
Performance Analysis using Subsuming Methods:
An Industrial Case Study

David Maplesden∗, Karl von Randow†, Ewan Tempero∗, John Hosking∗ and John Grundy‡
∗The University of Auckland, New Zealand.

dmap001@aucklanduni.ac.nz, e.tempero@auckland.ac.nz, j.hosking@auckland.ac.nz
†Cactuslab, New Zealand — karl@cactuslab.com

‡Swinburne University of Technology, Australia — jgrundy@swin.edu.au.

Abstract—Large-scale object-oriented applications consist of
tens of thousands of methods and exhibit highly complex runtime
behaviour that is difficult to analyse for performance. Typical
performance analysis approaches that aggregate performance
measures in a method-centric manner result in thinly distributed
costs and few easily identifiable optimisation opportunities. Sub-
suming methods analysis is a new approach that aggregates
performance costs across repeated patterns of method calls that
occur in the application’s runtime behaviour. This allows auto-
matic identification of patterns that are expensive and represent
practical optimisation opportunities. To evaluate the practicality
of this analysis with a real world large-scale object-oriented
application we completed a case study with the developers
of letterboxd.com — a social network website for movie
goers. Using the results of the analysis we were able to rapidly
implement changes resulting in a 54.8% reduction in CPU load
and an 49.6% reduction in average response time.

Index Terms—Subsuming methods, Runtime bloat, Perfor-
mance analysis, Object oriented software

I. INTRODUCTION

Performance is a key attribute for the modern, cloud-
based web applications that are in common use today. Inef-
ficient software increases deployment costs (due to increased
hardware requirements) and impacts the quality of the user
experience, which is vital for vendors trying to attract and
retain users in competitive markets.

Unfortunately many large scale applications suffer from
poor performance [1]. Modern object-oriented applications are
engineered for flexibility and maintainability, to improve de-
veloper productivity. They are built from existing frameworks
with an emphasis on re-use. This results in software where the
handling of each request passes through many layers and can
require hundreds or thousands of method calls to complete [2],
a problem known as runtime bloat [3]. This highly complex
runtime behaviour is often difficult to analyse for performance.

The majority of performance analysis approaches used in
practice collect and aggregate performance measures in a
method-centric manner. But large-scale object-oriented appli-
cations may consist of tens of thousands of methods, resulting
in thinly distributed costs and few easily identifiable optimi-
sation opportunities.

Several sophisticated performance analysis approaches have
been developed to tackle runtime bloat [2], [4]–[14]. However
many are impractical for online production systems as they

impose significant runtime overheads or unpalatable customi-
sations.

In response to these challenges we have developed an effi-
cient offline performance analysis called Subsuming Methods
Analysis (SMA) [15]. The key idea behind SMA is that there
are repeated patterns of methods calls in an application’s
runtime behaviour induced by the frameworks and design
idioms used in the software. These repeated patterns represent
identifiable bundles of code, spread across multiple methods,
that consume significant resources, i.e. realistic optimisation
opportunities. SMA operates on performance profiles that can
be obtained using low overhead sampling based data collection
and the offline analysis takes only a few minutes to complete,
making it a practical approach to use in online production
systems. In earlier work we conducted an evaluation of SMA
based upon experiments and case studies using the DaCapo
benchmark suite [16] and obtained promising results [15].
However the majority of the applications in this benchmark
are relatively small utility applications.

To evaluate SMA with a real world large-scale object-
oriented application we completed a case study with the
developers1 of Letterboxd [17] — a social network website for
movie goers. Users rate and review films, keep a film diary and
find other films to watch by following other members’ recom-
mendations. Letterboxd experiences significant load volumes,
currently receiving over 3.6 million HTTP requests per day.

SMA helped us to readily identify a number of significant
optimisation opportunities using only profiles gathered by low
overhead sampling of the running application. These included
unnecessary Hibernate session flushes, a problem with the dis-
tributed caching mechanism, and a third party library creating
superfluous exceptions. We were able to implement simple
changes for these areas resulting in a 54.8% reduction in CPU
load on the application servers and an 49.6% reduction in
average response time.

SMA was able to be applied rapidly in a real-world setting.
It took less than a week of development effort to identify and
implement the optimisations discussed in this paper. The entire
case study was completed in less than four weeks.

The major contributions of this paper are:

1Letterboxd is developed by Cactuslab, New Zealand

1) Demonstrating how SMA facilitates the identification
of optimisation opportunities in a real-world large-scale
object-oriented application

2) Demonstrating that SMA can be effectively applied to
a real-world system by using sampling-based profiling
that is safe and has low overhead

3) An evaluation of the risks, benefits and lessons learned
from applying SMA to a real-world application

The remainder of this paper is structured as follows: Section
II contains technical information on SMA and the case study
industrial environment. Section III outlines our methodology.
Section IV presents our empirical results. Section V discusses
the results from the case study, our experience using SMA and
the lessons learned. Section VI summarises related work and
we conclude in section VII.

II. BACKGROUND

A. Subsuming Methods Analysis

The description we give here is summarised from a previous
paper [15]. Traditional profiling tools typically record mea-
surements of execution cost per method call, both inclusive
and exclusive of the cost of any methods they call. The
cost measurements are usually captured with calling context
information and are aggregated in a data structure known as a
calling context tree [18]. A calling context tree (CCT) records
all distinct calling contexts of a program. Each node in the
tree represents a method call and has a child node for each
unique method that it invokes. Therefore the path from a node
to the root of the tree represents a distinct calling context and
the measurements stored at each node are the recorded costs
for that calling context.

Our aim is to identify repeated patterns of method calls
within the CCT over which we can aggregate performance
costs. The intuition behind idea this is two-fold:

1) Consolidating costs within the CCT reduces the size and
complexity of the tree, making it easier to interpret

2) A pattern of methods calls represents a greater range of
behaviour than a single method and is therefore more
likely to contain optimisation opportunities

Our approach to consolidating costs within the CCT is
to identify the methods that are the most important from a
performance standpoint and use these as the consolidation
points within the tree, we call these the subsuming methods.
All other methods we call subsumed methods and we attribute
their costs to their parent node in the CCT. We aggregate the
costs of subsumed methods recursively upwards until we reach
a subsuming method. We call this cost the induced cost for
the node as it represents the cost induced by the subsuming
method at that node. Figure 1 illustrates the subsuming concept
in an example CCT.

