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Abstract. Under the assumption that spatially homogeneous image textures are modelled
by Gibbs random �elds with multiple pairwise pixel interactions, parallel and sequential schemes of
learning a characteristic interaction structure are compared. The learning can be based on a compar-
ison of relative interaction energies or other integral characteristics of each interaction, for instance,
chi-square distances between certain grey level di�erence or cooccurrence histograms collected over
a given training sample. Parallel thresholding selects a basic structure of stronger, that is, more
energetic or distant, interactions that is su�cient to model a speci�c class of stochastic textures
introduced in [3, 4]. In many cases the basic structure is larger than is required because it con-
tains not only the strong primary interactions but also the su�ciently strong secondary interactions
obtained by a statistical interplay of the primary ones. Empirical sequential learning proposed by
Zalesny [6, 7] tends to exclude the secondary interactions so that the basic structure can be reduced
in size and complemented with a �ne structure that describes minor but visually important repetitive
details of a texture. The empirical sequential scheme that involves a great body of computations can
be approximated by less complex analytical and combined analytical{empirical sequential schemes.
Experiments show that the sequential learning results in more precise Gibbs models of non-stochastic
regular textures but does not improve (and sometimes may even deteriorate) the basic structure of
stochastic textures.
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1. Introduction. We restrict our consideration to a probabilistic image model
that describes spatially homogeneous textures as samples of particular Gibbs random
�elds with multiple pairwise pixel interactions [3, 4]. The model parameters specifying
the geometric structure and quantitative strengths of interactions can be estimated,
or learned, from a given training sample of the texture. In this paper we discuss the
estimation of most characteristic interaction structures.

The structure is usually represented with a neighbourhood graph in which vertices
are pixels and edges connect the interacting pixel pairs, called neighbours [2]. The
neighbours of a particular pixel directly e�ect conditional probabilities of grey levels
in the pixel. Each pair of neighbours is the second-order clique of the neighbourhood
graph, and a spatially homogeneous interaction structure consists of several clique
families, each family containing the translation invariant cliques.

Each clique family has its own Gibbs potential that speci�es quantitative strengths
of pixel interactions in a clique. Generally, the potential values depend on grey level
co-occurrences (GLC) in the two pixels. In the simpli�ed case, they depend only on
grey level di�erences (GLD). The sum of the potential values over a clique family,
called the partial interaction energy, determines the contribution of the clique family
to the Gibbs probability of a particular image.

As shown in [3, 4], the maximum likelihood estimate of the potential for a
clique family is closely approximated by the scaled di�erence between two histograms,
namely, between (i) the GLCH or GLDH, respectively, collected over a given training
sample of the texture and (ii) the like expected histogram for the independent random
�eld (IRF). The higher the di�erence, the greater the impact of the interaction on
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the Gibbs probability of the training sample. Therefore the characteristic interaction
structure can be learned by comparing the partial Gibbs energies (or other integral
measures of the di�erence between the histograms, such as the chi-square distance)
for a large search set of possible clique families.

The class of stochastic textures de�ned in [3, 4] is e�ciently described by its
basic interaction structure that consists of the clique families with the partial Gibbs
energies over a particular threshold. Practically the same structures are recovered by
thresholding the chi-square distances between the GLCHs or GLDHs for the training
sample and the expected histograms for the IRF. The threshold is chosen using the
relative frequency distribution of the Gibbs energies or chi-square distances for all the
clique families in the search set [3, 4].

Regular textures such as mosaics mostly do not belong to the class of stochastic
textures because they have also a �ne interaction structure. The �ne structure de-
scribes minor but visually important repetitive details, and usually the corresponding
clique families have much lower interaction energies than the basic ones. Empirical
sequential learning proposed by Zalesny [6, 7] tries to both reduce the basic structure
and �nd the �ne structure at the expense of a great body of computations.

In what follows the purely empirical sequential learning is compared to an ap-
proximate analytical scheme that involves much less computations and to a combined
analytical{empirical sequential scheme. Experiments are conducted with digitized
fragments of the stochastic texture D29 \Beach sand" and the regular textures D1
\Woven aluminum wire" and D101 \Cane" [1].

