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Abstract

We consider a special case of spatially homogeneous tex-
tures such as regular mosaics that can be described as
tilings where each tile represents the same rectangular texel.
The orientation and size of the texel are estimated from the
model-based interaction map (MBIM) describing multiple
pairwise pixel interactions in a given training sample. The
MBIM is obtained using the Gibbs random field model of
the texture. Large-size prototypes of such textures can be
formed fast by estimating and replicating the texel.

1 Introduction

Basic feature of a texture is spatial self-similarity, that is,
similarity of certain pixel neighbourhoods acting as local
prototypes. Such characteristic neighbourhoods are usu-
ally called texels [6]. A texture is formed by their spatial
replication under specific deterministic or stochastic rules
of mutual placement. Each replica may have geometric and
photometric deviations from the texel that do not effect the
similarity. Generally, a rich variety of possibilities exist for
choosing texels, rules of their arrangement, and ranges of
admissible deviations in each texture.

The ambiguity is reduced if only translation invariant
textures formed by replicating a single texel are considered.
At lower levels of generalisation such texel may contain own
fine repetitive details with not only translational but also ro-
tational, scale, or other types of similarity. But we restrict
our consideration to a limited number of translation invari-
ant natural textures that can be formally described by only
a single texel. For practical purposes, this problem appears
worthy of investigation because the texel-based description
holds considerable promise for fast realistic simulation of
these textures.

Recently a notable advance has been made in texture
simulation by choosing signals (gray levels or colours) in

�This work was partially supported by the University of Auckland Re-
search Committee grants 9343/3414113 and 9393/3600529 and the Mars-
den Fund research grant UOA122.

each pixel so that its particular neighbourhood approximates
the similar pixel neighbourhoods of a given training sam-
ple [2–5, 7, 9–11]. The neighbourhood retains the determin-
istic spatial structure of signal interactions in the training
sample. The approximation extrapolates the training struc-
ture to a simulated image of other size and yields random
deviations from the training signals.

In most cases the characteristic neighbourhoods are
involved implicitly through spatial features of a multi-
resolution image representation such as relative frequencies
of top-to-down signal co-occurrences along a Laplacian or
steerable wavelet image pyramid [2, 10]. A simulated pyra-
mid replicates, up to a certain similarity threshold, the cor-
responding top-to-down chains of the training signals.

A non-parametric Markov random field model of multi-
resolution textures in [9] describes a heuristically chosen
small close-range pixel neighbourhood (e.g. the squares
7 � 7) by conditional relative frequency distributions of all
the multi-resolution signals in such a neighbourhood. As-
suming that the neighbourhoods are statistically indepen-
dent, the distributions are roughly estimated from the train-
ing signals using clustering techniques. Texture simulation
approximates the training distributions with the simulated
ones using a constrained multi-resolution optimisation.

In the case of a single-resolution texture, Gibbs random
field models with multiple pairwise pixel interactions [4, 5,
11] involve a translation invariant pixel neighbourhood that
can be explicitly estimated for each particular texture from
the training sample. This discontinuous “star-like” radially
symmetric neighbourhood consists of the most character-
istic near and distant pixels independently interacting with
the central one. The simulation performed by stochastic ap-
proximation based on stochastic relaxation approximates the
training frequency distributions of signal co-oocurrences in
the characteristic pixel pairs by the corresponding distribu-
tions for the simulated texture.

A non-parametric texture sampling [3] uses a heuris-
tically chosen square around each pixel as an explicit
structure-preserving neighbourhood. To simulate a texture,
a small seed is taken randomly from the training sample and
then extended in a pixelwise mode to a desired size. Each



new pixel is added by an equiprobable choice from among
the already obtained pixels with closely similar neighbour-
hoods. Generally such pixelwise extrapolation accumulates
local errors rupturing the desired texture. The patch-based
non-parametric sampling in [7] tries to avoid the degrada-
tion by adding at each step not a single pixel but a small
rectangular patch of the empirically chosen size. The patch
is equiprobably chosen from among the already obtained
patches with the similar neighbourhoods.

All the above techniques are efficient in simulating dif-
ferent stochastic and regular natural textures. But most
of them are impracticable for simulating large-size images
because of excessively large volumes of computations per
pixel. The patch-based non-parametric sampling [7] is much
faster than other approaches but the quality of simulation de-
pends on how adequate is the empirically chosen patch.

This paper investigates possibilities of fast simulation of
large-size prototypes of certain regular mosaics by quanti-
tative estimation and replication of their texels. The esti-
mation is based on the above-mentioned Gibbs random field
model that explicitly describes the spatial structure of mul-
tiple pairwise pixel interactions in the training sample.