Each subsuming method is the root of a subsumed subtree
and represents a pattern consisting of itself and the subsumed
methods it calls, either directly or transitively through other
subsumed methods. The induced cost of a subsuming method
is the sum of the induced costs for all the CCT nodes

Fig. 1. Subsumed subtrees within a CCT
We have chosen main and b as subsuming methods. The numbers shown for each node

are example exclusive and induced costs at that node.

associated with that method. As the exclusive cost of each
node in the tree is consolidated into exactly one subsuming
node the sum of the induced costs of all the subsuming
methods equals the total cost of the CCT. Effectively the
subsuming methods form a new way of partitioning the CCT at
a coarser granularity than the natural method level partitioning.

In this case study we have considered two characteristics
of methods to define a set of subsuming methods that give us
interesting and useful results:

Methods that induce a limited range of runtime be-
haviour: These are uninteresting from a performance stand-
point as they tend to be code too simple to optimise. We use the
height of the method as a measure of the range of behaviour
it induces. The height of a method is the maximum height of
any sub-tree within the CCT with an instance of the method
as its root. The trivial case is a leaf method that never calls
any other method and therefore has a height of zero.

Methods called in a constrained manner: Specifically
each call to the method can be traced back to a dominating
method, a calling method responsible for its invocation.

We have used the distance from a method to its nearest
dominating method as a measure of this characteristic (denoted
dmd). The trivial case is when a method is only ever called
from a single call site. That call site is the dominating method
and dmd is 1.

Using the height and dmd attributes we can define a
condition for identifying subsuming methods by specifying a
bound on the minimum height and dmd a method must have
to be considered subsuming. The results reported for this case
study use a value of 10 as the bound, so only methods with a
height and dmd greater than 10 are considered subsuming.

We experimented with other values for the bound and our
results did not greatly change unless we set it very low (< 4)
or very high (> 20). In the future we plan to investigate the
impact of changing this bound with a variety of applications.

TABLE I
LETTERBOXD DEPLOYMENT PLATFORM

Application Servers Database Servers
CPU Dual Hex-core Intel Xeon E5-2620 @ 2.00Ghz
Memory 48GB RAM 64GB RAM
OS Ubuntu 12.04 LTS
Software Apache 2.2 PostgreSQL 9.3

Java SE Runtime Environment 1.7.0 67
Java HotSpot 64-Bit Server VM

Tomcat 7.0.54

B. The Industrial Setting

The application used in our industrial case study is Let-
terboxd, a social networking website for movie goers. It is a
web application implemented in Java using popular and mature
open frameworks in common industry use. It is deployed
in the Tomcat servlet engine and uses JSP templates and
the Hibernate ORM framework in front of a PostgreSQL
database to implement the core server functionality. Extensive
Javascript and CSS implement modern, sophisticated user
interactions in the client browser. It is a complex application;
extensive functionality manages many intertwined views and
interactions. The Letterboxd codebase consists of over two
thousand Java files containing several hundred thousand lines
of code and over five hundred JSP templates. At runtime,
including the open-source frameworks, many thousands of
methods contribute to the server behaviour. Profiling runs
sampled over 19 thousand unique methods. It is a mature
application previously optimised for performance.

The Letterboxd production deployment is a typical high-
availability multi-tiered architecture consisting of 4 physical
servers, 2 application servers (app1 and app2) and 2 database
servers (db1 and db2), with the details shown in Table I.
Apache 2.2 is used on one of the Application servers to receive
all incoming HTTP requests and load balance them across
two Tomcat instances (one on each application server). All
database requests initiated from the application servers are
load balanced across the PostgreSQL instances on the two
database servers using pgpool-II.

Letterboxd is a large scale web application which experi-
ences significant load volumes. There are:

• 125,700 registered members
• 32,100 members who have been active in the last 30 days
• 12.07 million page views a month (per Google Analytics)
• 3.6 million HTTP requests per day (per our monitoring)

The load (shown in Figure 2) fluctuates in a regular daily
and weekly pattern, with the peak times being during daylight
hours in North America and weekends being busier than
week days. This activity has created a large database of user
generated content, consisting of:

• 55 GB of data
• 27.7 million films logged
• 1.58 million film reviews written

The database grows by more than 2GB each month.

Fig. 2. HTTP requests received over a typical week

III. METHODOLOGY

Our case study aimed to investigate whether subsuming
methods analysis was practical and useful to apply to a real-
world large-scale industrial application, and to gain experience
with the approach. To that end we applied an iterative method-
ology consisting of the following steps:

1) Establish performance baseline
2) Profile application
3) Analyse application performance
4) Implement improvements
5) Repeat baseline measurement
This approach allowed us to rapidly implement and mea-

sure several improvements in the limited time we had. We
constrained the case study timeframe to four weeks to avoid
impacting the regular development and release schedule for
Letterboxd and to ensure we were testing performance changes
over monitored periods that were only a few days apart.

A. Performance Baseline

Many different metrics can be used to measure the perfor-
mance for a web application. We chose to focus on CPU load
and HTTP request response time. These generally correlate
well with the usual performance optimisation goals of reducing
the use of hardware resources and improving user experience.
We performed our performance measurements over a 12 hour
window from 2am to 2pm NZDT (NZ Daylight Time). This
is when Letterboxd experiences the highest request volumes
(2am to 2pm NZDT equates to 9am to 9pm EDT in the US).
We also wanted to avoid the off-peak times when several
scheduled tasks are run in the background on the Letterboxd
servers so we would only be measuring request workload.

To measure the CPU load we used the command-line utility
top to record samples on each application server every 3
seconds for the duration of the 12 hour run. This gave us
several performance measures but in particular it reported the
%CPU being used by the main Letterboxd Java process. When
run in sampling mode the %CPU reported by top is the
percentage of CPU being used since the last sample was taken,
so the sampling rate does not effect the coverage of the CPU
monitoring but does effect results granularity. Note that %CPU
is reported relative to a single core i.e. 100% CPU means one

TABLE II
THREAD STATE CLASSIFICATIONS

State Description
BLOCKED Thread blocked waiting for a monitor lock
WAITING Thread in a waiting state due to a call to Object.wait(),

Thread.sleep() or Thread.join()
IO WAIT A runnable thread performing IO communication
RUNNABLE All other runnable threads

entire CPU core is being used. The theoretical maximum CPU
for the Letterboxd servers is 1200%.

