
Quantitative Description of Spatially Homogeneous Textures

by Characteristic Grey Level Co-Occurrences �

Georgy Gimel'farb

Centre for Image Technology and Robotics

Department of Computer Science, Tamaki Campus

University of Auckland, Auckland, New Zealand

Abstract

Gibbs random �eld model with multiple pairwise pixel

interactions describes each type of spatially homoge-

neous image textures in terms of a pixel neighbourhood

and Gibbs potentials that specify the geometric structure

and quantitative strengths of interactions, respectively.

Each image is represented by a set of grey level

co-occurrence histograms which are su�cient statistics

of the model. The histograms permit us to analytically

approximate Gibbs potentials and recover most char-

acteristic neighbourhood from a given training sample

so that the model provides a theoretical framework for

texture description by intergal histogram-based features.
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level co-occurrence, interaction structure.

1. Introduction

We restrict our consideration to the simplest notion
of spatial homogeneity of image textures: they are as-
sumed to be homogeneous if conditional probability dis-
tributions of grey levels are translation{invariant. Gen-
erally, the probability distribution of grey levels in a
pixel depends only on grey levels in a characteristic
pixel neighbourhood, i.e. a subset of pixels with �xed
relative displacements from the pixel. This translation{
invariant neighbourhood speci�es the geometric struc-
ture of interactions. Each interacting pixel pair is
the second-order clique of the neighbourhood graph
connecting all the interacting pixels [2], and image-
wide translation{invariant pairwise pixel interactions
are strati�ed into several clique families, consisting each
of translation invariant cliques with a particular inter{
pixel displacement. For the Gibbs random �eld model
with multiple pairwise interactions [3, 4], each clique
family has its Gibbs potential that relates the quan-
titative strength of pixel interactions to grey level co-
occurrences (GLC) in a clique.

The sum of the potential values over a clique fam-
ily, called the partial interaction energy, determines the
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contribution of the family to the entire Gibbs proba-
bility of a particular image. The partial energy de-
pends only on the Gibbs potential and the GLC his-
togram (GLCH) collected for the clique family so that
the GLCHs are the su�cient statistics of this Gibbs
model [3, 4]. Given the interaction structure and poten-
tials, the images with the same GLCHs are equiprob-
able and hence nondistinct with respect to the model.
Therefore, each type of spatially homogeneous image
textures is completely described by a subset of GLCHs
speci�ed by the characteristic pixel neighbourhood.
Di�erent integral GLCH-based texture features have

been used in image analysis over many years [7, 6] but
with an entirely heuristic choice of the pixel neighbour-
hood to collect the histograms. In what follows we
overview in brief the parameter estimation for the mod-
els with multiple pairwise interactions [3, 4]. Our goal is
to show that a complete quantitative description of two
speci�c types of spatially homogeneous images, namely,
stochastic and regular textures, should be based on
the characteristic pixel neighbourhood. Experiments in
simulating textures from [1] show that such description
is representative of basic visual features of the textures.

2. Basic de�nitions and notation

Let R = f(x; y) : x = 0;M � 1; y = 0; N � 1g be a
�nite M �N arithmetic lattice. For brevity, we denote
i = (x; y) the lattice sites. Let g = [gi : i 2 R; gi 2 Q]
be a digital image with a �nite set Q of grey levels.
An interaction structure in R is presented by a sub-

set of clique families C = fCa : a 2 Ag where A

is a set of indices. Each family Ca = f(i; j) : i; j 2
R; i� j = nag consists of translation invariant cliques
(i; j) with a �xed relative displacement na = (�xa; �ya)
between the pixels i and j. The pixel neighbour-
hood NA = fna : a 2 Ag that speci�es the struc-
ture C is a subset of a large search set W of all the
neighbours with the bounded inter-pixel displacements
W = f(�x; �y) : j�xj � �xmax; j�yj � �ymaxg.
LetVa be a Gibbs potential for the clique family Ca.

