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Abstract—We describe MESIF, the first source-snooping cache coherence protocol. Built on 

point-to-point communication links, the protocol maintains no directory, and mimics the 

broadcast behavior of a snooping cache protocol.  MESIF supplies data cached in other nodes in 

a single round-trip delay (2-hop latency) for all common operations.  Because of the speed of 

the links, the protocol can outperform a bus-based protocol for a small number of nodes, but 

scales through hierarchical extension to a large-scale multiprocessor system.  Salient features 

of the protocol are described.  The introduction of a novel forwarding state is used to assure a 

single response to shared data and to simplify conflict resolution.  In the hierarchical extension, 

auxiliary hardware data structures can be included to provide 2-hop latency for most 

operations. 

The recently revealed Intel® Quick-Path Interconnect™ protocol[1] is derived from MESIF. 

Some design differences are highlighted. 

1. Introduction 

There are two well-known categories of cache coherence protocols: directories and snooping 

caches.  Snooping cache coherence protocols distribute the coherence information around the 

system, making cache controllers responsible for maintaining information about the whereabouts 

of copies of the memory locations for which they have special privileges.  They depend on a 

broadcast to assure that all the nodes witness events that might require their intervention.  While 

this idea has been extended with the use of a logical bus[2, 3], the basic idea of a broadcast is 

fundamental to the snooping protocol. 

Directory-based schemes depend on a single place—the directory—to store information about 

a cache line.  While this information may be distributed for different addresses, each address is 

associated with a given location where the coherence information is maintained (or at least, 

where it can be found[4, 5]).  Unfortunately, this means that many common operations require a 
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minimum of three serial communications to complete a memory transaction, as opposed to two 

for a snooping protocol.  Directory lookup time can be overlapped in fetching uncached data from 

memory.  However, if the requested data is cached—increasingly likely as parallel applications 

become more commonplace and caches continue to grow in size—an opportunity for supplying 

data directly and quickly from another cache is lost.  If the data is modified in a cache, or if the 

requester wishes to modify the data, the directory model is even more complicated, requiring 

communications with other nodes before the requesting node receives a response. 

New technologies and energy considerations make broadcast through a common electrical 

medium less attractive.  Point-to-point communications today provide both lower latency and 

higher bandwidth communication[1,6,7].  In anticipation of this development we investigated the 

possibility of “broadcasting” through parallel, point-to-point links, achieving the 2-hop latency of 

snooping protocols while exploiting the higher potential bandwidth of point-to-point links.  We 

achieved this with the MESIF protocol, which provides a 2-hop latency for all the common 

memory operations.  This protocol, and others it inspired, have led directly to the “source 

snooping” cache coherence protocol present in the QuickPath Interconnect™ (QPI) [1], recently 

introduced by Intel®.  To our knowledge, MESIF was the first protocol that can be described as 

source snooping on a point-to-point interconnect. 

The protocol was designed to exploit the fact that shared data can be retrieved from another 

cache faster than it can be fetched from memory.  Shared data, as well as modified data, is 

supplied out of a cache rather than fetching it from memory whenever possible. 

The goals of the MESIF protocol are the following: 

1. High efficiency for a small number of nodes, 

2. Two-hop protocol for common memory operations within a leaf cluster, 

3. No back-off/retry,  

4. Maximize throughput by handling concurrent requests efficiently, 

5. Scale to large system, without need for directory protocol, 
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6. Scalable in a hierarchical manner, 

7. Independent of switching fabric, i.e., no ordering requirements, and 

8. Support for multiple memory models, including sequential consistency. 

The resulting MESIF protocol met all the above goals.  It included a hierarchical scheme that 

allowed for the protocol to be applied recursively to allow a cluster to interact with the rest of the 

system as if it were a single node.  This approach was abandoned in QPI since it can be readily 

extended with a directory protocol at the cluster level. 

An interconnect that provides broadcast capability offers an important advantage: serial 

observability.  The serial nature of a bus provides a global order in which events are observed, 

even if they are observed at slightly different times.  But even if messages along each link are 

delivered in-order, point-to-point interconnects can still suffer from "time-warp" (see Fig. 1).  

