algorithms

David W. Aha*
The Turing Institute
36 North Hanover Street
Glasgow G1 2AD
Scotland

ABSTRACT

Case-based learning (CBL) algorithms are CBR systems that focus on the topic of learning. This paper
notes why CBL algorithms are good choices for many supervised learning tasks, describes a framework for
CBL algorithms, outlines a progression of CBL algorithms for tackling learning applications characterized
by challenging problems (i.e., noisy cases, poor similarity functions, contextual importance of features), and
discusses unsolved problems with the case-based learning approach.

Keywords: learning, noise, case retrieval, determining feature importance, determining feature importance

in context, evaluation

1 Case-Based Learning

This paper concerns a subset of CBR algorithms called case-based learning (CBL)
algorithms, which focus on learning issues but do not perform case adaptation, are
limited to feature-value case representations, and do not necessarily employ smart
indexing schemes for their case base.! Nonetheless, CBL systems are well-suited for
supervised learning tasks, which involve processing a set of training cases and using
them to predict values for subsequently presented cases’ goal features.? This is in large
part because they can exploit many types of domain-specific knowledge concerning
the learning task (Aha, 1990). For example, two CBL algorithms known to the CBR
community are Protos (Bareiss, 1989a; 1989b) and MBRtalk (Stanfill, 1987; Stanfill
& Waltz, 1988), which have been sucessfully evaluated on clinical audiology and
word pronunciation applications respectively. Protos encodes such domain-specific
knowledge as typicality information and featural importances for the purposes of
determining accurate similarity assessments. In contrast, MBRtalk is a relatively
knowledge-lean algorithm that computes rather than encodes similarity assessments.

*To appearin Proceedings of the 1991 DARPA Case-Based Reasoning Workshop, distributed by Morgan Kaufmann
Publishers, Inc.

11 refer to these algorithms as instance-based learners elsewhere, but call them CBL algorithms here to focus on
their commonalities with case-based reasoners.

?Features are assumed to have either binary, numeric, or symbolic values.

Its domain-specific knowledge mainly concerns how to carefully compute similarity
for cases with symbolic-valued features.

Many CBL algorithms have not yet been described in the CBL literature. These
algorithms are important because they explore other points along the similarity as-
sessment continuum between all-encoding and all-computing. More importantly, they
have been successfully applied to a wide variety of exciting learning tasks. Industrial
applications include predicting power load levels for the Niagra Mohawk Power Com-
pany (Jabbour, Riveros, Landsbergen, & Meyer, 1987) and appraising oil prospecting
sites in the North Sea for the Oil Enterprise Company (Clark, 1989). Other applica-
tions include pole balancing (Connell & Utgoff, 1987), speech recognition (Bradshaw,
1987), robotic control tasks (Moore, 1990), molecular biology (Cost & Salzberg, 1990),
cost-sensitive robotic decision-making (Tan & Schlimmer, 1990), and medical diag-
nosis (Salzberg, 1990; Aha, Kibler, & Albert, 1991). Other than these case studies,
research investigations of CBL systems include mathematical evaluations on what
types of categories they can learn (Aha, Kibler, & Albert, 1991), evaluations of their
abilities as unsupervised learning algorithms (Stanfill & Waltz, 1988), methods for
learning rule-like abstractions (Salzberg, 1990), development of learning apprentices
(Bareiss, 1989a; Clark, 1989), and evaluations of cognitively plausible CBL algorithms
(Aha & Goldstone, 1990; Aha, 1990). In summary, CBL algorithms have supported

many applications while maintaining the interests of several researchers.

