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ABSTRACT

A new representation is described for graphs imbedded in pseudomanifolds. The
graphs may have loops and parallel edges, and they may be disconnected. It is
shown that our representation has a well-defined dual that naturally extends the
definition of surface duality. This representation is easily transformed to a data
structure with a set of operators for modifying a graph, a set of query operators,
and a set of navigation operators. Three variants of the data structure are
described. For a graph with n vertices, the first provides O(I)-time updates
and O(n)~time queries. The second provides O(n)—time updates and O(l }-time
queries. The third, a tradeoff between the first two, provides O(log n)-time
updates and queries. The space used in all variants is linear in the size of the
graph.

1. Introduction

In this paper we extend several known representations for imbedded graphs [1, 4,
16, 18] to allow for disconnected components, loops, parallel edges, and isolated
vertices. Our representation allows for natural imbeddings into pseudomanifolds. Most
noteworthy is that our representation gives rise naturally to a well-defined dual graph.
Our dual can be obtained directly from the representation, and it has a natural imbedding
that generalizes the usual notion of a dual imbedding. Our presentation of a graph in
terms of half-edges is succinct and more general than previous presentations of
imbedded graphs.

* Supported by the National Science Foundation, through its Design, Tools and Test Program under
grant number MIP 84-06139.
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We also develop a set of primitive operators and three data structure implementations
for use in representing and manipulating graphs. This work extends previous work as
well. Isolated vertices are not allowed in a quadedge structure [7], and they are tolerated
as special cases at best in a DCEL or winged—edge representation [11]. The quadedge
structure has a second deficiency: it does not allow one to imbed a component of a
disconnected graph inside a face of some other component of that graph.

Our primitive operators are divided into three groups: modification operators,
navigation operators, and query operators. Six special modification operators can be
viewed as extensions of Guibas and Stolfi's splice operator [7]; we need six instead of
one because of the added flexibility of our representation.

Our paper is organized as follows. Section 2 describes the basic graph theory
background and gives a history of previous work that our work generalizes. Section 3
gives the mathematical description of our graph representation for the orientable case. In
section 4 we describe our abstract operators, and in section 5 we describe our three
implementations, again for the orientable case. The representation is extended to the
nonorientable case in section 6. Conclusions and open problems are discussed in
section 7.

2. Fundamentals

Graph theorists have expended much effort studying the imbeddings of graphs in
geometric spaces. It is common to study imbeddings in spaces that are locally similar to
®2. Many investigators [1, 4, 6, 12, 14, 16, 17, 18] have studied imbeddings in 2-
manifolds, which are connected compact topological spaces with the property that each
point has a neighborhood homeomorphic to the open unit disk in ®2. These 2-
manifolds can be either orientable or nonorientable. In the following we will be
concerned only with spaces that are locally 2-dimensional so that we will drop the
dimensional prefix from our terminology.

We will investigate imbeddings into pseudomanifolds. Our definition of a
pseudomanifold will diverge from White's pseudosurface in that our pseudomanifolds
need not be connected.

Definition A pseudomanifold is a compact topological space M in which each point
x has a neighborhood that is homeomorphic to a finite number of open disks identified

at x.

The number of disks in the neighborhood of a point x is called the degree of x. If the
degree of x is greater than one, then x is called a singular point of M.
Following Biggs [1], we define a graph as follows:
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Definition (Biggs) A graph is an ordered quadruple (E, V, A, ) where E and V
are finite sets, A is a surjective function from E to V, and 7 is an involution on E.

We call the elements of E half-edges and the elements of V vertices of G. If the half—
edge e is not fixed by 7, then we may interpret e as a directed edge with A(e) as the
initial vertex of e¢ and 1t(e) as the edge directed opposite to €. In keeping with this
interpretation, we say that e is incident on v if A(e) =v. We defer the interpretation of
half-edges that are fixed by t until later. We note that this definition of a graph admits
loops, parallel edges, and disconnected graphs.

An imbedding of a graph in a topological space identifies the vertices of the graph
with distinct points in the space and the edges with homeomorphic images of line
segments. The image of an edge must have the images of its vertices as endpoints, and
images of edges may not intersect except at the endpoints. If a graph G is imbedded in
a pseudomanifold M, the components of M\G are the faces of the imbedding, and the
imbedding is a 2—cell imbedding if the faces are all homeomorphic to the open unit disc.

In classifying imbeddings of graphs most authors use variants of the permutation
technique or the roration system technique. White [17] attributes this technique to
Edmonds [4] and calls it Edmonds’ permutation technique. Gross and Tucker [6] call
it the method of roration systems and jointly credit Heffter (1891) and Edmonds (1960),
hypothesizing that Edmonds rediscovered the technique without being aware of Heffter's
work. Both White and Gross and Tucker credit Youngs [18] with making Edmonds’
work accessible. The central result of this work is that there is a one—to—one
correspondence between the orientable 2—cell imbeddings of G in manifolds and certain
permutations of the directed edges of G called rorations. The rotations specify the
rotational order of the imbedded edges around a vertex.