MESIF recaptures most of the properties of a bus by requiring a sequence of responses, assuring 

that individual messages, even if delayed, will not prevent the system from achieving serial 

observability.  The protocol includes the concept of a transaction that begins with a broadcast, 

where a node sends a (nearly identical) message to each of the other nodes, requesting privileges, 

status, and/or data.  

Because broadcasts may overlap, transactions are not explicitly ordered.  Rather, each node 

wishing to read or write data is responsible for assuring the required ordering constraints are 

met.  The node is assisted by receiving a completion acknowledgement for each operation from 

the Home node (node containing the memory that stores the cache line), notifying it that the 

contents of the cache line are now visible to the rest of the system.  While the node may have 

previously received the data in a writable state and continued execution, it may not make the 

result of these changes visible externally until it receives this acknowledgment.  

MESIF does not dictate sequential consistency, but supports it, along with more relaxed protocols.  

Sequential consistency is achieved if all processors commit instructions that modify memory only after 

receiving the completion acknowledgement (write atomicity) and commit their instructions in-order (write 
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serialization). Processors can be designed to achieve weaker memory models by relaxing these constraints 

and making changes visible earlier. They can also weaken the memory model by committing a load 

instruction using a value from an invalidated cache line after acknowledging the invalidation request. 

 

Fig. 1. Time Warp.  Node C first initiates a Read-for-ownership (RFO, a transaction requesting 

an exclusive copy in preparation for a write), sending requests to A and B.  Node B responds to 

the RFO, indicating it does not have the line, later initiating its own RFO for the same line.  Node 

A receives the RFO from B first.  Having the data in Modified state, it responds to the request by 

passing the data to B and invalidates its own copy.  Now when it receives RFO from C, it also 

responds that it does not have the line.  C now requests the cache line from memory, having 

verified that neither A nor B have it.  But B has the copy sent from A, creating two incompatible 

copies. 

Request/response assures that every pair of nodes concurrently attempting transactions on 

the same cache line will become aware of the conflict.  The MESIF protocol guarantees that a 

conflict will be resolved quickly and handled efficiently.  While the winner is determined 

immediately—receiving the data in a cache-to-cache transfer, for instance—the Home node is 

responsible for assuring that the loser's request is queued and handled efficiently and fairly.  The 

scheme naturally extends to multiple concurrent requests. 

In this paper we describe the original MESIF protocol completed in June, 2001.  Because of 

commercial considerations, the protocol remained obscure for the last eight years.  With the 

recent introduction of the QPI protocol, we are now able to describe the MESIF protocol.  A very 
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substantial corporate effort was devoted to establishing both the correctness of the protocol and 

the performance of this and many other possible implementations, though this information is not 

publicly available. This document is not a detailed description of the protocol, but rather an 

attempt to convey its general nature and to suggest possible research directions for assuring 

cache coherence over a point-to-point network.  While some comparisons will be made to QPI to 

highlight some of the design choices, it is beyond the scope of this document to provide a detailed 

description of QPI.  The reader is referred to [1] for other details of QPI not mentioned in this 

paper.  The QPI book does not detail how a 2-hop protocol can maintain cache coherency in the 

possible presence of conflicting information that can arise due to the out-of-order arrival of 

requests and responses.  This paper attempts to elucidate the principles of imposing order to an 

out-of-order point-to-point interconnect. 

2. Protocol Description 

2.1. The Basic MESIF Protocol 

A cache line may be in one of five states in each of the nodes: M (Modified), E (Exclusive), S 

(Shared), I (Invalid), or F (Forwarding).  The first four states correspond to the classic states of a 

MESI protocol[8].  The Forwarding state indicates a “first-among-equals,” that is, a state 

assigned to a single node among those sharing a cache line, and responsible for providing its 

content when a request is received.  This state is similar to an “Owned” state for modified data, 

but coherent with memory and useful for read requests rather than write requests.  The 

Forwarding state in MESIF primarily facilitates the rapid response of a cached copy (requestor 

broadcasts and responder provides a cached copy for a 2-hop latency) in the presence of multiple 

cached copies.  The F state also simplifies the conflict resolution mechanism in the protocol.  This 

will become evident in a later section. 