2. Basic notation. Let R = [i = (x; y) : x = 0; : : : ;M � 1; y = 0; : : : ; N � 1]
be a �nite arithmetic M � N lattice supporting images. Every clique family Ca =
f(i; j) : (i; j) 2 R2; i� j = constag consists of the translation invariant cliques (i; j)
with the �xed relative shift between the pixels (i; j) 2 Ca denoted

consta � (�xa;�ya):

Spatially homogeneous structure C = [Ca : a 2 A] of pairwise interactions is
speci�ed by a particular subset A of the clique families chosen from a large search
set W. The search set includes all the families with the bounded inter-pixel shifts
f(�x;�y) : j�xj � �xmax; j�yj � �ymaxg. In our experiments the search set W
contains 3280 clique families within the bounds �xmax = 40;�ymax = 40.

Let Q = f0; 1; : : : ; qmaxg and D = f�qmax; : : : ;�1; 0; 1; : : : ; qmaxg be �nite sets
of grey levels and GLDs, respectively. Let g = [gi : i 2 R; gi 2 Q] denote a digital
greyscale image. The partial interaction energy Ea(g) of the clique family Ca in the
image g is as follows:

Ea(g) = Va �Ha(g) =

8><
>:

P
(i;j)2Ca

Va(gi � gj) =
P
d2D

Va(d)Ha(djg);

P
(i;j)2Ca

Va(gi; gj) =
P

(q;s)2Q2

Va(q; s)Ha(q; sjg)
(2.1)

where � denotes the dot product, Va is a Gibbs potential for the clique family Ca

with values depending on the GLCs (q = gi; s = gj) or GLDs d = gi � gj :

Va = [ Va(d) : d 2 D ] or [ Va(q; s) : (q; s) 2 Q2 ];

and Ha(g) is the GLDH or GLCH for the family Ca collected over the image g:

Ha(g) = [Ha(djg) : d 2 D ] or [Ha(q; sjg) : (q; s) 2 Q2 ]:



Let V = [Va : a 2 A] and H(g) = [Ha(g) : a 2 A] denote the potential vector
and the GLDH or GLCH vector, respectively. The GLDH- or GLCH-based Gibbs
image model with multiple pairwise pixel interactions [3, 4], speci�ed by an interaction
structure C and potential V, relates the Gibbs probability of every sample g:

Pr(gjC;V) =
1

ZC;V
exp (E(g))(2.2)

to the total interaction energy E(g) of the sample:

E(g) =
X
a2A

Ea(g) = V �H(g):(2.3)

As shown in [3, 4], the analytical �rst approximation of the MLE of the potential
Va for the GLDH-based or GLCH-based Gibbs model of Eq. (2.2), given a training
sample g�, is proportional to the di�erence Ha(g

�)�Ha;irf where Ha;irf denotes the
expected triangular GLDH or the uniform GLCH, respectively, for the IRF. The IRF
is described by the model of Eq. (2.2) with zero-valued potentials V = 0.

For brevity, the image simulation by the GLCH-based or GLDH-based model
in Eqs. (2.2) and (2.3) is called below the GLC-simulation and GLD-simulation, re-
spectively. The simulation is performed by the Controllable Simulated Annealing
(CSA) introduced in [4] and based on the stochastic gradient algorithm proposed by
Younes [5]. The CSA generates a nonstationary Markov chain of images by the con-
ventional stochastic relaxation, namely, by the Metropolis sampler [2], but adapts con-
currently the potential V. The potential is changed at each macrostep in such a way
as to achieve a stochastic approximation of the GLDHs or GLCHs fHa(g

�) : a 2 Ag
for the training sample with the like histograms for the simulated images. Each
macrostep traces randomly, but without repetitions, all the pixels i 2 R. The ap-
proximation takes account of only the clique families that comprise the characteristic
interaction structure of the Gibbs model. In the experiments below, each simulation
uses 300 macrosteps of the CSA with the same control parameters as were used for
experiments in [4]. Below all the training and simulated samples are of size 128� 128
pixels, unless otherwise speci�ed.

