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Abstract. Inheritance is a distinguishing feature of object-oriented programming

languages, but its application in practice remains poorly understood. Program-

mers employ inheritance for a number of different purposes: to provide subtyping,

to reuse code, to allow subclasses to customise superclasses’ behaviour, or just

to categorise objects. We present an empirical study of 93 open-source Java soft-

ware systems consisting over over 200,000 classes and interfaces, supplemented

by longitudinal analyses of 43 versions of two systems. Our analysis finds inher-

itance is used for two main reasons: to support subtyping and to permit what we

call external code reuse. This is the first empirical study to indicate what pro-

grammers do with inheritance.

1 Introduction

Inheritance is a concept that is given significant visibility to those learning object-

oriented design, with texts on object-oriented programming often devoting several chap-

ters to the subject (e.g. [4]). This raises the question of to what degree is inheritance

actually used. In previous work we measured how much inheritance was used in a soft-

ware system in terms of how often a developermade the decision to create an inheritance

relationship between two types [27]. What we found was, on average, 3 out of 4 types

were defined using some form of inheritance: inheritance is clearly important within

Java programs.

Our results however do not tell the full story with regards inheritance use. While

they tell us how much inheritance is used, they do not tell us what the designer uses it

for, they do not tell us to what degree its use is necessary. It may be that some of the

use we have observed is not appropriate use of inheritance. The main goal of the study

presented in this paper is to determine whether or not this is the case. If the use is mainly

appropriate, then this is important to know for two reasons. The first is that our earlier

results becomemuchmore relevant in demonstrating the importance of inheritance. The

second reason is the systems we analysed provide a benchmark for how inheritance is

used.

Our previous study simply measured the amount of inheritance in programs, that

is, what inheritance relationships exist between types. We only had to look at the

extends and implements clauses of type declarations. In this study, we must look



at the implementation of each method to understand how those inheritance relation-

ships were actually exercised. Whereas our last study considered the question “How do

programs use inheritance?”, in this study our question is “What do programmers do

with inheritance?”, that is, having made the decision to use inheritance at the design

level, what benefits follow from the use of inheritance. We are particularly interested

in discovering unnecessary uses of inheritance, that is, cases where an inheritance re-

lationship exists, but where it is not required. We address this question by studying a

large corpus of open source Java systems.

This paper makes the following contributions:

– We develop a model of inheritance that represents how inheritance is used.

– We present the results of evaluating a corpus of open source Java systems against

our model of inheritance, and make our data set available.

– Our overall conclusion is that inheritance in Java is mostly used to support subtyp-

ing and to permit external reuse. Additionally, a significant fraction of subclasses

rely on polymorphic self-calls to customise their superclasses’ methods’ behaviour.

The rest of the paper is organised as follows. In the next section, we identify four

research questions by considering previous discussions of why inheritance is used. Sec-

tion 3 discuses inheritance in Java in detail, a necessary precursor to section 4, which

presents our model of inheritance and the methodology of our study. In section 5 we

present our results, and discuss their consequences in section 6. Finally, we present

conclusions and discuss future work in section 7.

2 Motivation and Research Questions

There is much discussion in the research literature and trade press on inheritance as

it applies to software, but there seems to be little on understanding how it is actually

used. There seems to be a considerable uncertainty as to what it is or how to use it, if

the number of web sites, blogs, and articles in the trade press are anything to go by.

At the same time, there are quite public criticisms of inheritance, through writings with

provocative titles such as “Why extends is evil” [15] or “Inheritance is evil, and must

be destroyed” [23]. Examining such criticisms, we might conclude they are overstating

the case based on a small set of examples, as there is little objective evidence that the

problems they identify are widespread. Nevertheless, authors such as Gamma et al.

instruct us to “Favor object composition over class inheritance” [12], which suggests

they at least have seen enough questionable use of inheritance as to prompt such advice.

Within the research community, the recent focus has been on measuring inheritance

with the hope of understanding the relationship between its use and some notion of

quality of the software. For example Chidamber and Kemerer introduced the DIT and

NOC metrics that measure two aspects of a individual class’ use of inheritance [8, 7].

There have been several studies to establish the relationship between measurements

from these and similar metrics and quality attributes such as maintenance ([18]) or

prediction of fault prone classes [1, 3].

We detail three further related studies, those by Daly et al. [10], Cartwright [6],

and Harrison et al [14]. Daly et al. examined the impact of depth of inheritance on



maintenance, with the conclusion that inheritance had a negative effect on maintenance

time. In a rare replication Cartwright carried out a similar study, with results suggesting

that inheritance had a positive effect on maintenance. Another replication was carried

out by Harrison et al. Their results suggest that inheritance made it harder to modify

systems, but that size and functionality of a system may affect understandability more

than the “amount of inheritance” used.

There could be several explanations for these inconsistent results. For example, it

could be that the systems under study were too small for inheritance to be the main

factor affecting maintenance effort. It could also be possible that the uses of inheritance

were not the same in all studies, or that depth of inheritance is not sufficient to charac-

terise how inheritance is used. For example, as we have previously reported, different

uses of overriding could explain the variation [26]. Another possibility, which we ex-

plore in this paper, is that programmers choose to use inheritance for different reasons.

It could have been that the systems in the different studies used inheritance for different

purposes, meaning the studies were not in fact comparing like with like.

In the early discussions of inheritance, there was much debate as to how it could be

used, how languages should provide it, and whether it was even a good idea. Inheritance

has been the subject of much discussion within the research community, The discussion

explored such things as its interaction with encapsulation [22], how type systems are

affected by inheritance [9], how it relates to other features such as genericity [19], or

whether variants such as multiple inheritance are worth having [5, 29].

Of particular interest to us are two reports of how inheritance is or can be used.