A transaction is initiated by a broadcast to all caching nodes for a cache line, including to the 

Home node (the node containing the memory location where the cache line resides).  All nodes 
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except Home must respond.  A response may include data (from at most one node), and 

indicates: 

1) The state of the cache line in the responding cache, and  

2) An indication if a conflicting request (actually a list of conflictors) has been discovered. 

In order to guarantee the serializability of transactions, a node supplying data may not 

respond to any further requests for the same cache line until it has received acknowledgement 

from the requesting node.  The requesting node may use the received data, but it is not allowed to 

acknowledge receipt from the sender until it receives acknowledgement from Home.  This 

process of acknowledgement chaining allows the Home node to ultimately retain full control of 

the request; control that is used to sequence conflicting nodes when required. 

After responses have been received from all nodes, a second message (second phase) is sent to 

Home.  This message is either a READ message requesting data, or a cancel message (CNCL) 

indicating that it has received data.  In either case, the message must also list all conflicting 

requests it detects for this cache line between the time it initiated the request and the time it 

received the last response.  If a conflict has been detected, the node signals either that it was the 

winner (CNCL) or a loser (READ). 

Home must respond to a READ request either by sending the data from memory or (for 

conflict cases) instructing another node to forward the data.  In the case of a conflict, Home must 

identify all parties to the conflict and provide for the serial transfer of the cache line to each of the 

requesting nodes.  It does this by sending forwarding messages to the winner and all but one of 

the losing nodes in the conflict, also informing each losing node to await data from a specified 

node.  If there is no conflict, Home responds to a CNCL by acknowledging (ACK) receipt of the 

message and thus terminating the transaction. 

A transaction may be initiated by any of the following requests. 

1) ReadShared (RS), 

2) Read for Ownership (RFO), 
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3) Write back (dirty eviction), and 

4) Invalidation request (upgrade to ownership
1
). 

One of the following responses will be returned from each node: 

1) IACK: invalid state acknowledgement (one IACK may include data), 

2) SACK: shared stated acknowledgement (no data included), 

3) Data&State: data sent along with state (F, E, or M) to transition to, and 

4) Conflict: there is already a pending request for the same cache line. 

Home is permitted to respond immediately upon receiving a READ or CNCL message from the 

requestor.  It must not wait for all conflicting requests to arrive, because there are cases where 

some cannot be generated until it has responded. 

2.1.1. Transaction Flow for a Read Request 

We start by describing a non-exclusive read request.  A requesting node broadcasts to all peer 

nodes a request and waits for their responses.  There are four possible cases.  For the moment we 

ignore all conflicts; i.e. overlapping requests for the same cache line.  Requests for different cache 

lines can be arbitrarily overlapped.   

i) The requested line is uncached.  All nodes respond with an IACK (Invalid copy 

ACKnowlegement).  After all IACKs have been received, the node sends a confirming READ 

request to Home.  Home responds with the data, completing the transaction.  The node 

assigns the E state to the cache line. 

ii) The requested line exists in one or more nodes in state S, with at most one node in state F.  

(There may not be an F copy, but rather S copies.  In this case, the requesting node reads the 

data from Home and receives it in state F).  If the line exists with state F in some node, that 

node forwards a copy of the line to the requesting cache, changing its own state to S.  The 

                                                             
1
 There are many other transaction types such as requests for handling data crossing cache lines, non-

coherent transactions, etc. that are present in a production-quality protocol.  We limit our discussions to 
these basic requests for simplicity. 
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receiving cache acquires the new line in state F and the requestor can effectively use the data.  

After responses have been received from all nodes except Home, the requesting node sends a 

cancel message to Home.  Upon receiving an acknowledgement message from Home, a 

DACK message is sent from the requestor to the sending node, completing the transaction 

(see fig. 2).  The DACK message frees the old owner to respond to other requests for the same 

line.  (Conflicts are described more fully in section 2.2.)   

