
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X 1

Performance Analysis for Object-Oriented
Software:

A Systematic Mapping
David Maplesden, Ewan Tempero, Member, IEEE, John Hosking, Member, IEEE,

and John C. Grundy, Member, IEEE

Abstract—Performance is a crucial attribute for most software, making performance analysis an important software engineering task.
The difficulty is that modern applications are challenging to analyse for performance. Many profiling techniques used in real-world
software development struggle to provide useful results when applied to large-scale object-oriented applications. There is a substantial
body of research into software performance generally but currently there exists no survey of this research that would help identify
approaches useful for object-oriented software. To provide such a review we performed a systematic mapping study of empirical
performance analysis approaches that are applicable to object-oriented software. Using keyword searches against leading software
engineering research databases and manual searches of relevant venues we identified over 5000 related articles published since
January 2000. From these we systematically selected 253 applicable articles and categorised them according to ten facets that capture
the intent, implementation and evaluation of the approaches. Our mapping study results allow us to highlight the main contributions
of the existing literature and identify areas where there are interesting opportunities. We also find that, despite the research including
approaches specifically aimed at object-oriented software, there are significant challenges in providing actionable feedback on the
performance of large-scale object-oriented applications.

Index Terms—Systematic review, survey, performance, object-oriented

F

1 INTRODUCTION

SOFTWARE performance has been of interest to re-
searchers and practitioners since the earliest days of

computing but it is still highly relevant today. The per-
formance of object-oriented software is of particular in-
terest because object-oriented languages and techniques
are ubiquitous in industry, underlined by the popularity
of object-oriented languages such as Java, C++ and C#.
There is a significant collection of published literature
relating to software performance, a large subset of which
is applicable to object-oriented software. However, to the
best of our knowledge, there exists no previous attempt
to survey the literature in this field. Such a survey would
be a valuable contribution for researchers and practition-
ers looking to understand the existing research in the
field either for the purposes of leveraging or contributing
to that research. To that end we have undertaken an in-
depth systematic mapping study, a form of systematic
literature review [1], of the field.

Software efficiency is still important for today’s appli-
cations despite the prodigious improvement in hardware

• David Maplesden and Ewan Tempero are with the Department of Com-
puter Science, The University of Auckland, Private Bag 92019, Auckland
1142, New Zealand.
E-mail: dmap001@aucklanduni.ac.nz, e.tempero@cs.auckland.ac.nz.

• John Hosking is with the Faculty of Science, The University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand.
Email: j.hosking@auckland.ac.nz.

• John C. Grundy is with the Faculty of Information and Communica-
tion Technologies, Swinburne University of Technology, PO Box 218,
Hawthorn, Victoria 3122, Australia. E-mail: jgrundy@swin.edu.au.

Manuscript received May 23, 2014

performance over the last three decades. There are sev-
eral trends in application development that contribute
to a on-going need for efficient software. The size and
complexity of software has increased at a similar or even
greater rate than hardware has advanced [2]. There are
increasing numbers of mobile applications being created
which must run on devices with limited resources. Also
many applications are delivered using cloud deployment
models where running costs are directly impacted by
software efficiency. The challenge is that the growing
scale and complexity of the software under development
means that analysing and improving the performance of
these systems has become increasingly difficult.

There are specific challenges for object-oriented ap-
plications because they have characteristics that make
performance analysis difficult. Following object-oriented
principles tends to lead to applications with inter-
procedural rather than intra-procedural control flow and
a great number of methods. Additionally many object-
oriented methodologies focus on developer productivity,
producing maintainable and flexible software, and pro-
moting componentisation and reuse. As a result most
applications are built from reusable generalised frame-
works and leverage established design patterns, making
them very layered and complex. This approach means
that the handling of even the simplest request in these
framework-based applications goes through many layers
and will require hundreds, maybe thousands, of method
calls to complete [3]. This excessive activity to achieve
seemingly simple results is a problem that has become

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

known as runtime bloat [4], and it has led many large
scale object-oriented applications to suffer from chronic
performance problems [5].

The scope of this survey then is performance analysis
approaches that are applicable to object-oriented software.
We have not limited the scope to just approaches spe-
cific to object-oriented software but have also included
approaches that are applicable to most applications and
are therefore likely to be useful when analysing a typical
object-oriented application. The aim is provide a survey
of techniques that are relevant both for practitioners
who develop object-oriented applications as well as re-
searchers interested in large-scale object-oriented appli-
cations and runtime bloat.

The survey covers empirical performance analysis ap-
proaches described in the literature since January 2000.
We have chosen to cover empirical approaches only, and
exclude model-based approaches (discussed in Section
2.1), to keep the survey to a manageable size and because
empirical approaches are prevalent in industry [6]. We
chose January 2000 as the start date as this represented a
practical starting point for the review, it was far enough
in the past to include the majority of relevant approaches
but recent enough that all relevant published literature
was indexed and available within the major electronic
databases.

The remainder of this article is organised as follows: in
the next section we describe in more detail the domain
of our survey and summarise the most closely related
work that we did not include in our formal survey.
Section 3 describes our methodology for the review,
including our specific research questions and the details
of the categorisation we used for the data extraction.
Section 4 contains the results of our data extraction and
conclusions for our research questions. Section 5 is a
discussion of the results. Section 6 evaluates the threats
to validity of our survey and we conclude this article in
section 7.

2 BACKGROUND AND MOTIVATION

2.1 Software Performance Engineering

Many different approaches are used when seeking to
improve system performance. These include research
into microprocessor or computer architecture design (i.e.
hardware performance), static optimisation techniques
(usually compiler based), dynamic binary translation or
dynamic optimisation systems (which look to automat-
ically tune the executing code at runtime) and software
engineering approaches (which target improvements in
the software architecture or source code implementa-
tion). Generally speaking each of these approaches is
complementary to the others. They tend to target dif-
ferent types of inefficiency, and each can produce useful
performance improvements independently of the others.

The realm of software engineering approaches to im-
proving performance is known as software performance

engineering. Woodside, Franks & Petriu [6] give the fol-
lowing definition:

Software Performance Engineering (SPE) rep-
resents the entire collection of software en-
gineering activities and related analyses used
throughout the software development cycle,
which are directed to meeting performance re-
quirements.

Woodside et al also distinguish between two distinct
approaches to SPE: model-based predictive performance
engineering and empirical performance analysis. Often
the term software performance engineering is used to
refer only to model-based approaches rather than the
broader definition given by Woodside et al.

Model-based approaches, made popular by Smith [7],
consist of constructing and solving theoretical models of
a system to predict its performance characteristics. There
are a variety of different mathematical models used to
support model-based performance prediction including
queueing networks, petri nets and stochastic process
algebras as surveyed by Balsamo et al [8].

By contrast empirical performance analysis ap-
proaches are based on the analysis of concrete mea-
surements taken from running software and include the
traditional application profiling and tuning approaches.

Model-based approaches and empirical analysis are
generally accepted as complementary as they tend to
target different categories of performance problem i.e.
structural or architectural versus implementation respec-
tively.

2.2 Challenges of Empirical Performance Analysis

Empirical performance analysis approaches record de-
tailed data concerning the dynamic behaviour of a
running system. With the increasing scale of dynamic
behaviour in modern systems the amount of data be-
ing produced has become overwhelming. D’Elia, Deme-
trescu & Finocchi [9] report results for short runs of a
variety of off-the-shelf applications in a typical Linux
distribution, some of which yield statistics for millions
of different active code paths. This amount of data is
very difficult to interpret manually therefore we are
interested in the form of feedback provided by empirical
performance analysis approaches and the techniques
they use to aid with interpreting performance data. In
particular we are looking for approaches that aim to
provide actionable feedback, information that provides
specific advice on what to change, and even how to make
the change to improve the performance of an application.

It is generally held that performance analysis is
challenging and consequently a significant number of
projects suffer from performance problems [5], [6].
Therefore we are interested in how effective a per-
formance analysis approach is at helping to improve
performance. To that end we are interested in how the
approaches described in the literature are evaluated.

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 3

It is also relevant how practical it is to apply an
approach, as this can impact the utility of the approach.
In order to obtain useful results it is important that the
dynamic behaviour being measured is representative of
typical behaviour. Much of today’s software runs in live
production environments. These are systems (such as web
applications) which are required to be always online
and service users’ requests in real-time. Approaches that
can be directly used in these live production systems
have an advantage because they can measure the target
behaviour directly. Approaches that cannot be used in
production environments, because they rely on spe-
cialised customisations or impose too much overhead,
must instead use a representative test system to gather
their measurements. This can be a challenge because for
many systems replicating realistic environment, data and
load conditions is very difficult.

2.3 Related Surveys

There are three existing survey papers published since
the year 2000 that discuss literature in some area of
software performance [4], [8], [10]. None of the three sur-
vey papers we found were systematic literature reviews.
Two were traditional expert reviews of a particular spe-
cialised field and one was a position paper that included
a survey of current research into runtime bloat.

Koziolek [10] presented a survey on the perfor-
mance evaluation of component-based software systems.
The survey was limited to discussing approaches for
component-based software, that is software based on
frameworks such as Java EJB, Microsoft COM or CORBA
CCM, but did cover both empirical measurement based
and predictive model-based approaches. The survey con-
tains a detailed breakdown and analysis of the literature
covered with useful information and conclusions for
both practitioners and researchers, however with its
focus on component-based software and inclusion of
model-based approaches it only covers a small subset
of the research we are interested in.

Xu et al [4] summarised the state of research into
runtime bloat. The focus of this position paper was to
describe software bloat and to argue why it is primarily a
software engineering problem. The paper was motivated
by many of the same concerns that have motivated
our research. It surveys existing research into runtime
bloat and outlines possible future research directions.
However currently there is only a small body of work
that identifies itself as investigating software bloat and
therefore the paper only covers a small amount of the
literature we are interested in that is applicable to object-
oriented software performance more generally.