Meyer described what he regarded as 12 different valid uses of inheritance [20]. Taival-

saari discussed the many varieties and uses of inheritance, and provided a taxonomy

for analysing inheritance [24]. Taivalsaari also observed that there seemed to be many

benefits compared to other programming language features, but – crucially— described

inheritance “an incremental modification mechanism in the presence of late-bound self-

reference” and concluded that this seemed to be its most profound benefit. This con-

clusion is interesting. Late-bound self-reference — that method invocations on this

(in Java) are also polymorphic as with any method invocation — is a feature of object-

oriented languages that usually does not get much attention, and in some cases not much

language support (e.g. Go [21]). This gives us our first research question:

RQ1: To what extent is late-bound self-reference relied on in the designs of Java sys-

tems?

Neither Taivalsaari nor Meyer provided empirical evidence to support their conclu-

sions, and some of the uses of inheritance they described have no obvious operationali-

sation. These papers are also now quite old, raising the question as to howmuch of what

they describe is still relevant, however they provide a useful starting point for under-

standing inheritance. In particular, Taivalsaari’s taxonomy identifies three dimensions

for analysing inheritance — what he called incremental modification, property inheri-

tance, and interface inheritance. This provides a good basis for an empirical study, as

we discuss in the next section.

Taivalsaari also observes that one view of inheritance is that it supports concep-

tual specialisation, but he and others have observed that most languages allow a class



that inherits to almost arbitrarily change its behaviour, and so in such cases the in-

heritance relationship would not reflect true conceptual specialisation. He comments,

however, that “Subtyping, on the other hand, expresses conceptual specialization” and

summarises the then thinking on the relationship between inheritance and subtyping. In

Java, the subtype relationship is expressed using the Java inheritance mechanisms, and

we will discuss this in more detail in the next section.

Taivalsaari also comments “In fact, the use of inheritance for conceptual specializa-

tion seems to be an ideal that is rarely realized” referring to Smalltalk and C++ libraries

of the day. This is a surprising claim, as if true it would mean that the subtype rela-

tionship is “rarely” used. This has not been our experience with Java code, and in fact

there is advice advocating using inheritance for subtyping. For example, Bloch says

“Inheritance is appropriate only in circumstances where the subclass really is a subtype

of the superclass” [2](p85).We know of no empirical evidence to support or refute such

a claim. This leads to our next question:

RQ2: To what extent is inheritance used in Java in order to express a subtype relation-

ship that is necessary to the design?

We will discuss the details of what it means to be “necessary” in section 4.

While Meyer (and to a lesser extent Taivalsaari) discuss a number of ways inher-

itance might be used, contemporary advice seems to be more conservative. As noted

above, Gamma et al. caution against some forms of use. Bloch repeats the advice “Fa-

vor composition over inheritance” [2](Item 16) and provides a compelling example to

support this. The advice is based on the argument that the form of inheritance referred

to by Gamma et al. and Bloch fundamentally is an implementation decision. As such,

inheritance breaks encapsulation, as observed previously by Snyder [22]. In fact Bloch

shows a mechanical procedure to convert from this use of inheritance to composition

(replacing inheritance with delegation).

Given that advice by such prominent authors is to avoid inheritance where possi-

ble, we might expect that there is infrequent use of form of inheritance they refer to.

Specifically, we might expect that inheritance is avoided in favour of composition. It is

difficult to tell when something is being avoided, but we can tell when it is not, so for

our next research question we ask:

RQ3: To what extent can inheritance be replaced by composition?

There has been other discussion regarding use of inheritance either directly or in-

directly. For example, Johnson and Foote discuss how features of object-oriented lan-

guages, including inheritance, can be used to develop reusable code [16]. In a similar

vein, various specific uses have been recorded [12, 13]. We do not repeat this work, but

are interested in identifying any inheritance idioms in common use:

RQ4: What other inheritance idioms are in common use in Java systems?



3 Understanding Inheritance

In order to measure how inheritance is used, we need to understand what it means.

The study we present is of Java code, and so some of the details are Java specific.

For example, by “inheritance” we mean when a Java type (class, interface, annotation,

enum) extends or implements another type. While the details are Java specific,

we believe the general concepts apply to most object-oriented languages.

class P { class C extends P {

void p() { void c() {

q(); q();// internal

} }

void q() { }

...

}

}

class M { class D extends P {

void m(P aP) { void q() {

aP.p(); ...

} }

} }

class N {

void useReuse() {

C aC = new C();

aC.p(); // external

}

void useSubtype() {

M anM = new M();

C aC = new C();

anM.m(aC); // subtype

D aD = new D();

aD.p(); // downcall

}

}

Fig. 1.Uses of Inheritance: “external reuse”, “internal reuse”, and “subtype”. Modifiers have been

elided.

3.1 Use of Inheritance

Inheritance is often presented as what Taivalsaari refers to as “property inheritance” —

one class (the child) acquires properties of another (the parent) by inheriting them. This

is one way in which inheritance supports reuse; the inheriting class can be written faster



because the inherited code does not have to be rewritten. This is illustrated in Figure

1. In the method N#useReuse() the method p() is invoked on an instance of C,

however the code that is actually executed was not written for C but C has acquired it

through inheriting (extending) P. Note that p() was accessed from outside the class C,

which we refer to as external reuse. The method C#c() also makes use of an inherited

method, but does so from within C, which we refer to as internal reuse. Figure 2 shows

a more well-known example of internal reuse.

class Stack<E> extends Vector<E> {

...

public E push(E item) {

addElement(item);

return item;

}

...

}

Fig. 2. Stack demonstrates internal reuse by making a “self-call” (in bold) on its parent Vector

as part of the implementation of one of its methods.

For external or internal reuse, every access to a member of a type is examined. If

the member is not declared in that type, then it is some form of reuse. If the type that

the member is declared in is an ancestor of type containing the code where the access

takes place, then it is internal reuse, otherwise it is external reuse.

