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Abstract

Drawbacks of the traditional scenario of image modeling by Gibbs random �elds
with multiple pairwise pixel interactions are outlined, and a more reasonable al-
ternative scenario based on Controllable Simulated Annealing is described. The
latter scenario uses an analytic and stochastic approximation of Gibbs potentials
to minimize a distance between the selected gray level co-occurrence or di�erence
histograms for a given training sample and the simulated images.
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1 Introduction

We address some practical aspects of probabilistic image modeling by Gibbs
random �elds [2,6,8,9]. The traditional scenario of modeling by Gibbs �elds
with multiple pairwise pixel interactions involves the following two stages [3,4]:

(1) �rst analytic and subsequent stochastic approximation of the maximum
likelihood estimate (MLE) of model parameters from a given training
sample and

(2) generation of images by pixel-wise stochastic relaxation using the Gibbs
probability distribution (GPD) with the estimated parameters.
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The stochastic approximation produces a non-stationary Markov chain of im-
ages generated by pixel-wise stochastic relaxation under a speci�c schedule of
changing the model parameters [9]. The schedule ensures that the parameters
converge almost surely to the desired MLE in the limit, when the chain reaches
an equilibrium, that is, the stepwise parameter changes tend to zero. Image
generation with the �xed model parameters results in a stationary Markov
chain of images having the estimated GPD in an equilibrium.

Unfortunately, there exist no statistical tests for an equilibrium of a Markov
chain, and the theoretically justi�ed schedules of stochastic approximation are
impractically long because they are designed for the worst case [9]. Also, the
stationary Markov chains obtained by stochastic relaxation have to be, at least,
twice longer than the size of the parent population of all the images to ensure
that the generated images have the desired GPD [5]. But only under such
conditions one may expect that the obtained results possess the probabilistic
features of a training sample.

Therefore in the traditional scenario we have to wait for an equilibrium, �rst,
of a Markov chain of the images produced by stochastic approximation of
the model parameters and, second, of a Markov chain generated by stochastic
relaxation using the estimated parameters. In both cases there are no formal
rules for testing whether the equilibrium has been actually reached, and the
theoretically derived sizes of the chains are too big to be reached in practice.

In this paper we argue that the true model parameters do not constitute
the goal of image modeling as the parameter estimation ranks next to the
generation of images similar to a given \typical" training sample. Because the
traditional scenario tends to do more than it is required for image modeling,
it can be replaced by an alternative and more practicable scenario.

2 Basic notions and notation

Let R = [(m;n) : m = 0; : : : ;M � 1; n = 0; : : : ; N � 1] denote a �nite
arithmetic 2D lattice supporting gray-scale images. In the subsequent text, we
use a shorthand notation i for the pixels (m;n) 2 R. Let Q = f0; : : : ; qmaxg
denote a �nite set of gray levels.

Let g = [gi : i 2 R; gi 2 Q] be a digital gray-scale image. We denote ~g
the reference image that represents all the images g di�ering by only the gray
range [gmin; gmax] where gmin = min

i2R
gi and gmax = max

i2R
gi. The reference image

is obtained by mapping the initial gray range [gmin; gmax] of the image g onto
the whole range [0; qmax] as follows: ~gi =

qmax
gmax�gmin

(gi � gmin) :
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LetC = [Ca : a 2 A] be a particular subset of families of translation invariant
pixel pairs Ca = f(i; j) : i; j 2 R; i � j = constag in the lattice. The subset
C describes the characteristic structure of pairwise pixel interactions.

Let V = [Va : a 2 A] denote the Gibbs potential which speci�es the quan-
titative strengths Va = fVa(q; q

0) : q; q0 2 Qg of pairwise pixel interactions
in every family Ca. For every pixel pair (i; j) 2 Ca, the interaction strength
depends on a particular signal co-occurrence [gi = q; gj = q0] in the image g.

