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Abstract

We present the R package epinet, which provides tools for analyzing the spread of
epidemics through populations. We assume that the relationships among individuals in a
population are modeled by a contact network described by an exponential-family random
graph model and that the disease being studied spreads across the edges of this network
from infectious to susceptible individuals. We use an SEIR compartmental model to
describe the progress of the disease within each host. We describe the functionality of
the package, which consists of routines that perform simulation, plotting, and inference.
The main inference routine utilizes a Bayesian approach and a Markov chain Monte Carlo
algorithm. We demonstrate the use of the package through two examples, one involving
simulated data and one using data from an actual measles outbreak.
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1. Introduction

The epinet package for R (R Core Team 2014) allows users to infer network models from
time-series epidemic data and simulate epidemics over networks. The software will be of use
to statisticians, epidemiologists, biologists or others who wish to investigate the population
processes involved in infectious disease transmission either via inference using empirical data
obtained from a relatively small outbreak or via in silico simulation.

Networks have been used to model the contact structure across which disease causing pathogens
spread since at least the mid-20th century (Bailey 1957) for the simple reason that they are
very natural models of this system. Networks allow a fine-scale modelling of the heterogeneity
seen in the number of contacts that individuals are involved in. Nodes in the network rep-
resent host individuals and edges between nodes represent possible paths for transmission so
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that heterogeneity in contact numbers is represented as heterogeneity in the degree of nodes
in the network. Accurately modelling this heterogeneity is crucial to understanding the dy-
namics of epidemics and therefore to planning any control strategies (see Danon et al. 2011,
for a full discussion of the benefits of network modelling in epidemiology).

While the simple epidemic network models are well-studied using analytic tools (e.g., Kenah
and Robins 2007, and references therein) and many more complex models have been proposed
and studied using simulation (Welch et al. 2011; Moslonka-Lefebvre et al. 2009; Melnik et al.
2011; Badham and Stocker 2010), there are few tools for the empirical scientist who obtains
epidemiological data and wishes to reconstruct the contact network across which it spread.

epinet estimates the parameters of a parametric model for the contact network from tem-
poral data obtained from an epidemic. All estimates are made in a Bayesian context using
Markov chain Monte Carlo (MCMC) techniques, which produces samples from the posterior
distribution of all unknowns in the model. The list of parameters estimated are the network
itself, the transmission tree, and scalar parameters controlling the contact formation process
(the network) and the transmission process.

All of the major software packages that we are aware of for fitting time series data to epidemic
models are R packages. They include EpiEstim (Cori 2013), surveillance (Meyer et al. 2015),
R0 (Boelle and Obadia 2013) and epicalc (Chongsuvivatwong 2012). None of these packages
explicitly place an unknown contact network at the heart of their model.

There are several existing software packages that fit network models to observed network data,
such as ergm (Hunter et al. 2008), Bergm (Caimo and Friel 2014) and hergm (Schweinberger
2013). These packages all take as input a fixed observed network or networks, and estimate
the parameters of a specified model. The class of models available in these packages are a
superset of those available in epinet. Epinet is unique in taking time-series epidemic data as
input and producing parameter estimates of a network model.

epinet also provides simulation tools to simulate networks from certain network models and to
simulate epidemics across given networks. The simulation tools are particularly useful when
used in conjunction with the inference tools to perform, for example, posterior predictive
modelling and assessing model fit.

The remainder of the paper is structured as follows. In Section 2, we describe the network
and epidemic models available in epinet and the form of the data required by the inference
engine. In Section 3, we describe the primary functions and interface used in the package and
in Section 4 we go through two detailed examples of inference, one using simulated data, the
other using real data. We conclude in Section 5 with a brief discussion of future work on this
package.

2. Models and data

Before we describe in detail the models we use, we look at three basic modelling assumptions
made in epinet. The first is that the pattern of contacts within the population is modelled as
a static network and the population size is known (so that the number of nodes in the network
is known and fixed). The second is that the spread of the pathogen over a given network is
modelled as a stochastic compartmental model. The third is that the observed data consists
of event times at which individuals moved from one compartment to another (for example,
times of infection or removal) and that it is known which individuals are infected during the
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course of the epidemic and which are not.

The contact network is a static, undirected network in which the individuals are vertices
(nodes) and an edge (tie) exists between two vertices when there is sufficient contact between
the individuals for the pathogen to be transmitted if it is present. Exactly what constitutes
contact depends on the pathogen being modelled: the network associated with a sexually
transmitted pathogen will be very different to a network associated with a pathogen spread
by respiration. It is important to note that the presence of a contact does not necessarily
mean that transmission occurs, so (a, b) could be an edge in the contact network and a gets
infected but b never gets infected. For example, someone could have sufficient contact with a
person so that transmission is possible but, by chance, it never occurs.