If a child class has all of the properties of a parent class, then it seems reasonable

to expect that an object from the child can be used wherever an object from the parent

is expected. This is Taivalsaari’s interface inheritance dimension, although it is perhaps

best known as the Liskov Substitution Principle [17]. This ability to substitute child

objects for parent objects is formally recognised in the Java type system by regarding

the type associated with the child class to be a subtype of that associated with the parent

class. In the method N#useSubtype() in Figure 1, an instance of C is legally passed

to the method M#m(P), even though that method expects an instance of P. Without the

subtype relationship, the code in N#useSubtype() would have to be duplicated in

order to handle types other than P.

As noted in the previous section, many languages, Java included, allow the inher-

iting class to change what it inherits. The mechanism for doing so (for methods) is

overriding. While doing so can result in inheritance no longer corresponding to con-

ceptual specialisation, it can also allow quite sophisticated behaviour to be described.

Taivalsaari includes this in his incremental modification dimension, but it is the late-

bound self-reference aspect of it that is of interest to us. In figure 1, when aD.p() in

N#useSubtype() executes, it invokes P#p() which in turn uses the (implied) self-

reference to invoke q(). However in this case, the late binding of the self-reference



means that it is actually D#q() that is called. Late bound self-reference means one

method can call another “below” it in the inheritance hierarchy, which we refer to as a

downcall for brevity.

The uses described above come from the standard descriptions of inheritance. We

are aware of other possibilities. One idiom is the constants interface, where an interface

is a repository of useful constants, and any class “implementing” it can use those con-

stants without the need to qualify them. While this practice is no longer recommended

[2], it does represent a use of inheritance. Another idiom is the so-called “marker” in-

terface. Such interfaces have no members, but it is necessary that classes implement to

indicate they have certain capabilities that have no associated methods.

4 Methodology

Our goal is to determine why developers havemade the decision to create an inheritance

relationship between two types, that is, what purpose did they likely have in mind? We

can infer this by examining the use they make of the relationship. We then measure the

uses with respect to a collection of systems.

4.1 Modelling Inheritance

Metrics can be defined by different means [11]. One means is to base the definitions on

a model of what is to be measured. The measurements we present in this work come

from metrics based on the model of how inheritance is used in software, which we call

the inheritance graph.

Measurement assigns numbers to attributes of entities, and it is the entities that we

model. We want to measure the software that makes up what we generically refer to

as a “system,” however defining exactly what this is is difficult, as we have discussed

elsewhere [25]. To resolve these difficulties we consider a system to be just those types

that were created for that system. This excludes the Java Standard API and third-party

libraries, a decision whose consequences we discuss further in Section 4.2.

For this study, we limit the types to just classes and interfaces, and furthermore, for

classes we do not include exceptions (generally, types that are descendants of java.

lang.Throwable). Enums, annotations, and exceptions are all defined using inher-

itance and so this use of inheritance is not a choice by the developer.

For a given system, its inheritance graph is a directed graph where the vertices

include any type (class or interface) associated with the system implementation and the

edges connecting these types that have some kind of inheritance relationship (extends

or implements). This means we do not model edges between system types and non

system types (third-party code). The vertices are named by the fully qualified name of

the type they represent.

The edges have a set of attributes that capture the information for this study, which

defined below. Direct metrics are then defined in terms of boolean expressions describ-

ing the presence or absence of attributes on edges. Some attributes represent properties

inherent in the system code, some represent what we have observed in the system code



in terms of why the inheritance relationships are needed, and some represent informa-

tion that has been established only by heuristics. We will indicate which applies when

necessary. In the interests of brevity, we will uses phrases such as “subtype edges”,

by which we mean “inheritance relationships that we observed were relied on for the

purpose of supporting the subtype relationship.”

CC, CI, II: An edge will have one of these attributes if it represents a Class-Class

(extends), a Class-Interface (implements), or an Interface-Interface (extends)

relationship between system types.

External Reuse: An edge from types S (child) to T (parent) has the external reuse

attribute if there is a class E that has no inheritance relationship with T (or S), it

invokes a method m() or accesses a field f on an object declared to be of type S,

and m() or f is declared in T.

The class E is using amember of S that was not declared in S, which is only possible

because S has an inheritance relationship with T, so the inheritance relationship

is necessary for this to be possible. This definition does not assume S and T are

classes, but we only discuss external reuse with respect to classes in this paper.

Internal Reuse: An edge from classes A (child) to B (parent) has the internal reuse

attribute when a method declared in A invokes a method m() or accesses a field f

on an object constructed from A and m() or f is declared in B.

Without the stated inheritance relationship, it would not be possible to invoke m()

or access f in this way.

Subtype: An edge from types S (child) to T (parent) has the subtype attribute when

there is a class E (which could be S or T) in which an object of type S is supplied

where an object of type T is expected. Within E, this might be assigning an object

of type S to a variable declared to be type T, passing an actual parameter of type

S to a formal parameter of type T, returning an object of type S when the formal

return type is T, or casting an expression of type S to type T.

Without the stated inheritance relationship, S would not be a subtype of T, and so

the substitutionwould not be possible. This means that this relationship is necessary

for the correct behaviour of the code.

Downcall: An edge from classes C (child) to D (parent) has the downcall attribute when

a method c() declared in D invokes a method m() that is declared in C.

The inheritance relationship in necessary for c() to invoke m(). The method m()

must be declared in D or an ancestor of D, so c() is making a self-call to m(), but

C overrides that declaration. The object on which the invocation takes place must

be constructed from C or one of its descendants.

Framework: An edge from types P to Q that does not have external reuse, internal

reuse, subtype, or downcall, has the framework attribute if Q is a descendant of a

third-party type. (See also Section 4.3.)

Constants: An edge from types E to F has the constants attribute if F has only fields

declared in it and the fields are constants (static final), and all outgoing edges

from F either have the constants attribute or are to java.lang.Object.

