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Abstract. We consider the potentialities of matching multiple views of a
3D scene by the least square correlation provided that relative projective
geometric distortions of the images are affinely approximated. The affine
transformation yielding the (sub)optimal match is obtained by combining
an exhaustive and directed search in the parameter space. The directed
search is performed by a proposed modification of the Hooke—Jeeves
unconstrained optimization. Experiments with the RADIUS multiple-
view images of a model board show a feasibility of this approach.

1 TIntroduction

Generally, the uncalibrated multiple-view 3D scene reconstruction involves a set
of images with significant relative geometric distortions (because of different
exterior and interior parameters of cameras ised for image acquisition). This
complicates the search for initial stereo correspondences for starting an iterative
process of simultaneous cameras calibration and 3D surface recovery [5, 7, 8]. If
the images form a sequence such that each neighbouring pair has rather small
geometric deviations, then the search for correspondences is usually reduced to
detection of identical points-of-interest (POI) such as corners [5, 8]. But generally
due to significant geometric and photometric image distortions, the identical
POIs may not be simultaneously detected in different images. Therefore it is
more reliable to directly match large image areas by taking account of possible
relative distortions.

We restrict our consideration to the simplified case when image distortions
can be closely approximated by affine transformations [6, 10]. Then the least
square correlation [2, 3, 4] can be used for finding a transformation that yields
the largest cross-correlation of the images.

The least square correlation is widely used in computational binocular stereo
if relative geometric distortions in a stereo pair are comparatively small [3, 4]. In
this case, although the correlation function is generally multimodal, the gradient
(steepest ascent) search is used to find the maximum correlation [2]. Such a
search is based on normal equations obtained by linear approximation of the
cross-correlation function in the vicinity of a starting point in the space of affine
parameters.



The straightforward gradient search is not workable in the multiple-view case
because of larger relative distortions of the images. The globally optimum match
can be, in principle, found by exhausting all the values of affine parameters in a
given range of possible distortions. But this is not computationally feasible.

In this paper we consider more practical (but only suboptimum) approach
combining an exhaustion of some affine parameters over a sparse grid of their
values with a directed search for all the parameters starting from every grid po-
sition. The directed search is based on a modified Hooke-Jeeves unconstrained
optimization [1]. The proposed modification is intended to take account of the
multi-modality of cross-correlation. Feasibility of the proposed approach is illus-
trated by experiments with the RADIUS multiple-view images of a 3D model
board scene [9].

2 Basic notation

Let R; be a finite arithmetic lattice supporting a greyscale image g; : R; — G
where G is a finite set of grey values. Let (z,y) € R; denote a pixel with the
column coordinate 2 and row coordinate y. For simplicity, the origin (0,0) of the
(z,y)-coordinates is assumed to coincide with the lattice centre.

Let g1 be a rectangular prototype matched in the image g» to a quadrangular
area specified by an affine transformation a = [aq,...,as]. The transformation
relates each pixel (z,y) in the prototype g; to the point (za,ya) in the image g»:

Ta = a1 + a2y + as; (1)
Ya = a4 +asy + ae.

The affine parameters (as,as), (a2,a4), and (as,aq) describe, respectively, the
2- and y-scaling, shearing, and shifting of g» with respect to gy.

Grey levels ga(2a,¥a) in the points with non-integer coordinates (za,ya) are
found by interpolating grey values in the neighbouring pixels of the lattice Ro. If
the transformed point (za,ya) falls outside of the lattice, then the original pixel
(z,y) € Ry is assumed to be excluded from matching.

The least square cross-correlation

C(a’) = max{C(a)} 2)
maximizes by the affine parameters a the conventional cross-correlation
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between the prototype ¢g; and affinely transformed image g,. Here, m and s are
the mean values and standard deviations, respectively:
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and Ry o = {(z,9) : ((z,y) € R1) A ((za,ya) € Ra)} denotes the sublattice
which actually takes part in matching the prototype ¢y and the affinely trans-
formed image g5.

3 Combined search for suboptimal affine parameters

To approach the least square correlation in Eq. (2), we use the following com-
bined exhaustive and directed search in the affine parameter space. For each
given prototype g1, a sparse grid of the relative shifts ago] and ag)] of the match-
ing area in the image go is exhausted. Starting from each grid position, the
modified Hooke—Jeeves directed optimization [1] is used to maximize the cross-
correlation C(a) by all six affine parameters. The largest correlation over the
grid provides the desired affine parameters a* of the (sub)optimal match.

The modified Hooke-Jeeves optimization consists of the following two suc-
cessive stages which are repeated iteratively while the correlation value C(a)
continues to increase. Each parameter a;, ¢ = 1,...,6, varies in a given range
[@i,min, Gi;max), and the search starts with the initial parameter values al0l =

[1,0,a{”,0,1,a].