The potential values depend on the GLCs (q = gi; s =
gj) in the cliques (i; j) 2 Ca:

Va =
�
Va(q; s) : (q; s) 2 Q2

�
:



Each clique family in
uences the Gibbs probability of
an image g via the partial interaction energy

Ea(g) =
P

(i;j)2Ca

Va(gi; gj)

=
P

(q;s)2Q2

Va(q; s)Ha(q; sjg)

� Va �Ha(g) = jCaj �Va �Fa(g)

(1)

where � denotes the dot product, j: : :j is the set cardi-
nality, Ha(g) is the GLCH for the family Ca collected
over the image g:

Ha(g) =
�
Ha(q; sjg) : (q; s) 2 Q2

�
;

and Fa denote the normalised GLCH, or the relative
sample frequency distribution of GLCs:

Fa(g) =
1

jCaj
Ha(g)

�

�
Fa(q; sjg) =

Ha(q; sjg)

jCaj
: (q; s) 2 Q2

�
:

The GLCH-based Gibbs image model with multi-
ple pairwise pixel interactions [3, 4] is speci�ed by the
neighbourhood NA and potential V, and relates the
Gibbs probability of a sample g:

Pr(gjNA;V) =
1

ZNA;V
exp (E(g)) (2)

to the total interaction energy of the sample:

E(g) =
P
a2A

Ea(g) = V �H(g)

= jRj �V �F(g):
(3)

Here, V = [Va : a 2 A], H(g) = [Ha(g) : a 2 A], and
F(g) = [�aFa(g) : a 2 A] denote the entire potential
vector, the entire GLCH vector, and the entire weighted
normalised GLCH vector, respectively, for the interac-
tion structure speci�ed by the characteristic neighbour-

hood NA. The weight �a =
jCaj
jRj , relating the cardinal-

ity of the clique family to the lattice cardinality, tends
to unity when the lattice size increases.

3. Potential estimation

The maximum likelihood estimate (MLE) of the poten-
tial V has the simple �rst approximation [3, 4]:

eV = �0 [�a�a;0(g
�) : a 2 A] (4)

where �a;0(g
�) = Fa(g

�)� Firf denotes the di�erence
between the normalised GLCH F(g�) for a given train-
ing sample g� and the like expected histogram, i.e. the
marginal probability distribution of GLCs

Firf =

�
1

jQj2
: (q; s) 2 Q2

�

for the independent random �eld (IRF). The IRF is
described by the model of Eq. (2) with zero potential

V = 0. The scaling factor �0 in Eq. (4) is almost
independent of the normalised GLCHs:

�0 =

P
a2A

�2a
P

(q;s)2Q2

�2
a;0(q; sjg

�)

�glc

P
a2A

�3a
P

(q;s)2Q2

�2
a;0(q; sjg

�)
�

1

�glc
(5)

where

�glc =
1

jQj2

�
1�

1

jQj2

�
�

1

jQj2

is the variance of the relative sample frequencies for the
IRF. When the lattice size jRj increases, the ratios �a
tend to unity so that the potential estimate in Eqs. (4)
and (5) is practically independent of the lattice size.
Under an additional natural constraint that the sam-

ple g� should keep the least upper bound of the rank
in the total Gibbs energy among all the images, the
analytic form of Eq. (4) holds also for the potentials
themselves [4]:

V = [�a�a;0(g
�) : a 2 A] ; (6)

and only the factors � = [�a : a 2 A] have to be
estimated for �nding the potential MLE.

4. Characteristic neighbourhood

The higher the di�erence �a;0(g
�), the greater the im-

pact of the clique family Ca on the Gibbs probabil-
ity of the training sample g�. Therefore a character-
istic pixel neighbourhood that speci�es the interaction
structure can also be estimated from the GLCHs for a
large search set W of clique families by using the par-
tial energies of Eq. (1) or other integral measures, e.g.
the chi-square distances between the GLCHs.

a b

Figure 1: Stochastic textures D29 \Beach sand" (a)
and D77 \Cotton canvas" (b) from [1].