3. Learning the interaction structures. The basic characteristic interaction
structure of a stochastic texture is recovered by comparing the partial Gibbs energies
to the threshold � = Em+k� depending on their frequency distribution over the search
setW. Here, Em and � are the mean energy and standard deviation, respectively. In
our experiments the factor k is mostly chosen within the range 3 � k � 5.

The approximate analytical estimate of the relative partial energy ea(g
�) for a

clique family Ca in a given training sample g� is as follows [4]:

ea(g
�) =Ha(g

�) � (Ha(g
�)�Ha;irf):(3.1)

Practically the same basic structures are recovered by thresholding the chi-square
distances �2

a(Ha(g
�);Ha;irf) between the GLCHs or GLDHs for the training sample

and the IRF.
Figures 3.1 { 3.3 show the training and simulated samples of the textures D29,

D1, and D101 [1]. Basic structures of di�erent size, learned for the stochastic texture
D29, result in a good visual quality of the simulations that is quite similar for both
the GLCH- and GLDH-based models. Here, the top eight clique families in the
partial Gibbs energy or the chi-square distance, found with the factor k = 5, are
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Fig. 3.1. Texture D29: training sample (a), GLD-simulation with the basic structure of 8 (b),
17 (c), and 24 (d) clique families (thresholding of the chi-square distances to the IRF), and GLC-
simulation with the structures of 8 (e,g) and 11 (f,h) families (thresholding of the chi-square distances
and the partial Gibbs energies, respectively).
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Fig. 3.2. Texture D1: training sample (a), GLD-simulation with the basic structures of 27 (b)
and 40 (c) clique families (thresholding of the chi-square distances) and of 60 (d) families (thresh-
olding of the Gibbs energies), and GLC-simulation with the basic structures of 11 (e), 37 (f), 48 (g),
and 73 (h) clique families (thresholding of the chi-square distances).

just the same, namely, f(1; 0); (0; 1); (�1; 1); (1; 1); (2; 0); (�2; 1); (2; 1); (0; 2)g, and the
additional families have almost no e�ect on the descriptive ability of the model.

At the same time the basic structures of the non-stochastic textures D1 and D101
reproduce only very roughly the repetitive original patterns, and the larger sizes of
the structure do not signi�cantly improve the simulation. The GLCH-based models
of such textures outperform the simpli�ed GLDH-based models because, as shown
in [4], the multimodal GLCHs, and thus the potentials for the former models, cannot
be closely approximated by the GLDH-based counterparts.

3.1. Sequential learning. This approach is based on the implicit assumption
that the interactions can be subdivided into the primary and secondary ones. The
primary interactions do describe a particular texture and must appear in the structure.
The secondary interactions are created only by statistical interplay of the primary
ones and have to be excluded because they do not e�ect the descriptive abilities of a
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Fig. 3.3. Texture D101: training sample (a) and GLC-simulation with the basic structures of
19 (b), 39 (c), and 63 (d) clique families (thresholding of the partial Gibbs energies).

model. Generally, the probability distributions of the GLCs or GLDs for the various
clique families cannot be statistically independent. But if the dependence between
the primary families can be ignored, the basic structure can be reduced in size and the
�ne structure can be recovered by successively eliminating the secondary interactions
produced by a current set of the primary ones.

Let the primary clique families C� and C� have signi�cant partial energies
in a given training sample. Then the secondary family C , such that const =
const�+const�, will usually possess a signi�cant but somewhat lower energy, too,
although this family may not appear in the structure. In other words, if the GLDHs
or GLCHs H�(g

�) andH�(g
�) di�er much from the expected histograms for the IRF,

the similar di�erence for the histogram H(g
�) is also expected to be large.

The parallel thresholding does not discriminate between the primary and sec-
ondary interactions. Thus it cannot detect the necessary components of the basic and
�ne interaction structures that rank below the secondary interactions in the partial
Gibbs energy of Eq. (2.1) or the chi-square distance to the IRF.

The empirical sequential learning, proposed by Zalesny [6, 7], tries to iteratively
detect and eliminate the secondary interactions for reducing the basic structure to
only the primary interactions and recovering thus the �ne interaction structure.