The F state allows the current owner, which may be a node other than Home, to 

determine directly the new owner for the next request to the same cache line.  In this 

manner, multiple nodes can serve as proxies for the Home node (in deciding a new owner) 

on simple, uncontended requests—the vast majority of requests.  Note that the E state and M 

state (since there can be at most one copy in the system) also conveys the same Home proxy 

properties to the owner. 

 

Figure 2. A ReadShared transaction flow with a cached F copy. 

iii) The requested line exists in a single node in E state.  The case is treated exactly the same as if 

the cache line were in F state instead of E. 



 Tuesday, November 3, 2009  
 

9 

iv) The requested line exists in a single node in M state.  This case is tricky because the line is 

being requested for read-sharing but the data is modified.  In the basic protocol, the line is 

transmitted to the requesting node as if the request had been a Read-for-Ownership(RFO).  

A variant allows the data to be shared, allowing the responding node to keep a copy in state 

S.  The requesting node now must “cleanse” the line by writing it back to memory, possibly as 

a variant of the CNCL request.  Alternatively, it may maintain the cache line in a sixth state--

Shared-Modified (FM)--deferring the requirement to cleanse the line.  The latter choice, 

while seeming to complicate the protocol, is actually the easiest to implement. 

2.1.2. Transaction Flow for a Read For Ownership Request 

A read request with permission to modify, known as a Read for Ownership (RFO) is handled 

similarly to a read request.  There are three possible cases. 

i) The requested line is uncached.  This case is handled exactly like a read request. 

ii) The requested line exists in a single node in M or E state.  This case is handled like a read 

request, except that the delivered data is purged from the sending cache and the state of the 

received line does not change.  

iii) The requested line exists in one or more nodes in state S, with at most one node in state F.   

This case is handled like a read request except that each node invalidates its cache line before 

responding (they respond with an IACK).  This includes the node in the F state, if one exists.  

Such a node responds to the requesting node with an IACK message containing the data. 

Once the requester receives the line, the local processor may commence modifying the data. 

Where the data is already cached (cases ii and iii), as for a read request, the requester must send 

a cancel request to the Home node. In this second phase of completion, the system via the Home 

node acknowledges that the requester is the new owner (through an ACK message or a 

forwarding (XFR) message, the latter effectively exposing the modified data to the rest of the 

system).  This is called the Global Observation (G.O.) point.  We borrow this 2-phase completion 
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concept from the x86  front-side bus (FSB) where the G.O. point is when all agents have 

responded to the snoop request but before the data has arrived at the requester.  Because the 

phases are reversed for MESIF relative to x86, with the data arriving before the global 

acknowledgement of permission to write, MESIF’s G.O. point is a performance advantage over 

the x86 FSB in cache-to-cache transfers for x86 cores that implement a less strict consistency 

model than the sequential one.   

The delay of the second phase is insignificant with regard to the processor, which may proceed 

beyond this instruction, though the result must not be exposed system-wide until the G.O. point. 

Because the processor is able to proceed as soon as the data has arrived, execution need not be 

delayed by the second phase.  That is why MESIF is a 2-hop protocol even though some 

operations require four sequential hops. 

In the case where a line is not cached, the memory controller in the Home node will 

speculatively fetch the data while all the peer nodes respond to the requestor.  It is expected that 

the READ signal from the requester arrives before the speculative read returns from main 

memory, yielding the same latency as a conventional 2-hop protocol reading directly from 

memory. 

2.1.3. Transaction Flow for Writeback Line Requests 

When a modified cache line is evicted, a Writeback request is issued from the owner node to 

Home.  During this transaction, the ownership is effectively transferred back to Home and while 

this transaction is pending, the node performing the writeback buffers any snoops to the cache 

line until Home responds with an acknowledgement.  After receiving the acknowledgement from 

Home, the node can respond with an IACK to any incoming snoops for that cache line (see fig. 3).  

If the writing node B did not stall incoming snoop probes, then the IACK from B could beat all 

other messages (including the writeback data) to Home and confuse the Home to send a copy to 

A from main memory. 
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Figure 3.  Writeback transaction stalling snoops to the same cache line
2
. 