The type F can be either an interface or a class.

Marker: An edge from type G to interface H has the marker attribute if H has nothing

declared in it, and all outgoing edges from H have the marker attribute.



ant-1.8.1 antlr-3.2 aoi-2.8.1 argouml-0.30.2 aspectj-1.6.9 axion-1.0-M2 c_jdbc-2.0.2

castor-1.3.1 cayenne-3.0.1 checkstyle-5.1 cobertura-1.9.4.1 colt-1.2.0 columba-1.0 derby-

10.6.1.0 displaytag-1.2 drawswf-1.2.9 drjava-stable-20100913-r5387 emma-2.0.5312

exoportal-v1.0.2 findbugs-1.3.9 fitjava-1.1 fitlibraryforfitnesse-20100806 freecol-0.9.4

freecs-1.3.20100406 galleon-2.3.0 ganttproject-2.0.9 heritrix-1.14.4 hibernate-3.6.0-beta4

hsqldb-2.0.0 htmlunit-2.8 informa-0.7.0-alpha2 ireport-3.7.5 itext-5.0.3 jFin_DateMath-

R1.0.1 james-2.2.0 jasml-0.10 javacc-5.0 jchempaint-3.0.1 jedit-4.3.2 jext-5.0 jfreechart-

1.0.13 jgraph-5.13.0.0 jgraphpad-5.10.0.2 jgrapht-0.8.1 jgroups-2.10.0 jhotdraw-7.5.1

jmeter-2.4 jmoney-0.4.4 joggplayer-1.1.4s jparse-0.96 jpf-1.0.2 jrat-0.6 jre-1.5.0_22

jrefactory-2.9.19 jruby-1.5.2 jsXe-04_beta jspwiki-2.8.4 jtopen-7.1 jung-2.0.1 junit-

4.8.2 log4j-1.2.16 lucene-2.4.1 marauroa-3.8.1 maven-3.0 megamek-0.35.18 mvnforum-

1.2.2-ga myfaces_core-2.0.2 nakedobjects-4.0.0 nekohtml-1.9.14 openjms-0.7.7-beta-1

oscache-2.4.1 picocontainer-2.10.2 pmd-4.2.5 poi-3.6 pooka-3.0-080505 proguard-4.5.1

quickserver-1.4.7 quilt-0.6-a-5 roller-4.0.1 rssowl-2.0.5 sablecc-3.1 springframework-1.2.7

squirrel_sql-3.1.2 struts-2.2.1 sunflow-0.07.2 tapestry-5.1.0.5 tomcat-7.0.2 trove-2.1.0

velocity-1.6.4 webmail-0.7.10 weka-3.7.2 xalan-2.7.1 xerces-2.10.0

Fig. 3. Systems studied, including version identifier.

Super: An edge from class K to class L has the super attribute if a constructor for K

explicitly invokes a constructor in L via super. (See also Section 4.2.)

Generic: An edge from type R to type S has the generic attribute if there has been a

cast from Object to S and there is an edge from R to some (non-Object) type

T. (See also Section 4.3.)

4.2 Study Details

We studied the 93 open-source Java systems from the 20101126 release of the Qualitas

Corpus [25] listed in Figure 3. Not all systems from this release of the corpus were

included as the tools we used had memory limitations that restricted the size of the sys-

tems that we could analyse. Table 1 gives provides statistics of some of these systems.

We also studied the history of two systems: ant, with 20 releases from version 1.1

to 1.8.1, and freecol, with 23 releases from version 0.3.0 to 0.9.4. We chose these

two systems due to having the data for all releases in the corpus, and because they come

from quite different domains (ant is a build tool with a plug-in architecture and man-

aged through XML documents; freecol is a strategy game with a graphical interface,

multi-media components, client-server architecture, and network communication).

The details of the systems can be found on the corpus website, in particular details

of how we identified types belonging a given system. We analysed the bytecode of

these systems. While most of what was needed for the analysis is in the bytecode, there

is some loss of information as discussed below (Section 4.3).

There are several different kinds of analysis performed. To determine the subtype

attribute, we first examine the code for where substitution can occur. The specific cases

we detect are: passing a parameter, returning a value, assignment, and cast. For example,

if the declared return type of a method is T, but the return statement references a

variable of a different type S, then there must be a subtype relationship between S and



Table 1. Statistics for representative subset of systems studied (version elided). Types— number

of types (including nested) in the system; KLOC — non-commented non-blank lines of code

(thousands); CC, CI, II — number of the respective kinds of edges.

System Types KLOC CC CI II

ant 1202 108 672 290 18

aspectj 3127 412 1142 626 110

derby 2755 593 697 525 91

drjava 5051 62 1269 1119 86

fitjava 85 2 43 0 0

freecol 1542 82 392 127 3

jrat 255 14 34 37 0

jre 11736 831 5735 5102 799

jruby 5783 160 3671 735 12

jsXe 144 9 11 3 0

jtopen 3482 397 1347 687 16

megamek 2969 259 1283 213 10

mvnforum 4194 51 18 45 0

nakedobjects 4963 110 1307 732 349

nekohtml 2016 7 10 8 0

trove 715 2 126 269 0

weka 2125 224 516 1047 10

class MapboardAction extends FreeColAction {

...

}

class LoadAction extends MapboardAction {

...

}

Fig. 4. Classes from freecol illustrating indirect and implicit edges. (Package name and mod-

ifiers elided)

T, and furthermore the relationship is necessary for the code to compile. An example of

the parameter passing case is shown in method N#useSubtypes of Figure 1, where

an object of type C is passed to a method whose formal parameter type is P.

The subtype analysis uses what is essentially a reachability analysis for all reference

type definitions to all uses. Where the type of the def does not match the type of the use,

and since we know the code compiled (as we are analysing bytecode), we know we are

dealing with subtype use. The tool we use is based on the Soot framework [28].