However, few CBL investigations have focused on their empirical limitations. What
are their limitations? Have they been so tailored that they can only work on a single
application? Do CBL algorithms exist that can be taught or learn sufficient domain-
specific knowledge so that they can perform well in a large variety of learning tasks?
Investigations like Stanfill’s (1987) evaluation of MBRtalk’s ability to handle noise
and irrelevant features and Bareiss’s (1989b) lesion study with Protos are a good start
towards answering these questions. However, these studies were on a single domain;
we cannot be sure that they will perform as robustly on other domains. Thus, the
question remains as to what learning tasks they can solve. More precisely, practition-
ers would greatly benefit if they could be told what types of domain characteristics
these algorithms can handle in general, such as noisy data and ability to effectively
learn feature importances.

This problem leaves CBL advocates open to salvos from advocates of alternative
learning approaches. For example, Breiman, Friedman, Olshen, and Stone (1984)
examined a simple CBL algorithm and argued that CBL algorithms have several
general deficiencies:

1. they are computationally expensive because they save and compute similarities
to all training cases,

they are intolerant of noise,
they are intolerant of irrelevant features,

they are sensitive to the choice of the algorithm’s similarity function,

G

there is no simple way they can process symbolic-valued feature values, and
2

6. they give little usable information regarding the structure of the data.

However, Breiman and his colleagues didn’t investigate potential solutions to these
problems. In fact, solutions may already exist for some. For example, MBRtalk (Stan-
fill, 1987) uses an algorithm for computing similarity over symbolic-valued features
that has been successfully applied in several applications (Cost & Salzberg, 1990).
Similarly, Salzberg (1990) developed a general method for deriving abstractions from
cases and argued that it helps to show the structure of the data. The following sec-
tions describe a framework for CBL algorithms, outline general solutions to the first
four of these problems, and summarize continuing progress.

2 A Framework for Case-Based Learning Algorithms

Case-based learning algorithms, as defined here, input a sequence of training cases
and output a concept description, which can be used to generate predictions of goal
feature values for subsequently presented cases. The primary component of the con-
cept description is a case base, but almost all CBL algorithms maintain additional
related information for the purpose of generating accurate predictions (e.g., settings
for feature weights). Current CBL algorithms assume that cases are described using a
feature-value representation, where features are either predictor or goal features. CBL
algorithms are distinguished by their processing behavior; they focus on some parts
of the CBR paradigm while deemphasizing others. To be explicit, all CBL algorithms
have at least the following functions:

1. Pre-processor: This prepares the input for processing (e.g., normalizing the range
of numeric-valued features to ensure that they are treated with equal importance
by the similarity function, formatting the raw input into a set of cases, etc.).

2. Similarity: This function assesses the similarities of a given case with the previ-
ously stored cases in the concept description. Assessment may involve explicit
encoding and/or dynamic computation; most practical CBL similarity functions
find a compromise along the continuum between these extremes.

3. Prediction: This function inputs the similarity assessments and generates a pre-
diction for the value of the given case’s goal feature (i.e., a classification when it
is symbolic-valued).

4. Memory Updating: This updates the stored case-base, such as by modifying or
abstracting previously stored cases, forgetting cases presumed to be noisy, or
updating a feature’s relevance weight setting.

Missing from this framework are requirements for elaborate indexing schemes, case
adaptation techniques, and methods for generating knowledge-intensive justifications
of predictions (although CBL algorithms are not precluded from supporting these
capabilities).

3

The simplest CBL algorithm is CBLI1. Its pre-processor linearly normalizes all nu-
meric feature values. CBL1 defines the similarity of cases C; and Cy as

1
a \/Ziep Feature_dissimilarity(C},, Cy,)

Similarity(Cy, Cy, P) (1)

where P is the set of predictor features and

(Cy, — Cy,)* if feature ¢’s values are numeric
Feature_dissimilarity(Cy,,Cy.) ¢ 0 it Oy, = O},
1 otherwise
2)

This defines similarity to be the inverse of Euclidean distance for numeric features and
uses a simple matching test for symbolic feature values. CBL1’s prediction function
is the k-nearest neighbor function, which has a long history in pattern recognition
(e.g., Fix & Hodges, 1951; Cover & Hart, 1967).> This function predicts that the
value for a given case’s goal feature is the most frequent goal value among its k£ most
similar stored cases in the concept description. Finally, CBL1’s memory updating
function simply stores all training cases in its concept description. Therefore, CBL1’s
work during training is trivial: it simply stores normalized cases. It’s similarity and
prediction functions aren’t needed until it is requested to generate predictions for test
cases (i.e., those whose goal feature values are missing or withheld).