2.2. Dealing with Conflicts in MESIF 

The concurrency inherent in a point-to-point network means that two or more requests may 

overlap.  If the requests are to different cache lines, the protocol guarantees a global order by 

establishing the point at which all copies of a cache line (other than the one being modified) have 

been eliminated.   Two requests to the same cache line, however, require some sophistication to 

assure consistent state and correct global ordering.  The Home plays a special role in every 

transaction not only to supply data that is not cached, but also to make sure that conflicting 

transactions to the same cache line are handled correctly and efficiently. 

If two nodes, A and B, generate requests to the same cache line simultaneously, the order in 

which they are observed at other nodes may be different.  Furthermore, at least one, and possibly 

both requesting nodes will observe an incoming request to occur after the local request is 

generated.  This is guaranteed because it is impossible for each node to handle a concurrent 

remote request before it generates its own.  Thus for any conflict, at least one of the nodes will 

detect that it has an outstanding request at the time a conflicting request is received. 

                                                             
2
 This example shows D as a Home node, i.e. it contains both the memory controller owning the cache line 

plus a caching agent. 



 Tuesday, November 3, 2009  
 

12 

 

Fig. 4. Conflict resolution3.  Nodes B and C simultaneously generate Read-for-Ownership 

requests (RFO) for a cache line that is present only in node A.  Node B's request is received first 

by node A, which responds by sending the line (DataM) to B.  Because it has supplied data in a 

transaction that is not completed, node A is not permitted to respond to the RFO request from 

node C and must stall all incoming snoops until it receives acknowledgement from B.  Both 

nodes B and C respond to the other's request by indicating a conflict (CNFL).  The winner, B, 

proceeds by canceling its request to Home and indicating the conflict with C (CNCL(C)).  Home 

responds to the cancel request with conflict by instructing node B to forward the line to node C 

(XFR(C)).  After receiving the response from Home, node B acknowledges the data received from 

A (DACK), and after accessing it momentarily, forwards the data to C (DataM).  After receiving 

the response from A (IACK) but no data, node C now requests data from the Home node, 

indicating its conflict with B (READ(B)). Home has already instructed node B to forward the data 

to node C (XFR(C)), and node B may have already delivered the data to C by the time it receives 

the response from Home (WAIT)4.  After receiving both signals, node C acknowledges receiving 

the data from node B (DACK). 

Usually a conflict is quickly resolved by the node that supplies the data.  The F state simplifies 

conflict resolution by determining a single node to respond to requests for data that is shared.  (If 

the data is cached in E or M state, a single node plays the same role.)  The node resolves the 

conflict by sending the data to one of the two nodes (presumably, but not necessarily, to the node 

whose request is received first).  This simple resolution is quick, but it does not guarantee that the 

loser will eventually receive the data.  A possible solution is simply for the loser to try again.  For 

                                                             
3
 This example shows D simply as Home, i.e. without a caching agent. 

4
 The WAIT message is equivalent to an ACK message, but is separately identified for ease of description.  
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a variety of reasons we rejected that solution, instead requiring that the Home be involved in all 

conflicts, directing the winner to forward the cache line to the loser.  This is necessary even in the 

case of read-only (shared) data, because the node supplying the data initially (in F state) passes 

on the F state property to the winning requester.  Allowing the node with the F-state to supply the 

cache line to two nodes might seem more efficient, but it greatly complicates the protocol, which 

requires no more than one response to each request for data, and because it might result in 

multiple nodes with a cache line in the F state. Figure 4 gives an example of a simple conflict 

between two nodes simultaneously requesting ReadShared data. 

Because of timing delays, only one of two conflicting nodes may actually detect the conflict.  

The protocol is robust enough to handle these cases.  The Home node is able to recognize and 

disambiguate all conflicts from the READ or CNCL it receives from each requesting node 

(indicating all detected conflicts).  This is true even though some nodes will not be aware of a 

conflict and simply ask for data or cancel their request (because it has been satisfied). 

Note that the old owner in figure 4 (node A) stalls all pending snoops to the same cache line 

during the period from when it has sent off the cache line until it receives the DACK from the new 

owner.  This is to allow the winner to notify the Home.  When the loser sends its second request 

to Home, the conflict will be detected and captured in the conflict list that is sent to Home. 