To measure the HTTP request response times we enabled
Apache HTTP access logging, which we configured to record
the request path, the time the request was completed, and time
time taken for every HTTP request received by Letterboxd.
These logs also allowed us to verify that request rates were
similar across different monitoring runs.

B. Profiling Approach

The scale of the deployment means that Letterboxd faces
challenges common to many real-world applications — it is
expensive to duplicate the production environment to create a
dedicated test environment, and it is difficult to simulate the
load from the production environment to create realistic test
scenarios. Even if a realistic test environment was created it
would be a significant on-going effort and expense to maintain
it. Therefore we used an approach that allowed us to gather
profiling data directly from the production environment. This
greatly improves the practicality of the approach and allowed
us to gather data quickly and iterate rapidly. However it did
limit the profiling approaches we could use. Our approach
needed to be unobtrusive — so as to have a minimal impact,
and safe — so as not to risk the stability of the system.

We chose to build a statistical profile of the application’s
activity by sampling the JVM’s thread activity and processing
this offline into a calling context profile. Although we de-
veloped our approach independently our profiler is a simpler
version of Altman et al’s [19]. We used the built-in support
provided by the JVM to trigger a full thread dump once every
second over a period of several hours. Each thread dump
contains a complete snapshot of all the activity in the JVM,
represented by a complete call stack for each live thread. These
samples are then aggregated to build a statistical profile of
where the JVM is spending its time.

We classify each individual thread as to the state it is
in, such as runnable, blocked, waiting for IO etc (referred
to as the Wait State by Altman et al), so as to be able to
build a profile of the activity for a particular state. This is
useful as typically a high proportion of threads are frequently
idle, waiting for some event e.g. the next HTTP request
to arrive or the next scheduled task to begin. These idle
threads are typically uninteresting from a performance analysis
point of view, though some are helpful to understand certain
performance characteristics e.g. threads waiting for a database
query. To classify threads we used the states defined in Table
II and we generally classified each thread according to the

state it was reported with by the JVM. The only distinction
we made was to distinguish runnable threads performing IO
communication as being in an IO WAIT state.

We repeated this profiling step after each implemented
improvement to evaluate the impact the improvement had on
the application’s behaviour.

C. Analyse Performance

We first analysed the baseline profile using traditional
CCT tree and hot method views and attempted to understand
the application’s runtime behaviour and identify optimisation
opportunities. We subsequently applied subsuming methods
analysis to find the top induced cost methods and top inclusive
cost subsumed methods. Each of these we investigated to
identify optimisation opportunities. Later iterations of the
analysis phase, for the profiles taken after each implemented
improvement, focussed on verifying the improvement had
caused the expected change in behaviour and that no unex-
pected changes had occurred.

D. Implement Improvements

From our performance analysis we identified optimisation
opportunities and implemented improvements for these. One
of the interesting aspects of the case study was that not all
of these improvements involved changes to the application’s
source code. Some were addressed via upgrades to 3rd party
libraries or configuration changes in the application. In all
cases the necessary changes were suggested by the primary
author of this paper, who is an experienced Java software
engineer but is not a developer of the Letterboxd application
and was not familiar with the application before the case study
began. The changes were then implemented in collaboration
with the Letterboxd development team.

E. Repeat Baseline

After each implemented improvement we repeated the
performance measurements over the same 12 hour period,
2am to 2pm NZDT. This allowed us to compare the CPU
loads and response times to evaluate the effectiveness of the
improvements. Not only did we track the response times of all
HTTP requests but we tracked the response times for particular
types of requests that the profiling had indicated should be the
most impacted by the performance improvements made.

IV. RESULTS

We present some selected results from our performance
monitoring and performance analysis. We have chosen to
present the results of the traditional performance analysis in
some detail, to demonstrate the challenges presented by the
traditional performance views.

A. Performance Baseline

Our performance baseline results were gathered on a normal
(non-holiday) weekday in early October 2014. Table III sum-
marises the recorded response time results, grouped by the re-
quest path. Wildcards in request paths represent locations filled
by parameters such as the logged in user’s username or the

TABLE III
BASELINE RESPONSE TIMES

Request Path Count Response Time (ms)
Mean Median 90th 99th

/*/film/* 165,935 318 280 540 920
/*/list/* 49,595 838 490 2050 3570
/film/*/ 48,536 749 770 1120 1570
/*/films/* 32,229 608 430 1380 1970
/*/rss/ 24,546 483 370 1090 1620
/search/* 8,213 1924 1790 3340 4970
All 2,284,931 189 20 520 1790
Significant* 1,045,885 389 210 940 2530

*Significant requests are all requests except those to /ajax/letterboxd-metadata/

name of a film or list. One feature of these results specific to
the Letterboxd application is the high proportion (over 54%) of
all requests for /ajax/letterboxd-metadata/. These
are trivial requests serviced very efficiently by the application
and are background requests handled asynchronously from the
client so do not impact the user experience. As there are so
many of them, they skew the overall results, particularly the
median and percentile values. The statistics in the row labeled
Significant in Table III exclude these trivial requests.

Figure 3 shows the average request arrival rate (bottom),
response time(top) and CPU load for app1 and app2 (middle
two curves) over the data gathering period. The request
arrival rate and response time are calculated using only
the Significant requests (therefore excluding the requests to
/ajax/letterboxd-metadata/) and using rolling 5
minute averages i.e. the average number of requests received
per minute and the average response time per request for
the prior 5 minute period. To improve readability no scale
is shown on the graph for the request arrival rate. It is plotted
with a linear scale starting from 0, demonstrating the very
regular nature of the incoming request load. The CPU load is
shown for each of the two front-end application servers, app1
and app2. Over the 12 hour period Letterboxd averaged 1453
significant requests per minute, 3174 total requests per minute,
389ms response time for significant requests and CPU load of
239.7% on app1 and 219.5% on app2.