CBLI is highly similar to MBRtalk (Stanfill, 1987), which uses a 10-nearest neighbor
prediction function and also stores all training cases. MBRtalk’s pre-processor differs;
it derives a set of cases (one per letter) for a given word. It’s similarity function also

differs in that it uses the value-difference metric rather than the simple metric used
in CBL1. Nevertheless, both algorithms are specified by the CBL framework.

3 Capabilities of Case-Based Learners

This section describes a sequence of extensions to CBL1 that each address one or
more of the critiques of CBL algorithms listed in Section 1.

3.1 CBL2: Reducing Storage Requirements

CBL1’s learning behavior has been extensively evaluated against the performance
of other machine learning algorithms (Aha, Kibler, & Albert, 1991; Aha, 1990).
It performed relatively well, but computed a needlessly large number of similarity
assessments during prediction attempts. Some method is needed to reduce either the
time required to find the best k stored case matches or to reduce storage requirements.

3k’s value is set to 1 for the experiments described in this paper. Aha (1990) describes performance details when
k > 1 and when the goal feature is numeric-valued.

Several possible solutions exist. First, a massively parallel machine could be used to
compute similarity assessments. Waltz (1990) reported several successful applications
of storage-intensive CBL algorithms on such machines. Unfortunately, these machines
remain expensive, and Waltz noted that alternative methods might still operate more
quickly, essentially because they do not store all of the cases. A second alternative is to
carefully index the case base. Unfortunately, simple data structures for indexing, such
as k-d trees (Moore, 1990) or Voronoi diagrams (Seidel, 1987), work well only when
few predictor features are used to describe cases. Otherwise, they cannot guarantee
fast retrieval times (Sproull, in press). Smarter indexing methods offer more hope.
For example, Protos (Bareiss, 1989a) maintains typicality strengths with stored cases
and uses them to guide it to a good match. Difference links can then be traversed
to improve the match when needed. This hill-climbing approach worked extremely
well with a clinical audiology application when an expert was available to guide
Protos away from non-optimal matches. Computational loads were also decreased by
removing cases that the teacher agreed were sufficiently similar to previously stored
cases. However, other methods for reducing computational loads are worth exploring
because this level of expertise may not always be available.

In fact, what Protos showed was that highly similar cases are a form of redundant
knowledge that could be eliminated safely. This information doesn’t always require
a teacher; automated CBL methods for forgetting cases without reducing predictive
accuracy have been known for 30 years (Sebestyen, 1962; Hart, 1968). Aha, Kibler,
and Albert’s (1991) mathematical analysis of CBL1 showed that, by saving only cases
that discriminate between different goal feature values, large numbers of cases can be
safely forgotten. This is the basis of CBL2, which is identical to CBL1 except that
it retains only incorrectly classified cases in its concept descriptions. The evidence
described in the next section shows that the first critique of CBL algorithms on page 2
no longer holds.

3.2 CBL3: Tolerating Noisy Cases

Both algorithms were applied to a large number of database applications to determine
how well CBL2 works in practice (Aha, Kibler, & Albert, 1991). As expected, its
storage requirements were extremely low but its accuracy was always slightly less than
CBL1’s. In particular, CBL2 performed relatively poorly when training cases were
noisy (i.e., were incorrectly recorded, whether because of faulty feature measurement
devices or malicious alterations). This behavior can be explained with the help of
Figure 1, which shows that CBL2 tends to save noisy cases. However, these noisy
cases are distinguishable from other cases; they tend to more frequently misclassify
subsequently presented cases. CBL3 (Aha, Kibler, & Albert, 1991), an extension of
CBL2, keeps track of the frequency with which stored cases, when chosen as one of
the current case’s most similar stored cases, matched the current cases’s goal feature
value. It then uses a statistical test of significance to ensure that only stored cases
with significantly high frequencies (i.e., significantly better than chance) participate
in predictions of goal feature values. CBL3 is otherwise identical to CBL2.