The Gibbs image model with multiple pairwise pixel interactions to describe
the translation invariant stochastic textures under admissible changes of the
gray ranges is given by the following GPD [3,4]:

Pr(gjC;V) =
1

Z
exp
X

a2A

X

(i;j)2Ca

Va(~gi; ~gj) (1)

where Z is the normalizing factor, or the partition function [2].

Let F(g) denote the vector of the relative sample frequency distributions of
signal co-occurrences in the chosen families C. The total Gibbs energy per
pixel in the exponent of Eq. (1), being rewritten as the dot product of the
vector V and the vector F(g), facilitates the parameter estimation from a
given training sample [3]:

1

jRj

X

a2A

X

(i;j)2Ca

Va(gi; gj) � V � F(g) (2)

where jZj denotes the cardinality of a set Z.

3 Traditional modeling scenario

The GPD of Eq. (1) results in the following traditional modeling scenario:

(1) Recover the characteristic interaction structure Ĉ and compute the �rst
analytic approximation of the MLE of the Gibbs potential from a given
training sample g�:

V0 = �0 (F(~g
�)�Mirf) : (3)

Here,Mirf is the vector of the marginal probability distributions of signal
co-occurrences for the independent random �eld (IRF). The factor �0 is
computed as a particular function of the vectors F(~g�) and Mirf and
statistical features of the IRF [3].
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(2) Re�ne the MLE of the potential by stochastic approximation that changes
the potential at every step, t = 1; 2; : : : ; T , as follows:

Vt = Vt�1 + �t (F(~g
�)� F(~gt)) (4)

where every current image gt is generated by pixel-wise stochastic relax-
ation using the previous GPD Pr(gjĈ;Vt�1). The re�nement should be
terminated when the potential VT is su�ciently close to the MLE V̂.

(3) Generate by pixel-wise stochastic relaxation a stationary Markov chain
of images having in an equilibrium the GPD Pr(gjĈ; V̂).

As shown in [5], to ensure the latter equilibrium, the Markov chain should be
of length jQj2jRj which cannot be reached in practice even with the extremely
small images such as 6 � 6 { 10 � 10 pixels. It follows that the traditional
scenario seems to actually exploit only the similarity between most of the
GPDs and the �-function, in particular, a very low variance of the total Gibbs
energy in Eq. (2) around its expected value.

Under the GPD Pr(gjĈ; V̂) over the parent population of all the images, the
expected total energy per pixel is equal to the energy of a training sample:

EfV̂ � F(g)g = V̂ � EfF(g)g = V̂ � F(g�): (5)

Therefore, if the MLE of the model parameters is available, the generated
images have mostly the energies, and consequently the relative sample fre-
quency distributions F(g) of signal co-occurrences, in the close proximity to
the energy and similar distributions for the training sample. This permits us
to replace the traditional modeling goal of getting a particular mathemati-
cal expectation EfF(g)g � F(g�) of the relative frequency distributions by
an alternative goal of a direct proximity between the generated and training
distributions: F(gT ) � F(g�).

4 Alternative modeling scenario

The alternative scenario combines the initial MLE-based parameter estimation
of Eqs. (3) and (4) and the subsequent image generation into a single stochastic
approximation process called Controllable Simulated Annealing (CSA) in [3].
The goal of the CSA is to generate samples having probabilities \around" the
probability of a given training sample by minimizing, in the average, a distance
between the relative sample frequency distributions of signal co-occurrences
for the generated images and the training sample. These distributions are
obtained by normalizing the gray level co-occurrence histograms (GLCHs)
which are su�cient statistics for the Gibbs model of Eq. (1). Therefore the
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(a) D4 (b) D9 (c) D29 (d) D55

Fig. 1. Training samples of the natural image textures.

samples with the GLCHs distributed around the GLCHs of the training sample
are of the main practical interest.