B. Traditional CCT Performance Analysis

For our baseline profile we gathered thread dump samples
at 1 second intervals over a 12 hour period of normal activity
and processed this offline into a calling context tree profile.
This resulted in a large CCT containing 480,785 nodes, 11,732
unique methods and a maximum depth of 273.

We first analysed the generated CCT using the normal views
currently in widespread use in industry. The CCT represents
a statistical profile of where all the threads in the JVM spend
their time. As is commonly the case with these types of CCTs
the overall results are overwhelming skewed towards those
locations in the code where idle threads wait for incoming
requests to process. To get meaningful results we used the
standard practice of limiting the analysis to a subset of the
total profile, we did this in two ways:

Analyse only the recorded runnable time — This excludes
all thread activity in BLOCKED, WAITING or IO WAIT

Fig. 3. Baseline — Request Rate, Response Time and %CPU

states, effectively excluding all currently idle threads. This
generally correlates well with JVM activity contributing to
CPU load, thus is suitable for our aim of reducing CPU load.

Analyse only the subtree rooted at Tomcat’s
CoyoteAdapter.service() method — This method is
from the Apache Tomcat servlet container processing loop
and encapsulates all activity that is directly processing an
incoming HTTP request. We refer to this as the profiled
request service time. It generally correlates well with the
elapsed time experienced by users of the web application. It is
a non-trivial subset of the full CCT, containing 476,296 nodes
(over 99% of the full CCT) and accounts for over 90% of all
runnable time. Importantly though it also includes significant
amounts of non-runnable activity, most notably IO WAIT
time from threads communicating with the database. In fact
over 65% of the activity in this subtree is database related
IO WAIT time.

1) Runnable Time — Exclusive Cost: The top runnable
time exclusive cost methods (colloquially known as the hot
methods) are shown in Table IV. This list exhibits all the

TABLE IV
TOP 20 METHODS — RUNNABLE TIME, EXCLUSIVE COST

Method % Cost
sun.reflect.DelegatingMethodAccessorImpl.invoke() 11.470
java.lang.System.identityHashCode() 5.939
java.lang.Throwable.fillInStackTrace() 5.369
org.hibernate.event.internal.AbstractVisitor.processValue() 4.251
java.lang.String.intern() 4.147
java.lang.Object.hashCode() 3.044
org.hibernate.type.AbstractStandardBasicType.isEqual() 2.749
java.lang.UNIXProcess.waitForProcessExit() 2.569
org.hibernate.type.TypeHelper.findDirty() 2.517
java.lang.UNIXProcess.forkAndExec() 2.470
sun.misc.Unsafe.unpark() 1.932
org.hibernate.internal.util.compare.EqualsHelper.equals() 1.715
sun.misc.Unsafe.park() 1.500
org.hibernate.engine.internal.Collections.processReachableCollection() 1.478
org.apache.log4j.Category.getEffectiveLevel() 1.255
java.lang.Long.toString() 1.193
(redacted for security reasons) 1.136
java.lang.Object.<init>() 1.125
java.util.HashMap.hash() 1.065
org.postgresql.jdbc2.AbstractJdbc2Statement.killTimer() 1.052

TABLE V
TOP 20 METHODS — RUNNABLE TIME, INCLUSIVE COST

Method % Cost
java.lang.Thread.run() 99.404
java.util.concurrent.ThreadPoolExecutor.runWorker() 97.732
java.util.concurrent.ThreadPoolExecutor$Worker.run() 97.732
org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run() 91.520
org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run() 91.515
org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process() 91.511
org.apache.coyote.ajp.AjpProcessor.process() 91.511
org.apache.catalina.connector.CoyoteAdapter.service() 91.437
org.apache.catalina.core.StandardEngineValve.invoke() 91.055
org.apache.catalina.core.StandardHostValve.invoke() 91.046
org.apache.catalina.valves.ErrorReportValve.invoke() 91.046
org.apache.catalina.authenticator.AuthenticatorBase.invoke() 90.519
org.apache.catalina.core.StandardContextValve.invoke() 90.474
org.apache.catalina.core.StandardWrapperValve.invoke() 90.465
org.apache.catalina.core.ApplicationFilterChain.doFilter() 90.392
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter() 90.392
com.xk72.webparts.RequestCharacterEncodingFilter.doFilter() 90.372
com.xk72.webparts.multipart.MultipartHttpFilter.doFilter() 90.288
com.xk72.webparts.csrf.CSRFFilter.doFilter() 90.266
com.cactuslab.supermodel.web.SupermodelFilter.doFilter() 90.184

classic challenges facing engineers attempting to optimise a
large object-oriented application. All of the methods listed
are either from the JVM implementation or one of the 3rd
party frameworks being utilised by the application. Not a
single method from the application under test is on the list.
The top method from the Letterboxd code base is 65th on
the list with an exclusive cost of only 0.145%. By definition
the exclusive cost of the method is the time spent in that
one method, meaning the potential for optimising that time is
limited to the code in the method. Generally the methods are
either trivial or highly optimised already. We can see that Java
reflection is being frequently used, which is normal for a Java
web application leveraging both Hibernate and JSP templates.
There is a reasonable amount of Hibernate activity, again this
is expected for a data-driven application. More interesting
is the high placement of java.lang.Throwable.fillInStackTrace,
perhaps indicating an unusually high number of exceptions
being thrown. If we can track down where they are being
thrown they might be able to be optimised. Even so, it still
only accounts for just over 5% of the runnable activity.

2) Runnable Time — Inclusive Cost: The top runnable time
inclusive cost methods are shown in Table V. These are typical
of a Java web application running in the Tomcat servlet engine.
All of the methods listed are those that make up the main
processing path for incoming HTTP requests.

3) Request Service Time — Exclusive Cost: The top request
service time exclusive cost method are shown in Table VI.
These are very similar to the runnable time hot methods
except that they also include several IO related methods. The
most notable difference is the socketRead method and its
large 62% exclusive cost. This indicates a large proportion
of our time is spent waiting for a response from a remote
server, almost certainly the database. This is again unsurprising
but worth investigating the calling methods to see where the
communication is being initiated from.