5

- @ -

@
+|_|_|++

I ENO)

+_+

e
S/

+

L

9
o¥

+

+

Saved Cases’ Accuracy on
Subsequently Presented Training Cases

Distance from Concept Boundary

Figure 1: Left: An artificially constructed case space described by two numeric-valued predictor
features. The central solid line is the boundary between cases with positive (“+”) and negative
(“-”) goal feature values. This figure shows the cases saved by CBL2 when noise was maliciously
added to each of 250 randomly-generated training cases with a probability of 10%. Many noisy cases
(circled) were saved because they were misclassified by the stored cases. Right: A plot of each saved
case’s distance from the boundary line versus their accuracy in classifying subsequently presented
cases. Noisy cases (black boxes) typically had poor classification accuracies.

CBL3 works relatively well on the problem shown earlier in Figure 1; it allowed none
of the training set’s noisy cases to be used in prediction decisions. Furthermore,
CBL3 regularly performed well in this simple application. Figure 2 displays results
averaged over 50 training/test trials for this application. This figure shows that
CBL3’s accuracy deteriorates more slowly than the other two algorithms as noise
levels increase. Furthermore, its storage requirements (i.e., those stored cases allowed
to take part in predictions for goal feature values) were lowest. This occurred because,
as shown in the rightmost graph, CBL3 prevented most noisy training cases from
participating with its predictions. However, this does not prove that CBL3 will
outperform the other algorithms in more practical applications. Therefore, these
algorithms were applied to a variety of databases that have often been used in the
machine learning literature (Aha, 1990). These results are shown in Table 1. For
comparison purposes, results were also obtained for C4, a decision tree algorithm
that performed well on a large number of applications (Quinlan, 1987). The first two
domains are challenging noisy applications used previously by Breiman et al. (1984)
to study decision tree algorithms. CBL3 outperformed both CBL2 and C4 in these
applications, where it recorded higher accuracies and lower storage requirements than
CBL2. Its accuracy was also comparable to CBL1’s. This pattern continued with
the Cleveland and noisy Hungarian databases, which contain cardiological diagnoses.
Thus, the second critique of CBL algorithms on page 2 no longer holds.

However, CBL3 performed relatively poorly in comparison to C4 in the final two
applications, which involve large numbers of irrelevant features. Although CBL3
outperformed CBL1 and CBL2, it performs poorly when feature importance varies
greatly among predictor features, such as when irrelevant features exist.

Average % Noise in

Average Percent
Concept Description

Average Accuracy Storage Requirements

100% 100 - 60
. 90 -
90% 80 - 50 1
70
. 40
80% A 60
50 - aen 304
70% - 40 o
0 30_ E"., 20_
60% . 20 - 'E'l' 10 4
50% : 0 T T ‘7\._? 0 =

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
The X Axis is the Percent Noise Level in the Training Set

IB1 [IB3e-----
Figure 2: CBL3 filters noise better than either CBL2 or CBL1.

Table 1: Percent accuracy =4 standard error and percent storage requirements. CBL3 recorded higher
classification accuracies and lower storage requirements than CBL2. In most cases its classification
accuracy also compares favorably with CBL1’s and C4’s.