Balsamo et al [8] surveyed model-based performance
prediction in software development. The survey com-
pletes a detailed description, classification and analysis
of 16 different integrated methods for model-based soft-
ware performance prediction. The goal for the survey is
to assess the maturity of the research in the field and

point out promising research directions. The survey has
a different focus from ours and they do not consider
empirical performance analysis approaches.

2.4 Related Literature
Besides the related surveys described above there is a
great deal of literature related to software performance
we did not include in our review. Here we provide a
description of the major research areas that we excluded
from our survey.

As we noted in section 2.1 our focus on empirical
performance engineering has meant we have excluded
literature related specifically to model-based SPE ap-
proaches. These are performance prediction approaches
based on constructing and solving mathematical models
of the running system. There is a large body of literature
describing how to create or improve useful mathemat-
ical models, discussing new more efficient algorithms
for solving the created models or describing tools and
methodologies for applying the approaches in practice.

Because of our focus on object-oriented software there
is literature that we excluded because it had a specific
focus on some other specialised field. This included
performance analysis approaches for:

• Real-time systems
• Embedded systems
• Distributed systems
• High Performance Computing (HPC) and massively

parallel systems
Performance analysis approaches focussed in these areas
are concerned with aspects of performance that are
not applicable to object-oriented software generally. For
example embedded systems tend to have severely con-
strained hardware requirements and specialised runtime
environments that make performance monitoring diffi-
cult, and performance analysis for distributed systems
usually focuses on remote communication patterns. We
also excluded a substantial amount of research into per-
formance for HPC and massively parallel systems that
focuses on the challenges unique to supercomputing and
cluster computing scenarios. This includes research into
understanding and improving parallelisation and inter-
node communication, computer architecture related in-
efficiencies such as non-uniform memory access, and
approaches for processing, analysing and visualising
the enormous quantities of performance data that are
generated by high-end systems.

Finally we excluded a range of research that leveraged
dynamic analysis of software but had goals other than
performance understanding. These goals included:

• General purpose program comprehension or reverse
engineering

• Automated verification or validation, defect detec-
tion

• Workload characterisation, normally for automated
test workload generation

• Monitoring for intrusion detection

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

• Monitoring for quality of service violations or ca-
pacity planning purposes

All of these use runtime monitoring or profiling systems
that are similar in nature to the dynamic data capture
systems that are used for performance analysis.

3 METHODOLOGY

3.1 Overview
A systematic literature review (SLR) is described by
Kitchenham & Charters [1] as "a methodologically rigorous
review of research results". A systematic mapping study
is a form of SLR that aims to give a broader overview
of a particular field. It does not evaluate the articles in
as much depth as an SLR, with the advantage that a
broader range of primary studies is covered [11].

We have undertaken a systematic mapping study of
empirical performance analysis approaches applicable
to object-oriented software. In general we followed the
SLR guidelines produced by Kitchenham & Charters [1],
[12] and also incorporated some of the recommendations
given by Petersen et al [11].

The high level steps in our review process were:
1) Define research questions
2) Perform manual search to pilot inclusion/exclusion

criteria and generate a reference set of articles
3) Develop automated search strategy
4) Formalise review protocol
5) Conduct search for relevant studies
6) Screen and select studies for inclusion
7) Data extraction
8) Analysis
The manual search at step 2 was a necessary addition

for us to the typical SLR process. As described in section
3.3 it assisted us with the development of the inclusion
criteria and the automated search phrases that were
required to create the formal review protocol.

The other departure from recommended SLR proce-
dure was that we did not perform any quality assess-
ment on the primary studies. This is customary for
mapping studies aiming to structure the literature in an
entire field in order to include as much relevant literature
as possible [11].

3.2 Research Questions
The focus of our systematic review is empirical soft-
ware engineering approaches to performance analysis
for object-oriented software. Our research questions are
motivated by this focus and by the challenges in empir-
ical performance analysis discussed in section 2.2:

1) What approaches to empirical performance anal-
ysis have been proposed that are applicable to
object-oriented software?

2) How can these approaches be characterised?
3) What form of feedback does the approach provide?
4) How practical to apply are the approaches?

a) What is required to apply the approach?

b) Can the approaches be applied to live produc-
tion environments?

5) How are approaches evaluated and validated?

3.3 Initial Manual Search
In order to develop our review protocol we needed
to develop both the automated search phrase and the
inclusion criteria used to select the primary studies. To
do this we undertook a manual search phase against
selected venues where we could not only pilot and test
our inclusion criteria but also generate a reference set
of results with which to test and refine our automated
searches. Ideally such a reference set would come from
an independent source, such as a previously published
literature review, but we had not been able to identify a
suitable existing source.

We conducted our initial manual search against:
• ICPE - ACM/SPEC International Conference on

Performance Engineering - 2012, 2011, 2010
• WOSP - International Workshop on Software and

Performance - 2008, 2007
• Performance Evaluation - Journal - 2012, 2011, 2010,

2009
We then expanded our reference set by screening the

papers referenced from the selected papers (reference
snowballing) using our inclusion/exclusion criteria until
we had an initial reference set of 46 papers.

3.4 Search Phrase Development
The search phrase was developed based on search terms
extracted from the abstracts, titles and keywords from
the reference set of articles and expanded with syn-
onyms.

The development of the search phrase was challenging
due to the generic nature of the obvious individual
search terms: ‘software’, ‘performance’ - using these
terms resulted in searches that returned many thousands
of results i.e. low precision. There is also a plethora of
synonyms for software performance, meaning that each
individual search term has only a very low recall.

After extensive experimentation we found an effective
approach was to use a search phrase made up of two
parts. The first part aimed at returning approaches to
finding or detecting performance problems:

("detecting" OR
"finding" OR
"profiling")

AND
("performance problems" OR

"performance issues" OR
"performance bugs" OR
"performance bottlenecks" OR
"performance antipatterns" OR
"performance anti-patterns" OR
"object churn" OR
"memory bloat" OR

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 5

"runtime bloat")

The second part of the search criteria is aimed finding
approaches to profiling code, because profiling based ap-
proaches are such a ubiquitous method of understanding
program performance:

("profiling" OR "profiler")
AND
("calling context" OR

"path profiling" OR
"call-path" OR
"call-graph" OR
"call-tree" OR
"calltree" OR
"instrumentation sampling" OR
"sampling based" OR
"instrumentation based" OR
"performance analysis")

We developed the search phrase to be executed against
the title, abstract and keywords of the articles in each
electronic database. The development of our search
phrase was completed using the Scopus database. Sco-
pus has comprehensive searching functionality and in-
dexes all of the venues from the initial manual search,
making it convenient to evaluate the effectiveness of our
searches by comparison against our initial reference set.

This search returned 1086 results and contained 38/46
= 82% of our reference set. Ideally we would have pre-
ferred to achieve a higher recall than 82%. We were only
able to improve the recall by either including much more
generic search terms, which vastly expanded the number
of returned results, or by using artificially specific search
terms that were derived from the remaining papers and
did not return any other relevant results.

3.5 Venues

To select the electronic venues in which to conduct our
search we performed a survey of the search engines used
in previous systematic literature reviews and screened
them for suitability for our review. Zhang et al [13]
reported the results of a similar survey. From these
surveys and experiences reported by Dybå et al [14]
and Petersen [15] the final list of electronic databases
we chose to search was:

• ACM digital library
• IEEE Xplore Digital Library
• ScienceDirect
• SpringerLink
• SCOPUS
• ISI Web of Science
The other notable electronic databases that were po-

tential candidates for inclusion that we did not include
were:

• Wiley InterScience (now Wiley Online)
• Kluwer Online
• EI Compendex
• Inspec

These were excluded because of their high degree of
overlap with one or more of the included search venues.

• Kluwer Online has been merged with Springer and
is now indexed through the SpringerLink database.

• EI Compendex and Inspec are indexing services that
have a high degree of overlap with the SCOPUS and
ISI Web of Science indexing services. For example
statistics from the JISC Academic Database Assess-
ment Tool (http://adat.crl.edu/) indicate that 3194 of
the 3610 titles covered by Compendex and 3142 of
the 4748 titles covered by Inspec are also covered by
SCOPUS.

3.6 Article Screening

To build our list of included articles we screened the au-
tomated search results from each of the venues searched
and applied the inclusion and exclusion criteria listed in
Table 1.

Articles were screened by following an adaptive read-
ing depth approach [11], that is the article title and
abstract were read first and if possible the article was
included or excluded based on the information therein.
Otherwise the full text of the article was retrieved and
further sections of the article were read as necessary in
order to make the inclusion determination.

All articles were screened by the lead author. To help
insure the consistency of the screening process two of
the other authors independently tested the inclusion and
exclusion criteria on an initial set of 100 papers randomly
selected from the automated search results. This initial
testing showed a generally high level of consistency
on the screening results, with the two other authors
agreeing with the lead author on 81 and 86 of the 100
papers respectively. The discrepancies were discussed
and used to refine the inclusion criteria used for the full
screening.

Duplicate papers returned by the searches were ex-
cluded. Many papers are indexed in multiple electronic
databases and some appear in multiple venues. We
detected duplicate papers by manually comparing any
papers where the title and lead author matched. There
were some examples of similar, but not identical, papers
from the same authors appearing in different venues. In
this situation we included both papers. Often system-
atic reviews avoid this by reporting on the underlying
primary studies rather than the papers that have been
published. However in a mapping study of this size
it was not practical to identify the underlying primary
study for each paper, so we report simply on the number
of papers we found.

3.6.1 Inclusion and Exclusion Criteria

Our inclusion criteria reflect the emphasis of our research
questions from section 3.2, in particular:

• We are interested in empirical rather than model-
based performance engineering

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

TABLE 1
Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

• Scientific literature written in English and published in peer-
reviewed venues in the year 2000 or later

• Literature that describes empirical approaches to analysing
and understanding performance applicable to object-oriented
software

• Papers about finding performance problems, bugs or anti-
patterns applicable to object-oriented software

• Papers about profiling for performance understanding applicable
to object-oriented software

• Non-empirical (i.e. model-based) performance engineering
techniques

• Performance optimisations applied by compilers, virtual ma-
chines, middleware or hardware

• Profiling for purposes other than performance understanding
e.g.