1. Ezxploration stage. At each step t = 1,2,...,T, the locally best parameter,
4, is chosen by changing each parameter i € {1,...,6} under the fixed val-
ues, [a%_l] : k# 4k e {1,...,6}], of other parameters. The choice yields the
largest increase of the correlation C(all) with respect to C(al*~ 1) providing
the parameters all and al*~1! differ by only the value of the locally best pa-
rameter jll. The exploration steps are repeated while the cross-correlation
C(al) increases further.

2. Search stage. The affine parameters ay = ar + Ad are changed in the con-
jectured direction d = al”l — al% of the steepest increase while the cross-
correlation C'(ay) increases further.

Each exploration step exhausts a given number L of the equispaced param-
eter values in their range to approach the local correlation maximum along a
parameter axis, given the fixed previous values of all other parameters. In the
experiments below L = 3,...,15. The quadratic approximation of these L corre-
lations provides another possible position of the local maximum. The maximum
of the L + 1 values found is then locally refined using small increments +4; of
the parameter.

The exploration steps converge to a final local maximum value C(al’), and
the parameters al’l allow for inferring the possible steepest ascent direction in
the parameter space. The search along that direction refines further the obtained
least square correlation.

The proposed algorithm replaces the coordinate-wise local search for the clos-
est correlation maximum of the original Hooke-Jeeves exploration stage with
the combined exhaustive and directed search. This allows to roughly take into
account the multimodal character of the cross-correlation function in the pa-
rameter space and escape some non-characteristic minor modes. Figure 1 shows
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Fig. 1. Typical cross-correlations at the exploration steps.

the typical multi-modal dependence of the cross-correlation from a single affine
parameter, given the fixed values of other affine parameters.

Comparing to the conventional least square matching [2], our algorithm does
not linearize the correlation function in the parameter space and hence does not
build and use the normal equation matrix. This latter is usually ill-conditioned
because it depends on the image derivatives with respect to affine parameters.

4 Experiments with the RADIUS images

Image pairs M15-M28, M24-M25, and M29-M30 selected for experiments from
the RADIUS-M set [9] are shown in Figure 2. The images of size 122 x 96 and
244 x 192 represent, respectively, the top and the next—to—top levels of image
pyramids. Each pyramid is built by reducing the original image 1350 x 1035 to
976 x 768 at the first level and then by the twofold demagnification at each next
level of the pyramid.

Some results of matching the top—level image pairs in Figure 2 using the
rectangular prototype windows of size 49 x 81 are shown in Table 1 and Figure 3.
The prototype g is placed to the central position (61,48) in the initial image. In
these experiments, the search grid 5 x 5 of step 5 in both directions is centered
to the same position (61,48) in the other image (that is, the shift parameters
for the central grid point are ag)] =0 and ag)] = 0), and the parameter L = 11.

In all our experiments the ranges of the affine parameters ay, a4 and as,as



Fig. 2. RADIUS images M15-M28 (a), M24-M25 (b), and M29-M30 (c) at the top
and next—to—top pyramid level.

Fig. 3. Initial top-level RADIUS images M15 (a), M28 (c), M24 (e), M25 (g), M29
(i), M30 (k) and the affinely transformed images M28 (b), M15 (d), M25 (f), M24 (h),
M30 (§), M29 (1) adjusted to M15, M28, M24, M25, M29, M30, respectively, with the
parameters presented in Table 1.



Table 1. The least square correlation values and the corresponding
affine parameters obtained by matching the top—level RADIUS images
M15-M28, M24-M25, and M29-M30 in Figure 3.

Transformation(|C(a*) Affine parameters a*

ai| a3 a3| ai| ai| ad
M28 to M15 0.62(|1.03| 0.35| 18.4/-0.50{1.05| 5.6
M15 to M28 0.52((0.90|-0.30|-11.0| 0.30|0.70| -7.0
M25 to M24 0.66/(0.90| 0.00| 2.0| 0.00{1.00(-10.8
M24 to M25 0.79((1.12|-0.02| -3.2|-0.02|0.90| 7.5
M30 to M29 0.69((1.00| 0.00| 2.0/-0.01|0.77| 3.0
M29 to M30 0.64((0.97| 0.00| -2.0| 0.00|1.23| -5.0

Table 2. Characteristics of the prototype windows to be matched, the least square
correlation values, and the affine parameters found by matching,.