‘ Database H CBL1 ‘ CBL2 ‘ CBL3 ‘ C4 ‘
LED-T7 display | 71.64£0.4 100 | 63.0+0.9 41.6 | 72.54£0.4 20.1 | 68.9+0.5
Waveform-21 75.5+1.1 100 | 68.4+1.1 32.3 | 74.2+1.2 11.1 | 71.5+1.2

Cleveland 75.1£0.8 100 | 71.440.9 32.0 | 78.4+0.9 3.9 75.2+1.2
Hungarian 56.1+2.2 100 | 53.1+2.4 36.9 | 79.4+0.9 4.3 77.6+£0.9
Voting 91.84+0.4 100 | 90.94+0.5 11.6 | 90.6+0.6 3.5 | 96.1+0.6
LED-24 display || 47.940.6 100 | 43.74+0.8 60.1 | 46.6+£0.7 25.3 | 66.94+2.1
Waveform-40 || 68.6+0.7 100 | 64.0£0.7 38.3 | 67.2£1.1 11.8 | 70.9£1.0

3.3 CBLA4: Learning Feature Importance

This lead to the development of CBL/ (Aha, 1989), which extends CBL3’s memory
updater; it learns the relative importances of features, represented as feature weight
settings, for the purpose of computing accurate similarity assessments.* These weights
are similar to the ones used by King, Klein, Whitaker, and Wiggins (1988) in their
SURVER III program except that CBL4 learns rather than is told featural impor-
tances. FEach feature’s weight is adjusted after each prediction attempt during the
training process by comparing the current training case with its most similar stored
cases. CBL4 initially assigns equal weight to each feature, increases settings for fea-
tures whose values are similar when correct predictions are made (or quite different

4CBL4 also differs in that it learns a separate set of feature weight settings for each goal feature. This gives it the
freedom to assign different settings for a predictor feature depending on which goal feature’s value is being predicted.

Number of Cases Required
To Reach 95% Accuracy)
2000 -
1800
1600
1400
1200
1000
800 .
600 - e
400 -

o IB3

IB4

0 2 4 6 8 10
Number of Irrelevant Features
Figure 3: CBL4 requires less training than CBL3 to achieve a high prediction accuracy for an
artificially constructed application as the number of irrelevant features increase. The application

involves a single relevant binary feature and a varying number of irrelevant binary features. These
curves are averages from 25 training/test trials.

Table 2: Average % accuracy + standard error and % storage requirements (lower lines).

‘ Database H CBL1 ‘ CBIL2 ‘ CBL3 ‘ CBL4 ‘ C4 ‘
LED-24 47.940.6 | 43.740.8 | 46.640.7 | 66.140.6 | 66.9£2.1
100 60.1 25.3 25.4
Waveform-40 || 68.640.7 | 64.040.7 | 67.2+1.1 | 72.1+£1.2 | 70.9+£1.0
100 38.3 11.8 12.6

when incorrect predictions are made), and otherwise decreases feature settings. The
amount of adjustment is determined by the difference between the feature’s value for
the two case’s whose similarity is being assessed.

CBL4 can tolerate irrelevant features better than CBL3, which effectively assigns the
same (static) weight setting to each feature. For example, Figure 3 shows how CBL3
requires an exponentially greater number of training cases to combat a linear increase
in the number of irrelevant features used to describe cases for a simple application.
However, this does not ensure that CBL4 will outperform CBL3 in practical appli-
cations. Table 2 gives a better indication; it shows that CBL4 outperforms CBL3
and comparably to C4 on the two applications of interest. (Its results for the other
applications were similar to CBL3’s, although it tended to have slower learning rates
because it must search for good weight settings.) In summary, CBL4 tolerates irrel-
evant features by learning their relative importances in similarity assessments. This
suggests that the third critique of CBL algorithms on page 2 no longer holds.

3.4 Current Research: Learning Feature Importance in Context

To some extent, the evidence described in the last section also shows CBL algorithms
do not have to be sensitive to the choice of the similarity function. This is because
CBL4 learns a separate set of feature weight settings for each goal feature. Since
it is using these weights in its similarity function, it is in effect learning a separate
similarity function for each goal feature.