– reverse engineering software architecture models
– program comprehension
– workload characterisation and generation
– bug detection e.g. deadlocks, memory leaks
– intrusion detection

• Performance monitoring approaches not focussed on improve-
ment e.g.

– detecting quality of service violations
– performance prediction
– service provisioning
– capacity planning

• Approaches specific to domains other than object-oriented
software e.g.

– embedded systems
– real-time systems
– massively parallel HPC systems
– big data systems such as MapReduce applications

• We are not interested in automated performance op-
timisations applied by compilers, virtual machines,
middleware or hardware

• We are focussed on approaches applicable to object-
oriented software in general and so excluded ap-
proaches specific to specialised domains such as
embedded, real-time or massively parallel systems

We regard each of these excluded areas of research as
being distinct from and complementary to the research
we are focussed on. We discussed these areas of research
and how they relate to our area of interest in section 2.4.

Note that this exclusion of approaches specific to other
domains does not exclude approaches from those do-
mains that are more general in nature and therefore still
applicable to object-oriented software.

3.7 Completing article selection
To complete article selection, after the screening of the
automated searches, we undertook a final manual search
phase. This consisted of two parts, manual searches of
selected venues and reference snowballing — manually
checking paper references for other relevant literature.
We felt this final manual search phase was necessary to
mitigate the risk of missing relevant literature due to
the only moderate recall of the automated searches. We
discuss this further in section 6.

Before the manual search phase we had just over 200
included articles from 100 different venues, including
66 venues with only one article. We chose to perform
manual searches against the top 5 venues which each
had contributed more than 10 articles. No other venue
had contributed more than 6. These venues were:

• OOPSLA - ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems,
Languages, and Applications

• CGO - International Symposium on Code Genera-
tion and Optimization

• PLDI - ACM SIGPLAN Conference on Program-
ming Language Design and Implementation

• ECOOP - European Conference on Object-Oriented
Programming

• Euro-Par - International Euro-Par Conference on
Parallel Processing

For each of these venues we completed a manual
search on all published proceedings from 2000 to 2013.
The CGO conference only began in 2003 but otherwise
each of these venues had one published proceedings
each year. In total our manual venue search covered 66
published proceedings.

3.8 Search Results

The results of our systematic search process are sum-
marised in Table 2. We ran the same logical query against
each electronic database but the syntax used is different
for each venue due to their different search engine
implementations. We report the exact queries we used
to allow them to be easily reproduced. For each search
we completed the table lists:

• The exact search phrase that was used
• The date the final search was executed
• The total number of results returned by the search
• The number of results that were selected for inclu-

sion after screening

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 7

• The number of included results that were unique to
that search

Note that because of the overlap in the results returned
by the searches (many papers were returned by more
than one search) the total number of included results is
not equal to the sum of the included results from the
individual searches.

The initial automated searches were completed from
May to August 2013 but we refreshed all our automated
search results in December 2013 when we completed the
final manual phases of our search.

There were some particular challenges that we faced
with the SpringerLink search. The SpringerLink database
search engine did not support searching against the title,
abstract and keywords only. It supported either search-
ing against title only (which returned very few results) or
against the full text of the articles, including references.
This meant that the SpringerLink search returned 26,677
results. In order to practically screen such a large number
of results we reverted to screening them in relevance
order as ranked by the SpringerLink search engine and
stopping once the rate at which we were finding new
articles for inclusion had reduced to the point where we
felt finding any further articles was unlikely. In practice
we screened the first 2000 results from the search and
then stopped because there had been no new included
articles in the last 500 results.

Excluding SpringerLink, we had 2779 automated
search results. Including the 2000 results we screened
from the SpringerLink search we screened 4779 au-
tomated search results and from these included 202
articles. The manual searches covered 66 individual
conference proceedings and resulted in 32 additional
articles. The reference snowballing involved screening
many hundreds of references and resulted in 19 addi-
tional articles. The final count was 253 included papers,
202 from the screened automated searches, 32 from the
manual search and 19 from reference snowballing.

3.9 Search Results Discussion

We will leave the majority of our analysis of the litera-
ture until we discuss the results of the data extraction
and the threats to validity for our study but there are
some interesting conclusions that can be drawn from the
search results we have reported in Table 2.

The first is that each phase of the search (the auto-
mated searches, the manual search and the reference
snowballing) was a valuable part of the search process.
Each led us to discover and include literature that would
not otherwise have been covered. That this was true
for our mapping study does not necessarily mean it
would be true for all systematic reviews. Reviews with
a narrower focus may find that either the automated
search phase or the manual search phase is superfluous,
but that was certainly not our experience.

What was interesting was the very small number of
unique search results returned by some of the auto-

mated searches. Indeed the ACM, IEEE and ScienceDi-
rect searches together only returned 6 unique results
not returned by either the SCOPUS or Web of Science
index searches. The implication of this is that the manual
search and reference snowballing phases were more
productive and more critical to the coverage of our
literature review than the automated searches against
those databases.

3.10 Data extraction

Data extraction was completed by reviewing each in-
cluded article and categorising it according to a classifi-
cation scheme that we developed to allow us to structure
and map the literature in our review. We used an adap-
tive reading depth approach, similar to our approach
when screening articles for inclusion, beginning with
reading the title, abstract and introduction and then
reading further sections as required to complete our
classification.

3.11 Classification Scheme

Our classification scheme allows us to structure the
literature in our study to map the literature in general
and answer our research questions in particular. The
classification scheme we have developed is a novel
contribution in its own right, providing a framework
for categorising and describing performance engineering
approaches applicable to object-oriented software. Our
scheme consists of 10 facets, shown in Figure 1.

Our facets were selected to capture both attributes
that are useful to help us answer our research ques-
tions (such as Feedback and Probe Implementation) and
attributes that represent commonly recognised aspects
of performance analysis approaches (e.g. Analysis Type
and Probe Type). We did not predetermine the categories
for each facet ahead of time, instead using a keywording
approach similar to that described by Petersen et al [11].
We classified each paper’s approach using key words or
phrases for each facet that describe the characteristics
of the approach. We then consolidated the list of key
phrases that had been used for each facet into a coherent
set of categories, generalising sets of phrases into a single
category where necessary.

3.11.1 Contribution

The contribution of a paper is the type of novel contri-
bution it is providing to the field of research. Captur-
ing the contribution allows us to compare papers that
broadly had the same objectives. Our contribution facet
contained 8 categories in total that were grouped into 3
broader categories:

• Profiling infrastructure papers describe a general
purpose approaches relevant to the collection of
performance data e.g. binary instrumentation tech-
niques

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

TABLE 2
Systematic Search Results

Venue Search Details Date Results Included Unique
ACM digital
library -
performance
search

((Title:("object churn" OR "memory bloat" OR "runtime bloat" OR
"performance bugs" OR "performance antipatterns" OR "performance
anti-patterns" OR "performance problems" OR "performance issues" OR
"performance bottlenecks") OR Abstract:("object churn" OR "memory bloat" OR
"runtime bloat" OR "performance bugs" OR "performance antipatterns" OR
"performance anti-patterns" OR "performance problems" OR "performance
issues" OR "performance bottlenecks") OR Keywords:("object churn" OR
"memory bloat" OR "runtime bloat" OR "performance bugs" OR "performance
antipatterns" OR "performance anti-patterns" OR "performance problems" OR
"performance issues" OR "performance bottlenecks")) AND (Title:("detecting"
OR "finding" OR "profiling" OR "performance understanding") OR
Abstract:("detecting" OR "finding" OR "profiling" OR "performance
understanding") OR Keywords:("detecting" OR "finding" OR "profiling" OR
"performance understanding")))

18 Dec 2013 106 24 0

ACM digital
library -
profiling
search

((Title:("calling context" OR "path profiling" OR "call-path" OR "call-graph"
OR "call-tree" OR calltree OR "instrumentation sampling" OR "sampling based"
OR "instrumentation based" OR "performance analysis") OR Abstract:("calling
context" OR "path profiling" OR "call-path" OR "call-graph" OR "call-tree" OR
calltree OR "instrumentation sampling" OR "sampling based" OR
"instrumentation based" OR "performance analysis") OR Keywords:("calling
context" OR "path profiling" OR "call-path" OR "call-graph" OR "call-tree" OR
calltree OR "instrumentation sampling" OR "sampling based" OR
"instrumentation based" OR "performance analysis")) AND (Title:(profiling OR
profiler) OR Abstract:(profiling OR profiler) OR Keywords:(profiling OR profiler)))

18 Dec 2013 150 46 0

IEEE Xplore -
performance
search

(("object churn" OR "memory bloat" OR "runtime bloat" OR "performance
bugs" OR "performance antipatterns" OR "performance anti-patterns" OR
"performance problems" OR "performance issues" OR "performance
bottlenecks") AND ("detecting" OR "finding" OR "profiling" OR "performance
understanding"))

18 Dec 2013 105 12 1

IEEE Xplore -
profiling
search

((("calling context" OR "path profiling" OR "call-path" OR "call-graph" OR
"call-tree" OR calltree OR "instrumentation sampling" OR "sampling based" OR
"instrumentation based" OR "performance analysis") AND ("profiling" OR
"profiler")))

18 Dec 2013 297 38 4

ScienceDirect TITLE-ABSTR-KEY((("object churn" OR "memory bloat" OR "runtime bloat"
OR "performance bugs" OR "performance antipatterns" OR "performance
anti-patterns" OR "performance problems" OR "performance issues" OR
"performance bottlenecks") AND ("detecting" OR "finding" OR "profiling" OR
"performance understanding")) OR (("calling context" OR "path profiling" OR
"call-path" OR "call-graph" OR "call-tree" OR calltree OR "instrumentation
sampling" OR "sampling based" OR "instrumentation based" OR "performance
analysis") AND (profiling OR profiler)))