Fig. 4Window| Position |Search grid| L||C(a*) Affine parameters a*

size in gi| in gs| size | step ai| a3 a3| ai| ai| aj
a |50 x 35| 85,55 90,50(5 x 5| 10 | 3| 0.67 ||1.11]0.50{11.0{-0.50|1.23|14.0
b |50 x 35| 94,53| 97,57|5 x5 10 | 3|| 0.69 (|1.10[{0.50(10.0|-0.50(1.24| 9.0
¢ |50 x 35| 90,50 95,55/5 x5 10 | 3|l 0.69 ||{1.09|0.50| 8.3|-0.50{1.24|10.0
d |50 x 35| 80,65/100,65(5 x 5| 10 | 3| 0.69 |{1.09|0.50|15.2|-0.50|1.20(19.0
e |50 x 35| 94,563|105,65|5 x 5| 10 | 3|| 0.70 ||1.09(0.50|10.0|-0.50|1.24| 8.9
f |50 % 35| 97,56(109,69/5 x 5| 10 | 3| 0.71 ||1.08]0.50|{11.8/-0.50|1.25| 8.0
g |50 % 35(100,59(110,70({5 x 5| 10 |15|| 0.72 ||1.10|0.50|14.0(-0.50|1.21| 8.0
h |50 x 35| 99,58/111,71|5 x 5| 10 | 3|l 0.72 {|]1.10|0.50(13.0|-0.50{1.23| 7.8
i |50 % 35|100,59/110,70|3 x 3| 10 | 7| 0.73 ||1.13]0.50|14.0|-0.54|1.28| 7.7
] 50 x 50{100,59(110,70|1 x 1| 10 |11} 0.73 |{1.10/0.50|14.0|-0.50{1.24| 7.0
k |50 x 35(100,59(110,70{5 x 5| 10 | 3|| 0.73 |{1.10|0.50|14.0(-0.50|1.26| 7.4
1 |50 % 35| 99,58/110,70(5 x 5| 10 | 3|| 0.73 [|1.11]0.50(13.4|-0.50|1.22| 7.9

are [0.5,1.5] and [—0.5,0.5], respectively. The ranges of the parameters az and
ag are given by the width and height of the chosen prototype window.

In these cases, the least square correlation matching allows, at least as a first
approximation, to relatively orient all the three image pairs. For comparison,
Table 4 presents results of matching the top—level images M15 and M28 using
the two larger prototype windows of size 71 x 51 and 81 x 61 placed to the central
position (60, 50) in M15. Here, the search grid 5 x 5 of step 10 is sequentially
centered to the nine neighbouring positions (60 £ 1,50 &+ 1) in M28. Although
the photometric distortions of the images are non-uniform, the median values
of the obtained affine parameters [a],...,af] for the confident matches with
C(a*) > 0.55 are quite similar to the like parameters in Table 1.

Tables 2 — 3 and Figures 4 — 5 show results of matching the images M15 and



Table 3. Characteristics of the prototypes to be matched, the least square correlation
values, and the affine parameters found by matching.

Fig. 4Window| Position |Search grid| L||C(a") Affine parameters a

size in g1| in g»| size | step af| a3 a3| ail ai| af
50 x 35|100,60(100,60(5 x 5| 15 | 5|| 0.49 {|0.54| 0.06] 31.0{0.21|0.86| -2.5
50 x 50(110,70{100,60|5 x 5| 10 | 3|| 0.52 [|0.75|-0.28|-12.0{0.12|1.00| -4.0
50 x 50{100,65(100,65|5 x 5| 10 |15|| 0.53 (|0.83|-0.29| -7.0|0.14|0.97| -6.3
75 x 50(100,65100,65|5 x 5| 10 (15| 0.53 [|0.83]-0.29| -7.0/0.14|0.97| -6.3
50 x 35(100,60(100,60|5 x 5| 10 |15|| 0.68 (|0.75|-0.36|-10.0|0.32|0.66|-10.0
50 x 50{100,60(100,60|5 x 5| 10 |15|| 0.69 ||0.74|-0.32| -9.0|0.29|0.68|-10.0
50 x 50(110,70{100,60|5 x 5| 10 (11| 0.71 ||0.77|-0.30|-14.0{0.30|0.70|-10.0
50 x 50{110,70(100,60|5 x 5| 10 | 5|| 0.71 (|0.75|-0.30|-14.0|0.31|0.69|-10.0
50 x 35(100,65/100,65|5 x 5| 10 (15|| 0.71 [|0.75|-0.29|-10.0|0.32|0.64|-11.0
50 x 50(100,59(110,70|1 x 1| 10 (11| 0.72 ||0.76|-0.28|-14.0|0.33|0.67|-10.3
50 x 35(110,70(110,70|5 x 5| 10 | 3|| 0.72 (|0.77|-0.31|-14.0|0.32|0.68|-10.0
50 x 35(110,70(100,60|5 x 5| 15 | 5|| 0.72 (|0.76|-0.31|-14.0|0.32|0.68|-10.0
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Table 4. Central positions of the search grid in M28, the least square correlation
values, and the affine parameters found by matching M28 to M15.