2.2.1 Different Kinds of Requests May Conflict 

A ReadShared request and an RFO request may occur concurrently.  The protocol simply 

handles them in order, with the transfer assuring that the successful RFO will result in the 

invalidation of all copies but one.  In some cases, a ReadShared request may also result in a 

modified (exclusive) copy being supplied. 

2.2.2. More Than Two Nodes May Conflict Generating Overlapping Requests 

 In general, a conflict is detected whenever a node detects a conflicting request from another 

node after it has generated its own request and before it has received its last response.  Once a 
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conflict is detected, the winner receives the cache line and Home is responsible for determining 

the order for all losers.  Because of snoop stalls, additional conflicts may arise once the 

forwarding mode has begun and can continue indefinitely for a heavily shared line.  Such heavily 

shared data are sometimes critical to an application and handling them efficiently is highly 

desirable. While the logic to handle this case is somewhat complex for the Home node, the 

sequence of cache line transfers is nearly optimal.  

The protocol handles multiple conflicts in a natural extension to the simple conflict: each node 

other than the winner is assigned a position in the queue (that is kept in the Home node), and 

Home sends messages to each of the competing nodes.  The messages from Home consist of two 

instructions:  

1) The address of the node to which it should forward the line, and 

2) Notification to wait for the cache line that will eventually be forwarded to it.  

Obviously Home doesn't send the first instruction to the very last node, and it doesn't send the 

second instruction to the winner, which receives the data in the normal way. 

The conflict resolution protocol outlined in this paper has been formally validated. 

2.3. Virtual Channels for Deadlock Avoidance 

Since different type messages flow in both directions between any two nodes, care must be 

taken to avoid deadlock.  In MESIF, three virtual channels for each direction are required for 

deadlock avoidance:  

Channel 1: initial requests such as RS, RFO, etc. 

Channel 2: snoop responses such as IACK, SACK, and commands to Home, READ, CNCL, etc. 

Channel 3: DACK, XFR from Home  

The way to reason about virtual channels is that all message types terminating a transaction 

must be grouped together and must flow unimpeded to the requestor (channel 3).  Data can be 

transferred on channel 3 if all data can be readily accepted at the destination.  Responses to 
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requests must be buffered at the destination and must not be blocked by initial requests (channel 

2).  Lastly, initial requests can be stalled due to resource limitations and must be kept on a 

separate channel (channel 1). 

3. Performance Evaluation 

To evaluate the benefits of this 2-hop protocol, we compare the MESIF protocol to existing 3-

hop protocols such as coherent HyperTransport™[6] and Scalability Port™[7].  3-hop protocols 

require the requestor to send its request directly to the Home node and then let the Home node 

perform the snoop broadcast on its behalf.  The quickest response happens on a hitM or hitE 

where the snoop hits an M or E cached copy and the requesting node gets its line in 3-hops when 

the line is forwarded directly back to the requestor. HitI indicates that the data is uncached, 

requiring 4 hops to supply data from main memory (actually 4 hops in this case is less important 

as the latency for fetching from main memory, which is overlapped with snoop probes and 

responses, dominates the overall transaction time).  HitS also requires 4 hops to retrieve data 

from main memory even though the data is present in another cache.  Below, the latency table 

compares MESIF to a 3-hop protocol.  As the reader may notice, for the hitI/hitS cases, MESIF 

offers no benefits over the 3-hop protocols. 

 MESIF 3-hop 

hitI/hitS 2 hops + max(mem latency, 

(2 hops + cache latency)) 

2 hops + max(mem latency, 

(2 hops + cache latency)) 

hitE/hitM 2 hops + cache latency 3 hops + cache latency 

hitF 2 hops + cache latency N/A 

 

To gauge the impact of a 2-hop protocol in a point-to-point interconnect versus a 3-hop 

protocol, we utilized a sophisticated Mean Value Analysis tool developed in-house by a 
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performance validation group for evaluating MESIF and QPI.  The tool is fundamentally based on 

the latency formulas shown in the above table. 