Having identifiedwhen subtype substitution is used, we thenmatch the relationships

required to the relationships expressed in the code. This is necessary because those re-

quired may not be explicit. For example, given the declarations from freecol shown

in Figure 4, it is possible to substitute LoadAction for FreeColAction despite the

fact that there is no direct subtype relationship between these two types. Any code that

depends on such a substitution being possible will result in the edges representing the



C implements P1

C implements P2

void method(P1 p1) {

P2 p2 = (P2)p1; // sideways cast

}

Fig. 5. Example of a “sideways” cast.

class P {

// A constructor expects type P

private A anA = new A(this);

}

class C extends P {

// C is passed to A constructor

}

Fig. 6. Example showing this changing type.

LoadAction – MapboardAction and MapboardAction – FreeColAction

relationships being given the subtype attribute.

There are also two special cases that must be addressed. One is the “sideways” cast,

where Java allows what looks like a cast between unrelated types. In the example in

Figure 5, the cast will be successful provided an instance of C is passed to the method.

Such situations represent use of the subtype relationship between C and its parents, and

so must be detected in order to correctly identify all subtype uses.

The other case involves the pseudo variable this, which can change its type in the

presence of inheritance. This change can indicate the use of a subtype relationship. In

the example in Figure 6, the use of this in the constructor call to A indicates the use

of the subtype relationship between P and C.

For external or internal reuse, every access to a member of a type is examined. If the

member is not declared in that type, then it is some form of reuse. If the type that the

member is declared in is an ancestor of the type containing the code where the access

takes place, then it is internal reuse, otherwise it is external reuse.

If a method invocation is a self-call (whether on a method declared in that class

or due to internal reuse), then it could be a downcall. In such cases, all descendants are

examined and if the method being invoked is overridden, then we make the conservative

assumption that a downcall can take place.

When doing the analysis, we ignore the use of default constructors. There must al-

ways be a call by a class (in its constructors) to the constructor in its parent. This would

look like internal reuse, however it would often happen without any intervention by the

programmer. As we want to understand what decisions programmersmake with respect

to inheritance, we separate out these calls. Since calls via super are somewhat under



package org.jgraph.graph;

...

import javax.swing.TransferHandler;

...

public class GraphTransferHandler

extends TransferHandler {

...

}

Fig. 7. The “framework” problem. Uses of some inheritance relationships may not be visible in

the analysed code.

the control of programmers, we distinguish those from calls to the default constructor

with the super attribute.

Note that we take a very liberal view of when reuse occurs. Whether external reuse

or internal reuse, we will mark inheritance relationships (edges) as such if only one

member is used. This means that a child class might inherit 100methods from its parent,

and only 1 of those 100 methods might be used, but we would still consider this an

indication of reuse.

4.3 Analysis Challenges

Because we do not consider the use of third-party libraries or the Java Standard API, the

purpose of some inheritance relationships cannot be determined. For example, consider

Figure 7 showing the jgraph class GraphTransferHandler. This class inherits

from a class in the Swing framework and so it being substituted forTransferHandler

may only be visible in the Swing implementation, but not in the code we analyse. This

also means that descendants of GraphTransferHandlermight also be substituted

for TransferHandler, but our analysis would not detect this. When we suspect this

situation is possible, the edge will get the “framework” attribute.

Another limitation of our analysis is when generic types are implemented using

casting to and from java.lang.Object. An object of one type can be put into

a generic container and then cast to a different type on its removal. This behaviour

depends on a subtype relationship existing between the two types. When we suspect

this situation is possible, the edge will get the generic attribute.

Bytecode does not always directly map on to source code, and this can effect some

of our analysis. One example is shown in Figure 8. Method invocation is indicated in the

bytecode with an instruction such as INVOKEVIRTUAL, and will include information

on which method is being invoked. In the case of the example, when U is compiled,

we might expect that it is C#parent() that is written into the bytecode as the method

being invoked, as that is a correct representation of what should happen. However, some

compilers will write P#parent into the bytecode. As this information is not used in

method lookup, the difference does not cause problems in execution, but it does affect

model fidelity. It will mean it is possible for some relationships for which external reuse

use occurs in the source code to to not be attributed as such in the model. We have been



unable to reproduce this case ourselves with compilers we have access to, but do know

it happens, albeit rarely, in code in the corpus.

class P {

public void parent() { ... }

}

class C extends P {

public void child() { ... }

}

class U {

void user() {

C aC = new C();

aC.parent();

}

}

Fig. 8. In some cases, the indicated invocation will show P as the invoked type, not C.

5 Results

We present our results here organised around our research questions. Due to the volume

involved, we cannot present all the data3, so we present those results that best indicate

trends, and of systems of interest such as ant, freecol, and jre (the largest system

studied by any measure of size).

5.1 RQ1: Late-bound self-reference

Downcall edges must be CC edges. Figure 9 shows, for each system, the proportion of

CC edges that are downcall edges. The systems are in increasing order of the number

of CC edges. The order was chosen to determine whether or not there was a trend with

respect to this size metric (and the equivalent order will be used for most other charts).

The x-axis labels indicate the order of magnitude of the number of edges (e.g. “00”

indicates from 10
2 up to (not including) 103 edges).

The results indicate quite wide variation between systems, from zero (freecs—

61 edges, jasml — 21, megamek — 1283) to to 86% (jFin_DateMath — 22).

The median is 34% (aoi). For the systems of interest, ant had 28%, freecol had

35%, and jre had 9%.

3 Available from http://www.cs.auckland.ac.nz/~ewan/qualitas/studies/

inheritance.
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Fig. 9. Proportion of CC edges over which downcalls may occur. X-axis labels indicate order of

magnitude of number of CC edges.

Figure 10 shows the downcall proportions for the releases of ant and freecol.