18 Dec 2013 80 9 1

SpringerLink (("object churn" OR "memory bloat" OR "runtime bloat" OR "performance
bugs" OR "performance antipatterns" OR "performance anti-patterns" OR
"performance problems" OR "performance issues" OR "performance
bottlenecks") AND ("detecting" OR "finding" OR "profiling" OR "performance
understanding")) OR (("calling context" OR "path profiling" OR "call-path" OR
"call-graph" OR "call-tree" OR calltree OR "instrumentation sampling" OR
"sampling based" OR "instrumentation based" OR "performance analysis")
AND (profiling OR profiler))

18 Dec 2013 26677a 61 40

Scopus TITLE-ABS-KEY((("object churn" OR "memory bloat" OR "runtime bloat" OR
"performance bugs" OR "performance antipatterns" OR "performance
anti-patterns" OR "performance problems" OR "performance issues" OR
"performance bottlenecks") AND ("detecting" OR "finding" OR "profiling" OR
"performance understanding")) OR (("calling context" OR "path profiling" OR
"call-path" OR "call-graph" OR "call-tree" OR calltree OR "instrumentation
sampling" OR "sampling based" OR "instrumentation based" OR "performance
analysis") AND (profiling OR profiler)))

18 Dec 2013 1086 137 16

Web of
Science

TS=((("object churn" OR "memory bloat" OR "runtime bloat" OR "performance
bugs" OR "performance antipatterns" OR "performance anti-patterns" OR
"performance problems" OR "performance issues" OR "performance
bottlenecks") AND ("detecting" OR "finding" OR "profiling" OR "performance
understanding")) OR (("calling context" OR "path profiling" OR "call-path" OR
"call-graph" OR "call-tree" OR calltree OR "instrumentation sampling" OR
"sampling based" OR "instrumentation based" OR "performance analysis")
AND (profiling OR profiler)))

19 Dec 2013 955 102 7

Manual
Search

Euro-Par 2000-2013, OOPSLA 2000-2013, PLDI 2000-2013, CGO 2003-2013, ECOOP
2000-2013

Dec 2013 98 32

Reference
Snowballing

Dec 2013 19

Total
(duplicates
removed)

2779b 253

a. See discussion on SpringerLink in section 3.8
b. Excluding SpringerLink and Manual Searches

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 9

Fig. 1. Facets and Categories

• Profiling papers are focussed on a technique for
collecting a specific type of performance data e.g.
path, edge or calling context profilers

• The analysis approaches are focussed on how per-
formance data is processed or analysed. This in-
cludes techniques for graphing, navigating and
searching performance data as well automated
search and pattern matching approaches that seek to
highlight interesting information in the performance
data.

3.11.2 Domain
The domain is the particular research domain that mo-
tivated the approach. Mostly this is the type of software
that the approach is applied to e.g. object-oriented soft-
ware or massively parallel HPC applications, but there
are also approaches specific to a particular technology

framework such as Java or .NET (that are not general-
isable to all object-oriented software). Having this facet
allows us to contrast and compare results from different
research domains or communities.

3.11.3 Focus
The focus of an approach is the particular type of
performance information that the approach investigates.
Performance of software is a wide-ranging concern and
this facet allows us to classify more specifically the
types of performance that the literature was interested
in. Approaches that are focussed on the use of runtime
resources (using measures such as CPU time or invo-
cation counts) we classify as execution cost approaches.
The other major group of approaches are those that focus
on understanding and improving the efficiency of CPU
execution, either by specifically tracking the instructions

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

per cycle rate for an execution or by monitoring the
rate of events that reduce efficiency, such as memory
accesses, memory cache misses or branch mispredictions.
Additionally there are a number of other more spe-
cialised focii such as request latency profiling or profiling
the use and cost of system calls. Request latency profiling
is investigating the time taken for an application to re-
spond to an incoming request (such as an HTTP request
or a UI trigger event) and is important to improve the
responsiveness of interactive applications.

3.11.4 Feedback
The feedback provided by an approach is the style of
information or data generated for the user. This is one of
our primary motivations for our study, to investigate the
style and richness of the feedback that is generated for
the user about the performance of software. The simplest
feedback returns straight-forward raw or summarised
metrics, essentially a long list of measurements often
collated by instruction, method or calling context (the
hierarchy of active methods calls leading to the current
call). The derived feedback approaches perform some
level of calculation or interpretation of results. This
includes those that generate an advanced visualisation of
the performance data (over and above a simple graphing
of the summarised metrics), those that calculate new de-
rived metrics from the raw measurements and those that
are able to highlight specific code sites of interest. The
approaches we regard as providing actionable feedback
are those that are able to identify concrete opportunities
where a known solution can be applied to improve
performance. This includes the identification of object
pooling opportunities and finding known coding bugs
or anti-patterns.

3.11.5 Analysis Type
Analysis type is the style of analysis used by the ap-
proach i.e. whether the approach used static analysis,
dynamic analysis or blended (both static and dynamic)
analysis. Static analysis approaches are those that rely
purely on an analysis of the source code or statically
generated artifacts and do not observe the software
during its execution. Dynamic analysis approaches are
those that rely purely on measurements and analysis of
data gathered from software that is executing. Blended
analysis, described as a paradigm by Dufour, Ryder
and Sevitsky in 2007 [16], uses both static and dynamic
analysis information during their application. There are
approaches that use basic static information (for example
basic block or method information) to insert instru-
mentation to collect dynamic measurements. Given the
simple nature of this static information we still regard
these as pure dynamic analysis approaches.

3.11.6 Probe Type
This facet and the two following all capture some aspect
of the mechanism used to record dynamic measure-
ments. As such they are not applicable to pure static

analysis approaches (and hence each have a not appli-
cable category). Additionally they each have an agnostic
category to categorise performance analysis approaches
that are applied to data after it is captured and are
independent of how the data was captured.

Probe type describes the type of mechanism used to
capture dynamic measurements. Broadly speaking these
are either sampling based or instrumentation based.
Sampling based approaches observe the state of the
system at sampled points in time and build a statistical
profile of the dynamic behaviour based upon these
samples e.g. java stack sampling. Instrumentation based
approaches use probes inserted at specific points in the
system to record exact measurements every time the
probe is activated e.g. recording every method invo-
cation. Some approaches use sampled instrumentation,
this is when instrumented probes are used to record
measurements but only during certain sampling periods
i.e. they are not permanently active.

3.11.7 Probe Implementation
The probe implementation is the actual mechanism used
to capture dynamic measurements, of which there are a
wide variety. For example the application source code
may be manually modified to include code for logging
specific measurements (manual instrumentation), mod-
ifications might be made to a kernel library to record
how often it is invoked (custom software), or there may
be standard APIs that can be used to retrieve standard
measures (standard monitors).

Capturing the probe implementation allows us to in-
vestigate which mechanisms are popular and gives some
insight into how challenging to apply the approach is in
practice, as some mechanisms are more accessible than
others. We can group the different categories we have
for probe implementation into:

• those that can only be applied manually or in an
experimental fashion

• those that require an augmented environment with
either customised hardware or patched system soft-
ware, standard libraries or middleware

• static instrumentation approaches that require an
extra build-time step but are otherwise automated

• fully automated approaches based on standard
monitors or dynamic binary instrumentation that
can be activated dynamically with already running
applications

3.11.8 Probe Overhead
The probe overhead is the amount of execution cost over-
head imposed by the dynamic measurement capture.
Capturing overhead allows us to classify the impact of
the approaches to judge how practical they are to apply.

3.11.9 Validation Approach
This facet and the next are concerned with how the
approaches proposed in the literature are evaluated.

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 11

The validation approach is the type of evidence that is
put forward to establish the effectiveness of a technique.
This can include empirical evaluation, where some mea-
surable aspect of the technique (such as its overhead or
accuracy) is analysed to prove its effectiveness, demon-
stration by example, where a case study gives a detailed
report on using the technique to achieve a useful out-
come, or a user study, where human subjects use the
technique and report on its utility.

3.11.10 Evaluation Dataset
The evaluation dataset for an approach is the type of in-
put used for the described evaluation. Many evaluations
are completed using a standard suite of benchmarks
(often specific to the particular domain of the research).
Others use real-world applications as input, either large
open-source frameworks or real-world industrial appli-
cations with realistic attributes. Some approaches are
evaluated over artificial examples that have been con-
structed specifically for the purpose of demonstrating or
evaluating the approach.

4 RESULTS

4.1 Overview
In total there are 253 papers we included in our com-
pleted review. With ten different facets and a number
of other pieces of data (such as the publication year
and publication venue) defined for each paper there is a
large amount of data available for analysis. The complete
list of included papers is given in Appendix A and the
complete categorisation for all 253 included papers is
given in Appendix B. Here we focus on presenting the
results that address our specific research questions.

We begin by giving an overview of the included
literature in addressing research question 1. The cate-
gorisation results for the facets shown in Figure 3 and
Figure 8 are discussed in answering the other research
questions.

4.2 Research Question 1
What approaches to empirical performance analysis have been
proposed that are applicable to object-oriented software?

This narrative summary and Figure 2 describes the
literature using selected facets in a way that aims to
provide a useful overview of the literature. For this
purpose we have primarily used the results from the
Contribution and Focus facets as these best capture the
particular problem or area the paper was addressing.
Note that in order to improve readability Figure 2 is
not drawn precisely to scale, but the relative sizes of
the labelled areas are approximately in proportion to the
number of papers they represent.

We have first divided the papers into 3 groups repre-
senting the type of novel contribution they provide:

• 138 Profiling papers
• 77 Performance Analysis papers

• 38 Profiling Infrastructure papers
The profiling papers are focussed on a technique

for collecting a specific type of performance data. The
performance analysis papers describe an approach to
analysing or interpreting the performance data. In most
cases the distinction is clear, indeed many profilers
essentially do no data analysis and many analysis ap-
proaches are completely agnostic of how the data is
collected, but in some cases where the approach includes
both the collection and analysis of data the distinction
can be a fine one.