Contrast a static network with the actual contact process which is dynamic in that contacts
between individuals — times when transmission can occur — are fleeting and may or may not
reoccur. The static contact network is typically considered as an approximation of these dy-
namic networks where contacts that pass some threshold (frequency, length or a combination
of the two) are recorded, while contact below that threshold is considered unimportant. A
static network assumption is most appropriate where the the timescale of a typical epidemic
is must faster than the time scale of changes in the population, such as birth, death or mi-
gration, and when transmissions of the pathogen are primarily across persistent or recurrent
rather than fleeting contacts.

The use of a stochastic compartmental model for the infection is widespread and uncontrover-
sial. While we implement one particular class of models here (the SEIR class), the framework
we present could easily be extended to other classes of compartmental model.

We require that the epidemic data include: the size of the initial susceptible population, the
total number infected during the outbreak and, for each infected host, (some proxy of) the
time of one of the transitions between compartments, for example, the time of exposure,
infection or recovery. This assumption limits our approach to well-documented outbreaks in
closed populations.

2.1. Network models

The model we use to represent the contact network within a population of N individuals is
an Exponential-Family Random Graph Model (ERGM) (Frank and Strauss 1986; Handcock
et al. 2008). If G is an ERGM with a fixed number of nodes, N , it can be represented by the
discrete probability mass function

f(G) =
exp{η>g(G)}

κ(η)
, (1)

where g(G) is a vector of length k of graph statistics defining the ERGM, which could include
terms such as number of edges, number of triangles or cycles, and homophily terms, among
others. The parameter vector η = (η1, . . . , ηk)> is such that ηi corresponds to the ith network
statistic and κ(η) is a normalizing function. ERGMs encompass a wide range of models,
including some important special cases such as the Erdős-Rényi model (Gilbert 1959; Erdős
and Rényi 1959). See Handcock et al. (2008) for a discussion of the advantages of using
ERGMs to model contact networks.

In epinet, we utilize a specific class of ERGMs known as dyadic-independent models, meaning
that the probability of an edge existing between any two nodes in the population is indepen-
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dent of the absence or presence of any other edges in the network. The specific subclass of
dyadic-independent models we use has a probability mass function of the form

f(G) =

exp


k∑

t=1

ηt
∑
{i,j}
G{i,j}X{i,j},t


κ(η)

, (2)

where X is a
(N
2

)
× k matrix of dyadic covariates, with one row corresponding to each of the(N

2

)
dyads and one column for each of the covariates in the model; G{i,j} is an indicator of the

presence of an edge between individuals i and j. Under this class of models, we can calculate
the probability of an edge between any two nodes i and j as p{i,j} = P (Gi,j = 1), where

log

(
p{i,j}

1− p{i,j}

)
=

k∑
t=1

X{i,j},t ηt. (3)

There are some notable advantages associated with the subclass of ERGM given in Equation 2.
The model is intuitively understandable and it is easy to interpret the model parameters:
each coefficient can be interpreted as the incremental log odds of the probability of an edge
associated with the corresponding effect. The dyadic-independence property of these models
also makes them computationally manageable. As described in Groendyke et al. (2012), all
of the manipulations of the network in the MCMC algorithm can be done iteratively by
cycling through the dyads. The normalizing function κ(η) in Equation 1, which is in general
intractable, becomes computationally tractable for this subclass. In addition, the models
described by Equation 2 are a rich enough subclass of ERGMs to realistically model contact
networks in many situations. Any statistic whose value is a function of the properties of a
dyad (and the individuals comprising the dyad) can be included in this subclass of model.
Some of these types of terms include uniform and differential homophily terms (sometimes
called matching or assortative terms) (Cauchemez et al. 2011) and various types of distance
metrics. We use both of these types of terms in the examples in Section 4.

The major disadvantage of a dyadic-independence ERGM is that it does not capture some
important effects influencing edge formation in social networks and, by extension, contact
networks. One key characteristic of social networks is transitivity — if (i, j) and (j, k) are
edge then (i, k) is more likely an edge too, or, more prosaically, friends of friends are likely to
be friends (Wasserman 1994). Including a dyadic-dependent term such as transitivity in an
ERGM results in an intractable normalization constant, κ(η), and makes inference for these
models very difficult. Despite the importance of dyadic dependence terms, we believe there is
sufficient richness in the dyadic-independent ERGMs to make them useful models for many
situations.

2.2. Epidemic models and the transmission tree

Given a contact network, we assume that an epidemic spreads across it as an SEIR compart-
mental model (for a detailed description, see Keeling and Rohani 2008). The compartments
S, E, I, and R are based on individual’s current disease status. Individuals that have not yet
been infected, but could be in the future are in the Susceptible class. Upon transmission, an
individual moves to the Exposed class; in this class, the individual cannot yet infect others.
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After some period of time, an Exposed individual becomes Infectious, at which point they are
able to infect individuals in the Susceptible class. Lastly, Infectious individuals are Removed,
at which time they can no longer infect others and they play no further role in the epidemic.
Removal could be due to, for example, acquired immunity or death. For epidemics where re-
infection plays a significant role, an SIS or SEIRS model should be used, but no such model
is currently implemented in epinet.