The alternative scenario results in both faster and better modeling (here,
\better" means the smaller distance between the distributions, but the visual
similarity is usually much higher, too). It is worth noting that the alternative
scenario has an explicit and natural stopping rule which is absent in the tradi-
tional scenario. This stopping rule, based on a distance between the generated
and training GLCHs, for instance, the chi-square distance, allows to guide and
terminate, if necessary, the modeling process.

5 Experimental results

In these experiments we use the simpli�ed Gibbs model of Eq. (1) with the
potentials depending on gray level di�erences in the pixel pairs: Va(gi; gj) =
Va(gi � gj). This model has the gray level di�erence histograms (GLDHs) as
su�cient statistics. In all the experiments both scenarios start the generation
of the images from a sample of the IRF.

The four training reference samples of digitized image textures from [1] are
shown in Figure 1. Figures 2 and 3 present results of generating samples of
the texture D29 by the traditional and alternative scenarios. Plots under the
samples show how the average chi-square distance, that is, the distance per
family Ca 2 Ĉ, is changing at each step of generation. The average distance is
computed between the GLDHs for the generated image and training sample.

The Gibbs potentials to generate the samples in Figures 2,a and 2,b are esti-
mated by 300 steps of stochastic approximation, and the samples themselves
are obtained by 300 steps of pixel-wise stochastic relaxation with the estimated
model parameters. The sample in Figure 2,c is obtained in a similar way, but
by using 2000 stochastic approximation and 300 stochastic relaxation steps.

In these three examples the convergence to the training GLDHs is too slow,
and the �nal average chi-square distance is still about 7; 000 { 10; 000 after
300 steps of generation. Moreover, the �rst two samples even diverge from
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Fig. 2. Traditional modeling of the texture D29.
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Fig. 3. CSA-based modeling of the texture D29.

the training sample after the �rst 100 or slightly more converging steps that
gave the better average distance of about 1; 000. Also, it is easily seen that
the generated images have almost no visual resemblance to the training sam-
ple. The third example in Figure 2,c indicates that even after 2; 000 steps of
stochastic approximation for re�ning the potentials the created Markov chain
of images is still very far from an equilibrium so that we cannot expect the
better convergence at the subsequent generation stage.

Figure 3 shows that the desired textures can be simulated much easier and
faster by the alternative CSA-based scenario. It should be noted that all the
steps in both scenarios have the same computational complexity. For exam-
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(a) (b) (c)

Fig. 4. Traditional (a) and CSA-based (b,c) modeling of the texture D4; the training
sample is presented in Figure 1.

(a) (b) (c)

Fig. 5. Traditional (a) and CSA-based (b,c) modeling of the texture D24; the training
sample is presented in Figure 1.

ple, only 300 CSA steps result in the considerably better convergence of the
generated samples to the training ones in Figures 3,a and 3,b. The �nal aver-
age chi-square distances between the generated and training GLDHs for these
two samples are about two orders smaller (30 { 70) than for the traditional
scenario that performs in total 600 or 2300 steps. It is easily seen that the
�nal images are visually similar to the training sample in Figure 1,(c).

Figures 4 { 7 permit us to compare results of simulating four more textures
from [1] by both the traditional and alternative scenarios. The training samples
for Figures 4 { 6 are given in Figure 1. In all the cases, except for the samples
D55,c and D93,b{d, the traditional scenario performs 500 steps of stochastic
approximation to re�ne the potentials and then 300 stochastic relaxation steps
to generate the image (1000 and 500 steps for D55,a and 10,000 and 500 steps
for D93,b{d, respectively). The alternative scenario uses only 300 CSA steps,
except that the samples D93,h{j are obtained by 600, 1000, and 10,000 CSA
steps, respectively. These latter samples which are very similar to the sample
D93,g obtained by only 300 CSA steps, suggest that the CSA is quite stable
after reaching a particular proximity to a training sample.