The profiling infrastructure papers are those that de-
scribe tools and runtime techniques that are useful when
creating profilers or other performance understanding
tools but do not in-of-themselves describe a profiling or
performance understanding approach. These papers are
still applicable to object-oriented software performance,
and therefore included in our review, because they di-
rectly support creating new or improving existing perfor-
mance understanding approaches. There are 18 runtime
technique papers. These include the probabilistic [s40] 1,
inferred [s161] and precise [s206], [s207] calling context
encoding approaches, which describe low overhead ap-
proaches to establishing the current full calling context,
and papers on instrumentation approaches [s35], [s72],
[s160] or aspect oriented programming approaches [s8],
[s32], [s222] aimed at supporting dynamic analysis in
general and profiling in particular. 20 papers describe
tools and frameworks designed to support dynamic
analysis in general and profiling in particular. Some of
these are instrumentation tools such as Pin [s133] or
Valgrind [s165] and others are tools which facilitate the
parallelisation of dynamic analysis [s92], [s158], [s224],
[s247], [s251] to reduce its cost.

There are 138 papers that describe a form of profiler.
Of these there are a small number that have a highly
specialised focus, such as the 3 papers concerned with
measuring the amount of time spent in kernel code or
making operating system calls [s34], [s145], [s182] and
the 3 papers concerned with value profiling – tracking
the most commonly returned values from individual
functions or statements [s41], [s167], [s226]. Ten papers
are focussed on understanding request latency rather
than overall application performance or throughput.
These are either specifically looking at unresponsive UIs
in interactive desktop applications [s71], [s109], [s110],
[s111] or investigating the reasons for slow responses
from multi-tier web-based enterprise applications [s5],
[s11], [s46], [s143], [s144], [s243]. The 37 CPU efficiency
papers are focussed on monitoring and understanding
the code that cause a CPU to run at less than maximum
performance. All of these leveraged hardware perfor-
mance monitors to track low level events that cause
CPU pipeline stalls and a drop in overall computation
speed. The majority of these (24 papers e.g. [s129], [s171],

1. Paper references beginning with s refer to the List of Included
Papers in Appendix A

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

Fig. 2. Literature Overview by Contribution and Focus

[s175], [s213], [s214]) are specifically interested in pro-
filing memory accesses to understand where and why
memory loads, stores and cache misses are occurring as
these are often the main culprits in stalling the CPU.
The remaining 85 profiling papers focus on execution
cost generally, that is understanding which code regions
are consuming the most computation resources. A small
subset of these (15 papers e.g. [s68], [s69], [s166], [s168],
[s169], [s237], [s238], [s239], [s240], [s244]) are interested
in runtime bloat in object-oriented software.

There are 77 papers concerned with analysis of per-
formance data. As with the profiling approaches we can
classify these by focus and again we find that there are
a small number of papers with a specialised focus. 5 pa-
pers look at performance differencing approaches [s159],
[s193], [s201], [s227], [s252] that aim to highlight changes
in performance between two captured profiles. There
are 6 request latency papers [s159], [s193], [s201], [s227],
[s252] with the same goal as the profiling approaches
that focussed on request latency - to understand the
reasons for unresponsive UIs or slow responses from
web-applications. There are only 6 analysis papers that
look to understand CPU efficiency [s85], [s87], [s98],
[s118], [s119], [s141], a much lower ratio than for the

profiling papers, and the remaining 60 papers focus on
execution cost generally. The 14 automated search papers
describe approaches where the performance analysis sys-
tem automatically searches for code regions that exhibit
certain pre-defined performance characteristics. Most are
systems similar in approach to Periscope [s18], [s81],
[s85], [s86] and Paradyn [s43], [s55], [s179], [s180] which
run a series of systematic experiments, monitoring pro-
gressively finer grained regions of code and measuring
and evaluating the performance metrics of interest to
narrow down the regions of interest. 5 papers [s56],
[s58], [s115], [s172], [s173] are approaches that employ
an expert system, rules based, approach to analysing a
given set of performance measurements and identifying
known patterns of undesirable behaviour. There are
8 papers that propose new approaches to presenting
performance data in order to aid the interpretation or
comprehension of that data. Most of these relate to
visualising or presenting the hierarchical data contained
in large calling context trees, for example using calling
context ring charts [s152], [s154], [s155]. Execution pro-
filing blueprints [s22], [s23] is an approach to displaying
multiple performance metrics or characteristics in the
one visualisation to aid in drawing performance infer-

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 13

ences.
The remaining 33 papers are general analysis papers. 8

of these are static analysis approaches to understanding
performance. Several of these static analysis papers are a
type of feedback generated from static optimisers [s64],
[s205] (normally but not necessarily associated with
compilers) that indicate to the user where code changes
could be made to enable further optimisations. Others
statically estimate loop, path or method execution fre-
quency [s42], [s131], [s249]. One approach looks for code
patterns that equate to known performance bugs [s106].
The patterns have been derived from an in-depth study
of performance bugs in open source bug databases.
3 of the other general analysis approaches are based
on an analysis of Java heaps to understand memory
performance [s52], [s146], [s147], generally looking for
patterns that indicate wasteful or inefficient data struc-
tures. There are two general analysis papers that rely on
customised manual experiments to investigate the way
complex framework-based applications transform data
[s148], [s149], to understand the reasons for inefficient
computation. The remaining 20 papers are a collection
of different approaches that focus on the analysis of
dynamic performance data to understand the execution
cost of applications. These include techniques for aggre-
gating or summarising performance across user-defined
code regions [s128], [s204], [s231], [s232] or using user-
defined metrics [s73], [s108], [s198].

4.3 Research Question 2
How can these approaches be characterised?

We have already given an overall description of the
literature in our review in the previous section. Here
we describe some selected results and trends that are
apparent in our classification that are not covered in
more detail elsewhere.

4.3.1 Venue
One of the traditional results to report in a mapping
study is a breakdown of the literature by the publication
venue (conference or journal) as this provides an indica-
tion for researchers as to which venues are likely to have
the most interest in similar research. Our breakdown,
shown in Table 3, highlights a number of interesting
things:

• Literature related to performance has been pub-
lished in a very broad range of venues, our survey
includes literature from 100 different publication
venues, including 66 venues that only provided a
single paper.

• Although the performance focussed venues such
as the International Conference on Performance
Engineering (ICPE) and International Symposium
on Performance Analysis of Systems and Software
(ISPASS) did contribute a number of articles (5 from
each venue) the most important venues for the
empirical approaches to performance analysis that

TABLE 3
Categorisation by Venue

Venue Description Count

Euro-Par International Euro-Par Conference on
Parallel Processing

26

OOPSLA Conference on Object-Oriented Pro-
graming, Systems, Languages, and Ap-
plications

22

CGO International Symposium on Code
Generation and Optimization

21

PLDI Conference on Programming Language
Design and Implementation

18

ECOOP European Conference on Object-
Oriented Programming

11

PPPJ International Symposium on Principles
and Practice of Programming in Java

6

ICSE International Conference on Software
Engineering

6

Tools for HPC International Workshop on Parallel
Tools for High Performance Comput-
ing

5

SPE Software: Practice and Experience 5
ISPASS International Symposium on Perfor-

mance Analysis of Systems and Soft-
ware

5

ICPE/WOSP International Conference on Perfor-
mance Engineering

5

SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Sys-
tems

4

SC Supercomputing Conference 4
CCPE Concurrency and Computation: Prac-

tice and Experience
4

5 more venues with 3 papers
15 more venues with 2 papers
66 more venues with 1 paper

we were interested in were the programming and
languages focussed conferences such as OOPSLA,
PLDI and ECOOP (which contributed over 50 arti-
cles between them). 2

4.3.2 Domain
The categorisation of the articles by research domain
(shown in Figure 3) again gives some insight into the
breadth of the research that has been conducted into
software performance. Despite our inclusion criteria re-
stricting us only to articles applicable to object-oriented
software and excluding approaches specific to other
domains we still had a large contribution from the HPC
and compile-time optimisation domains. We made a
distinction between articles that were focussed on object-
oriented applications in general and those that focussed
on applications built with the Java or .NET frameworks.
Of course Java and .NET are object-oriented language
frameworks, but some of the approaches were focussed
not on the object-oriented nature of these frameworks
but something specific to the framework design, such as

2. Excluded ICPE papers focussed on areas, such as model-based
performance prediction, which are related to but not covered by our
survey. We discussed these areas in section 2.4.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

Fig. 3. Categorisation Results - Domain, Focus, Analysis Type and Feedback

techniques for efficient profiling in the JVM. One of the
interesting things we noticed here was the great contrast
between the number of papers relating specifically to
Java (37) compared to .NET (2). Given the importance of
.NET as a commercial development platform it would
seem to be severely underrepresented in the literature.

4.3.3 Focus
The Focus categorisation results shown in Figure 3 in-
clude only the 215 profiling and performance analy-
sis papers. We excluded the 38 profiling infrastructure
papers as they were all general purpose approaches
applicable when investigating a number of different
performance concerns i.e. they had no specific focus.

The most obvious trend here is that by far the majority
of the literature (66% - 142 out of 215 once the runtime
bloat literature is included) is focussed on analysing the

Fig. 4. Focus over Time

execution cost of applications. Perhaps the surprising
thing though is not that this number is so high but that
it is so low, that there are fully a third of the papers that
investigate other aspects of performance besides the raw
time and resources they consume. In particular 20% (43
out of 215) of the literature focuses on CPU efficiency
and memory access profiling, marking it as a significant
form of performance analysis that attracts little attention
in some domains. A bubble plot of Focus vs Domain
(see Figure 5) shows the relative lack of interest in CPU
efficiency from the Object-Oriented and Java domains.

There are some other interesting points illustrated in
the bubble plot. Unsurprisingly, given its nature, we can
see that the concept of runtime bloat is one that mostly
exists in the Object-Oriented domain. Finally we can
see the particular focus on request latency profiling for
Enterprise and Interactive applications.

There are also some noticeable trends over time for the
Focus facet, as shown in Figure 4. Whilst the amount
of activity in some focus categories remains relatively
steady over time, such as execution cost, memory access
profiling and CPU efficiency, there is a clear upward
trend for both request latency profiling and runtime
bloat.