However, CBL4 will not perform particularly well when feature importance is context-
sensitive in the sense expressed by Ashley (1989), who noted that experts recognize
that featural importance differs depending on the combinations of the other feature-
value pairs present describing the case. For example, consider the problem of predict-
ing whether a politician will endorse some proposed legislation on abortion rights. As
with most real-world categorization tasks, some features should be given more atten-
tion than others to make this prediction. In this situation, the “past voting record”
feature would be expected to be important, but this depends on the case’s other fea-
tures’ values. For example, if the feature corresponding to the pressure of pro-choice
political action groups has a high value, then “past voting record” might have low
importance because the legislator might vote according to the pressure group’s inter-
ests. However, this feature should be assigned higher importance if the legislator’s
“seek re-election” feature value is “false”, which diminishes the influence of politi-
cal action groups. Context sensitive case weights are required to derive appropriate
feature importances in applications where feature importance is context-dependent.

The context-sensitive extension of CBL4 to tackle this problem has not yet been im-
plemented. However, Aha and Goldstone (1990) developed a simple context-sensitive
CBL algorithm named GCM-ISW for the purpose of testing its psychologically plau-
sibility. It is similar to CBL1 in that it stores all cases, but it also employs an
extension of CBL4’s weighting scheme: it employs a separate set of feature weights
for each (case,goal feature) pair rather than only one set of weights per goal feature.
These additional weights allow GCM-ISW to encode different weights for a feature
depending on both the case and on the feature whose value is to be predicted. Thus,
GCM-ISW can learn localized, domain-specific contexts.

As in CBLA4, these weights are used in GCM-ISW’s similarity function. However, lo-
calized weighting schemes must be constrainted because, when unimportant features
are ignored, dissimilar cases may seem highly similar. This problem is displayed in
Figure 4, which shows an example where this might cause misclassifications. The
vertical feature is the only important feature for predicting classifications for cases
similar to x. However, if x’s similarity is computed with newly presented case y, then
its context-sensitive feature weights would misleadingly suggest that they are highly
similar. Therefore, GCM-ISW learns both context-sensitive and context-independent
(i.e., averaged) feature weight settings, which are dynamically combined when simi-
larity assessments are required. The basic idea is that the context-sensitive settings
are relied on when the two cases being compared have highly similar feature values.
Otherwise, the context-independent settings are used.

9

-

Figure 4: This shows a case space defined by two numeric dimensions. Three disjuncts of a single
concept are shown. If the horizontal feature is ignored at case x’s location, then x it might seem too
similar to seemingly dissimilar cases such as y, whose vertical feature’s value is approximately equal
to x’s. This could cause x to misclassify y.

GCM-ISW was evaluated in a lesion study; the other three algorithms used no weight-
ing scheme, used only one set of feature weights, and used one set of feature weights
per goal feature respectively. In simple applications where context-dependent infor-
mation was unimportant, GCM-ISW’s averaged learning rate (i.e., its accuracy on a
separate set of test cases versus the number of processed training cases) was as good or
better than the other algorithm’s rates. However, GCM-ISW’s learning rate was sig-
nificantly faster than their learning rates in an application where context-dependent
information was important (Aha & Goldstone, 1990).

Although GCM-ISW has not been evaluated in practical applications, it has been
evaluated against these other algorithms for its ability to fit subject data from psy-
chological experiments (Aha, 1990). Forty subjects completed two experiments that
were designed to encourage them to assign different importances to a feature depend-
ing on its context (i.e., the feature’s other feature values). The results showed that
GCM-ISW’s correlations to the subject data were significantly better than the other
algorithms’ correlations. Our next step is to compare GCM-ISW versus other algo-
rithms in several database applications to determine whether the context-sensitive
learning algorithm will improve learning performance.

4 Unsolved Issues

There are several open issues concerning CBL algorithms. This section highlights
three of the more important ones.