TABLE VI
TOP 20 METHODS — REQUEST SERVICE TIME, EXCLUSIVE COST

Method % Cost
java.net.SocketInputStream.socketRead0() 62.128
sun.reflect.DelegatingMethodAccessorImpl.invoke() 4.123
java.lang.System.identityHashCode() 2.126
java.lang.Throwable.fillInStackTrace() 1.930
sun.nio.ch.EPollArrayWrapper.epollWait() 1.774
org.hibernate.event.internal.AbstractVisitor.processValue() 1.528
java.lang.String.intern() 1.491
java.net.SocketOutputStream.socketWrite0() 1.098
java.lang.Object.hashCode() 1.092
org.hibernate.type.AbstractStandardBasicType.isEqual() 0.988
org.hibernate.type.TypeHelper.findDirty() 0.904
java.lang.UNIXProcess.forkAndExec() 0.888
java.io.FileInputStream.readBytes() 0.651
org.hibernate.internal.util.compare.EqualsHelper.equals() 0.616
org.hibernate.engine.internal.Collections.processReachableCollection() 0.531
org.apache.log4j.Category.getEffectiveLevel() 0.437
java.lang.Long.toString() 0.426
(redacted for security reasons) 0.408
java.lang.Object.<init>() 0.404
java.lang.Object.wait() 0.383

4) Request Service Time — Inclusive Cost: The top request
service time inclusive cost methods are identical to the top
runnable time inclusive cost methods.

C. Subsuming Methods Analysis

The analysis identified 345 subsuming methods (from the
original 11732 unique methods). The top runnable time in-
duced cost subsuming methods are shown in Table VII. The
notable difference between these methods and the top runnable
time hot methods is each of these represents a non-trivial sub-
tree of the CCT called from multiple locations. They naturally
represent a wider range of behaviour than an individual hot
method and therefore contain more optimisation opportunities.
We were able to implement a number of optimisations by
investigating these methods in more detail.

TABLE VII
TOP 20 SUBSUMING METHODS — RUNNABLE TIME, INDUCED COST

Method % Cost
1 org.hib*.AbstractFlushingEventListener.flushEverythingToExecutions() 28.522
2 java.lang.Thread.run() 5.853
3 org.apache.catalina.core.ApplicationFilterChain.doFilter() 5.546
4 org.hibernate.engine.internal.Cascade.cascade() 5.471
5 com.xk72.util.JexlExpressionEvaluator.evaluateStringWithExpressions() 4.343
6 com.cactuslab.supermodel.out.DefaultOutputFormat.format() 2.883
7 org.hibernate.engine.internal.StatefulPersistenceContext.addEntity() 2.846
8 org.apache.jsp.tag.webfilm 002dposter tag.doTag() 2.706
9 org.hibernate.internal.SessionImpl.list() 2.473

10 org.hibernate.internal.SessionImpl.initializeCollection() 2.067
11 com.xk72.webparts.actions.RootActionContext.doAction() 2.003
12 org.jboss.marshalling.AbstractMarshaller.writeObject() 1.906
13 com.cactuslab.supermodel.beans.SBeanAccessor.get() 1.642
14 org.apache.tomcat.jdbc.pool.DisposableConnectionFacade.invoke() 1.552
15 com.cactuslab.supermodel.routing.AbstractRouteRouter.formatCurrent() 1.318
16 org.hibernate.engine.spi.CollectionEntry.postInitialize() 1.268
17 org.hibernate.internal.SessionImpl.flush() 1.217
18 org.hibernate.internal.SessionImpl.fireLoad() 1.124
19 com.xk72.webparts.user.DefaultAbstractUserHome.findUser() 1.084
20 com.cactuslab.supermodel.beans.SBeanManager.uid() 1.061

1) Unnecessary Hibernate Session Flushing: Method 1
encapsulates the Hibernate framework’s implementation for
flushing the current session, the process that synchronises
the in-memory state of the current session with the database.
Method 4 is also part of the session flushing mechanism.
Together they accounted for 34% of the application’s runnable
time. This was anomalous given Letterboxd performs vastly
more reads from the database than writes. Inspecting the
behaviour of the associated subsumed sub-tree reveals most
of the time was spent dirty-checking objects associated with
the current session. Very little time was spent synchronising
changes. This implies that often sessions were being flushed
that did not contain any changed objects.

We looked at the calling methods and found there was
a single code path inducing over 96% of the time spent
flushing sessions. This was a location in the code where
an explicit transaction commit was being performed after
loading specific type of object. With Hibernate using its default
session auto flush mode, the explicit transaction commit was
triggering a flush of the session. Upon review of the code
with the Letterboxd developers it was apparent that the explicit
transaction commit at that location was unnecessary, and so
we were able to trivially remove it.

This is an excellent example of the type of opportunity
that subsuming methods analysis highlights that are otherwise
difficult to find. The subsumed sub-tree for method 1 occurred
in 514 different locations in the full CCT, all but one of
these locations having a depth in the tree of at least 68. This
means it would have been difficult to manually find enough
of these locations in the CCT to notice the repeated pattern.
The subsumed sub-tree was made up of 139 nodes with a
height of 41, meaning it was a non-trivial pattern whose cost
was dispersed over a large number of methods, many of them
well removed from the sub-tree’s root method. Hence it would
also have been difficult to identify this root method from the
traditional list of hot methods.

Our profile estimated that the removed code branch ac-
counted for approximately 32% of the runnable time in the
application and 13% of the total time spent servicing HTTP
requests. When we repeated the baseline performance mea-
surements after applying the change (Session Flush fix in Table
VIII) we found the CPU usage had in fact dropped by 23%
and the average response time for significant requests by 13%.

2) Ineffective Caches: Method 9 is the main query API
for accessing persistent storage via the Hibernate framework.
It was not surprising such a pivotal part of the application
framework would show up in our analysis, however over
60% of the time list() was called from two locations that
were protected by in-memory caches. This indicated that these
caches were not working effectively. Additionally Method 12
is the core routine of the communication mechanism used by
the distributed caching implementation. Checking the callers
to this routine showed it was triggered to replicate cache
invalidation messages, but was being called surprisingly often.
Cached data in Letterboxd changes very rarely, so there should
be no need for frequent cache invalidation.