Both show not-trivial uses of downcall (over 20% for ant, and nearly 40% forfreecol),

but both also show quite large changes between some releases (increasing and decreas-

ing).

There is no obvious trend with respect to size as measured by number of CC edges

between user-defined types. Our conclusion is that late-bound self-reference plays a

significant role in the systems we studied — around a third (median 34%) of CC edges

involve downcalls.

5.2 RQ2: Subtype relationship

CC, CI, and II edges can all be subtype edges. We present the results for each kind of

edge separately. For the CC edges, we first identified those CC edges that were at least

one of subtype, external reuse, or internal reuse. Figure 11 shows (bottom segment,

“ST”) the proportion of those CC edges that are subtype edges (other values will be

discussed below), with the systems ordered as in Figure 9.

Again we see wide variation, with the smallest being at 11% (checkstyle), two

with 100% (magemek with 1283 CC edges, jasml with 21), and the median at 76%

(jmeter). The largest system (jre) had a measurement of 95%, indicating that almost

all of the extends relationships between classes had some subtype use within its

implementation.

Figure 12 shows the subtype use of all CI edges in a system. The bottom segment

(“ST”) indicates proportion of CI edges for which subtype use was seen. The second
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Fig. 10. Downcalls ant and freecol (x-axis is release order).)

segment (“SUS”) indicate the proportion of edges for which we suspect there is subtype

use, but limitations of our analysis means we did not directly observe such. We include

these so as to not bias our results against use of subtype. The other segments will be

discussed below.

There is one system (fitjava) with no CI edges. Of the remainder, there are 3

systems (nekohtml, jsXe, and joggplayer) for which all CI edges were subtype

edges, however they all had fewer than 10 CI edges. In a further 4 systems (jasml,

jmoney, jparse, javacc) all CI edges where either subtype, suspected of being

subtype edges. The median use was 69% (checkstyle considering subtype only, or

85% (megamek if including suspected subtype edges. For the other systems of interest,

jre had 82% being subtype edges, or 91% including those suspected, ant had 63%

and 78% respectively, with freecol having 83% and 94%.

Figure 14 shows the use of II edges, with the systems ordered in increasing order of

number of II edges. There are 23 systems with no II edges (and so have no values in the

chart), and 51 systems in total with fewer than 10 edges. As before, the bottom (“ST”)

segment shows the subtype edges. Of these, 13 systems had all II edges being subtype

edges, however the largest (jhotdraw) had only 14 edges. The median use was 63%

(findbugs). Of the systems of interest, jre had 71% (of 799 II edges), ant had

94% (18), and freecol had 67% (3). The system with the second largest number if II

edges (nakedobjects with 349) had 66%.

Our conclusion is that at least two thirds of all inheritance edges are used as subtypes

in the program— inheritance for subtyping is not as rare as Taivalsaari implies [24].

5.3 RQ3: Inheritance vs. Composition

Our interest here is identifying use of inheritance that could have been changed to com-

position using a procedure such as that proposed by Bloch [2]. This procedure would

not apply when the purpose for using inheritancewas to establish a subtype relationship,

so we need to identify those edges that are internal or external reuse, but not subtype.

The procedure described by Bloch can be tedious to apply for parents with many

members, and so it could be argued it is not always practical, however it is much simpler

(and hence requires less effort) when only internal reuse is involved. Consequently we

identify also those edges that are internal reuse only.
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Fig. 11. CC edges that are subtype edges (ST), external reuse edges but not subtype edges (EX-

ST), or only internal reuse edges (INO).

Figure 11 shows, as well as the proportion of subtype edges, those edges that are

external reuse (and possibly internal reuse) but not subtype, and those edges that are

internal reuse only.

The system with the largest proportion of external reuse (but not subtype) edges was

checkstyle, with 88% of 193 CC edges. The median was 22% (javacc, 88 edges).

For internal reuse edges only, the largest was 30% (jpf, 37 edges) and the median was

2% (lucene, 446 edges). There were 24 systems with no internal reuse only edges,

the largest being megamek. For other systems of interest, ant had 20% external reuse

and 1% internal reuse, freecol had 13% external and less than 0.5% internal, and

jre had 4% external and less than 0.5% internal.

Figure 15 shows the same data as Figure 11 for ant and freecol. One point to

keep in mind when interpreting these charts is that ant grew from 44 CC edges to

672 edges, and freecol grew from 53 to 392 edges. The proportions are remarkably

constant after about the 5th release (ant-1.5 has 401 CC edges, freecol-0.6.0

has 239). It would be interesting to know why this is so, for example is it due to its

architecture, or some other reason.

Our conclusion is that there is generally opportunity for replacing inheritance with

composition, with 22% or more uses of inheritance between classes needed for external

reuse but not subtyping in half the systems we examined. For internal reuse edges only,

there are many fewer opportunities for replacing inheritance with composition, but they

do exist for 2% or more of such uses in half the systems. We cannot say whether re-

placing inheritance with composition is worth the effort because we have no way to

quantify the costs of not doing so. We do believe, however, that the prevalence of this
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Fig. 12. CI edges that are subtype edges (ST), suspected to be subtype (SUS), organisational

(ORG), or of unknown purpose (UNK).

use of inheritance is high enough to justify further research effort needed to understand

how to quantify the costs, and also to give greater emphasis in teaching to avoid such

uses of inheritance.

5.4 RQ4: Other uses of Inheritance

It is instructive to consider those inheritance relationships that do not support at least

one of external reuse, internal reuse, or subtype, as this helps us understand to what

other purpose developers might use inheritance. For the remainder of this section we

will only be referring to these as yet uncategorised edges.