Because all clique families share the same pixels, the
GLCHs are not statistically independent, and to �nd
a characteristic neighbourhood one has to know how
strong are their dependences. The simplest assumption
in [3, 4] that all clique families are (almost) independent
de�nes a class of stochastic textures. Two examples of
such textures are shown in Figure 1. In this case the
characteristic neighbourhood can be found by choos-
ing the clique families with the partial energies over a
particular threshold. The threshold is derived from the
relative frequency distribution of these energies over the
search set W.



a b

Figure 2: Regular textures D1 \Woven wire" (a) and
D101 \Cane" (b) from [1].

The above assumption does not hold for regular tex-
tures such as shown in Figure 2. These textures have
the determining (basic) and minor (�ne) repetitive de-
tails, and both types are visually important. But the
partial energies for independent clique families govern-
ing a �ne interaction structure are usually lower than
the threshold computed under the assumption that all
the interactions are independent. A simple model of
dependences between the GLCHs separates the inter-
actions in the search set W into two categories: pri-
mary interactions and secondary interactions. Only
the primary interactions are assumed to be (almost)
statistically independent and hence characteristic for
describing a texture. The secondary interactions are
produced by a statistical interplay of the primary ones
and need not be included to a characteristic neighbour-
hood. This more general assumption permits us to se-
quentially estimate a neighbourhood that consists only
of the primary interactions and describes both the basic
and �ne repetitive details.

4.1. Parallel neighbourhood estimation

Under the simplest assumption that all the interactions
are (almost) independent, the characteristic interac-
tion structure of a stochastic texture is recovered by
comparing the partial Gibbs energies to the threshold
� = Em + k� depending on their relative sample fre-
quency distribution for the search set W. Here, Em

and � are the mean energy and standard deviation, re-
spectively. In our experiments the factor k is mostly
chosen in the range 3 � k � 5.
Because the scaling factor �0 is the same for all the

clique families, the basic structure is recovered using
the relative partial energies

ea(g
�) = �aFa(g

�)�a;0(g
�); a 2W; (7)

for the training sample. The relative partial energy is
Practically the same basic structures are recovered by
thresholding the chi-square distances �2

a(Fa(g
�);Firf)

between the normalised GLCHs for the training sample
and the marginal probability distribution for the IRF.

4.2. Sequential neighbourhood estimation

Let C� and C� be the independent clique families with
signi�cant partial energies for the training sample g�.
Then their statistical interplay produces the dependent

families C
 , such that n
 = 2 � n�, or n
 = 2 � n� , or
n
 = n� + n�, and so forth, that can possess also a
signi�cant although somewhat lower energy. In other
words, if the normalised GLCHs F�(g

�) and F�(g
�)

di�er much from the marginal distribution Firf for the
IRF, the similar di�erence for the GLCH F
(g

�) can
also be quite large.
Assuming that all the interactions are subdivided

into the independent primary and dependent secondary
interactions, a characteristic neighbourhood is reduced
in size and the �ne interaction structure is recovered by
iteratively eliminating the secondary interactions [8, 5].
At every iteration t, a clique family which is most char-
acteristic with respect to the previously found interac-
tion structure is selected and added to this structure.

4.2.1. Empirical scheme

The empirical estimation in [8] performs at every iter-
ation t the followimg two successive steps.

1. (Texture simulation) A new texture sample g[t]
is simulated under a current interaction structure
C[t] = fCa : a 2 A[t]g.

2. (Selection of a clique family) The normalised train-
ing GLCHs fFa(g

�) : a 2Wg are compared to the
GLCHs fFa(g[t]) : a 2Wg for the simulated sam-
ple g[t] to select the most characteristic primary
clique family and add it to the current structure.

The selection can be based on the maximum relative
partial energy

ea(g
�) = �a �Fa(g

�) �
�
Fa(g

�)�Fa(g[t])
�

(8)

but better results are obtained by using the chi-square
distance �2

a(Fa(g
�);Fa(g[t]) between the GLCHs.