It is normal distributed cache behaviour to replicate invali-
dations, it assumes any put into a local cache is a new value
and needs to invalidate the cached values on other nodes. The
problem was, with two nodes in the Letterboxd cluster, each
was taking turns putting the same value from the underlying
database into its local cache and invalidating the other node.
For communication efficiency the caches were not propagating
the cached values, just the cache key being invalidated, so the
remote nodes had no way of detecting that the new value was
in fact the same as their existing value. There is an alternative
method on the distributed cache API that is designed to be used
when populating the cache from a shared data store and does
not invalidate remote caches. It was straight-forward to update
the Letterboxd cache mechanism to use this more appropriate
API.

This is an example of a problem that only manifested due to
the clustered production environment and did not show up in
normal development testing. In any single node deployment,
there are no replicated invalidations, and using the cache’s
simple put() API worked perfectly well.

Subsuming methods analysis provided us with several clues
that led us to rapidly identify that the caching mechanism was
not working effectively. By contrast there was little chance
of deducing this from the traditional CCT performance
views. The key methods of interest were the relevant
(cache-protected) callers of SessionImpl.list(),
that is AbstractDefaultSlugSpace.doFind()
and BaseIMObjectHome.getAllByCode(). There
were over 2000 occurrences of these methods distributed
throughout the full CCT making it very unlikely a manual
search of the tree would have revealed their true cost.

A new profile (taken after the session flush fix had been
applied) estimated that approximately 23% of the runnable
time in the application was shielded by these now correct
cache mechanisms, and a further 3% of all runnable time had
been spent in the distributed cache communication mechanism.
The profile also estimated around 30% of the total time
response time was now shielded by the caches. We again
repeated our baseline performance measurements after fixing
the caching mechanism (Cache fix in Table VIII) and found
the CPU usage had dropped by a further 28% and the average
response time for significant requests by a further 28%.

3) Improving Database Query Efficiency: The next im-
provement we applied consisted of two changes suggested by
the breakdown of other activity in method 9. Nearly 17% of
the total time spent in list() was spent retrieving result
set metadata. We discovered this was induced by a database
query monitoring system that was using the result set metadata
to record basic statistics about the executed queries. The
expensive call was an optional part of the JDBC API that
had only been newly implemented in the particular version
of the JDBC driver used by Letterboxd. A later version
of the driver included a more efficient implementation that
cached the metadata, so we simply upgraded the JDBC driver.
Additionally around 10% of the runnable time in list()
was being spent preparing statements. We configured Tomcat

TABLE VIII
SUMMARY OF RESULTS

All Requests (ms) Significant Requests (ms) CPU (%)
Count Mean Median 90th 99th Count Mean Median 90th 99th app1 app2 Norm.*

Baseline 2,284,931 189 20 520 1790 1,045,885 389 210 940 2530 239.7 219.5 219.5
Session Flush fix 2,267,151 160 20 460 1290 1,003,294 339 210 800 1650 172.3 167.0 169.1
Cache fix 2,254,251 117 10 330 1000 1,008,173 243 140 570 1380 121.9 125.2 122.5
DB Query fix 2,769,009 102 10 260 910 1,303,464 201 100 470 1260 147.1 151.1 114.4
Exceptions fix 2,269,720 105 20 270 900 1,130,374 196 90 440 1230 110.4 114.1 99.3

Overall Improvement 44.4% 0% 43.9% 49.7% 49.6% 57.1% 53.2% 51.4% 54.8%

* Normalised CPU is the average CPU across app1 and app2 per one million significant requests i.e. CPUNorm =
(CPUapp1+CPUapp2)×1,000,000

2×SignificantRequestCount

to use a prepared statement cache to reduce this time. Again
these changes were ones that were quickly deduced by the
information provided by the subsuming methods analysis and
would have been more difficult to discover using the traditional
views of the CCT profile.

Another new profile taken after the cache fixes estimated
that a further 2.1% of runnable time and 15% of total response
time should be removed by these improvements. When we
repeated the baseline performance measurements (DB Query
fix in Table VIII) we found the CPU usage had dropped by
6.6% and the average response time for significant requests
by 17%. We believe the improvements were better than we
had estimated because the reused prepared statements avoided
other one-off query initialisation costs outside of the direct
call to prepareStatement().

4) Superfluous Exceptions: The final improvement we im-
plemented was the elimination of superfluous exceptions from
the JEXL and Apache commons-beanutils libraries.

Method 5 is the key entry point into the JEXL library, which
is used by Letterboxd to evaluate attributes from configuration
templates at runtime. Inspecting the behaviour of the subsumed
sub-tree shows much of the induced cost of this method was
caused by the creation of exceptions. In the JEXL library,
the interpreter can be run in either strict or non-strict mode.
Some evaluation conditions that cause exceptions in strict
mode simply return null in non-strict mode. However the
JEXL interpreter was always constructing the exception and
then deciding at a later point in the code whether to throw
the exception or not. It was a simple change to avoid the
construction of the exceptions in non-strict mode.

Method 13 is a utility method used by Letterboxd to
leverage the Apache commons-beanutils library to re-
trieve properties of bean-like objects via reflection. A large
proportion of its subsumed activity was spent constructing
exceptions. Internally the library caches the discovered getter
method used for each bean property to avoid the cost of
introspecting the class on each call. However when a bean
property had no suitable getter method this fact was not
cached, so calls to the library for unrecognised bean properties
resulted in an expensive class introspection and the raising of
an exception on every call. It was another simple change to
cache the fact that a particular bean property had no suitable
getter method.

These were optimisations that were suggested by the tradi-
tional views of the CCT profile, due to the fact that excessive
exceptions were apparent in the methods in Table IV. However
it would have required navigating the calling hierarchy of
fillInStackTrace() to discover the contributing loca-
tions. By contrast these locations were readily apparent in our
list of top subsuming methods.

A final profile taken after the database query improvements
estimated that 12% of runnable time and 3.5% of total
response time should be saved by these improvements. The
final baseline performance measurements (Exceptions fix in
Table VIII) showed the CPU usage had dropped by 13% and
the average response time for significant requests by 2.5%.

5) Other Opportunities: We also discovered several other
optimisation opportunities requiring more substantial changes
that have been added to the future development plan for
Letterboxd.

Method 6 is a utility method used by Letterboxd to apply
an HTML tidy function to an HTML snippet to be injected
into a page. It is used to guarantee the formatting of HTML
encoded comments supplied by users who provide film reviews
or comments. Upon seeing the method listed as a performance
bottleneck the Letterboxd developers immediately identified it
as an area that could be improved.