Given a 2-cell imbedding of a connected graph G in a pseudomanifold M, one can
define the dual graph G* like this: choose one vertex for G* for each face of G's
imbedding, and for each edge e in G, add an edge e* to G* connecting the vertices
corresponding to the two faces on either side of e. The use of the term dual refers to the
fact that the dual graph of the dual graph of G is G again. In studying representations
of graphs and their imbeddings, we consider two questions: does a given imbedded
graph have a well-defined dual graph, and if so, does the particular graph representation
make it easy to find the dual graph? Edmonds [5] considers only 2—cell imbeddings of
connected graphs in spheres; Biggs [1] extends this to manifolds with his representation,
which gives rise to the dual graph in a natural way. Tutte {16] allows imbeddings in
either orientable or nonorientable manifolds, and he allows disconnected components in
his graphs, but his dual graph representation requires that each separate component of the
graph be imbedded in a distinct manifold; his duals are found component-wise. In our
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_ presentation, we will extend all of the above results to include graphs that are not

necessarily connected and to imbeddings on pseudomanifolds.
3. An Extended Graph Representation

We present a new graph representation that extends the previously discussed work in
several ways. First of all, with this new representation, we can represent graphs that
may be disconnected or that may contain isolated vertices. Secondly, these graphs may
be imbedded on pseudomanifolds. Thirdly, in an imbedding of a disconnected graph,
we can specify clearly whether or not a component lies inside a face of another
component. Finally, all of our graphs have well-defined duals, and the dual graph of a
graph in our representation is easily obtained. This is a significant advance in duality
theory, since duals were previously defined only for connected graphs or in the case of
Tutte, disconnected graphs with separate components on separate manifolds.

Edmonds [4, 18] uses the notion of a rotation on a graph G to characterize 2—cell
imbeddings of G in compact manifolds. Our definition of a rotation follows Biggs [1].

Definition (Biggs) A rotation on a graph G =(E, V, A, 1) is a permutation O on E
such that AO = A,

The definition insures that for any vertex v, O restricts to a permutation on the half-
edges incident on V. We call each cycle of O an origin and loosely regard each vertex
as a set of origins. If each vertex contains only one origin then O is said to be smooth.
For the imbedding construction of Edmonds, rotations are required to be smooth with the
cycles inducing a circular ordering on the half-edges incident on a vertex.

We eliminate the smoothness condition by considering imbeddings in
pseudomanifolds. If a vertex v contains k origins, then in the imbedding v must be a
point of degree k. The neighborhood of a singular point can be visualized as a set of
cones sharing a common apex. When a vertex is located at a singular point, the half-
edges incident on that vertex are not cyclically ordered. Instead, the ordering can be
described as a not necessarily smooth rotation mapping a half—edge onto the next half-
edge counterclockwise on the same cone. In the limiting case of a vertex with one half-
edge per cone, the edges are completely unordered. Another interpretation of a vertex
located at a singular point is that its incident edges are only partially imbedded. This
notion of partial imbedding is useful when representing the intermediate results of a
graph—imbedding algorithm, such as Hopcroft and Tarjan's linear-time planarity tester
{8].

If a cone about v contains no edges that connect to v we say that the cone is a
blank cone. If a half-edge e is fixed by T then we will require that ¢ is also fixed by
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O. Then e is by itself an origin. We interpret the origin € as an isolated origin so that
the cone corresponding to € is a blank cone.

Edmonds begins by defining a permutation P on E by P =Ot. We may view P
as dual to O, with cycles of P determining a cyclic ordering of half-edges around a
boundary of a face in the imbedding of G. We call the cycles of P panes, so that panes
are dual to origins. To construct a theory of imbeddings in which every imbedding has a
dual, we must also dualize the notion of a vertex. Thus to specify an imbedding we must
have a finite set W, which is dual to V, and a function p from E to W, which is dual
to A. To preserve duality, we require that | be surjective and that WP =p. We call the
elements of W windows. In an imbedding of a graph G in a space M, windows
correspond to the connected components of M\ G and panes correspond to the
connected components of boundaries of windows. We may loosely regard each window
as a set of panes. Analogous to the terminology for vertices, we say that a half-edge ¢
is incident on a window w if u(e) =w.

We are now ready to extend the concept of a rotation to allow imbeddings of graphs
in orientable pseudomanifolds.

Definition A generalized rotation system on a graph G = (E, V, A, 1) consists of a
rotation O that fixes each half—edge that is fixed by 7, a finite set W, and a surjective
function p from E to W satisfying pOt = .

When discussing a generalized rotation system on a graph we will use the terminology of
vertices, origins, windows, and panes as introduced above.