We noted the possible use of interfaces (or classes) solely to define constants, and

the use of marker interfaces. For the former, only 13 systems had CC edges where the

parents held constants and 5 of these had more than 1%, the largest of these being

fitlibraryforfitnesse, with 13% of 259 edges. For CI edges 45 systems had

no occurrences, and 18 had more than 10%. The largest was 100% by jasml (2 edges),

but 4 systems had more than 50%. While some of these results were clearly due to

such things as parser-generators (or similar), they do indicate that this idiom is fairly

common, remembering that subtype, external reuse, or internal reuse edges can also

support this idiom.

For use of marker interfaces, 61 systems had no occurrences of CI edges being

relationships to marker interfaces, however of those that did, they predominantly came

from the larger systems. The largest proportion was 47% (jext with 43 CI edges), but

(for example) weka had 14% of 1047 edges in this category. These results suggest that

the use of marker interfaces is also a common (sole) reason for using inheritance.
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Fig. 13. Use of CI edges for ant and freecol (legend as for Figure 12, x-axis is release order).

As discussed in Section 4.3, some edges may be framework or generic edges. For

CC edges, 58 systems had no occurrences of framework or generic edges that were also

not constants or marker edges. Of those that did, 16 had less than 1%. The largest was

17% (webmail, with 24 CC edges). For CI edges, 38 had none, 8 had more than 10%,

with oscache having 58% (of 12 edges). For II edges, only jmeter had any (5% of

20).

Of the remaining CC edges, one pattern we noticed was children whose only use

of the relationship with the parent class was via calling a non-default constructor (via

super). Another pattern we noticed for all edge types was one edge may appear to

have no purpose, but an edge from a sibling to the common parent was one of subtype,

internal reuse, or external reuse. It could be that the parent was playing an organisation

role, indicating types that are conceptually related but which relationship may play no

role within the implementation. We report such edges as organisational (“ORG” in

figures 12, 13, and 14).

Figure 16 shows the unused CC edges with (light gray) showing those whose sole

use is super constructors, (medium gray) showing remaining edges that were organi-

sational, and edges with no purpose was identified in our analysis in (dark). As can

be seen, the measurements are mostly small. The large value (38%) for calls to super

constructors is in trove, and are by classes that appear to be all generated. There are

57 systems where we could associate some purpose to all edges, with 15 having more

than 1% and being mostly systems with a large number of CC edges. The largest is jre

with 8% of CC edges having no obvious purpose.

Figure 12 also shows our analysis of those CI edges that are not subtype edges. The

third segment (“ORG”) show those CI edges that are organisational, and the top segment

(“UNK”) show the proportion of CI edges for which we could find no purpose. Only 9

systems had no edges for which we could find no purpose (jparse was the largest of

these having 41 CI edges). The system with the most such edges was jre (470 edges,

9% of its CI edges), with the median number of edges being 20 (velocity, 32%).

The system with the largest proportion of such edges was c_jdbc (70% of 30 edges),

and the median proportion was 15% (of the 113 CI edges of pooka).

Figure 14 also shows the other uses we observed of II edges. The segments indicate

proportions for the different categories as in Figure 12, with the addition of a (second)

segment (“RE-ST”) are “reuse” edges that are not subtype. In the context of II edges
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sational (ORG), or unknown purpose (UNK). Systems with no II edges have no values (at left

end).

this means that a method was seen to be invoked on an interface type, but in fact that

edge was declared in an ancestor interface. While the majority are subtype, the reuse

category stands out. This category shows interfaces whose sole purpose is to indicate

where there is shared behaviour between types in the implementation. There are 54

systems with such edges. The maximum value was 100% (colt, 3 edges). Of the 70

systems with any II edges, the median value was 17% (jgrapht, 6 edges). The largest

system jre had 4% (of 799 edges), ant had 6% (18 edges) and nakedobjects had

27% of 349 edges.

For edges with no purpose, this was true of all 2 of checkstyle’s II edges and

13% of jre’s edges. Only 21 systems had any such edges.

Our conclusion is that our conservative inheritancemodel classified over 58536/67529

(87%) of all edges in our graph (38122/39973 or 95% of all CC relationships) — as ei-

ther subtype edges, external reuse, and internal reuse, that is, subtype, external, and

internal reuse explain most of the inheritance relationships in our corpus.

6 Discussion

As indicated, there are some limitations to our analysis, so the natural question is to

what degree do they threaten the validity of our conclusions. The first point to make

is that the results for RQ2, and RQ3 indicate edges for which we actually observed

subtyping and reuse respectively. That is, we may have false negatives, but no false

positives, so the analysis is conservative with respect to these questions.
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Fig. 15. CC edges that are subtype edges, external reuse edges but not subtype edges (EX-ST), or

only internal reuse edges (INO) over time for ant and freecol.

Regarding RQ1, it is possible our results overstate reality, since we assume that if

a self-call exists, and a descendant overrides that method, that a downcall will occur at

the self-call. Since this depends on the run-time behaviour of the system, we cannot be

sure that this will always be the case. We did limited manual inspection and found no

overestimation.

For RQ4, we are quite confident about the accuracy of the measurements for classes

and interfaces containing only constants, and for use of marker interfaces. For those

edges that we reported for framework and generic use, if our assumption is correct and

they are in fact used within frameworks or for generic types, then this would indicate

the degree to which our subtype results are under-reporting the true situation. We know

this is the case for a number of systems through manual inspection.

The most uncertainty exists for those edges we cannot easily classify, those that we

report as UNK. The CI category of edges had the highest incidence of such edges (figure

12), which is surprising, given there is no obvious purpose to a class implementing an

interface other than use the subtype relationship. Only 9 systems had no edges in this

category (jparse was the largest of these having 41 CI edges). The system with the

most such edges was jre (470 edges, 9% of its CI edges), with the median number

of edges being 20 (velocity, 32%). The system with the largest proportion of such

edges was c_jdbc (70% of 30 edges), and the median proportion was 15% (pooka,

113 CI).

We have manually examined a number of unused CI edges. We classified them as

one of: implementations provided by the system for use by other clients; intended for

future development; unable to classify; and having no good reason for existing.