Method 7 is the method used in the Hibernate framework
to register a newly hydrated persistent object with the cur-
rent session. The cost it is incurring could be reduced by
reducing the number of individual persistent objects loaded
by hibernate. Letterboxd currently has a very fine-grained
persistent object model, in a number of places small child
objects could instead be modelled using hibernate components
which would significantly reduce the number of individual
persistent objects.

Method 8 is the manifestation of a JSP tag used to render
a film poster in a JSP template. This is a very frequently used
tag that implements a wide range of behaviours specified by
different attributes on the tag. However many of those features
are very rarely used so it could be optimised by reducing the
range of supported behaviours and implementing new separate
JSP tags for when those features are wanted.

D. Results Summary

The overall results are summarised in Table VIII. In total
there has been a 49.6% drop in average response time for

TABLE IX
FINAL RESPONSE TIMES — SELECTED PATHS

Request Path Count Response Time (ms) Original Decrease
Mean Median 90th 99th Mean

/*/film/* 236173 175 120 370 740 318 45.0%
/*/list/* 68548 182 140 330 1050 838 78.3%
/film/*/ 51652 387 380 610 980 749 48.3%
/*/films/* 41935 194 120 450 640 608 68.1%
/*/rss/ 28326 185 120 480 790 483 61.7%
/ajax/usr-home/ 18603 488 460 1190 2790 1121 56.5%
/search/* 9424 657 650 980 1660 1924 65.9%

significant requests and a 54.8% drop in normalised CPU load.
Table IX shows the response time statistics from our final
experiment for several key request paths. All request paths we
monitored showed an improvement in average response time
of at least 35%, several of the most commonly used paths
showed improvements of over 65%.

Besides our experimental measurements there are several
other indicators of the performance improvements’ impact.
One particularly striking improvement is in the number of
executed database transactions. Figure 4 shows the database
transaction execution rate over the week we performed our
testing. The first dramatic drop late on the 4th is when we
implemented the distributed cache fix, avoiding the constant
reloading of data from the database. The second drop late on
the 9th was when we upgraded the JDBC driver, avoiding the
result set metadata queries.

V. LESSONS LEARNED

Our aim in this case study has been to evaluate and gain
experience with applying subsuming methods analysis to a real
world large-scale object-oriented application. We have found
subsuming methods analysis:

1) Practical to apply to a real-world large-scale application
2) Helped identify useful optimisation opportunities
3) Facilitated significant improvements in performance

It is difficult to quantify precisely how much subsuming
methods analysis assisted the discovery of these optimisation
opportunities. The feedback from the engineers at our industry
partner was that it was very helpful. SMA provides novel
and interesting views of the profiling data. The top induced
cost subsuming methods helped illuminate new optimisation
opportunities and the top inclusive cost subsuming methods
(a view that space limitations precluded us discussing) helped
in forming an overall understanding of costs. A key lesson is
that subsuming methods analysis nicely complements existing
performance views. It enhances rather than attempting to
replace existing approaches and adds value when used in
conjunction with the traditional hot method and CCT views.

Subsuming methods analysis can be used with any profiling
approach that produces a CCT profile, making it applicable
in wide range of performance investigations. After evaluating
several different commercial and open source profilers we
successfully adopted a safe and low overhead stack sampling
profiling approach. We chose this approach because it was
simple to apply and used only existing standard sampling

Fig. 4. Database transactions

mechanisms. The only requirement to apply the approach is
that there is sufficient disk space to record the stack samples.

Such a sampling approach in Java applications can give
inaccurate results [20] because samples occur only at specific
yield points placed by the JVM. It is our conjecture that the
aggregation performed by SMA helps overcome this inaccu-
racy because the larger parcels of code are more likely to
contain a number of yield points i.e. whilst the list of hot
methods may not be accurate the list of subsuming methods
is. The correlation we saw between the predicted and measured
performance improvements we made gives some evidence to
support this.

The application in our case study, Letterboxd, is a rep-
resentative example of a modern, large-scale object-oriented
web application. The deployment environment it operates in
and the load it experiences are non-trivial. Therefore we
are confident that the successful experience we had applying
subsuming methods analysis to Letterboxd would extend to
other real-world applications. Letterboxd is a Java application,
but the general approach can be applied with other technology
platforms. .NET applications in particular can be profiled and
analysed in a similar manner.

Subsuming methods analysis has some limitations. It did
not provide any assistance with how an identified bottleneck
might be addressed — all the implemented optimisations had
to be developed by software engineers. There were also some
methods (methods 2 and 3 from Table VII) in the list of top in-
duced cost methods that did not represent realistic optimisation
opportunities, they were in effect false positives. Each of these
are areas of potential future work. We are also interested in
evaluating false negatives, perhaps by analysing an application
with known or deliberately introduced bottlenecks.

VI. RELATED WORK

There is an extensive range of modern profiling tools and
academic research into software performance that we are
unable to cover in detail here.

The majority of Java profiling tools (e.g. [21]–[25]) produce
a form of CCT profile and allow the investigation of the top
inclusive time and exclusive time methods. They support a
wide range of data collection options typically based around

dynamic byte code instrumentation or stack sampling. Most
have modern interactive UIs allowing the browsing, searching
and filtering of results. None support the automatic identifica-
tion of expensive repeated patterns of method calls.

The most closely related work to ours in terms of its
motivation is the existing research into runtime bloat [3]. Gen-
erally they have focussed on memory bloat (excessive memory
use)(e.g. [4], [5]) or they have taken a data-flow centric
approach [2], [6], looking for patterns of inefficiently created
or used data structures, collections and objects [7]–[12]. This
includes approaches specifically looking at the problem of
object churn, that is the creation of many short-lived objects
[13], [14]. In contrast, we investigate a control-flow centric
approach, searching for repeated inefficient patterns of method
calls. Additionally many of these approaches rely on detailed
instrumentation and data collection that adds significant run-
time overhead to the system. Subsuming methods analysis can
be practically applied with low-overhead profiling.

Also related are approaches to aggregating calling context
tree summarised performance data [26], [27]. These are based
on grouping by package and class name, aggregating methods
below a certain cost threshold into the calling method or the
manual specification of aggregation groupings. None of these
approaches attempt to automatically detect repeated patterns
of method calls.