Thus, the progression of an SEIR infection in each host is described by:

Susceptible→ Exposed→ Infectious→ Removed

The epidemic begins when a single individual becomes infected. The infection may be trans-
mitted across any edge from an Infectious to a Susceptible node. The waiting time for a trans-
mission across a particular edge is modelled by an exponential random variable with mean
1/β. The times spent in the Exposed and Infectious states are modelled as gamma random
variables with parameters (θE , kE) and (θI , kI), respectively, where we use the parametrisation
of the gamma distribution which has mean kθ and variance kθ2.

The subgraph of the contact network that includes all nodes infected during the epidemic and
the edges across which transmission occurred is called the transmission tree and denoted P.
It is a tree because it includes no cycles (since any node can only be infected once) and is
a directed graph where the direction of the edges is given by the direction of transmission.
The transmission tree can be visualised simply as a directed network or, coupled with times
at which infection and recovery events occurred, as a timed tree which gives a lot of detail
about the progress of the epidemic as seen in Figure 1 and described in Section 4.

2.3. Data

The primary data used in the inferential procedure are the times at which each individual
in the population enters each of the Exposed, Infectious, and Removed states. In addition,
it is necessary to know how many members of the population were never infected (remained
susceptible throughout the course of the epidemic). In the case that either the Exposed
or Infectious (or both) times are not known, they can be inferred as part of the MCMC
algorithm; however, knowing more data strengthens the ability of the procedure to infer the
other parameters. In reality, the exact times of state transitions will usually not be known,
and it will be necessary to use some sort of proxies for these times. In some cases, the
onset of various symptoms in hosts can be mapped to the transitions between stages in the
compartmental model. The difficulty of acquiring this type of data is typically the greatest
difficulty in performing the analysis described here.

Times may be given on any scale and arbitrarily shifted. We often shift the times so that the
first recorded event corresponds to t = 0.

If a network model using dyadic covariates is being used, then the covariates for each individual
in the population must be known and forms part of the data. Finally, information we might
have about the transmission tree, such as known infectious contacts, may be incorporated in
an analysis; Section 2.4 describes this in more detail.

2.4. Priors

We complete the specification of the model by specifying independent prior distributions for
the model parameters. The η parameters governing the probabilities of edge formation in
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the contact network are assigned normal prior distributions. Typically we use vague normal
priors to indicate a lack of prior information for these parameters, though when we have
prior knowledge regarding these parameters, the parameters of the priors can be specified
accordingly.

The prior distributions for the epidemic parameters can be chosen to reflect any relevant
biological information known about the pathogen in question. Specifically, the θE and θI
parameters can be set to inverse gamma distributions, while prior information for the β, kI ,
and kE can be specified using gamma distributions. These distributions are flexible enough
to be useful in a variety of situations. If little or no prior information is known regarding
these parameters, this uncertainly can be specifed using uniform distributions on the range
of biologically plausible values for each parameter.

By default, the prior distribution for the transmission tree is uniform on the set of all possible
transmission trees. Equivalently, the default prior distribution for the parent of (i.e., the
individual responsible for infecting) node j is uniformly distributed on the set of all individuals
that were in the Infectious state when j became Exposed. If we have reason to believe that a
particular individual is responsible for this infection, we can incorporate this information by
multiplying the weight given to this individual in the prior distribution by a factor greater
than 1. Groendyke et al. (2011) studies the effect of various weights on the resulting posterior
distribution of the transmission tree. In the cases where it is necessary to infer the exposure
and/or infectious times of individuals, we use a flat (uninformative) prior distribution for
these times.

2.5. Inference

All inference is done within a Bayesian framework. We use MCMC to sample from the
otherwise intractable joint posterior distribution. The parameters over which the posterior
is defined are the network parameters η, epidemic parameters (β, θE , θI , kE , and kI), the
network, G, and the transmission tree, P. The marginal posterior distribution of any set
of parameters can be studied by simply ignoring sampled values of parameters that are not
of interest. The network and transmission tree are included so that the likelihood can be
more easily calculated, but these paramters may not always be of interest. Full details of the
implementation of the algorithm are given in Groendyke et al. (2011) and Groendyke et al.
(2012).

3. The R package epinet

The R package epinet does simulation, plotting, and Bayesian inference for epidemics assumed
to spread through a population across edges of a contact network. The underlying contact
network is assumed to be a dyadic-independent ERGM of the type specified in Section 2.1;
the epidemic model is an SEIR model as described in Section 2.2.

In the main routine implementing the MCMC algorithm, a binary tree structure is used in-
ternally to store the contact network; this structure has the advantage of efficiently handling
the storage and manipulation of the sparse networks that are often encountered in the situa-
tions considered here. The implementation of this structure and some of the internal methods
operating on the network are very similar to those used in the ergm package for R. The rep-
resentation of the transmission tree is straightforward: for each node, we need only store the
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node responsible for its infection. In the remainder of this section, we describe the primary
functions used in this package.