Although it appears that relatively robust and general CBL algorithms can be devel-
oped, several important issues remain unsolved. For example, the CBLn algorithms
described in this paper attempt to learn domain specific information such as which
cases should be saved, which cases are noisy, and which features are important in
a given context. However, some domain-specific information cannot be learned as

10

easily as these simple types of information, especially when the given features do
not properly match the set of features required to support accurate predictions. Au-
tomated methods for constructing new features, without the assistance of teachers,
should prove useful for extending the capabilities of automated CBL algorithms.

Branting (1989) noted several limitations of the feature-value representation for cases.
CBL algorithms cannot yet automate learning in knowledge-rich applications that re-
quire more elaborate case representations. Applications involving higher-order feature
relationships, such as legal reasoning, are not amenable to current CBL algorithms.

Several CBL algorithms have explored methods for enhancing simple similarity func-
tions with domain-specific information, essentially encoding some aspects of similarity
assessments. For example, Optimist (Clark, 1989) uses a set of domain-specific rules
to encode geological information to help assess the similarity between two prospect-
ing sites. These rules correspond to particular contexts; if the two cases fit that
context, then the rules affect their overall similarity assessment (either negatively or
positively). The magnitude of this affect is pre-determined, but the way in which dif-
ferent rules combine their affects is not. Thus, part of the assessment is encoded and
part of it is computed dynamically. The similarity assessment continuum between all-
encoding and all-computing has been investigated by several other CBL algorithms
that combine these two extremes, but methods are not yet available for determining
which compromise is best given a particular application’s characteristics. This is an
interesting topic for future research.

5 Summary

Case-based learning algorithms have been applied to a large range of learning tasks
with considerable success. However, most previous investigations on CBL algorithms
were of the case study variety, which shows that an algorithm can work for one
application but doesn’t ensure that it will work for others. This paper showed that
some simple and generally applicable CBL algorithms can be defined that reduce
storage requirements, tolerate noise, and tolerate irrelevant features. Future work
will be required to determine the limitations of general CBL algorithms and to more
carefully outline how they can encode domain-specific knowledge.

Acknowledgements

Thanks to the Turing Institute for providing excellent computing resources and the
SERC for supporting the author as a post-doctoral fellow on research grant GR/G
20424.

References

Aha, D. W. (1989). Incremental, instance-based learning of independent and graded concept descriptions.
In Proceedings of the Sizth International Workshop on Machine Learning (pp. 387-391). Ithaca, NY:
Morgan Kaufmann.

11

Aha, D. W. (1990). A framework for instance-based learning algorithms: Mathematical, empirical, and
psychological evaluations (Technical Report 90-42). Irvine, CA: University of California, Department
of Information and Computer Science.

Aha, D. W., & Goldstone, R. L. (1990). Learning attribute relevance in context in instance-based learning
algorithms. In Proceedings of the Twelfth Annual Conference of the Cognitive Science Society (pp.
141-148). Cambridge, MA: Lawrence Erlbaum.

Aha, D. W, Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning,
6, 37-66.

Ashley, K. D. (1989). Assessing similarities among cases: A position paper. In Proceedings of a Workshop
on Case-Based Reasoning (pp. 72-76). Pensacola Beach, FL: Morgan Kaufmann.

Bareiss, R. (1989a). Ezemplar-based knowledge acquisition. San Diego, CA: Academic Press.

Bareiss, R. (1989b). The experimental evaluation of a case-based learning apprentice. In Proceedings of a
Case-Based Reasoning Workshop (pp. 162-167). Pensacola Beach, FL: Morgan Kaufmann.

Bradshaw, G. (1987). Learning about speech sounds: The NEXUS project. In Proceedings of the Fourth
International Workshop on Machine Learning (pp. 1-11). Irvine, CA: Morgan Kaufmann.

Branting, L. K. (1989). Integrating generalizations with exemplar-based reasoning. In Proceedings of the
FEleventh Annual Conference of the Cognitive Science Society (pp. 139-146). Ann Arbor, MI: Lawrence
Erlbaum.