4.3.4 Analysis Type
The clear trend here (Figure 3) is the dominance of
pure dynamic analysis approaches. The lack of pure
static analysis approaches is not surprising, given that
performance is a runtime property. However the small
number of blended analysis approaches indicates there
are likely opportunities to leverage more static analysis
in the performance analysis process.

When we look at the trends over time for analysis
type (Figure 6) we can see that both blended and static
analysis have become more common in recent years.

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 15

Fig. 5. Focus vs Domain

Fig. 6. Analysis Type over Time

4.4 Research Question 3

What form of feedback does the approach provide?
The focus of this research question is to try to under-

stand how helpful the approaches are to the end goal of
improving software performance. We captured the type
of feedback provided by each approach in the Feedback
Type facet (Figure 3). As with the earlier Focus facet we
excluded the 38 profiling infrastructure papers from this
categorisation as they did not describe approaches that
generated performance understanding feedback.

Of the remaining 215 papers, 141 of them provide
only raw or summarised metrics. These are metrics that
may be helpful in understanding simple properties of
an application, such as the absolute cost of a particular
method or execution path, but generally require a signifi-
cant amount of interpretation to find useful performance
improvements. In particular they tend to only indicate
where an application is consuming a large number of
resources but not whether this consumption is wasteful

or useful or how to reduce the consumption.
There are 53 approaches that generate some form

of derived feedback by performing additional analysis
or transformation on the raw performance data. These
include:

• 35 derived metrics
• 8 approaches to advanced visualisation or presenta-

tion of performance information expressly designed
to aid its interpretation

• 8 code sites of interest
• 2 performance dependencies
In general the derived feedback approaches aim to

make the interpretation of the performance data easier.
They generally create or define a higher-level abstraction
for which they are able to provide a metric that not
only helps indicate where an application is consuming
resources but why this may be occurring or helps im-
ply a potential solution. Examples include approaches
for finding inefficiently used data structures, automated
search approaches that search for execution paths that
exhibit particular undesirable behaviours and various
other novel performance metrics.

Finally there are 21 approaches that generate con-
crete actionable feedback. 7 of these approaches iden-
tify concrete locations where object pooling was both
possible and desirable. These use a variety of object
lifetime and object usage profiling techniques to establish
which allocation sites create objects that are suitable
for being pooled and reused. The other 14 actionable
feedback approaches identify known performance bugs
or antipatterns in concrete source code locations. These
cover a wide range of different types of performance
problems such as inefficient memory access patterns,
inappropriate data structures and never-used or rarely-
used object allocations. Several of the antipattern identi-
fication approaches make use of configurable detection
rules allowing expert users to define new antipatterns.

Overall the majority of approaches (141/215) still only

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

Fig. 7. Feedback over Time

provide simple feedback.
There are also some interesting trends over time (Fig-

ure 7). The obvious trend is the increase in approaches
looking at more sophisticated feedback in recent years,
object pooling opportunities and identified bugs or an-
tipatterns in particular.

4.5 Research Question 4

How practical to apply are the approaches?
1) What is required to apply the approach?
2) Can the approaches be applied to live production envi-

ronments?
This research question was motivated by the interest

practitioners would have in the practicality of applying
any performance monitoring or analysis approach. Ap-
proaches that are complex to apply can still be useful;
there is opportunity within the development life-cycle
of many projects to use time-consuming approaches if
they provide valuable information. However it is advan-
tageous if approaches can be simply and rapidly applied
because it means they can be used more often and in
more situations.

We had two facets that were primarily aimed at
helping us answer this question, Probe Implementation
and Probe Overhead. The categorisation results for these
facets are shown in Figure 8. They exclude the 8 pure
static analysis approaches, which do not use dynamic
probes and therefore do not have an implementation or
impose any overhead. It is worth noting that in most
situations the static analysis approaches are the most
practical to apply because they do not require a running
environment. This is one of their great advantages and
means that they can be fully integrated into development
environments and processes with relative ease. However
there are only a few such approaches in the literature we
reviewed.

The results of the Probe Implementation categori-
sation indicate that there are a significant number of

approaches (39% - 96 out of 245) that rely on either
dynamic binary instrumentation or standard monitors.
These are approaches that we regard as being relatively
straight-forward to apply as they do not require a cus-
tomised environment or build-time instrumentation, the
approach can be used in any standard environment with
pre-existing binaries. There are a further 34 approaches
(~14%) that are analysis approaches that can work with
data obtained from any suitable performance monitor
and therefore should also be practical to use. The other
approaches mostly rely either on custom hardware or
software, or require static or manual instrumentation of
the application before they can be used. This doesn’t
preclude them being used in real-world environments
but does require extra effort to facilitate their use.

The Probe Overhead categorisation is more difficult
to interpret for several reasons. The high number of
papers (58 out of 245) that don’t address the overhead of
their dynamic analysis approach introduces significant
uncertainty about any conclusions that are drawn. It also
is not clear precisely what the cut-off point is for ‘accept-
able’ levels of overhead, generally this will depend on
the requirements of the system being analysed. Another
complication is that interpreting some of the reported
overheads for the different approaches is difficult due
to the variety of approaches taken to measuring and
reporting overhead. Whilst many papers take a rigorous
approach involving assessing overhead against a variety
of standard benchmark and realistic real-world appli-
cations others simply used a single case study or re-
port only comparative overhead results relative to other
profiling techniques, rather than a comparison with the
unprofiled application. Also many of the approaches (es-
pecially those using execution sampling methods) could
be tuned to reduce overhead at the cost of accuracy. In
these cases the literature often suggested a particular
overhead/accuracy point as the best-case scenario and
those are the figures we used for our categorisation.
We have categorised 60 papers as agnostic where the
overhead is either not measurable or not relevant. These
are either profiling infrastructure papers where it is
impossible to assess overhead without knowing the ac-
tual analysis implemented using the infrastructure, or
analysis approaches that focus on the post-processing of
previously collected data and so the approach itself is
independent of the style of data collection.

What is clear from the results is that we do have a
significant number of approaches, about 25%, that have
an emphasis on minimising overhead, those with Very
Low or Low reported overhead. The majority of the
remaining approaches either have a high overhead or
do not report on overhead at all, there are relatively few
approaches that fall into the medium or medium-high
overhead areas.

When we look at the categorisation of approaches by
both implementation approach and overhead we see that
a significant proportion of the low overhead approaches
are achieved by using custom hardware or software

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 17

Fig. 8. Categorisation Results - Implementation and Evaluation

implementations. Overall only around 10% (25 out of
245) of the approaches are both low overhead and fully
automated.

The other trend that is apparent in our data is the type
of feedback generated for low overhead approaches is
dominated by simple summarised metrics. Nearly 90%
of low overhead approaches return only summarised
metrics as opposed to around 65% of all profiling and
analysis method approaches.

4.6 Research Question 5
How are approaches evaluated and validated?

We were interested in how approaches to improving
performance engineering were evaluated and validated.
This followed from our interest in the utility of perfor-
mance analysis approaches, to understand how effec-
tive reported performance analysis approaches were we
wanted to understand how they had been evaluated.

We used two facets to classify how approaches were
evaluated, the Evaluation Dataset and the Validation
Approach. The categorisation for these facets is shown
in Figure 8. There are two notable findings from the
Validation Approach classification:

1) A significant proportion of the approaches (79/253
∼ 31%) did no validation of their approach.

2) Only a tiny minority (4/253 ∼ 1.6%) validated their
approach with real users in a user study.

The majority of the approaches that were validated
were done so via either empirical validation or a case
study that demonstrated using the approach to achieve
a desirable outcome. The empirical validations were
generally quantitative comparisons of accuracy or over-
head compared to some established baseline. In some
cases, where it was possible to have an oracle that
could identify true positives, the empirical validation

included measuring false positive and false negative
rates generated by the tool. Most of the 79 papers that we
have classified as doing no validation did demonstrate
applying their approach to real-world or benchmark
applications but did not validate the output in any way
to demonstrate the accuracy or utility of the output.
They relied solely on the description of their approach
to establish that it was useful. This is in contrast to the
51 papers that demonstrated using their approach with
a case study that highlighted how using the approach
resulted in information that led to a measurable perfor-
mance improvement.

The Evaluation Dataset facet classifies the approaches
by the type of input they were applied to. Here we see
an fairly equal split between using real-world examples
(usually large open source or industrial applications) or a
standard benchmark suite. There were some approaches
that were evaluated over both standard benchmarks and
real-world examples. The approaches that did not use
either real-world examples or benchmarks used artificial
examples. Note that this classification includes all 253
papers, including the 79 that we classified as having
not completed any validation. This is because all 253
papers used illustrative examples, even if they were only
artificial examples, either when describing or evaluating
their approach.

5 DISCUSSION

The intent of our survey was to map and analyse the
existing literature pertaining to empirical performance
analysis approaches for object oriented software, with
a particular emphasis on reviewing the type of per-
formance feedback provided by these approaches. In
the previous sections we have described the results of
our categorisation of the relevant literature, here we

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

highlight some of those results and discuss some key
conclusions we have drawn from our analysis. In partic-
ular we highlight where we think there are opportunities
for future research.

5.1 Very little static or blended analysis, virtually all
dynamic
The analysis type facet gave us the most skewed dis-
tribution of results in our entire categorisation. It is
clear that not only do pure dynamic analysis approaches
dominate in our study but that much of the work done
using static or blended analysis (20 out of 27 papers)
has been published since 2009. This trend in recent times
towards using more static analysis, in conjunction with
dynamic analysis or alone, indicates to us that this is
an emerging area of work where there are very likely
still substantial opportunities. Our definition of blended
analysis for performance analysis is not novel, it is
specifically described by Dufour, Ryder & Sevitsky [16],
but the results of our survey have allowed us to quantify
just how infrequently it has been leveraged.