3.1. Simulation

The epinet package can be used to simulate the spread of an epidemic though a population
across a given undirected contact network. A network is represented in epinet as the pair
(N,M) where N is the number of nodes and M an edgelist matrix which has a row for
each edge in the network and two columns giving the identities of the nodes sharing the
edge. A routine for simulating random edgelists according to the ERGM model given in
Equation 2 is provided as SimulateDyadicLinearERGM(), which takes as inputs a matrix
of dyadic covariates and a vector of network parameters, denoted in Equation 2 by X and
η, respectively. Other network simulation functions are available in the ergm and network
(Butts et al. 2014) packages.

Given a network, the main function performing epidemic simulation is SEIR.simulator():

SEIR.simulator(M, N, beta, ki, thetai, ke = ki, thetae = thetai, latencydist

+ = "fixed", latencyperiod = 0)

The arguments beta, ki, thetai, ke, and thetae correspond to the parameters β, kI , θI , kE ,
and θE (as defined in Section 2.2), respectively. The latency period (time spent in the Exposed
state by each individual) can be modelled either as a fixed period of time (latencydist
= "fixed") or as a gamma random variable (latencydist = "gamma"). When the latent
period is fixed, the argument latencyperiod specifies the length of the latency period, and
the thetae and ke arguments are ignored. When the latent period is gamma-distributed, the
latencyperiod argument is ignored.

The output of this function is an object of class“epidemic”, a simulated epidemic in the matrix
form required by epinet, with one row for each individual in the population. The first two
columns give the IDs of the individual and the individual responsible for their infection. The
final three columns give the times that the individual entered the exposed, infectious, and
removed states. For individuals not infected in the epidemic, the final four columns are
assigned NA values. There are S3 methods print, summary, and plot for the epidemic class
of object.

3.2. Inference

The MCMC algorithm used to generate posterior samples is implemented in C (Kernighan
et al. 1988); it is interfaced in R through the epinet() function. This algorithm is based on
that described in Britton and O’Neill (2002), Groendyke et al. (2011), and Groendyke et al.
(2012):

epinet(formula, epidata, dyadiccovmat, mcmcinput = MCMCcontrol(),

priors = priorcontrol(), verbose = TRUE)

The inputs to the function include: formula, a formula object that specifies the covariates
to be included in the model (an intercept term is included by default), epidata, a matrix
in the format produced by SEIR.simulator(), dyadiccovmat, a matrix of dyadic covariates,
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mcmcinput, a list which sets the controls for the MCMC algorithm, priors, the list of prior
distributions and hyperparameters for the model parameters, and verbose, which controls
the level of output printed to the screen during the operation of the routine.

The mcmcinput parameter can either be set directly or via a call to MCMCcontrol(). The
number of MCMC iterations and thinning interval are controlled by nsamp and thinning,
respectively. Because the posterior samples for the inferred exposure times, inferred infectious
times, and transmission tree parameters can be very space intensive, the input argument
extrathinning can be used to further thin the output for them; the possible values for this
argument are FALSE (for no extra thinning) or a positive integer specifying the additional
thinning interval. The desired number of burn-in iterations to be performed by the MCMC
routine is specified by the burnin parameter, which defaults to 0. The seed parameter allows
the user to manually set the random seed. Finally, the parameter etapropsd is an array
of standard devations for the proposal distributions of the η parameters; these are tuning
parameters for the MCMC algorithm.

The priors parameter can either be set directly or via a call to priorcontrol(). The
forms of the prior distributions for the epidemic parameters (β, kI , θI , kE , and θE) can be set
individually, or can be specified collectively using the priordists argument. If “gamma” is
selected, the θE and θI parameters are assigned inverse gamma prior distributions, while the
other epidemic parameters use gamma distributions. If“uniform”is chosen, all of the epidemic
parameters are assigned uniform distributions. The arguments bprior, tiprior, teprior,
etaprior, kiprior, and keprior give the hyperparameters for the prior distributions of these
parameters. The prior distributions of the network (η) parameters are specified to be normal
whose means and standard deviations are specified in the etaprior argument. We can also
specify the prior distribution for the parent of the individuals. The default is a uniform prior
on the set of possible parents, i.e., the set of individuals who were infectious at the time
of exposure. If we have reason to believe that a particular individual is more likely to be
responsible for infecting another, we can put additional weight on the corresponding prior
probability. This is done by specifying the suspected parent of the individual in the second
column of the epidata argument, and by indicating the multiplier for the prior probability
in the parentprobmult argument.

The primary output of this function are samples from the posterior distribution of the model
parameters, β, θE , kE , θI , kI and η. Posterior samples for the exposure and infectious times
can also be returned, along with those corresponding to the identity of the initially infected
individual, initial exposure time and the transmission tree. Other output values include the
log-likelihood for each recorded sample and number of proposed and accepted moves of each
move type within the MCMC algorithm. All of these values can be inspected to assess the
whether or not the chain has converged and, therefore, whether or not the samples obtained
are actually from the desired posterior. The remaining output values include the function call,
model formula, and MCMC control input. The fitted model is an object of class “epinet”;
there are S3 methods print, summary, and plot for this class of object.