2 Gibbs texture model

LetR andQ denote an arithmetic lattice and a finite set of
image signals, respectively. Letg : R! Q be a digital im-
age. The Gibbs random field model of a spatially homoge-
neous texture accounting for only pairwise pixel interactions
is given by the Gibbs probability distribution

Pr(gjA;V) / exp
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Ea(gjVa)
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where the setA indicates a characteristic translation invari-
ant neighbourhoodf(i + a) : a 2 Ag of each pixeli 2 R
andEa(gjVa) is a partial energy of pairwise pixel interac-
tions in a familyCa = f(i; i+ a) : i; i+ a 2 Rg of trans-
lation invariant pixel pairs, or cliques of the neighbourhood
graph, separated in the lattice by the same relative inter-pixel
shift a:

Ea(gjVa) =
X

(i;i+a)2Ca

Va(gi; gi+a)

Pixel interactions in the clique families are quantitatively
given by a bounded potentialV = fVa : a 2 Ag where
Va : Q �Q ! R = (�1;1) is a potential function for
the clique familyCa. The neighbourhoodA defines the ge-
ometric structure of translation invariant pairwise pixel in-
teractions in terms of the most distinctive interacting pixel
pairs(i; i+ a).

As shown in [4], the first approximation of the maximum
likelihood estimate of the potentialVa = fVa(q; s) : q; s 2

Qg for a given training samplêg is proportional to the cen-
tred relative frequency distributionFa(ĝ) = fFa(q; sjĝ) :
q; s 2 Qg of the signal co-occurrences(ĝi = q; ĝi+a = s)
in the cliques of the familyCa. Thus the approximate partial
energy of pixel interactions is:
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and the clique families specified by a large search setW

of the inter-pixel shiftsa can be ranked by their interaction
energies as well as the characteristic interaction structure
A can be estimated by selecting the top-rank partial ener-
gies [4, 5, 11].

Figures 1 and 2 show training samples128� 128 of the
natural image textures D1, D6, D14, D20, D21, D34, D53,
D55, D65, and D101 from [1] and Fabric0008, Tile0007,
and Textile0025 from [8]. Each sample is accompanied with
the scaled image81�81 of the model-based interaction map
(MBIM) E(ĝ) = fEa;0(ĝ) : a 2 Wg showing the deter-
ministic structure of translation invariant pairwise pixel in-
teractions. Every spatial positiona � (x; y) of the image of
the MBIM indicates the partial interaction energyEa;0(ĝ)
for the intra-clique shifta 2 W, the diametrically oppo-
site shifts(x; y) and(�x;�y) representing the same clique
family. In these examples the setW contains the relative
inter-pixelx- andy-shifts in the range[�40; 40] specifying
3280 clique families. In line with the chosen greyscale cod-
ing, the larger the energy value, the darker the dot.

The interaction structureA �W and potentialsV esti-
mated for the model in Eq. (1) allow for simulating a desired
texture from an arbitrary initial sample using pixel-wise
stochastic relaxation combined with refinement of the po-
tentials by stochastic approximation. The simulation brings
close together the relative frequency distributions of signal
co-occurrences for the characteristic clique familiesfCa :
a 2 Ag in the training and simulated textures [4, 5, 11].

Many stochastic image textures from [1] and [8] such as
sand, pressed cork, grass lawn, wood grain, flowers, or met-
als are accurately simulated using quite small analytically
estimated neighbourhoods of sizejAj � 10 : : :20. The real-
istic simulation is obtained also for some regular mosaics but
at the expense of much larger analytically estimated neigh-
bourhoods [5]. Empirical learning [11] reduces the neigh-
bourhoods, but involves too large amounts of computations
per pixel. In any case some visually important fine details
such as, for instance, small inclined strokes of the netting
D34 in Figure 1 or short horizontal borders of the brick wall
D95 in Figure 2 are not caught even with very large empir-
ically or analytically found neighbourhoods. Also, because
stochastic relaxation starts from an arbitrary image (usually,
from a “salt-and-pepper” random noise), the overall period-
icity of a large-size mosaic cannot be completely restored
even if the local fine details are accurately reproduced.
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Figure 1:Training samples and their MBIMs.