For the first category we noted that the systems were frameworks or libraries, there

were no names declared of the relevant types, the names had “Default” or “Adaptor”

in them (e.g. DefaultActionNameBuilder in struts), or we had some other

reason (e.g. comments) to think the types were intended for clients of the framework,

not the framework itself. The jre is a good example of this. Given its purpose, it

should be unsurprising that some of the types it provides are not used within it, and

so if those types are defined using inheritance we cannot expect to see the use of the

inheritance relationship in any way within jre. In fact, we observed subtype use of

95% of extends edges in jre.
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Fig. 16. Uses of CC edges that are not subtype, external reuse, or internal reuse edges — super

constructor (SUP), organisational (ORG), or unknown purpose (UNK).

This represents the other side of the “framework” issue we discussed in section 4.

Because we do not include third-party libraries in our analysis, we cannot detect uses

of inheritance that cross the boundary between system code and third-party code.

The last three categories were ever more subjective. The category “future develop-

ment” was adjudged if we had some reason (e.g. comments) to believe the relationships

would be used in future releases. The category “unable to classify” we choose if we

had some reason to not be able to make a judgement. For example, the possibility of

reflection meant it was possible we missed some cases (although many would in fact be

correctly identified by our tools), or the complexity of the design and the limited time

available meant we could not come to any conclusion. The last category (no good rea-

son) we chose when we could find no reason for the relationship (e.g. when we found no

declarations of the interface type but many declarations with the implementation types).

While this discussion refers specifically to CI edges, we performed a similar analysis

for a subtype of CC and II edges as well.

Despite the subjectivity of some of our analysis, we did see cases where even with

the most generous interpretation there seemed no reason for having an inheritance rela-

tionship. Nevertheless, such occurrences were fairly rare, and so we feel we can quite

confidently state that there is little evidence of systematic unnecessary inheritance.

There is quite wide variation in the size of the systems. Using the total of CC, CI,

and II edges as a size metric (see also Table 1), jre was the largest (11636), followed

by jruby (4418), and drjava (2474). Most systems were only 10% of jre (75

with fewer than 1000 edges, the smallest jsXe had 14). Despite this, no one system



dominates any of our measurements, suggesting that how inheritance is used is not

determined by the size of the system.

The longitudinal studies (figures 10, 13, and 15) show some abrupt changes. They

all correspond to significant changes in the number of inheritance relationships (CC,

CI, and CC respectively), and generally to significant changes in the overall code bases.

This all points to changes in the design, however our measurements cannot show what

led to those changes. That will require much deeper analysis, both of the code base and

of the developers’ thinking.

We have only considered relationships between system types, and so framework

relationships (e.g. Figure 7) are not modelled. Due to the framework issue, we believed

we would not be able to adequately represent the situation, and indeed when we include

such edges we see generally a lower proportion of subtype edges. Nevertheless, they do

indicate decisions made by the developer and we would like to be able to study these

edges in more detail in the future.

We take a very liberal view of when we classified a relationship as for subtype or

reuse. For example, there may be only one point in the implementation where subtype

is needed, but many uses of external reuse, however we would show it as use of subtype.

Our view is coarse-grained, but it does give an overall indication of how inheritance is

used.With these results, we can now identifymore specific questions of how inheritance

is used, and they also help us restrict the systems we need to investigate to answer the

questions. In particular, it would be valuable to revisit the studies done previously ([10,

6, 14]) but using (for example) degree of use of subtype versus external reuse as the

independent variable, rather than DIT. Such studies would determine the validity of

advice regarding composition versus inheritance.

While authors such as Meyer [20] and Taivalsaari [24] suggest there are many uses

for inheritance, our studies suggests there are only two main uses in Java code. This

could be due to how we classify relationships. More study is needed in this regard.

Our results also appear to disagree with Taivalsaari’s observations. He characterised

use of subtype as rare. It would be interesting to know whether this is due to the lan-

guages he referred to (Smalltalk and C++), due to the reasons programmers use in-

heritance having changed over time, or due to his observations being based only on

his experience. Only further objective empirical studies will definitively answer such

questions.

7 Conclusions

Our overall goal is to understand how design decisions impact the quality (however it is

defined) of software. We are currently examining how inheritance is used by developers.

In this paper we have presented a study of 93 open-source Java systems. We found about

one third of subclasses rely on late bound self-reference (downcalls) to customise their

superclasses’ behaviour (RQ1). Java developers mostly use inheritance for subtyping,

with about two thirds of inheritance relationships needed for this (RQ2). While there is

not huge opportunity to replace inheritance with composition (RQ3), the opportunity is

significant (median of 2% of uses are only internal reuse, and a further 22% are only



external or internal reuse). While there are other uses of inheritance, their use is not

generally significant (RQ4).

Our results suggest there is no need for concern regarding abuse of inheritance (at

least in open-source Java software), but they do highlight the question regarding use

of composition versus inheritance. If there are significant costs associated with using

inheritance when composition could be used, then our results suggest there is some

cause for concern. We believe understanding these costs is an important open question.

This research also provides support for our previous work [27]. Our conclusion in

that work was that there was a considerable amount of use of inheritance. We can now

say that most of that use is justified.Whether this use was the best design choice remains

to be seen, but it emphases the important of inheritance, at least for Java programmers.

It also means that future research on the use of inheritance can use the same systems we

have used without concern that unnecessary use of inheritance might taint the results.

There are many other possible avenues of research following from the work pre-

sented here. One of particular interest to us is to understand the rationale behind a

programmer’s use of inheritance. We will use qualitative techniques based on grounded

theory to gain this understanding. It is also important that our research be replicated,

including with other Java (particularly closed-source) systems, and systems in other

languages.
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