Specifically, the tool is used to project TPC-C performance as that is the most used, and some 

would say, the most indicative of server performance.  The tool projects performance for various 

MP configurations where multiple parameters such as core speed, number of threads per core, 

number of cores per node, various cache sizes, speed of interconnect components, memory speed 

and bandwidth, etc. are entered.  Some of the parameters such as cache miss rates, cache miss 

types, and I/O activity are captured from actual systems running the OLTP workload.   The 

algorithms employed in the tool as well as many measured and derived parameters are trade 

secrets and cannot be divulged in this paper.   Needless to say, the tool has been validated 

extensively with actual small MP systems (4 sockets). Projections of absolute performance fall 

within ±5% of the actual system.  When the tool is used to project relative performance, e.g. 

modifying one or two components of the system, the error bar is much less:  ±1%. 

Mean Value Analysis works for applications such as OLTP because it is a throughput-oriented 

workload where the average behavior over a long run of the application is indicative of the total 

behavior of the application.  This also applies to applications such as SpecWeb, etc. 

In the following table, we list the important parameters used in the projections. The cache 

specified is the largest cache in a node and is shared by the multiple cores in the node.  It is listed 

in the table because it has the most impact on the performance of 2-hop versus 3-hop protocols.  

Other caches closer to the core have less impact. 

Parameters  Value 

Core frequency 4GHz, 5GHz and 6GHz 

Threads per core 2 

Cores per node 2 

Number of sockets 4 

Cache line size 64 bytes 
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Cache size for node 12MB, 12-way associative 

Cache hit latency ~40ns (serial tag data access) 

Cache miss that hit in another node’s cache 60%, 75%, 90% 

Aggregate memory size 32GB (8GB per socket) 

Main memory latency ~100ns 

Main memory bandwidth per socket 6.4GB/s 

Interconnect  Fully connected, 2 uni-directional links per port 

Interconnect bandwidth 6.4GB/s per link, 12.8GB/s aggregate per port 

1-hop Interconnect latency  20ns 

In the row labeled “Cache miss that hit in another node’s cache”, we vary the percentage of 

requests leaving a node that can be satisfied by another node’s cache.  Cache-to-cache transfers 

are inherently faster than requests satisfied by main memory and are another major component 

in determining the goodness of a 2-hop protocol. 

The performance data of varying the core frequency and varying the percentage of last level 

cache misses that hit in a last level cache in another socket is shown below. 

 

Our analysis indicates a clear advantage in all cases for the MESIF over the 3-hop protocol.  

For a 4GHz clock, with 4 nodes (four threads—two processors--per node), performance will be 
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enhanced by 6 to 11%, depending on cache-to-cache to main memory-to-cache ratio.   Obviously, 

as more requests can be satisfied from another node’s cache, the more benefit of a 2-hop 

protocol.  For faster cores, the improvement is slightly larger because the impact of going off-

node is larger; any improvement there will have a commensurately larger impact on 

performance.  

4. MESIF and QPI 

The Intel® Quick-Path Interconnect™ (QPI) was recently introduced to replace the Front-

Side Bus (FSB) for Desktop, Xeon and Itanium platforms, first appearing in the Core i7 desktop 

processor and the X58 chipset.  Like, MESIF from which it is derived, QPI is a source snoop 

protocol. It differs from MESIF primarily in that responses to a broadcast request are sent to the 

Home node rather than the requesting node.  When data is required in a response, it is sent 

directly, in a separate packet, to the requesting node.   

This approach was considered for MESIF, but rejected because it imposed greater 

responsibility on the Home node in resolving conflicts and required ordering of messages 

delivered to the Home node.  The ordering of messages within a given channel imposed a 

dependence on the routing fabric which MESIF strived to avoid.  In current products, the QPI 

protocol requires strict ordering of the HOM class of messages pertaining to a single cache line – 

those sent to the Home  requesting access to that cache line and those sent to the Home in 

response to snoop requests pertaining to the cache line.  In this section we give examples showing 

how the two protocols differ. 

We first consider the simple case of a RdShr(RS)  to an uncached line. Figure 5(a) shows the 

paths and sequences for a three-processor system using MESIF when node C attempts to read 

from a memory location that is uncached. Figure 5(b) shows the situation using QPI.  MESIF 

requires one additional message, but the latency will be the same assuming that all messages take 
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the same time and that the Home node sees a memory latency greater than or equal to two 

message times. 