3 Estimation of texel parameters

To simulate (if possible) more realistic samples of com-
plex natural textures by probabilistic modelling, large pixel
neighbourhoods [5] or joint interactions of multiple pix-
els [9] should be taken into account. But it is computation-
ally unfeasible to obtain a large-size texture by stochastic re-
laxation or multivariate optimisation that approximate train-
ing neighbourhoods with simulated signals. At the same

D55 D65 D95

D101 D101, rotated5� D101, rotated20�

Fabric0008 Tile0007 Textile0025

Figure 2:Training samples and their MBIMs.

time a practicable alternative for some regular mosaics is
to simulate a large-size prototype by tiling, that is, by spa-
tial replication of the texel. Generally, each tile may have
specific deviations from the texel.

As is easy to see in Figures 1 and 2, the MBIMs for
the Gibbs model of Eq. (1) describe to a large extent the
repetitive pattern of each texture. In particular, replicate spa-
tial clusters of the larger interaction energies relate directly
to translationally similar replicate parts of the periodic mo-



saics. The relative positions of and pitches between the clus-
ters reflect the overall rectangular or hexagonal spatial ar-
rangement, orientation, and shapes of the parts. In the above
examples each such part acts as a single texel although the
choice is not unique because the same MBIM defines differ-
ent but equivalent tilings with different biases with respect
to the lattice. The size of the texel is bounded only below
that stems from the assumed translational similarity of all
its replicas forming the training or simulated texture. In the
general case it is difficult to formally relate the repetitive pat-
tern of the MBIM to a minimum-size texel because some of
the energy clusters may arise from repetitive fine details of
the texel itself or from the secondary interactions between
the distant similar parts. The shape and scale of the tiles
representing a single texel as well as their photometric char-
acteristics may also vary for different training samples and
even within the same sample of the texture (see, for instance,
the samples D55 or Fabrics0008 in Figure 2).

For simplicity, our consideration is restricted to only a
rectangular texel with an arbitrary but fixed orientation and
size. Each texture in Figures 1 and 2 is more or less accu-
rately described as a tiling with translation invariant rectan-
gular tiles representing such texel. For instance, the overall
patterns of clearly defined energy clusters for the original
and rotated by�5� and�20� textures D34 and D101 are
oriented with respect to the Cartesian axes of the inter-pixel
x- andy-shifts in the MBIM as do the corresponding tilings
with respect to thex- and y- Cartesian axes of the train-
ing sample. Thus the orientation and size of the rectangular
texel can be in principle derived from the MBIM.

The central cluster of the most energetic close-range in-
teractions in the MBIMs relates mainly to a uniform back-
ground of the image but a repetitive pattern of the peripheral
clusters (if it exists) is produced by the characteristic long-
range similarities between the pixel pairs. Therefore it is
felt that a single rectangular texel can be selected by cir-
cumscribing the clearly defined peripheral energy clusters
placed around of and closest to the central cluster.

Figure 3 demonstrates the estimated partitions of the
training samples where each rectangular tile represents the
texel. These experiments are based on a simplified heuristic
estimation scheme:

(i) Form the MBIME(ĝ) for a given training samplêg by
computing the partial energies of Eq. (2).

(ii) Select the clearly defined spatial clusters of the energies
by thresholding the MBIM with an empirical threshold:

E� = �E + c � �E (3)

wherec is a heuristically chosen factor and�E and�E
denote the mean value and standard deviation of the
partial energiesE(ĝ), respectively.

D1 D6 D14

D20 D21 D53

D34 D34, rotated�5� D34, rotated�20�

D55 D65 D95

D101 D101, rotated5� D101, rotated20�

Fabric0008 Tile0007 Textile0025

Figure 3:Estimated partitions of the training samples.

(iii) If there are no peripheral clusters in addition to the
central cluster around the origina = (0; 0), then the
texture has no regular structure to be described by the



texel.

(iv) Otherwise specify each peripheral cluster by its max-
imum energy and the inter-pixel shift for the clique
family yielding this maximum and slect two top-rank
clusters (with the largest and the second largest energy)
providing that the first cluster does not occlude another
one from the origin of the MBIM.

(v) Using the selected two clusters, find the texel orienta-
tion by choosing the smallest angular inter-pixel shift
with respect to thex-axis of the MBIM and determine
the texel size by projecting both inter-pixel shifts to the
found Cartesian axes of the texel.

Table 1 gives parameters of the texels and tilings in Figure 3.
Changes of the thresholding factorc of Eq. (3) in the range
1 � c � 3 yield quite similar results for all the textures used
in the experiments.

Table 1: Texel parameters estimated by detecting the first
and second top-rank energy clusters in the MBIMs with the
factorc = 2:5 in Eq. (3).