In principle, the simulation step takes account of all
the dependences between the interactions so that the
structure of the minimum size is expected to be found.
But the empirical scheme has at least two drawbacks.
First, it involves a large body of computations for sim-
ulating the samples as the time for generating each
sample is proportional to the current size jAtj of the
neighbourhood. Thus the total time is quadratic with
respect to the �nal neighbourhood size. Secondly, the
simulation produces a variety of di�erent samples g[t]
with the GLCHs Fa(g[t]) that approach the training
GLCHs only on the average. Therefore the selected
clique families re
ect also a particular sequence of simu-
lated images so that the same training sample gives rise
to di�erent characteristic neighbourhoods, especially,
as concerning the �ne structure.

4.2.2. Approximate analytical scheme

Assuming that the primary GLCHs are statistically in-
dependent, the GLCHs for the secondary interactions
can be analytically approximated by recomputing each
current non-primary GLCH, F
(g), using the last cho-
sen primary GLCH, F�(g), and the previous GLCH,



F�(g), such that n
 = n� + n� . In this case the
GLCHs in the search set W are analytically updated
after adding each next primary clique family to the cur-
rent interaction structure [5].

a b

c d

Figure 3: Texture D29: the computed (a) and actual
(b) Gibbs energies for the Gibbs model in Eq. (2) with
the 10 analytically chosen clique families and the an-
alytically chosen neighbourhoods of the 10 (c) and 22
(d) clique families with the top relative energy.

a b

c d

Figure 4: Texture D101: computed (a) and actual (b)
Gibbs energies for the Gibbs model in Eq. (2) with the
15 analytically chosen clique families and the analyti-
cally chosen neighbourhoods of the 15 (c) and 22 (d)
clique families with the top relative energy.

Figures 3, a-b, and 4, a-b, demonstrate the grey-
coded actual and analytically computed distributions
of the relative partial energies of Eq. (7) for the textures
D29 and D101 over the search set W. This latter set
is displayed as the 325� 325 window, each square box
4� 4 representing a particular inter-pixel displacement
(�x; �y); �40 � �x; �y � 40. The secondary GLCHs
are recomputed from the centre to the borders of the
windowW to roughly approximate the main part of the
statistical interplay between the primary interactions.
The corresponding interaction structures as well as the
more detailed structures with the 22 clique families are
shown in Figures 3, c-d, and 4, c-d.

In these examples the reduced basic structure
of the texture D29 contains the two highly ener-
getic clique families with the inter-pixel displacements
f(1; 0); (0; 1)g. All other families are two or more orders
of magnitude lower in the relative energies. As a result,
the chosen �ne structure of this texture contains only
non-characteristic long-range interactions that do not
represent speci�c visual features and are obviously arbi-
trary, as distinct from the characteristic �ne structure
of the regular texture D101. As will be shown later,
the sequential search for the top relative chi-square dis-
tances results in more e�cient neighbourhoods for the
stochastic texture D29.

The analytical scheme gives a reasonable �t to the
actual partial energies as well as to the GLCHs for the
clique families. Therefore it is of interest to experimen-
tally compare this scheme to the empirical one.

5. Texture simulation experiments

We generate textures by the controllable simulated an-
nealing (CSA) introduced in [3, 4]. The CSA exploits
the Gibbs model in Eq. (2) with the �xed character-
istic pixel neighbourhood NA to produce a nonsta-
tionary Markovian chain of images. Each successive
image, g[t], t = 1; 2; : : : ; T , is obtained from the pre-
ceding one, g[t�1], by stochastic relaxation using the
Metropolis sampler [2] with a concurrent adaptation of
the potential, V[t]. Each macrostep t traces randomly
without repetition the entire lattice R. The potential
adaptation provides for stochastic approximation of the
training GLCHs fFa(g

�) : a 2 Ag with the GLCHs for
the generated images.