  

Fig. 5. Read to an uncached line in a three-node system for MESIF (a) and QPI (b). In QPI 
responses are sent directly to the Home node, resulting in one fewer message. (QPI source: 
Maddox, Singh & Safranek)  

Next we compare the protocols when node C attempts to read for ownership a cache line 

already present in another cache in modified state (figure 6).  In both cases, node B may use the 

data as soon as it is received from C (even retiring the instruction), though it may not expose the 

modified cache line to the rest of the system until it received a completion signal (ACK) from the 

Home node.  Again assuming that all messages take the same time, the completion signal is 

delayed by one message time in arriving at B. 

  

Fig. 6. RFO to a modified cache line in a three-node system for MESIF (a) and QPI (b). In QPI, 

node C sends two responses, data to the requester and a forwarding notification to the Home 

node.  MESIF still requires one additional message, however, because node B must acknowledge 

receipt of the data from node C, which must stall snoop requests to the same address until 

acknowledged. (QPI source: Maddox, Singh & Safranek) 
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Finally, we compare the protocols in the context of contention. In MESIF, one or both of the 

conflicting nodes will detect the conflict (only node B in the example), so both will know after the 

response, and including the conflict information in the confirming request for the data to the 

Home node. Assuming each initial request has arrived when the confirming request arrives, the 

first confirming request receives the data as soon as it is available from memory.  Even when 

messages are delayed, as in the example, the first confirming request (from A) to arrive at the 

Home node (assuming the initial request preceded it) wins, resulting in delivery of the data as 

soon as it is available from memory.  On arrival of the second confirming request (from B), a 

forwarding directive is sent to A. Thus the data is delivered directly to node A. Assuming that the 

winning confirming request arrives at the Home node before memory supplies the data, the 

system delivers the cache line optimally, first sending it to node A, with instructions to modify it 

once and forward it to node B. 

QPI performs worse in the conflict case, requiring more messages but also a much longer 

sequence of messages. To avoid deadlock in the protocol, an extra handshake is required at the 

end, a total of 9 messages being required (7 after data is supplied by the memory) before the G.O. 

point is reached for the losing node. 

 

Fig. 7. Conflicting RFOs to an uncached line in a two-node system for MESIF (a) and QPI (b). 
(QPI source: Maddox, Singh & Safranek)  

This comparison shows that 2-hop protocols gain the benefits of lower latencies for the more 

common, non-conflicting requests.  QPI opted to forgo the conflict list accumulation at the 
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requesting node at the expense of requiring an in-order HOM channel and a conflict resolution 

flow that requires extra messages.  Conflicts are rare, so these tradeoffs can be justified. 

5. Related Work 

Destination Set Prediction [9] and Token Coherence [10] are contemporary work of MESIF, 

independently developed.  This work assumes an unordered interconnect and separates the 

protocol into a performance protocol, which is fast but does not always succeed, and a 

correctness substrate, which guarantees correct ordering of operations.  Common operations can 

frequently be retrieved in two hops.  This idea is compatible with MESIF, which could be 

extended to seek a shared or modified copy of a cache line by broadcasting to only some nodes, 

falling back on MESIF if it failed. 

Timestamp snooping[11] is an alternate approach to creating a global ordering of events 

within a point-to-point network, by assigning a logical time to each operation and processing 

them in the logical order.  Recent work has continued that approach [12]. 

6. Summary 

We have described a novel protocol for point-to-point interconnects that garners the latency 

benefits of a bus-based protocol in terms of number of hops and retains the bandwidth 

advantages of a point-to-point fabric.  We have shown the clear performance advantage of our 2-

hop protocol versus known point-to-point protocols that require a minimum of three hops for a 

memory transaction. Indeed, we are unable to identify a single case where a 3-hop protocol is 

superior.   

Within Intel Corporation, this work—completed in 2001—spawned numerous variants of the 

2-hop protocol that have been formally validated, and analyzed on performance and 

implementability, including the QPI protocol now available in Intel products.   
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