3.3. Other functions

In addition to the epidemic simulation and inference routines described above, the epinet
package also contains some auxiliary functions whose inputs and outputs are briefly described
in Table 1.
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Function Input(s) Output

BuildX Types of covariate(s) de-
sired, e.g., matching, dis-
tance, etc.

A matrix of dyadic covari-
ates of the form required
by SEIR.simulator() and
epinet().

SimulateDyadicLinearERGM Network (η) parameters
for desired network.

A simulated ERGM network in
edgelist matrix format.

plot.epidemic An epidemic in the
form produced by
SEIR.simulator().

A graph visually depicting the
epidemic.

plot.epinet MCMC output in
the form produced
by epinet().

A graph visually depicting the
state of the epidemic at a partic-
ular point in the MCMC chain.

epi2newick An epidemic in the
form produced by
SEIR.simulator().

The transmission tree corre-
sponding to the epidemic as a
string in Newick format.

epi2newickmcmc MCMC output in
the form produced
by epinet().

The transmission tree corre-
sponding to an inferred epidemic
as a string in Newick format.

write.epinet MCMC output in
the form produced
by epinet().

Written output files consisting of
the posterior samples of the epi-
demic parameters and transmis-
sion trees.

ess MCMC output for a sin-
gle variable, i.e., a sample
from the posterior distri-
bution of a variable.

An estimate of the ESS (effective
sample size) of the sample.

Table 1: Description of some of the functions in package epinet.

4. Examples

In this section, we demonstrate the use of the epinet package through two examples, the first
using simulated data, and the second involving data from an actual epidemic.

4.1. An example using simulated data

For this example, we will use a population of 50 individuals with node IDs of 1 through 50. We
will consider only two covariates, the overall edge density (a constant covariate of 1) and the
Euclidean distance between each pair of individuals. We randomly assign a spatial position
on the two-dimensional unit square to each individual.

R> library(epinet)
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R> set.seed(1)

R> N <- 50

R> mycov <- data.frame(id = 1:N, xpos = runif(N), ypos = runif(N))

R> dyadCov <- BuildX(mycov, binaryCol = list(c(2, 3)), binaryFunc

+ = c("euclidean"))

We then simulate a contact network on this population; we will take the baseline log-odds
probability of an edge to be 0, and the incremental log-odds of an edge to decrease by 7
for each unit of distance between the nodes in a dyad. The SimulateDyadicLinearERGM()

function is used to simulate a network from the model given in Equation 2, given any number
of dyadic covariates.

R> eta <- c(0, -7)

R> net <- SimulateDyadicLinearERGM(N = N, dyadiccovmat = dyadCov, eta = eta)

(We note that the plot.network() function in the network package can be used to produce
a nice visual representation of a network, if desired.) Next we simulate an epidemic across
this network, assuming that the length of time spent in the exposed state follows a gamma
distribution. The parameters used for the simulation are β = 1, kI = 3, θI = 7, kE = 3, and
θE = 7. The SEIR.simulator() function returns an epidemic object consisting of matrix with
a row for each infected individual and five columns: Node ID, Node ID of parent (the indi-
vidual infecting the node), and the times that the individual entered the exposed, infectious,
and removed states. For convenience, the time t = 0 is chosen to match the time of the first
observed recovery.

R> epi <- SEIR.simulator(M = net, N = N, beta = 1,ki = 3, thetai = 7, ke = 3,

+ latencydist="gamma")

R> epi

Node ID Parent Etime Itime Rtime

[1,] 35 NA -66.14114560 -25.8757849 7.099042

[2,] 50 35 -25.61093119 24.5164631 44.023516

[3,] 9 35 -24.88898877 -16.5180717 0.000000

[4,] 43 35 -24.67232216 24.9623163 28.253567

[5,] 32 35 -23.94421137 -3.8943032 25.342128

[6,] 13 9 -15.84157623 -7.5727699 10.718028

. . . . . .

. . . . . .

. . . . . .

[45,] 19 40 44.26119572 81.3977265 114.193368

[46,] 44 14 49.52465905 81.8946425 129.073446

[47,] 2 NA NA NA NA

[48,] 11 NA NA NA NA

[49,] 18 NA NA NA NA

[50,] 47 NA NA NA NA
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From the output, we can see that 46 of the 50 members of the population were ultimately
infected during the course of this simulated epidemic; the final four rows in the output rep-
resent the members of the population remaining susceptible throughout the epidemic. The
plot method of the epidemic class can be used to visualize this epidemic (see Figure 1):

R> plot(epi, e.col = "slategrey", i.col = "red")
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Figure 1: Output from the plot method of the epidemic class showing the spread of the
sample epidemic through time. Each horizontal line segment represents the period of time
that the individual (labelled to the right of the segment) was in the exposed (grey) and
infectious (red) states. The small vertical ticks represent the times of transition from exposed
to infectious. Dotted vertical lines indicate transmission events. The time t = 0 is chosen to
correspond to the first observed recovery.
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Finally, we can proceed to using the epinet() routine to perform inference on the model
parameters. We will use uninformative uniform priors for the epidemic parameters, running
the algorithm for 1,000,000 iterations, and thinning every 100 to produce a posterior sample
of 10,000 points.