3.1.1. Empirical scheme. At every iteration of the empirical sequential learn-
ing, a single clique family that is the most characteristic with respect to a previously
found interaction structure, is added to the structure. An iteration t consists of the
two successive steps.

1. (Texture simulation) A new texture sample g[t] is GLD- or GLC-simulated
under a current interaction structure C[t] = fCa : a 2 A

[t]g.
2. (Structure selection) The GLDHs or GLCHs fHa(g

�) : a 2 A[t]g for a given
training sample g� are compared to the like histograms fHa(g

[t]) : a 2 A[t]g
for the simulated sample g[t] to select the most characteristic clique family
and add it to the current structure.

The comparison can be based, in particular, on the maximum relative partial energy

ea(g
�) = Ha(g

�) � (Ha(g
�)�Ha(g

[t]))(3.2)

or the chi-square distance �2
a(Ha(g

�);Ha(g
[t]) between the histograms.

In principle, the simulation step takes account of all the dependences between the
interactions so that the structure of the minimum size is expected to be found. But
this empirical scheme involves a large body of computations for simulating the samples
as the number of samples to be generated is equal to the size of the �nal structure.
Also, the GLD- or GLC-simulation under a �xed interaction structure C[t] produces
a variety of di�erent samples g[t]. The GLDHs or GLCHs Ha(g

[t]) for these samples



are distributed around and approach only in average the like histograms for a given
training sample. Therefore the selected clique families will reect also a particular
sequence of simulated images, and the same training sample may give rise to di�erent
interaction structures, especially, as concerning the �ne structure.

3.1.2. Approximate analytical scheme. Generally, the GLD or GLC dis-
tributions over the di�erent clique families are statistically dependent even for the
IRF. But some of the actual dependences are rather weak, and we may assume that
the primary clique families have the independent GLC distributions. Then the GLC
distributions for the secondary interactions can be approximately obtained from the
primary ones by recomputing each current secondary GLCH, H(g), using the last
chosen primary GLCH, H�(g), and the corresponding previous primary or secondary
GLCH, H�(g), such that const = const�+const� . In this case all the GLCHs in
the search set W can be analytically updated after adding to a current interaction
structure the next clique family with the maximum relative energy of Eq. (3.2) or
with the maximum chi-square distance with respect to the training sample.

a b c d

Fig. 3.4. Texture D29: the computed (a) and actual (b) Gibbs energies for the GLCH-based
Gibbs model with the 10 analytically chosen clique families and the analytically chosen structures of
the 10 (c) and 22 (d) clique families with the top relative energy.
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Fig. 3.5. Texture D101: computed (a) and actual (b) Gibbs energies for the GLCH-based Gibbs
model with the 15 analytically chosen clique families and the analytically chosen structures of the
15 (c) and 22 (d) clique families with the top relative energy.

Figures 3.4, a-b, and 3.5, a-b, demonstrate the grey-coded actual and analytically
computed distributions of the relative partial energies of Eq. (3.1) for the textures
D29 and D101 over the search set W. This latter set is displayed as the 325 � 325
window, each square box 4 � 4 representing a particular inter-pixel shift (�x;�y);
�40 � �x;�y � 40. The computations of the secondary GLCHs are propagated
from the centre to the borders of the window W to roughly approximate the main
part of the statistical interplay between the primary interactions.

The energy distributions for the textures D29 and D101 are computed, respec-
tively, with the 10 and 15 primary clique families. These families were sequentially
selected by choosing at each step the family with the maximum relative energy of



Eq. (3.1). The corresponding interaction structures as well as the more detailed
structures with the 22 clique families are shown in Figures 3.4, c-d, and 3.5, c-d.

In these examples the reduced basic structure of the texture D29 contains the
two highly energetic clique families f(1; 0); (0; 1)g. All other families are two or more
orders of magnitude lower in the relative energies so that the chosen �ne structure
of this texture contains only the non-characteristic long-range interactions such as
f(�13; 35); (�1; 25); (�15; 15); (26; 11)g and so forth. These latter does not represent
speci�c visual features and are obviously arbitrary, as distinct from the �ne structure
of the regular texture D101. But, as we shall see later, the analytical sequential
learning based on the relative chi-square distances results in more workable interaction
structure for the stochastic texture D29.