Below, each individual simulation experiment uses
T = 300 macrosteps of the CSA with the same control
parameters that have been used in [4] to generate di�er-
ent stochastic textures. All the training and simulated
samples are of size 128 � 128 pixels, unless otherwise
speci�ed, and the search set W represents 3280 clique
families within the bounds �xmax = 40; �ymax = 40.

5.1. Simulation with the neighbourhoods

estimated in parallel

Figures 5 { 8 show the CSA-simulated samples of the
textures D1, D29, D77, and D101 from [1]. The train-
ing samples were shown in Figures 1 and 2. Charac-
teristic neighbourhoods of di�erent size, estimated in
parallel for the stochastic textures D29 and D77, result
in a good visual quality of simulation. Here, the neigh-
bourhoods selected by thresholding the partial Gibbs
energies or chi-square distances from the IRF are al-
most the same.

At the same time the estimated structures of the reg-
ular textures D1 and D101 reproduce only roughly the
repetitive �ne details of the original patterns, and the
larger sizes of the neighbourhoods do not signi�cantly
improve the simulation.



a b

Figure 5: Texture D29: CSA-simulation with the
neighbourhoods of 11 clique families found by thresh-
olding the chi-square distances (a) and the partial
Gibbs energies (b).

a b

Figure 6: Texture D77: CSA-simulation with the
neighbourhoods of 44 (a) and 125 (b) clique families
found by thresholding the chi-square distances.

a b

Figure 7: Texture D1: CSA-simulation with the basic
structures of 48 (a) and 73 (b) clique families found by
thresholding the chi-square distances.

a b

Figure 8: Texture D101: CSA-simulation with the
neighbourhoods of 39 (a) and 63 (b) clique families
learned by thresholding the partial Gibbs energies.

5.2. Simulation with the neighbourhoods

estimated sequentially

Figure 9 shows the samples of the texture D29 sim-
ulated with the characteristic neighbourhoods found
for the training sample in Figure 1, a, by the energy-
based empirical sequential choice. As indicated earlier
(see Figure 3), the actual energy distribution over W
is closely approximated by the statistical interplay of
only the two clique families with inter-pixel displace-
ments (1; 0) and (0; 1). Another clique families are cho-
sen rather arbitrary among the remaining families with
very low relative Gibbs energies, and the �nal interac-
tion structure is unsuitable for simulating the texture
samples that are visually similar to the training sam-
ple. The images in Figure 9, in contrast to the simu-
lated samples in Figure 5, di�er much from the training
sample even when the overall interaction structure has
the greater size than the structure found by threshold-
ing the partial energies.

a b

Figure 9: Texture D29: CSA-simulation with the 7
(a) and 11 (b) clique families found by the sequential
empirical choice of the top relative partial energy.

a b

Figure 10: Texture D29: simulation with the 8 (a)
and 12 (b) clique families found by the sequential em-
pirical choice of the top relative chi-distance.

At the same time, the empirical sequential choice
of the top chi-square distance produces much better
neighbourhoods for this texture. The simulated sam-
ples in Figure 10 are now similar to but seem still to be
slightly worse than those in Figure 5.
Figures 5 and 9{12 show that the characteristic

neighbourhood recovered in parallel by thresholding
the partial energies produces visually better results.
The analytical sequential search behaves in this case
almost as the empirical one if the larger neighbourhood
is chosen. Although the sequential search for the top
chi-square distance gives more appropriate interaction
structures, these latter are still less e�cient than the
structures obtained in parallel. The simulation with
the 16 analytically chosen clique families in Figure 11



a c

Figure 11: Texture D29: CSA-simulation with the 4
(a) and 15 (b) clique families found by the analytical
sequential choice of the top relative Gibbs energy.

a b

Figure 12: Texture D29: GLC-simulation with the 6
(a) and 16 (b) clique families found by the analytical
sequential choice of the top relative chi-square distance.