Texture Estimated texel
Size, pixels Orientation

(x� y) angle
D1 21.50� 33.02 -1�.14
D6 21.00� 34.00 0�.00
D14 29.00� 23.00 0�.00
D20 19.00� 36.00 0�.00
D21 7.00� 7.00 0�.00
D34 70.00� 14.00 0�.00

rot.�5� 70.26� 28.24 -4�.90
rot.�20� 34.47� 42.15 -22�.31

D53 44.00� 16.00 0�.00
D55 24.00� 22.00 0�.00
D65 44.00� 32.00 0�.00
D65 44.00� 32.00 0�.00
D95 25.96� 36.76 -1�.64
D101 14.00� 14.00 0�.00

rot. 5� 15.10� 14.04 3�.81
rot. 20� 15.20� 13.92 19�.65

Fabric0008 20.00� 20.00 0�.00
Tile0007 9.00� 8.00 0�.00
Textile0025 20.00� 14.00 0�.00

The most important problem is to find the proper orien-
tation of the texel. MBIMs with rectangular and hexagonal
patterns of the clearly defined clusters yield sufficiently ac-
curate and stable orientation estimates at Step (v). More-
over, the estimated orientation can be further refined by tak-
ing account of linear chains of the repetitive clusters, e.g. by
finding the least scattered projections of the chains onto the

Figure 4:Prototypes D1, D6, D14, D20, and D21 simulated
by replicating the approximate texel.

coordinate axes). But the refined estimates are less stable for
the MBIMs with the hexagonal structures such as for the tex-
tures D34 or D65. In the general case much more detailed



Figure 5: Prototypes D34 (intital and rotated�5� and
�20�) simulated by replicating the approximate texel.

processing of the MBIMs should be conducted for finding
adequate shapes, sizes, and orientations of the texels. The
above scheme is used to only show that it is possible in prin-
ciple to formally define the texels by processing the MBIMs
having specific spatial periodicity of the energy clusters.

Examples of the simulated prototypes of the size200�
400 pixels are shown in Figures 4 – 8. Each prototype is
obtained by replicating a single tile arbitrary chosen in the
training sample in order to act as an approximate texel. Of
course, such a straightforward simulation has obvious draw-
backs in that the singularities of the chosen tile are repli-
cated verbatim. The individual tiles cut out from the training
sample may have deterministic or random distortions com-
paring to the desired texel. But all the tiles are explicitly
specified by the estimated partition of the training sample
so that they can be jointly processed as to exclude relative
distortions and produce an ideal texel with no singularities.
Also, to avoid the verbatim copies, the texel-based “rubber
stretching” of the training sample can be done using bilinear
or spline spatial interpolation of the intermediate replicas of
the tiles.

Figure 6:Prototypes D53, D55, D65, and D95 simulated by
replicating the approximate texel.

4 Conclusions

The described scheme explicitly partitions the training sam-
ple onto a set of similar tiles representing the same rectan-
gular texel. The orientation and size of the texel are deduced
from the geometry of most characteristic pairwise pixel in-
teractions in the training sample, that is, by analysing the
spatial distribution of the partial interaction energies in the
model-based interaction map.

Each tile can be used as a provisional texel but in princi-
ple the texel can be obtained by matching and joint process-
ing of all the tiles so that their spatial compatibility is en-



Figure 7:Prototypes D101 (initial and rotated5� and20�)
simulated by replicating the approximate texel.

hanced and random geometric and photometric distortions
are reduced. Replication of the texel forms an idealised
prototype of the texture, and more realistic samples can be
obtained by additional spatially consistent deterministic and
random transformations of each tile in the prototype.

The proposed texel-based description is not adequate for
all irregular (stochastic) textures that involve a large number
of spatially discontinuous texels and complicated stochas-
tic rules of their spatial arrangement. Their MBIMs con-
tain usually only a central energy cluster with no peripheral
repetitive ones. Such deterministic interaction structures
are better described in terms of translation invariant condi-
tional probability distributions of signal co-occurrences in
the characteristic pixel neighbourhoods. But the texel-based
description seems to be quite practicable for some transla-
tion invariant regular mosaics.

At present most advanced texture simulation is obtained
by using the training sample as a collection of most charac-
teristic pixel neighbourhoods. By this strategy the training
neighbourhoods are implicitly or explicitly approximated by
the like neighbourhoods of the simulated image. The ap-

Figure 8:Prototypes Fabric0008, Tile0007, and Textile0025
simulated by replicating the approximate texel.

proximation is based either on specific integral features of
the signals in the neighbourhood or directly on these signals.
The proposed texel-based description provides the texel as
the explicit most characteristic pixel neighbourhood to be
estimated from the training sample and approximated in the
simulated images. Because the estimation is computation-
ally simple, the use of the texels notably accelerates the sim-
ulation of the large-size samples of regular mosaics.
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