The analytical sequential scheme gives a reasonable �t to the actual partial Gibbs
energies and, therefore, to the GLCHs for the clique families. Therefore it is of interest
to compare this scheme to the empirical sequential learning.

a b c d
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Fig. 4.1. Texture D29: GLD-simulation with the 2 (a), 3 (b), 5 (c), and 6 (d) clique families
and GLC-simulation with the 4 (a), 5 (b), 7 (c), and 11 (d) clique families found by the sequential
empirical choice of the top relative Gibbs energy. Notice that these images do not mimic the initial
visual pattern of Figure 3.1, a.

4. Stochastic texture D29: experimental results. Figure 4.1 shows the
samples obtained by the GLD- or GLC-simulation after learning the interaction struc-
ture from the training sample in Figure 3.1, a, by the empirical sequential choice of
the clique family with the top relative energy of Eq. (3.1). In this case the actual
energy distribution in the search windowW is closely approximated by the statistical
interplay of only the two clique families f(1; 0); (0; 1)g. As a result, the additional
�ne structure is chosen rather arbitrary among the remaining families with very low
relative Gibbs energies, and the �nal structure is unsuitable for simulating the texture
samples that are visually similar to the training sample D29 in Figure 3.1, a. The
images in Figure 4.1, in contrast to the simulated samples in Figure 3.1, di�er much
from the training sample even when the overall interaction structure is of the same
or greater size than the basic structure recovered by thresholding the energies.

At the same time, the empirical sequential choice based on the relative chi-square
distances produces more workable interaction structures for the texture D29. The
GLD-simulations with the sequentially chosen 1{12 clique families: [(0; 1), (1; 0),
(5; 0), (1; 3), (8; 2), (�3; 2), (�9; 1), (3; 0), (�16; 9), (2; 0), (3; 25), (�21; 15)] are shown
in Figure 4.2. The samples simulated with the 8{12 clique families (Figure 4.2, h-l)
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Fig. 4.2. Texture D29: GLD-simulation with the 1 (a) { 12 (l) clique families found by the
sequential empirical choice of the top relative chi-distance. The structures of the 8{12 families
produce the samples that are already reasonably similar to the training one.
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Fig. 4.3. Texture D29: GLD-simulation with the 2 (a) { 16 (h) clique families found by the
sequential empirical choice of the top two relative chi-distances.

a b c d

Fig. 4.4. Texture D29: GLD-simulation with the 4 (a) { 16 (d) clique families found by the
sequential empirical choice of the top four relative chi-distances.
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Fig. 4.5. Texture D29: GLC-simulation with the 4 (a), 10 (b), 15 (c), and 22 (d) clique
families found by the analytical sequential choice of the top relative Gibbs energy and with the 6 (e),
9 (f), 12 (g), and 16 (h) families found by the like choice of the top relative chi-square distance.

are similar to (but subjectively seem still to be a bit worse than) those in Figure 3.1,
b,e,g, that are GLD- or GLC-simulated with the 8 families [1; 0), (0; 1), (�1; 1), (1; 1),
(2; 0), (�2; 1), (2; 1), (0; 2)] obtained by thresholding the relative Gibbs energies or
the relative chi-square distances.

The empirical scheme can be accelerated by choosing the two or the four top-rank
clique families in the the relative chi-square distances at each iteration, as shown in
Figures 4.3 and 4.4. But the �nal structures have to be of larger size (12 { 16 families)
to approach the same visual quality of simulation as in Figure 4.2, h-l.

The analytical sequential search behaves in this case just as the empirical one but
produces slightly worse results. Figures 3.1, 3.4, and 4.5 show that the basic structure
recovered by the parallel thresholding of the partial energies produces much better
simulation results even when the analytically chosen structure is of larger size. The
analytical search based on the chi-square distances produces the more appropriate
interaction structures but they are still less e�cient than the structures recovered by
the thresholding. The GLC-simulation with the 16 analytically chosen clique families
in Figure 4.5 is similar to the GLD-simulation with the 8-12 empirically found ones
in Figure 4.2 as well as with 12-16 families in Figures 4.3 and 4.4.