R> mcmcinput <- MCMCcontrol(nsamp = 1000000, thinning = 100, etapropsd = c(1, 1))

R> priors <- priorcontrol(bprior = c(0, 4), tiprior = c(1, 15), teprior = c(1, 15),

+ etaprior = c(0, 10, 0, 10), kiprior = c(1, 7), keprior = c(1, 7),

+ priordists = "uniform")

R> out <- epinet(~ xpos.ypos.L2Dist, epidata = epi, dyadiccovmat = dyadCov,

+ mcmcinput = mcmcinput, priors=priors)

In this example, we run the MCMC algorithm assuming that the exposure and infectious
times were known; as a result, inference on the θI , kI , θE , and kE parameters is not interesting.
Figure 2 shows histograms of the marginal posterior distributions of the two η parameters.
We can see that the algorithm has been able to recover the original parameter values of 0 and
-7.
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Figure 2: Histograms of the posterior distributions of the η parameters, with associated
equitailed 95% posterior credible intervals marked.

4.2. An example using the Hagelloch measles data

Next we demonstrate the use of epinet for a situation involving an actual epidemic. Specifi-
cally, we consider a data set resulting from a measles epidemic that spread through the town
of Hagelloch in the winter of 1861. This data was originally collected by Pfeilsticker (1863)
and later augmented by Oesterle (1992). This data set has been analyzed in various manners
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by many researchers, including Lawson and Leimich (2000), Neal and Roberts (2004), Britton
et al. (2011), Groendyke et al. (2012) and Meyer et al. (2015), among others.

Much of the information contained in the original Hagelloch data set is included in the epinet
package; it can be accessing using data("Hagelloch") and consists of two components:

• HagellochTimes is an array with 187 rows (one for each individual in the population)
and 5 columns. The format is similar to that produced by the function SEIR.simulator().
The columns denote for each individual, respectively, their node ID, putative parent (in-
dividual most likely responsible to have infected the node, as determined by Oesterle
(1992)), and times entering the exposed, infectious, and removed states. Proxies were
used to construct the infectious and removal times as described in Lawson and Leimich
(2000). No information regarding the times at which the individuals were exposed was
available, so that this column consists entirely of NA values. As a result, the exposure
times must be inferred as part of the inference process. One outlier was removed from
the original data set; this individual did not appear to have been a part of the same
epidemic.

• HagellochDyadCov is a matrix of dyadic covariates in a format similar to the one used
in the previous example, with one row for each dyad. The first two columns consist of
the dyad node IDs, while the remainder are described in Table 2.

Covariate Description

Household Indicator variable whose value is 1 if the two individuals are
in the same household and 0 otherwise.

Classroom 1 Indicator variable whose value is 1 if the two individuals are
both in classroom 1 and 0 otherwise. Classroom 1 consists
primarily of individuals 6 - 10 years of age.

Classroom 2 Indicator variable whose value is 1 if the two individuals are
both in classroom 2 and 0 otherwise. Classroom 2 consists
primarily of individuals over the age of 10.

House Distance Spatial distance (measured in units of 2.5m) between the
households of the two individuals.

Male Match Indicator variable whose value is 1 if the two individuals are
both male and 0 otherwise.

Female Match Indicator variable whose value is 1 if the two individuals are
both female and 0 otherwise.

Age Diff Absolute value of the age difference (in years) of the two
individuals.

Table 2: Description of dyadic covariates in HagellochDyadCov.

Figure 3 shows the spread of the epidemic over time, in terms of the number of individuals
entering the infectious state each day. From this figure, it appears that the classrooms play
a role in the spread of this outbreak. Indeed, Neal and Roberts (2004), Britton et al. (2011),
and Groendyke et al. (2012) all found significant classroom effects in their analyses of this
data.

Figure 4 shows the physical location of the households containing individuals infected during
this epidemic. It seems plausible that physical distance between the households of individuals,
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belonging to the same household, or both, could effect the likelihood of an infectious contact
between these individuals. Work by Neal and Roberts (2004), Britton et al. (2011), and
Groendyke et al. (2012) all indicates that one or both of these factors is likely to be significant.