Breiman, L., Friedman, J. H., Olshen, R. A.; & Stone, C. J. (1984). Classification and regression trees.
Belmont, CA: Wadsworth International Group.

Clark, P. E. (1989). Ezemplar-based reasoning in geological prospect appraisal (Technical Report 89-034).
Glasgow, Scotland: University of Strathclyde, Turing Institute.

Connell, M. E., & Utgoff, P. E. (1987). Learning to control a dynamic physical system. In Proceedings of the
Sizth National Conference on Artificial Intelligence (pp. 456—460). Seattle, WA: Morgan Kaufmann.

Cost, S., & Salzberg, S. (1990). A weighted nearest neighbor algorithm for learning with symbolic fea-
tures (Technical Report JHU-90/11). Baltimore, MD: The Johns Hopkins University, Department of
Computer Science.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. Institute of Electrical and
Electronics Engineers Transactions on Information Theory, 13, 21-27.

Fix, E., & Hodges, I. L., Jr. (1951). Discriminatory analysis, nonparametric discrimination, consistency
properties (Technical Report 4). Randolph Field, TX: United States Air Force, School of Aviation
Medicine.

Hart, P. E. (1968). The condensed nearest neighbor rule. Institute of Electrical and Electronics Engineers
Transactions on Information Theory, 14, 515-516.

Jabbour, K., Riveros, J. F. V., Landsbergen, D., & Meyer W. (1987). ALFA: Automated load forecast-
ing assistant. In Proceedings of the 1987 IEEFE Power Engineering Society Summer Meeting. San
Francisco, CA.

King, J. A, Klein, G. A., Whitaker, L., & Wiggins, S. (1988). SURVER III: An application of case-based
reasoning. In Proceedings of the Fourth Annual Applications of Artificial Intelligence.

Moore, A. W. (1990). Acquisition of dynamic control knowledge for a robotic manipulator. In Proceedings
of the Seventh International Conference on Machine Learning (pp. 244-252). Austin, TX: Morgan
Kaufmann.

Porter, B. W. (1989). Similarity assessment: Computation vs. representation. In Proceedings of a Work-
shop on Case-Based Reasoning (pp. 82-84). Pensacola Beach, FL: Morgan Kaufmann.

Quinlan, J. R. (1987). Generating production rules from decision trees. In Proceedings of the Tenth Inter-
national Joint Conference on Artificial Intelligence (pp. 304-307). Milan, Italy: Morgan Kaufmann.

Salzberg, S. L. (1990). Learning with nested generalized exemplars. Boston, MA: Kluwer.
12

Sebestyen, G. S. (1962). Decision-making processes in pattern recognition. New York, NY: Macmillan.

Seidel, R. (1987). On the number of faces in higher-dimensional Voronoi diagrams. In Proceedings of the
Third Annual Symposium on Computational Geometry (pp. 181-185). Waterloo, Ontario: Association
for Computing Machinery.

Sproull, R. F. (in press). Refinements to nearest-neighbor searching in k-d trees. Algorithmica.

Stanfill, C. (1987). Memory-based reasoning applied to English pronunciation. In Proceedings of the Sixzth
National Conference on Artificial Intelligence (pp. 577-581). Seattle, WA: Morgan Kaufmann.

Stanfill, C. (1988). Learning to read: A memory-based model. In Proceedings of a Case-Based Reasoning
Workshop (pp. 402-413). Clearwater Beach, FL: Morgan Kaufmann.

Tan, M., & Schlimmer, J. C. (1990). Two case studies in cost-sensitive concept acquisition. In Proceedings
of the Eighth National Conference on Artificial Intelligence (pp. 854-860). Boston, MA: American
Association for Artificial Intelligence Press.

Waltz, D. (1990). Massively parallel AL In Proceedings of the Eighth National Conference on Artificial
Intelligence (pp. 1117-1122). Boston, MA: American Association for Artificial Intelligence Press.

13