The possible reason of the ine�ective energy-based sequential search is that the
assumed statistical dependences of the GLC distributions for the secondary interac-
tions do not properly manifest themselves in the Gibbs energies so that the detection
of the primary interactions and exclusion of the secondary ones using the relative en-
ergies of Eq. (3.2) is not justi�ed. In this case the sequential learning only deteriorates
the actual interaction structure. The relative chi-square distances seem to be more
accurate in detecting the secondary interactions. But for this stochastic texture the
basic structure found by the parallel thresholding of the partial energies or the chi-
square distances to the IRF is still better than (or, at least, gives the same simulation
quality as) the empirical or analytical sequential learning.

5. Regular texture D101: experimental results. Figures 5.1 { 5.3 present
samples produced by the GLD- and GLC-simulation, once the interaction structure
of 1{40 or 3{22 clique families, respectively, has been learned by the energy-based
empirical sequential search. The training sample D101 is shown in Figure 3.3, a. The
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Fig. 5.1. Texture D101: GLD-simulation with the 1 (a) { 20 (t) clique families found by the
sequential empirical choice of the top relative Gibbs energy.

simulated samples are obtained by adding each time one more clique family with the
top relative energy of Eq. (3.1) to the previously found primary interaction structure.
Here, the �nal structures of 19{22 families found by the empirical sequential learning
for the GLCH-based model in Figure 5.3, q-t, both contain less clique families and
represent better the �ne repetitive details than the basic structure of the 63 families
in Figure 3.3, d, found by the parallel thresholding of the partial Gibbs energies.

The simpli�ed GLDH-based model ranks far below the GLCH-based one because
the GLDHs for a given training sample and therefore the potentials of the GLD-based
Gibbs model of Eq. (2.2) cannot be proper representatives of the actually multimodal
training GLCHs and the GLC-based potentials [4].

First, the GLDH-based Gibbs model is almost invariant to the greyscale inversion
that converts the positive into the negative. As a result, the simulated samples in
Figures 5.1 and 5.2 demonstrate continuous spatial transitions from the positive-like
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Fig. 5.2. Texture D101: GLD-simulation with the 21 (a) { 40 (t) clique families found by the
sequential empirical choice of the top relative Gibbs energy.

reproductions of the training pattern to the negative-like ones, and such transitions
are obviously absent in the training sample.

Secondly, the interaction structures that are sequentially chosen for the GLDH-
based model produce much worse simulation results than the structures of lesser size
for the GLCH-based model. Some GLD-simulated samples tend to reect basic and
�ne repetitive details of the texture as, for instance, in Figure 5.2, e, f, i, obtained
with the 25, 29, and 30 clique families, respectively, but the apparently better GLC-
simulated samples in Figure 5.3, q, r, are obtained using the characteristic structure
of only 18{19 clique families.

Thus, from here on, we will discuss only the GLCH-based model of Eq. (2.2).
It should be pointed out that the stochastic texture D29 has at most the symmetric
unimodal GLCHs and potentials so that both the models give almost the same quality
of simulation.
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Fig. 5.3. Texture D101: GLC-simulation with the 3 (a) { 22 (t) clique families found by the
sequential empirical choice of the top relative Gibbs energy.

By comparing Figure 3.3, c-d, to Figures 5.3, a-p, and 5.3, q-t, one can come to
the conclusion that the sequential choice of a single clique family with the top relative
energy of Eq. (3.2) forms the reduced basic structure of about the 16 clique families
and the �ne structure of the 4{6 additional clique families. Quite similar results can
be obtained twice faster by choosing the two top families at each step (Figure 5.4).
But the structures of similar size obtained by choosing more than two clique families
per iteration result in a somewhat worse simulation shown in Figure 5.5.