Figure 8 presents the training samples and the images simulated by the CSA
for the two natural textures from [7]. Figure 9 indicates that the 300 steps
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(a) (b) (c) (d)

Fig. 6. Traditional (a,b) and CSA-based (c,d) modeling of the texture D55; the
training sample is presented in Figure 1.

(a) (b) (e) (f)

(c) (d) (g) (h) (i) (j)

Fig. 7. Training sample 64 � 64 (a) and traditional (b { d) and CSA-based (e { j)
modeling of the texture D93.

T-Bark0 (a) S-Bark0 (b) T-Fabrics8 (c) S-Fabrics8 (d)

Fig. 8. Training and CSA-simulated samples of the natural textures Bark 0 and
Fabrics 8.

of the CSA-based scenario, used in Figure 8, are considerably superior to the
2000 steps of stochastic approximation to re�ne the potentials and the sub-
sequent 600 steps of stochastic relaxation with the �xed re�ned potentials to
generate the images. In this latter case there is almost no convergence of the
generated GLDHs to the training ones, and hence the visual resemblance be-
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Fig. 9. Traditional and CSA-based modeling of the texture Fabrics 8 in Figure 8,(c):
(a) the image 128�128 generated by the traditional scenario (2,000 steps of potential
re�nement and 300 steps of stochastic relaxation) and (b) the image 256 � 256
obtained by the CSA-based scenario (300 steps).

tween the training and simulated images is very poor. The CSA gives faster
and much better results although the simulated images demonstrate continu-
ous transitions between the original and inverted patterns of the same texture
learned from the training sample. These transitions are unavoidable for the
simpli�ed Gibbs model that takes account of only the gray level di�erences if
the GLDHs for a training sample are almost symmetric with respect to inver-
sion q ! qmax� q of the gray range, and the texture Fabrics 8 in Figure 8 has
just such a feature.

Figure 10 shows the convergence of the CSA in terms of the average chi-square
distance for the texture Bark 0. This texture is not translation-invariant, so
that our modeling can only approximate it with the translation-invariant tex-
tures having the closely similar GLDHs.

In all these experiments the average chi-square distance between the gener-
ated and training GLDHs for the alternative scenario obtained after a few
hundred CSA steps is about two orders smaller than for the traditional sce-
nario that performs much more simulation steps of the same computational
complexity. Moreover, if the potential re�nement by stochastic approximation
is terminated too early, then the traditional scenario may demonstrate even a
divergence of this distance after a relatively short converging time.
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Fig. 10. CSA modeling of the texture Bark 0 in Figure 8,(a): (a1 { c1) the samples
128 � 128 generated by 300 CSA steps, (a2 { c2) the convergence plots for these
samples.

6 Concluding remarks

These and similar experiments show that the CSA-based modeling scenario is
more practicable in texture simulation than the traditional scenario based on
the prior parameter estimation and subsequent image simulation by stochastic
relaxation. The traditional scenario demonstrates too slow convergence to the
desired images and has no theoretically justi�ed stopping rules at each stage of
simulation. The CSA-based scenario has more practicable goal of approximat-
ing the GLCHs or GLDHs for a training sample by the similar histograms for
the generated images, and this goal can be easily reached by the conventional
stochastic approximation.

The textures described by the Gibbs model of Eq. (1) and simulated with a
high degree of accuracy by the CSA-based scenario are assigned in [3] to a
particular class of stochastic textures. A large body of experiments show that
many natural homogeneous textures belong to this class: actually, the CSA-
based simulation of 38 textures from [1] and 165 textures 128� 128 from [7]
has shown that more than 30% of them belong to the stochastic textures. To
be certain, let us identify by eye which textures in Figure 11 are natural.

Here, every upper right texture is natural and the two others are simulated by
the CSA, but all three images are visually quite similar. Of course, vastly more
textures which are outside the class of stochastic textures should be modeled
by other means and scenarios.
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Fig. 11. Textures Fabrics 15 and Sand 2 from the MIT \VisTex" database [7].
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