is similar to the simulation with the 8-12 empirically
found ones in Figure 10, and both simulations rank be-
low the samples in Figure 5.
One possible reason of the ine�ective sequential

search is that the Gibbs energies do not properly
manifest the assumed statistical relations between the
GLCHs so that the detection of primary interactions
and exclusion of secondary ones using the relative ener-
gies of Eq. (8) is not justi�ed. In this case the sequential
search can only deteriorate the actual interaction struc-
ture. The relative chi-square distances detect more ac-
curately the secondary interactions for the stochastic
texture D29 although the better or at least the same
simulation quality is obtained under the initial assump-
tion that all the interactions are almost independent.
Similar results hold for the stochastic texture D77 in
Figure 13 but here the sequential search results in the
characteristic neighbourhood of smaller size.

a b

Figure 13: Texture D77: CSA-simulation (a) with the
neighbourhood of 25 clique families (b) found by ana-
lytic sequential choice of the top relative Gibbs energy.

Figure 14 presents the D101 samples simulated once
the interaction structure is estimated by the energy-
based empirical sequential search. The training sample
D101 is in Figure 2, b. Here, the �nal neighbourhoods
of the 19{22 families both contain less clique families

a b

c d

Figure 14: Texture D101: GLC-simulation with the
19 (a) { 22 (d) clique families found by the sequential
empirical choice of the top relative Gibbs energy.

and represent better the �ne repetitive details than the
neighbourhood of the 63 families in Figure 8, d, found
in parallel.

a b

c d

Figure 15: Texture D101: CSA-simulation with the
22 (a, c) and 63 (b, d) found by the analytical sequential
choice of the top relative Gibbs energy and the top
relative chi-square distance, respectively.

In this case the sequential choice forms a reduced
characteristic neighbourhood of about 16{18 clique
families describing the basic repetitive visual pattern.
Then the additional 4{6 clique families describe the �ne
details of the texture. The visual quality of simulation
does not steadily increase with the size of neighbour-
hood. As follows from Figure 14, c, the quality may
even signi�cantly degrade after adding the next clique
family. But then usually the quality is restored and im-
proved, once one or two more families are added. Un-
fortunately, it is still unclear how to relate the visual
quality of simulation to certain quantitative features of
a current pixel neighbourhood at each iteration t of the
sequential search.
The analytical sequential search in Figure 15 cre-

ates the neighbourhoods of the 15{19 clique families
describing roughly the basic repetitive pattern of the
texture. The CSA-simulation with these nsmall eigh-



Figure 16: Texture D101: CSA-simulation with the
40 clique families found by the analytical sequential
choice of the top relative Gibbs energy.

bourhoods produces the samples that are very simi-
lar to the samples in Figure 8, c-d, obtained with the
neighbourhoods of the 39{63 families. But the search
for the �ne structure is less e�cient so that two{three
times larger neighbourhood of the analytically selected
clique families is required to produce results similar to
those for the empirically found neighbourhood.

Figure 17: Texture D101: CSA-simulation with the
22 families found by the sequential empirical choice of
the top relative Gibbs energy.

For comparison, the samples 256� 256 in Figures 16
and 17 are simulated with the 40 and 22 clique families,
respectively, chosen by the energy-based analytical and
empirical search. The textures in Figure 16 and 15, d,
represent �ne repetitive details to the lesser extent than
the samples in Figures 14 and 17 obtained by the empir-
ical search. The analytical search based on the relative
Gibbs energies works for the texture D101 better than
the one based on the relative chi-square distances.
Figures 18 and 19 show the simulated samples of the

texture D1. The characteristic neighbourhoods of the
13{16 and 37{40 clique families are obtained by the
empirical sequential search of the top chi-square dis-
tance between the training and generated GLCHs. The
training sample D1 is in Figure 2, a. As follows from
Figures 7 and 18, the basic repetitive pattern is repli-

a b

c d

Figure 18: Texture D1: CSA-simulation with the 13
(a) { 16 (t) clique families found by the sequential em-
pirical choice of the top relative chi-square distance.

a b

c d

Figure 19: Texture D1: CSA-simulation with the 37
(a) { 40 (d) clique families found by the sequential em-
pirical choice of the top relative chi-square distance.

a b

c d

Figure 20: Texture D1: GLC-simulation with the 14
(a), 26 (b), 34 (c), and 40 (d) clique families found
by the analytical sequential choice of the top relative
chi-square distance.



cated by the neighbourhood that contains only 13{16
clique families. But then the 24{27 families have to be
added to approximate with some degree of certainty the
minor details of this texture. The visual quality of the
samples simulated with the additional clique families in
Figure 19 and 19 is considerably improved comparing
to Figure 20.