It must be emphasized that the visual quality of simulation does not steadily
increase with the structure's size. As follows from Figures 5.3, n-t, 5.4, d{h, and 5.5,
f{h, the quality may even signi�cantly degrade after adding a clique family. Usually
in our experiments the quality is then restored and improved, once one or two more
families are added. But unfortunately, it is still unclear how to relate the visual
quality of texture simulation to certain quantitative features of a current interaction
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Fig. 5.4. Texture D101: GLC-simulation with the 4 (a) { 12 (e), 16 (f), 18 (g), and 22 (h)
clique families found by the sequential empirical choice of the top two relative Gibbs energies.
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Fig. 5.5. Texture D101: GLC-simulation with the 4 (a) { 32 (h) clique families found by the
sequential empirical choice of the top four relative Gibbs energies.
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Fig. 5.6. Texture D101: GLC-simulation with the 15 (a,e), 19 (b,f), 25 (c,g), and 32 (d,h)
found by the analytical sequential choice of the top relative Gibbs energy and the top relative chi-
square distance, respectively.
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Fig. 5.7. Texture D101: GLC-simulation with the 40 clique families found by the analytical
sequential choice (a) and with the 22 families found by the sequential empirical choice of the top
relative Gibbs energy (b).
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Fig. 5.8. Texture D101: GLC-simulation with the 15 clique families found by the analytical
sequential choice and with the additional 1 (a) { 8 (h) families found by the sequential empirical
choice of the relative Gibbs energy.

structure, for instance, to relative Gibbs energies or chi-square distances for all the
clique families in a search set W at each iteration t of the sequential learning.

The analytical sequential learning in Figure 5.6 creates the basic interaction struc-
tures of the 15{19 clique families. The GLC-simulation with these structures produces
the samples that are very similar to the samples in Figure 3.3, c-d, obtained with the
39{63 families. But the additional �ne structure is slightly less e�cient so that the
overall structure of the 32{40 analytically selected clique families is required to pro-
duce the results similar to the empirically found structure of the 20{22 families.

For comparison, the samples 256 � 256 in Figure 5.7 are simulated with the
40 and 22 clique families chosen by the energy-based analytical and empirical search,
respectively. The texture in Figure 5.7, a, as well as the one in Figure 5.6, d, simulated
with the 32 clique families do reect the �ne repetitive visual details but to the lesser
extent than the samples in Figures 5.3, o-t, 5.4, d-h, 5.5, h, and 5.7, b, obtained by
the empirical sequential learning. It is worth noting that the analytical search based
on the relative Gibbs energies works here better than the one based on the relative



chi-square distances.
As follows from the above experiments, the sequential learning can produce the

e�cient interaction structures only if our assumption about the independent primary
GLC distributions has a reasonable �t to the textures under consideration. We call
these latter the regular textures.

The empirical sequential learning slightly outperforms the faster analytical scheme
as concerning the �ne interaction structure of a regular texture. But the reduced
basic structures recovered empirically or analytically are very similar so that it is
worth consideration whether the empirical sequential learning can be accelerated by
combining the both approaches.

Figure 5.8 shows the results of simulating the texture D101 when the reduced
basic interaction structure with the 15 clique families is found analytically (see, also,
Figures 3.5 and 5.6) and then is appended with the �ne structure of 1{8 clique fam-
ilies by the empirical sequential learning. In this case the purely empirical and the
combined analytical{empirical sequential learning produce very similar �nal results,
but the latter approach is almost three times faster than the former one.
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Fig. 6.1. Texture D1: GLC-simulation with the 1 (a) { 16 (t) clique families found by the
sequential empirical choice of the top relative chi-square distance.

6. Regular texture D1: experimental results. Figures 6.1 and 6.2 show
results of the GLC-simulation when the interaction structures of 1{40 clique families
are obtained by the empirical sequential search of the top chi-square distance between
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Fig. 6.2. Texture D1: GLC-simulation with the 17 (a) { 40 (t) clique families found by the
sequential empirical choice of the top relative chi-square distance.

the training and generated GLCHs. The training sample D1 is shown in Figure 3.2.
Here, as follows from Figure 3.2, d, h, and Figure 6.1, a-p, the basic structure contains
only about 12{16 clique families. But then even the 24{28 additional families give
only a rough approximation of the minor details of this texture. There is only a very
subtle improvement in visual quality between the samples that are simulated with the
additional four clique families in Figure 6.1, p, and with the additional 5{24 families
in Figure 6.2, a{x, that form the �ne interaction structure of the model.
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Fig. 6.3. Texture D1: GLC-simulation with the 2 (a) { 40 (t) clique families found by the
sequential empirical choice of the top two relative chi-square distances.