Thus, for the purposes of this example, we utilize the two homophily variables indicating
classroom membership (Classroom 1 and Classroom 2), the continuous variable describing
the spatial distance between the households of individuals (House Distance), and an intercept
term. We have found that the MCMC algorithm implemented here can exhibit slow mixing
and high levels of autocorrelation. As a result, it is often necessary to run the algorithm for
a large number of iterations and to thin the output; this is especially true when the data set
contains large numbers of individuals or covariates. Here we run the algorithm for 20,000,000
iterations (after a burn-in of 1,000,000 iterations) and thin every 1,000 samples.
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Figure 3: Times (in days) at which individuals entered the infectious state during the Hagel-
loch measles outbreak, with the individual’s classroom indicated by color. Children ages 6-10
belong to classroom 1, whereas the older children belong to classroom 2. Children under the
age of 6 belong to neither classroom. Time 0 represents the time at which the first individual
entered the infectious state.

For each of the β, kE , kI , θE , and θI parameters, we use a uniform distribution encompassing
the range of biologically plausible values. We assign vague normal prior distributions centered
at 0 to the η parameters. In this example, we must infer the exposure times as part of the
MCMC algorithm. Following previous analyses, we assume that the entirety of the susceptible
population was infected over the course of this epidemic, so that there are no additional
individuals in the population beyond those infected individuals for whom we have data.

R> mcmcinput <- MCMCcontrol(nsamp = 20000000, thinning = 1000, extrathinning =



Journal of Statistical Software 15

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

X Coordinate (in meters)

Y
 C

oo
rd

in
at

e 
(in

 m
et

er
s)

Figure 4: Spatial locations in meters of the households containing individuals infected in the
Hagelloch measles outbreak. The size of each circle is proportional to the number of infected
individuals in the household.

+ 10, burnin = 1000000, seed = 1, etapropsd =

+ c(rep(0.05, times = 3), 0.005))

R> priors <- priorcontrol(etaprior = c(0, 3, 0, 3, 0, 3, 0, 3/40),

+ bprior = c(0, 4), tiprior = c(0.25, 0.75), teprior = c(0.25, 1),

+ keprior = c(8, 20), kiprior = c(15, 25), priordists = "uniform")

R> out <- epinet(~ ‘Classroom 1‘ + ‘Classroom 2‘ + ‘House Distance‘, epidata =

+ HagellochTimes, dyadiccovmat = HagellochDyadCov, mcmcinput = mcmcinput,

+ priors = priors)

Again, we are mainly concerned here with the factors contributing to the likelihood of indi-
viduals making infectious contacts; hence we will concentrate on the inference for the network
parameters. Trace plots for the posterior sample of these parameters are shown in Figure 5.

A first step in checking that the samples are obtained from the actual target posterior dis-
tribution is to check that there are no obvious trends in the trace plots of the parameters of
interest or log-likelihood values. The trace plots shown in Figure 5 demonstrate good mixing.
If there are no obvious trends, an estimate of the number of independent posterior samples in
the output can be obtained from the ess() function. A long enough run should be performed
so that large effective sample sizes (at least 200) for all parameters of interest are obtained.
Calculating the effective sample sizes of the network parameter samples yields the following:
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R> apply(out$eta, 2, ess)

(Intercept) `Classroom 1` `Classroom 2` `House Distance`
315.7480 407.3607 2617.4410 347.2327

Likewise, the effective sample sizes for the epidemic parameters are found to be at least 1300.
Further convergence diagnostics are available in the R package coda (Plummer et al. 2006) or
in tools such as Tracer (Rambaut et al. 2013); the write.epinet() function can be used to
produce output in tab delimited form. For example, we can use the geweke.diag() function
in the coda package to test for convergence by calculating the Geweke diagnostic statistics for
the various model parameters (Geweke 1992).

R> library(coda)

R> geweke.diag(as.mcmc(out$eta))

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

(Intercept) `Classroom 1` `Classroom 2` `House Distance`
0.8858 0.1908 0.2872 -0.5660

Under this test, if the MCMC chain has converged, the value of the test statistic for each
parameter has a standard normal distribution. We can similarly compute the test statistics
corresponding to the epidemic parameters; they range from -1.306 to 1.225. None of these
test statistics is large enough in absolute value to cause us to question the convergence of the
chain.

Being satisfied with the convergence of the Markov chain, we then proceed to analyzing the
output. Table 3 gives summaries of the estimated marginal posterior distributions of the
network parameters.

Effect (Parameter) Mean Median 95% CI

(Intercept) (η0) -0.44 -0.36 (-1.44, 0.51)
Classroom 1 (η1) 7.54 7.44 (4.89, 10.60)
Classroom 2 (η2) 0.77 0.80 (-0.26, 1.70)
House Distance (η3) -0.11 -0.12 (-0.17, -0.06)

Table 3: Summaries of marginal posterior distributions of network parameters for the Hagel-
loch measles example, including mean, median, and equitailed 95% posterior credible intervals.