5.2 Cross-Domain approaches
We found our study covered literature from a very broad
range of venues and domains, as we quantified with
the categorisation results we covered in section 4.3. We
found this interesting because the focus of our study was
literature applicable to object-oriented software and yet
we found literature from a wide range of areas that was
applicable to object-oriented software. The implication
of this is that researchers or practitioners working with
object-oriented software need to be aware that there is
potentially related work being done within these other
domains, such as HPC or compile-time optimisation. We
feel the reverse is likely to be true as well. For example
object-oriented software frameworks and concepts are
being adopted in some HPC applications and this makes
it likely that some of the performance characteristics of
object-oriented software will be inherited as well, there-
fore making the research into object-oriented application
performance relevant to the HPC community.

We also found that there were a number of techniques
or approaches that had been investigated by researchers
from different domains that were similar in nature and
therefore likely had some relevance to each other. For
example there were expert system approaches to per-
formance classification described by researchers in both
the HPC and EJB application domains. Request latency
profiling was of interest to researchers from both the
enterprise web application and interactive desktop ap-
plication domains. There were many performance data
visualisation or aggregation techniques from different
domains that had fundamentally similar goals. This
was notable because we found examples where the
research in one domain did not reference or compare
their approach to work with similar aspects that was
from another domain e.g. the expert system approaches
[s56], [s58], [s115], [s172], [s173].

5.3 Evaluating the utility of performance analysis
approaches
Based upon our analysis in section 4.6 of the evalua-
tion approaches used in the literature we reviewed we
have concluded that there has been remarkably little
work done to prove the utility of empirical performance
analysis approaches, particularly for large scale object-
oriented software. By this we mean very few papers
addressed the question of whether the performance feed-
back being generated for the user was actually useful
in helping to improve software performance. In all the
papers we included in our review, only 4 included an
evaluation involving human subjects to assess whether
the approach was useful for ultimately improving per-
formance. A further 70 gave concrete examples of how
using a particular approach led to real performance
improvements but few of these examples could convinc-
ingly be extrapolated to provide evidence that the ap-
proach is useful for object-oriented software in general.
Only 42 used real-world examples and only 7 of these
were from the object-oriented domain (as classified by
our Domain facet).

Note that this is not a commentary on the quality of
the evaluations done in the individual research papers
in our survey. Many papers were presenting a new
approach to obtaining a standard set of data with better
accuracy or lower overhead, a situation where the utility
of the data is assumed to already be proven, and there-
fore the focus in the evaluation for those papers was in
validating the improved accuracy or reduced overheads.
Nevertheless there were approaches describing novel
types of performance feedback that relied solely on the
description of the approach to establish that it was
useful. We feel there is a clear gap in the research when it
comes to evaluating the utility of performance analysis
approaches, particularly for large scale object-oriented
software.

5.4 Improving feedback on the performance of large-
scale object-oriented software
The overriding conclusion we have drawn from our
study is that there are still opportunities to improve feed-
back on the performance of large-scale object-oriented
software. Whilst there has been research done in this
area, which we describe below, there are still possible
extensions and innovations to contribute.

We had 253 papers in our study. This included:
• 38 profiling infrastructure papers
• 74 papers focussed on some characteristic of per-

formance other than execution cost e.g. memory
accesses, request latency or value profiling

• 82 that returned only simple feedback i.e. sum-
marised metrics

Therefore only 59 papers describe profiling or analysis
approaches investigating execution cost that provide a
more advanced (derived or actionable) form of feed-
back. We describe these papers in more detail below

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 19

to highlight where we think there are further research
opportunities.

30 of these papers, whilst applicable to object-oriented
software, do not specifically address the challenges pro-
vided by large-scale object-oriented software. This means
they are likely to struggle to produce useful feedback
when used with large-scale object-oriented software.
These included:

• 5 expert system approaches. These use a rules-
based encoding of expert knowledge to classify
whether observed behaviour matches known, pre-
defined, undesirable patterns. The major challenge
with these approaches is creating suitable expert-
system rules. The examples we have seen have
been focussed either on HPC applications, with
rules mostly focussed around parallel scalability
concerns, or component-based (essentially EJB) ap-
plications, with rules mostly focussed around poor
distributed computing patterns. We did not find any
expert system approaches focussed on analysing
large-scale object-oriented applications.

The other approaches provide feedback at the method
level or basic block level of granularity and so can fail
to provide useful feedback when faced with the over-
whelming number of fine-grained methods that exist in
large-scale object-oriented applications. These consisted
of:

• 14 papers that perform a type of automated search
for code regions that exhibit certain pre-defined
performance characteristics. These approaches help
to rapidly identify specific problem areas, often with
a relatively low overhead because of the iterative
and targeted search process. Only pre-defined char-
acteristics, such as a poor rate of memory cache hits,
can be identified.

• 8 papers covering a range of different approaches to
deriving new metrics from the raw measurements
that are captured during profiling. Some of these
new metrics are built-in advanced metrics that ex-
pose a particular characteristic of performance and
some allow the user to define their own metrics us-
ing calculations combining existing measurements.

• 3 static analysis approaches. Two of these are a type
of feedback generated from static optimisers (nor-
mally but not necessarily associated with compilers)
that indicate where code changes could be made
that would enable further static optimisations. The
other approach looks for code patterns that equate
to known performance bugs. All of these approaches
have the typical benefits and weaknesses of static
approaches. They can be applied at build time with-
out needing a running environment but are unable
to distinguish which code is performance critical.

The remaining 29 papers are those that most directly
addressed performance concerns specific to large-scale
object-oriented software, and runtime bloat in particular:

• 4 papers analyse memory efficiency in Java pro-

grams by analysing the allocated objects and struc-
tures on the heap. These help give insight into
memory bloat but do not directly address issues of
execution time performance.

• 7 papers discuss performance data presentation ap-
proaches. These techniques assist with interpreting
performance data but only help visualise or present
the existing data. New insights into the performance
behaviour and how the performance could be im-
proved still need to be drawn by the user.

• 1 static analysis approach, which combines con-
cern input with program analysis for bloat detec-
tion. This helps analyse when optional concerns
(features) have an impact on the performance of
mandatory features. It requires an external source of
concern input and does not help identify when the
implementation of a mandatory feature is inefficient.

• 1 paper presents algorithmic profiling, an approach
that automatically partitions a program into multi-
ple algorithms and determines a cost function for
each of these algorithms in terms of the input size
for the algorithm. The focus is on understanding
how these algorithms will behave with increasing
input sizes. The current implementation is only
able to work on algorithms that operate on data
structures and has a very high runtime overhead
(several orders of magnitude).

The last 16 papers are those that most directly tackle
runtime execution bloat:

• 7 approaches focus on identifying object pooling
opportunities, these identify object allocation sites
that produce many objects that are either very short-
lived or very similar or both and as such create
repeated and potentially unnecessary work.

• 5 papers that focus on tracking possible symptoms
of runtime bloat in a data-flow centric manner.
They do this by monitoring data copies, reference
propagations or the usage of temporary objects and
relating them to the code locations that induce them.

• 4 approaches focus on the way data structures are
created and used, either identifying situations where
an implementation is inappropriate for the way it is
used or where a data-structure has a low value (is
used very little) relative to the cost of its creation.

All of these last 16 papers are focussed on understand-
ing bloat in terms of the inefficient use of data-structures,
inefficient data-flows or inefficient creation of objects. In
other words they all took a data-flow centric view of the
problem, rather than a control-flow centric one. Whilst
the majority of the more traditional profilers did take
a control-flow centric view of performance, they pro-
vided only simple method or calling context summarised
metrics. Consequently there is opportunity for provid-
ing more advanced control-flow centric feedback on
performance of object-oriented software. For example,
feedback approaches based on aggregating performance
information over the repeated calling patterns that are

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

induced by the design of the software. Additionally
the object pooling and data structure based approaches
address specific identified performance problems, i.e. ob-
ject churn and inappropriate data structure respectively,
rather than providing general performance feedback.
This means that whilst these approaches are useful they
are not comprehensive and there are further opportuni-
ties for complementary approaches.

6 THREATS TO VALIDITY

The primary threats to the validity of our results and
conclusions are the two classic problems faced by many
literature reviews, namely the possibility of researcher
bias and the possibility of missing relevant articles. The
primary defense against these threats has been to follow
a systematic review methodology as we have described
in section 3. This process is designed to be rigorous
and objective and relies primarily upon the discipline
of defining the protocol to be followed throughout the
review before undertaking the review. However it does
still rely on subjective interpretation and in our case
the risk of researcher bias is increased by the fact that
the majority of the work was undertaken by a single
researcher, the primary author of this paper. Therefore
we took additional steps, which we describe below, at
several stages to mitigate this risk.

One of our biggest challenges in conducting this
systematic review was the search phase. We experi-
enced a number of challenges similar to those discussed
by Brereton et al [17], in particular the differences in
functionality and sophistication between the different
mainstream software engineering search engines. As
documented in our search results in section 3.8 each
search engine required a different search expression
syntax. They also each had different approaches to both
stemming (the process of identifying the root of a search
term to find relevant partial matches e.g. plurals) and
identification of key words for articles, meaning that
it was possible to get different results from different
search engines even when the same paper was being in-
dexed. However these challenges were minor compared
to our biggest challenge, which was generating suitable
key phrases for our initial searches. As we discussed
when we described our search phrase development in
section 3.4 the key terms for our domain suffered from
having both low precision (terms like ‘software’ and
‘performance’ return tens of thousands of results) and
low recall (there are many synonyms for terms like
‘performance analysis’). We lacked that one key unique
domain specific term that would have helped both the
precision and recall of our searches.

To mitigate the challenges of the search phase we
resorted to being as thorough as possible. We included
multiple electronic database searches, manual searches
targeted to the venues highlighted as key venues by the
results of our electronic searches, and finally referencing
checking of included papers. In total we performed

automated searches against 6 major electronic databases,
manual searches across 66 conference proceedings, and
reference checks against many hundreds of papers. In
total we manually screened many thousands of papers
for inclusion in our survey. Despite this thoroughness
we feel it is likely that some relevant articles have been
missed. This was highlighted by our manual searches,
where a detailed search of 5 key venues that were
already contributing over 60 articles found by our elec-
tronic searches, found another 32 articles suitable for
inclusion. This worryingly represents an approximately
50% miss rate from the electronic searches. More reas-
suring were the results of the reference snowballing,
which resulted in only an additional 19 papers being
included, meaning that comparatively few papers of
referenceable quality were missed by the earlier searches.
Due to the completeness of our searches we believe the
number of possibly missed articles is small enough to
not substantially affect our conclusions.