Although the repetitive details of the regular texture
D1 are reproduced less e�ciently than those of the tex-
ture D101, the sequential search outperforms notice-
ably the parallel thresholding. The analytical scheme
illustrated by Figure 20 presents here a reasonable al-
ternative to the empirical one although the simulated
samples seem to have a bit lesser visual quality than
the samples in Figures 18 and 19.

6. Conclusions

These and other experiments in [3]-[5], as well as exper-
iments in various colour and greyscale textures by the
empirical sequential estimation of characteristic pixel
neighbourhoods in [8], suggest that the Gibbs model of
Eq. (2) can e�ciently describe two classes of spatially
homogeneous image textures, namely, the stochastic
and regular textures. Clique families that form the
characteristic interaction structures have di�erent in-
terdependences in each class.

The interaction structure of a stochastic texture
consists of clique families with partial Gibbs energies
(or chi-square distances to the IRF) over a particular
threshold. All the families are assumed to be statisti-
cally independent so that the estimated neighbourhood
cannot be reduced in size.

The structure of a regular texture contains both inde-
pendent primary interactions and dependent secondary
interactions produced by the primary ones. These in-
terdependences permit us to reduce the size of a char-
acteristic neighbourhood and recover more representa-
tive set of the primary interactions by the empirical
or analytical sequential elimination of the secondary
interactions. The sequential search produces e�cient
interaction structures only if our assumption about the
independent primary GLCHs has a reasonable �t to the
textures under consideration.

The empirical sequential scheme slightly outperforms
the faster analytical one as concerning the �ne repet-
itive patterns of regular textures. But the empirically
and analytically found neighbourhoods that describe
the basic, or rough repetitive patterns are very similar.

The sequential search for a characteristic pixel neigh-
bourhood can exploit either the relative Gibbs ener-
gies or chi-square distances between the GLCHs for the
training and simulated samples, but the chi-square dis-
tances give in some cases better description of a regular
texture. At the same time, the sequential search may
even deteriorate the interaction structure of a stochas-
tic texture comparing to the parallel thresholding.

The empirical sequential search involves a substan-
tial amount of computations. The alternative analyti-

cal scheme is much faster but reproduces only approx-
imately the actual dependences between the primary
and secondary interactions. Therefore, the analytical
search has to produce larger characteristic neighbour-
hoods to approach, if possible at all, the quality of tex-
ture simulation after the empirical search.
Main drawback of the empirical sequential search is

that the found characteristic neighbourhood depends
on a particular chain of generated samples. There-
fore the same training sample may produce di�erent
characteristic neighbourhoods, especially, as concerned
the �ne details of a repetitive pattern to be simulated.
Also, all the sequential schemes as well as the paral-
lel thresholding have no theoretically justi�ed rules of
choosing an adequate size of the pixel neighbourhood,
and this size is selected on the experimental base.
Nonetheless, the estimated characteristic neighbour-

hoods and the corresponding GLCHs give a complete
quantitative description of each texture with respect to
the Gibbs random �eld model with multiple pairwise
pixel interactions. Therefore, such a description should
govern a choice of particular integral GLCH-based fea-
tures for describing the stochastic or regular textures.
In particular, the neighbourhoodsNA and correspond-
ing GLCHs are e�cient for a scale{orientation indepen-
dent query{by{image texture retrieval [4]. In this case
the similarity between a query image and the entries of
an image data base is obtained �rst by matching only
the neighbourhoods with exhausting possible scale and
orientation transformations and then by using the chi-
square distances between the normalised GLCHs.
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