Although the repetitive details of the texture D1 are reproduced less e�ciently
than those of the texture D101, the sequential learning by choosing the top-rank
clique family in the relative chi-square distance outperforms noticeably the parallel
thresholding. The analytical sequential search illustrated by Figure 6.5 presents here
a reasonable alternative to the empirical one although the simulated samples have a
bit lesser visual quality than the samples in Figure 6.2, q{t.

It should be pointed out that in this case both the empirical and analytical sequen-
tial choice of the top-rank clique family results in much better interaction structures
than the accelerated empirical search for the two or four top-rank families at each
iteration, as shown in Figures 6.3 and 6.4, respectively. The combined analytical{
empirical schemes shown in Figures 6.6 and 6.6 rank below the purely analytical one,
too, as regarding the visual quality of simulation.
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Fig. 6.4. Texture D1: GLC-simulation with the 8 (a), 16 (b), 24 (c), and 32 (d) clique families
found by the empirical sequential choice of the four top relative chi-square distances.
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Fig. 6.5. Texture D1: GLC-simulation with the 14 (a), 26 (b), 34 (c), and 40 (d) clique
families found by the analytical sequential choice of the top relative chi-square distances.

7. Conclusions. These and other experiments, as well as the results in the
empirical sequential learning discussed in [7], suggest that spatially homogeneous
image textures that are simulated more or less e�ciently by the Gibbs model of
Eq. (2.2) can be subdivided into the two classes, namely, the stochastic textures and
the regular textures. The classes vary in assumed statistical relationships between
the di�erent clique families.

To model a stochastic texture, all the clique families with the GLDHs or GLCHs
for the training sample that possess su�ciently high partial Gibbs energies or chi-
square distances with respect to the IRF have to be treated as statistically independent
and included into the basic interaction structure.

The like structure of a regular texture will contain both the independent primary
interactions and the dependent secondary interactions produced by a statistical inter-
play of the primary ones. Thus the basic structure can be reduced in size and the �ne
interaction structure can be additionally recovered by a sequential elimination of the
secondary interactions. The sequential learning can be based on either the relative
partial Gibbs energies or chi-square distances between the GLDHs or GLCHs for the
training and simulated samples. But in some cases the relative chi-square distances
result in slightly better interaction structures.

The separation into the primary and secondary interactions does not improve the
modelling of stochastic textures. Moreover, the energy-based sequential learning may
even deteriorate the interaction structure of such textures comparing to the parallel
thresholding or even to the sequential schemes based on the chi-square distances.

The empirical sequential learning requires a substantial amount of computations.
Also, each characteristic structure produced by the empirical scheme reects a partic-
ular chain of the sequentially generated samples. Therefore the same training sample
may result in rather di�erent characteristic structures. The alternative analytical
sequential learning is much faster but reproduces only approximately the actual re-
lations between the primary and secondary interactions. Therefore, to approach, if
possible at all, the simulation quality of the empirical learning, the analytical scheme
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Fig. 6.6. Texture D1: GLC-simulation with the 14 families found by the analytical sequential
choice of the top relative chi-square distances and with the addtitional 8 (e), 9 (f), 10 (g), and 11
(h) families found by the like empirical choice.
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Fig. 6.7. Texture D1: GLC-simulation with the 26 clique families found by the analytical
sequential choice of the top relative chi-square distances and with the additional 2 (i), 4 (j), 7 (k),
and 8 (l) families found by the empirical choice by the sequential thresholding of the relative distances
with k = 4.

has to produce the characteristic structures of larger size. The combined analytical{
empirical schemes mostly do not behave better than the purely analytical one.

It should be noted that all the sequential schemes as well as the parallel threshold-
ing have no theoretically justi�ed rules of how to choose a proper size of the interaction
structure. Thus the number of the clique families to be included into the Gibbs model
of a particular texture is selected, mainly, on the experimental base.

Our experiments and the experiments in [4, 7] show that the classes of stochastic
and regular textures include many natural images. But a rich variety of textures that
are outside these classes should be modelled by other means.
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