Window |Position|| C(a*) Affine parameters a*
size |in M28 ai|l a3 a3| ai| ai|ag
71 x 51| 59,49 || 0.66 ||1.10|0.50{18.0|-0.50|1.21|3.0
60,49 || 0.59 ||1.10/0.40{18.0|-0.50|1.10|5.0
61,49 || 0.59 |1.10/0.40{18.0|-0.50|1.10|5.0
59,50 || 0.67 ||1.09/0.48/18.0|-0.50|1.20|3.0
60,50 || 0.67 ||1.09/0.48|18.0|-0.50(1.20|3.0
61,50 || 0.67 ||1.09/0.48/18.0|-0.50|1.20|3.0
59,51 || 0.54 ||1.10/0.30{19.0|-0.50|1.00|7.0
60,51 || 0.52 ||1.00(0.30/20.0|-0.56(1.00|7.0
61,51 || 0.53 ||1.00/0.40{20.0|-0.56|1.28|4.0
Median parameter values
for the confident matches|1.09(0.48|18.0/-0.50{1.20|4.0
81 x 61| 59,49 || 0.55 {|1.02|0.50{16.0|-0.40|1.10|6.0
60,49 || 0.58 ||1.10/0.44/18.0|-0.50|1.36|5.0
61,49 0.65 {|1.10/0.44|18.0|-0.50(1.20|3.0
59,50 || 0.55 ||1.02|0.50{16.0|-0.40|1.10|6.0
60,50 || 0.58 ||1.10/0.44/18.0|-0.50|1.36|5.0
61,50 || 0.65 ||1.10/0.44/18.0|-0.50|1.20|3.0
59,51 || 0.55 ||1.02|0.50{16.0|-0.40|1.10|6.0
60,51 || 0.57 ||1.00/0.50{15.4|-0.50|1.20|4.0
61,51 || 0.60 ||1.05/0.50{16.0|-0.50|1.20|4.0
Median parameter values
for the confident matches|1.10|0.50(/16.0|-0.50|1.20|5.0




Fig. 4. Next—to—top image M28 affinely adjusted to M15 using the affine parame-
ters in Table 2. The dark rectangles show positions of the prototype windows and
the grey-coded values of the residual pixel-wise errors for the least square correlation
matching.

M28 on the next—to—top level of the pyramids. Here, different. prototype windows
and various search grids and approximation orders are compared. The position
of the prototype window with respect to the image is shown by a dark rectangle
giving the grey—coded residual pixel-wise errors of matching (the darker the
pixel, the smaller the error).

The matching results are mostly similar although in the general case they
depend on the search characteristics, in particular, on the chosen search grid
and the parameter L (e.g., Figures 5,a,b,e,g, and the corresponding data in Ta-
ble 3). Also, the larger prototype windows may affect the precision of the affine



Fig. 5. Next—to—top image M15 affinely adjusted to M28 using the affine parameters
in Table 2. The dark rectangles show positions of the prototypes and the grey-coded
values of the residual pixel-wise errors for the least square correlation matching.

approximation of actually projective image distortions (Figures 5,c,d,i).
The median values of the obtained affine parameters [a], .. ., af] for the seven
best matches are as follows:

g1 — & ai| a3 a3 aj ag| ag
M15-M28:|[1.10| 0.50| 14.0(-0.50(1.24| 7.9
M28-M15:(/0.75[-0.30]-14.0| 0.32]0.68|-10.0

These values are close to the parameters found by matching the top—level images
so that the fast top—level matching can provide a first approximation of the
relative geometric distortions of these images to be refined at the next levels



of the image pyramids. Similar results are also obtained for the image pairs
M24-M25 and M29-M30 as well as for other RADIUS images (e.g., M24-M10,
M10-M11, M11-M19, M19-M20, M&8-M9, M9-M23, M23-M29, M30-M36, etc).

5 Concluding remarks

These and other experiments show that the proposed modified Hooke-Jeeves
optimisation algorithm permits us to successfully match large-size areas in the
multiple-view images of a 3D scene by the least square correlation, provided
the relative image distortions can be affinely approximated. This approach has
a moderate computational complexity, hence in principle it can be used at the
initial stage of the uncalibrated multiple-view terrain reconstruction.

The approach exploits almost no prior information about a 3D scene, ex-
cept for the ranges of the affine parameters for matching. Also, the final cross-
correlation value provides a confidence measure for the obtained results: if the
correlation is less than or equal to 0.5 — 0.55, one may conclude that the matching
fails, otherwise the larger the correlation, the higher the confidence and, in the
most cases, the better the affine approximation of the relative image distortions.
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