Our decision to limit our mapping study only to
literature published since January 2000 does mean that
we have potentially excluded relevant literature from
before this time. However given our particular focus on
object-oriented applications, which were still relatively
new in 2000, the rapid pace of change in computing since
then, and the large numbers of papers we have included
in our study, we feel it is unlikely that the excluded
papers from before 2000 would significantly impact our
conclusions.

To reduce the risk of researcher bias during article
selection and data extraction we undertook a process
where a random selection of 100 papers returned from
the automatic searches was screened for inclusion and
then categorised according to the developed review pro-
tocol by each of the four authors of this paper. Once
each author had completed this process independently
the results were compared and any discrepancies were
discussed and resolved. The intent of this process was to
clarify any ambiguous aspects of the inclusion/exclusion
criteria and categorisation process to make them less
subjective and easier to apply more consistently. This
then allowed us to fine-tune our review protocol before
it was finalised and applied to the full review.

The results interpretation process is by its nature a
subjective process and is vulnerable to bias or limitations
at the earlier stages of the process as missing papers or
ambiguous classifications during the data extraction will
potentially change the results that are being discussed.
One of our primary defenses against these threats was to
limit ourselves to analysing and drawing conclusions on
clear trends in the data, trends that are not invalidated
by small numbers of papers being missed or classified
inappropriately. Our results interpretation was also an
area where the conclusions were reviewed and discussed
amongst the authors of the paper to mitigate the risk of
bias from a single researcher.

MAPLESDEN et al.: PERFORMANCE ANALYSIS FOR OBJECT-ORIENTED SOFTWARE: A SYSTEMATIC MAPPING 21

7 CONCLUSION

We have presented the details of a systematic mapping
study on empirical performance analysis approaches
applicable to object-oriented software. We performed
a wide-ranging systematic literature search including
automated searches of 6 major software engineering
electronic databases and detailed manual searches of 5
key venues since 2000, screening many thousands of
papers, to eventually select 253 articles related to em-
pirical approaches for performance analysis applicable
to object-oriented software. We developed a classification
scheme (see Figure 1) to structure and describe literature
in the field of empirical software performance analysis
and subsequently applied it to our 253 selected articles.
This allowed us to give an overview of the current
research in the field (see Figure 2) and examine the
trends and gaps in that research. The resulting mapping
is useful both for researchers looking to identify new
opportunities and related work in this field, and practi-
tioners from industry interested in discovering state-of-
art approaches to performance analysis they might wish
to apply.

After analysis of our categorisation we came to 4
key conclusions. Firstly there are relatively few ap-
proaches that incorporate the use of any in-depth static
information or analysis when analysing performance.
There seems to be great scope for leveraging more static
analysis to augment the traditional dynamic analysis
based approaches. Secondly we found that there are
performance analysis approaches from a wide range of
different domains that are applicable to object-oriented
software. The reverse is likely to be true as well, with
object-oriented approaches being increasingly adopted
in diverse areas such as HPC and mobile computing the
performance analysis approaches developed for object-
oriented software are likely to be applicable in those
areas in future. Thirdly, there has been little work
done evaluating the utility of performance analysis ap-
proaches, particularly for large-scale object-oriented soft-
ware.

Finally we found there are still opportunities to im-
prove on the feedback generated on the performance
of large-scale object-oriented software. The majority of
existing approaches provide only simple metrics, which
are challenging to interpret in large-scale object-oriented
software. There is some more recent research, particu-
larly that into runtime bloat, that addresses this problem
but to date it has been limited to data-flow, rather than
control-flow, based approaches. Despite the importance
and prevalence of object-oriented software there are
significant challenges in understanding and improving
its performance.

REFERENCES

[1] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” EBSE Technical
Report, EBSE-2007-01, 2007.

[2] J. Larus, “Spending Moore’s Dividend,” Communications of the
ACM, vol. 52, no. 5, pp. 62–69, 2009.

[3] N. Mitchell, G. Sevitsky, and H. Srinivasan, “Modeling Runtime
Behavior in Framework-Based Applications,” Lecture Notes in Com-
puter Science, vol. 4067, pp. 429–451, 2006.

[4] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software Bloat Analysis: Finding , Removing , and Preventing
Performance Problems in Modern Large-Scale Object-Oriented Ap-
plications,” Proceedings of the FSE/SDP Workshop on the Future of
Software Engineering Research - FoSER 2010, pp. 421–425, 2010.

[5] N. Mitchell, E. Schonberg, and G. Sevitsky, “Four Trends Leading
to Java Runtime Bloat,” IEEE Software, vol. 27, no. 1, pp. 56–63,
2010.

[6] M. Woodside, G. Franks, and D. Petriu, “The future of software
performance engineering,” Future of Software Engineering, pp. 171–
187, 2007.

[7] C. U. Smith, Performance Engineering of Software Systems. Addison
Wesley, 1990.

[8] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: a survey,”
IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310,
May 2004.

[9] D. C. D’Elia, C. Demetrescu, and I. Finocchi, “Mining hot calling
contexts in small space,” Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation - PLDI
’11, pp. 516–527, 2011.

[10] H. Koziolek, “Performance evaluation of component-based soft-
ware systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp.
634–658, Aug. 2010.

[11] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in 12th International
Conference on Evaluation and Assessment in Software Engineering,
2008, pp. 68–77.

[12] B. Kitchenham, R. Pretorius, D. Budgen, P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in soft-
ware engineering – A tertiary study,” Information and Software
Technology, vol. 52, no. 8, pp. 792–805, Aug. 2010.

[13] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, vol. 53,
no. 6, pp. 625–637, Jun. 2011.

[14] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying Systematic
Reviews to Diverse Study Types: An Experience Report,” First
International Symposium on Empirical Software Engineering and Mea-
surement - ESEM 2007, no. 7465, pp. 225–234, Sep. 2007.

[15] K. Petersen, “Measuring and predicting software productivity: A
systematic map and review,” Information and Software Technology,
vol. 53, no. 4, pp. 317–343, Apr. 2011.

[16] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis
for performance understanding of framework-based applications,”
Proceedings of the 2007 international symposium on Software testing and
analysis - ISSTA ’07, pp. 118–128, 2007.

[17] P. Brereton, B. a. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature review
process within the software engineering domain,” Journal of Sys-
tems and Software, vol. 80, no. 4, pp. 571–583, Apr. 2007.

David Maplesden David Maplesden completed
a MSc (Hons) in Computer Science at The Uni-
versity of Auckland, New Zealand, in 2000. He
spent 12 years as a professional software de-
veloper both in NZ and overseas mostly building
enterprise Java web applications. He is currently
working towards a PhD in the Department of
Computer Science at The University of Auck-
land. His current research interests are the per-
formance of large scale object-oriented software
and tool support for software engineering.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 201X

Ewan Tempero Ewan Tempero is an Asso-
ciate Professor in the Department of Computer
Science at The University of Auckland, New
Zealand. He graduated from the University of
Otago, New Zealand, with a B.Sc., (Honours) in
Mathematics in 1983 and received his Ph.D. in
Computer Science from the University of Wash-
ington, USA, in 1990. He has published over 140
papers in journals and internationally-refereed
conferences, mainly in the areas of software
reuse, software tools, and software metrics. His

current research is developing metrics for measuring the quality of
software designs. He is the developer and maintainer of the Qualitas
Corpus.

John Hosking John Hosking is Dean of Science
at the University of Auckland. John obtained
his BSc and PhD in Physics from the Univer-
sity of Auckland then joined the Department of
Computer Science at the University of Auckland
working his way through to full Professor before
taking up the position of Dean of the College
of Engineering and Computer Science at the
Australian National University. He has recently
returned to his new role in Auckland. John’s
research interests are in software engineering,

visual languages, and knowledge visualisation. He is a member of the
IEEE and a Fellow of the Royal Society of New Zealand.

John C. Grundy John C. Grundy received the
BSc (Hons), MSc, and PhD degrees in computer
science from the University of Auckland, New
Zealand. Previously, he was a lecturer and se-
nior lecturer at the University of Waikato, New
Zealand, and a professor of software engineer-
ing and the head of electrical and computer
engineering at the University of Auckland, New
Zealand. He is currently a professor of software
engineering and the head of computer science
and software engineering at Swinburne Univer-

sity of Technology, Melbourne, Australia. He is an associate editor of the
IEEE Transactions on Software Engineering, the Automated Software
Engineering Journal, and IEEE Software. His current interests include
domain-specific visual languages, model-driven engineering, large-
scale systems engineering, and software engineering education. He is a
member of the IEEE and the IEEE Computer Society. More details about
his research can be found at http://www.ict.swin.edu.au/ictstaff/jgrundy.

	Introduction
	Background and Motivation
	Software Performance Engineering
	Challenges of Empirical Performance Analysis
	Related Surveys
	Related Literature

	Methodology
	Overview
	Research Questions
	Initial Manual Search
	Search Phrase Development
	Venues
	Article Screening
	Inclusion and Exclusion Criteria

	Completing article selection
	Search Results
	Search Results Discussion
	Data extraction
	Classification Scheme
	Contribution
	Domain
	Focus
	Feedback
	Analysis Type
	Probe Type
	Probe Implementation
	Probe Overhead
	Validation Approach
	Evaluation Dataset

	Results
	Overview
	Research Question 1
	Research Question 2
	Venue
	Domain
	Focus
	Analysis Type

	Research Question 3
	Research Question 4
	Research Question 5

	Discussion
	Very little static or blended analysis, virtually all dynamic
	Cross-Domain approaches
	Evaluating the utility of performance analysis approaches
	Improving feedback on the performance of large-scale object-oriented software

	Threats to Validity
	Conclusion
	References
	Biographies
	David Maplesden
	Ewan Tempero
	John Hosking
	John C. Grundy