The signs of the parameters are all consistent with our intuition about the corresponding
effects. The two classroom parameters both have positive means, indicating that sharing
a classroom increases the likelihood that two individuals will have an infectious contact.
The magnitude of the effect for classroom 1 was much larger than that of classroom 2; this
is consistent with results found by Neal and Roberts (2004) and Groendyke et al. (2012).
The posterior distribution of the household distance parameter is almost entirely negative,
indicating that the greater the distance between the households of two individuals, the less
likely they are to make an infectious contact.
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We can use the values in Table 3 to estimate the posterior probability of a contact between two
individuals. For example, consider a pair of individuals i and j who are both in classroom 1
and whose households are 75m apart. For such a dyad, we would have X{i,j},0 = 1,X{i,j},1 =
1,X{i,j},2 = 0, and X{i,j},3 = 30. Then we would estimate the log-odds of this dyad having a
contact as −0.44 + 1(7.54) + 0(0.77) + 30(−0.11) = 3.80 so that the probability of a contact
is estimated to be e3.80/

(
e3.80 + 1

)
= 0.98.
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Figure 5: Trace plot for network (η) parameters in Hagelloch measles example. The Markov
chain had a length of 20,000,000 and was thinned every 1,000 iterations to produce a final
sample size of 20,000 for each parameter.

Due to the size of this epidemic, using the plot method of the epinet class to display the
inferred transmission trees on the screen is not ideal, as the output becomes very difficult to
read. However, the package epinet provides a couple options for viewing the posterior samples
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of the transmission trees. First, we can use pdf() with this plot method in order to write
the trees to a PDF file:

R> pdf(file="SampleHagellochTree", height = 20, width = 7)

R> plot(out, index = 100)

R> dev.off()

A second option is to use the epi2newick() or write.epinet() function to write the trans-
mission trees to the text-based Newick format (Felsenstein 2004), which is the standard tree
format used in phylogenetics, that can then be plotted using any of a number of packages such
as ape (Paradis et al. 2004) in R, FigTree (Rambaut 2014), or IcyTree (Vaughan 2015). The
epi2newickmcmc() function returns a single inferred transmission tree as a Newick formatted
string. The write.epinet() function writes inference output into two files. The first file is a
.log file containing the posterior samples of the epidemic parameters as a tab delimited file
which can be read into, for example, Tracer (Rambaut et al. 2013) to compute and visualise
various diagnostic information. The second file (which is created only if the transmission tree
was inferred as part of the inference procedure) is a .trees file which contains all of the in-
ferred transmission trees in Newick format. To write the posterior samples for the Hagelloch
example, we can use the following code:

R> write.epinet(out, "HagellochOutput")

5. Conclusion and extensions

We have presented here the R package epinet, a collection of tools that helps the researcher in
the analysis of epidemic outbreaks. After describing the inference methodology, models and
assumptions used, we have discussed the simulation, plotting, and inference capabilities of this
software, and demonstrated the use of these functions through the analysis of both simulated
and actual data. We believe that this software can be of significant value to statisticians,
epidemiologists, biologists, and other researchers wishing to study the spread of diseases
through populations.

This software has a couple important limitations that may inhibit the use of this methodology
in some cases. First, as mentioned above, obtaining complete and robust data of the type used
here (i.e., the times that the hosts entered the various disease states) is often very challenging
and frequently requires the researcher to make assumptions or use proxies for these times.
The second caveat regards the size of the outbreaks that can be analyzed with this software.
The time required by the inference routine epinet() grows with the square of the size of the
number of infected individuals in the population. In addition, we have found that the MCMC
algorithm used in this routine tends to exhibit poor mixing characteristics, thus requiring the
algorithm to be run for a large number of iterations. These two factors necessarily limit the
outbreaks that can be effectively analyzed to those with perhaps several hundred to a few
thousand infected individuals, though this limit will greatly depend on the specific data and
computing resources available.

There are number of ways in which this software and modelling approach can develop that
will enable it to be applied to broader class of data sets. We suggest four here. First, we
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would like to be able to deal with incomplete sampling of the epidemic. This can be achieved
via imputation within the MCMC algorithm when the number of unknown infections is small
but we expect this approach would fail to mix when a large fraction of the infections were
unsampled; in these cases another, perhaps simpler, model needs to be applied to the missing
data. Second, the current model considers each vertex as an individual. An obvious extension
is to allow the the nodes to be larger units such as households, farms, cities, or districts in
which we model the separate outbreaks and connect them using the network, which becomes a
meta-population model. Given an appropriate within-population model, we see no reason this
approach would not succeed. A third challenge is to drop the assumption that the ERGM is
dyadic-independent. We know that dyadic-dependent models are a better fit for many social
networks, but are currently prevented from fitting them due to the difficulty in calculating the
likelihood — a routine that is repeated millions of times a typical run of the MCMC algorithm
in epinet. As research develops for ERGM estimation, it could be integrated into the epinet
framework. Finally, we reiterate the desire to apply these models to genetic data, a challenge
mentioned in Groendyke et al. (2011). Given the complexity of standard phylogenetic models,
it may make more sense to port the epinet framework to an existing phylogenetic framework
rather than vice-versa to tackle this challenge.
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