VII. CONCLUSION

Our experience in this case study has been that subsuming
methods analysis is easy to apply to a real-world large-scale
application and greatly assisted us in identifying new optimi-
sation opportunities that led to real improvements. We were
able to successfully combine subsuming methods analysis with
a profiling approach that was safe and practical for use in
an online production environment. This allowed us to rapidly
identify and implement optimisations that led to a 49.6% drop
in average response time and a 54.8% drop in CPU load for
the application.

ACKNOWLEDGMENT

David Maplesden is supported by a University of Auckland
Doctoral Scholarship and the John Butcher One-Tick Schol-
arship for Postgraduate Study in Computer Science.

REFERENCES

[1] N. Mitchell, E. Schonberg, and G. Sevitsky, “Four Trends Leading to
Java Runtime Bloat,” IEEE Software, vol. 27, no. 1, pp. 56–63, 2010.

[2] N. Mitchell, G. Sevitsky, and H. Srinivasan, “Modeling Runtime Be-
havior in Framework-Based Applications,” Lecture Notes in Computer
Science, vol. 4067, pp. 429–451, 2006.

[3] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, “Software
Bloat Analysis: Finding , Removing , and Preventing Performance
Problems in Modern Large-Scale Object-Oriented Applications,” Proc.
of the FSE/SDP Workshop on the Future of Software Engineering
Research - FoSER 2010, pp. 421–425, 2010.

[4] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky, P. O’Sullivan,
T. Parsons, and J. Murphy, “Patterns of Memory Inefficiency,” Lecture
Notes in Computer Science, vol. 6813, pp. 383–407, 2011.

[5] S. Bhattacharya, M. G. Nanda, K. Gopinath, and M. Gupta, “Reuse,
Recycle to De-bloat Software,” Lecture Notes in Computer Science, vol.
6813, pp. 408–432, 2011.

[6] N. Mitchell, G. Sevitsky, and H. Srinivasan, “The diary of a datum: an
approach to modeling runtime complexity in framework-based applica-
tions,” Library-Centric Software Design - LCSD’05, p. 85, 2005.

[7] O. Shacham, M. Vechev, and E. Yahav, “Chameleon: Adaptive Selection
of Collections,” Proc. of the 2009 ACM Conf. on Programming language
design & implementation - PLDI ’09, pp. 408–418, 2009.

[8] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Sevit-
sky, “Finding low-utility data structures,” Proc. of the 2010 ACM Conf.
on Programming language design & implementation - PLDI ’10, pp.
174–186, 2010.

[9] G. Xu and A. Rountev, “Detecting inefficiently-used containers to avoid
bloat,” Proc. of the 2010 ACM Conf. on Programming language design
& implementation - PLDI ’10, pp. 160–173, 2010.

[10] G. Xu, “Finding reusable data structures,” Proc. of the ACM Intl. Conf.
on Object oriented programming systems languages & applications -
OOPSLA ’12, p. 1017, 2012.

[11] D. Yan, G. Xu, and A. Rountev, “Uncovering performance problems
in Java applications with reference propagation profiling,” Proc. of the
2012 34th Intl. Conf. on Software Engineering (ICSE), pp. 134–144,
2012.

[12] K. Nguyen and G. Xu, “Cachetor: detecting cacheable data to remove
bloat,” Proc. of the 2013 9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013, pp. 268–278, 2013.

[13] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis for per-
formance understanding of framework-based applications,” Proc. of the
2007 Intl. symposium on Software testing and analysis - ISSTA ’07, pp.
118–128, 2007.

[14] ——, “A scalable technique for characterizing the usage of temporaries
in framework-intensive Java applications,” Proc. of the 16th ACM
SIGSOFT Intl. Symposium on Foundations of software engineering -
SIGSOFT ’08/FSE-16, pp. 59–70, 2008.

[15] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, “Subsuming
Methods: Finding New Optimisation Opportunities in Object-Oriented
Software,” Proc. of the 6th ACM/SPEC Intl. Conf. on Performance
Engineering - ICPE ’15, p. to appear, 2015. [Online]. Available:
https://www.cs.auckland.ac.nz/∼dmap001/subsuming/sma.pdf

[16] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo Benchmarks: Java Benchmarking Development and Analysis,”
Proc. of the 21st annual ACM Conf. on Object-oriented programming
systems, languages & applications - OOPSLA ’06, pp. 169–190, 2006.

[17] Letterboxd. [Online]. Available: http://letterboxd.com/
[18] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance

counters with flow and context sensitive profiling,” Proc. of the ACM
1997 Conf. on Programming language design & implementation - PLDI
’97, pp. 85–96, 1997.

[19] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance analysis
of idle programs,” Proc. of the ACM Intl. Conf. on Object oriented
programming systems languages & applications - OOPSLA ’10, pp.
739–753, 2010.

[20] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Evaluating
the accuracy of Java profilers,” Proc. of the 2010 ACM Conf. on
Programming language design & implementation - PLDI ’10, pp. 187–
197, 2010.

[21] Yourkit. [Online]. Available: http://www.yourkit.com/
[22] Jprofiler. [Online]. Available: https://www.ej-technologies.com/products/

jprofiler/overview.html
[23] Visualvm. [Online]. Available: https://visualvm.java.net/
[24] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, and M. Mezini, “JP2:

Call-site aware calling context profiling for the Java Virtual Machine,”
Science of Computer Programming, vol. 79, pp. 146–157, Jan. 2014.

[25] W. Binder, “Portable and accurate sampling profiling for Java,” Software:
Practice and Experience, vol. 36, no. 6, pp. 615–650, May 2006.

[26] S. Lin, F. Ta’́ıani, T. C. Ormerod, and L. J. Ball, “Towards Anomaly
Comprehension: Using Structural Compression to Navigate Profiling
Call-Trees,” Proc. of the 5th Intl. symposium on Software visualization
- SOFTVIS ’10, pp. 103–112, 2010.

[27] K. Srinivas and H. Srinivasan, “Summarizing application performance
from a components perspective,” Proc. of the 10th European software
engineering Conf. held jointly with 13th ACM Intl. symposium on
Foundations of software engineering - ESEC/FSE-13, pp. 136–145,
2005.