Given a graph G and a generalized rotation system for G, we define an imbedding
of G in a pseudomanifold M as follows. As in Edmonds’ construction, we begin by
defining a permutation P on E by P=01. Then pUP =p so for any window w, P
restricts to a permutation of the half-edges incident on w. Thus the concept of a pane of
w is meaningful. For each window w we form a surface My, by removing open disks
with disjoint boundaries from a sphere, with one disk removed for each pane in w.
Since P =0r, and O fixes the fixed half-edges of 1, it follows that if a half—edge ¢
that is fixed by T occurs in a pane then € must in fact be the only half-edge in that
pane. In this case we retract the boundary of the hole for that pane to a point and label
the point by the vertex A(e). Otherwise, we divide the boundary of the hole for the pane
into segments, with one segment labeled by each half-edge in the origin. The segments
are ordered so that the segment labeled by P(e) appears counterclockwise around the
hole from the segment labeled by e, as seen from the outside of the sphere. For the
segment labeled by e, label the clockwise endpoint by the vertex A(e).
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Now, we paste the surfaces My, together to form M' by identifying each boundary
segment labeled e to the segment labeled t(e), provided e # t(e). Boundary segments
are identified so that the segments labeled e and 1(e) are oppositely directed. Finally,
we form M from M' by identifying all sets of points labeled by the same vertex.

It is straightforward to show that M is an orientable pseudomanifold and that the
constructed imbedding satisfies the following definition:

Definition A simple imbedding of a grpah G in a pseudomanifold M is an
imbedding such that
(1) Each component of M contains at least one vertex of G,
@ii) Each singular point of M is a vertex of G,
(iii) The number of blank cones about each vertex v of G is equal to the number
of half-edges e that are incident on v and fixed by 7, and
(iv) Each connected component of M\G is a sphere with a finite number of holes
whose boundaries are disjoint.

Moreover, the imbedding we have constructed is unique up to isomorphism. This
follows from the fact that given a sphere S with a finite number of open holes and a
permutation G of holes, there is a homeomorphism of S onto itself that permutes the
holes as does ©.

Finally, if we are given an imbedding of a graph G in an orientable pseudomanifold
M, then guided by the interpretations given above, we can recover W, i, and P. More
precisely, let W be the set of components of M\ G. We associate each blank cone at a
vertex v with a half-edge e that is incident on v and fixed by 1. We set P(e) =¢
and p(e) =w, where w is the component that contains the cone. For other half-edges,
€, p(e) is the component on the right of e as a directed edge, and P(e) is the next
half-edge walking in the direction of ¢ around p(e). Defining W, i, and P in this
way, we have uP(e) = u(e) and APt(e) = A(e), for all half-edges e. See Figure 1.
We now recover O by computing O = P1. Since AO = APt = A, we are assured that
O is arotation. Since 7 is an involution, P = Or, and it follows that pOt=p. We

have thus shown

Theorem 1 Given a graph G, there is a one—to—one correspondence between
generalized rotation systems on G and simple imbeddings of G in orientable
pseudomanifolds.

We can present a graph, together with a simple imbedding in an orientable
pseudomanifold, in a way that makes duality more apparent. We do this by specifying
the set E of half—edges, together with two sets, V and W, of permutations. There is
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one permutation in V for each vertex v, obtained by restricting P to the half-edges
incident on v. Similarly, W is obtained from O. When writing the description of a
graph, the set E may be omitted if the permutations in V and W are given in cycle
notation with 1—cycles for fixed half-edges. We will use this notation in our
illustrations.

The dual of an imbedded graph is then obtained by interchanging V and W.
Clearly, every simple imbedding of a graph in an orientable pseudomanifold has a
uniquely defined dual. The duality operator is an involution and in the case of planar
imbeddings, our dual is the usual planar graph dual except for a reversal of orientation.

For example, the graphs in Figures 2 and 3 are duals of one another. A more
interesting pair of dual graphs is given in Figures 4 and 5. In Figure 4 the dotted line
joins two origins that belong to the same vertex. This vertex is mapped onto the singular
point of a sphere whose north and south poles are identified. In the dual graph this two—
origin vertex becomes a window with two panes: as drawn in Figure 5, these are the
innermost pane and the exterior pane. This window is thus isomorphic to a cylinder with
circular panes on opposite ends. The cylinder forms the hole through the torus on which
the dual graph is imbedded.

O{e) = Pr(e) /

/ P(e)

Figure 1: A portion of a graph, showing that AO(e) = Ale).
4. Abstract Operators for the Extended Graph Representation

In this section we describe a set of abstract operators to be used to express the
extended graph representation described in the previous section. These operators are part
of a computer program to manipulate graphs; three implementations are described in the
next section. The operators in this section can be grouped into two classes: navigation
operators and modification operators.

There are five navigation operators. Onext maps a half-edge to the next half—edge in
the cyclic order around an origin. Onext corresponds to the permutation O of the
previous section. The operator Oprev corresponds to O-1. Pnext corresponds to the
permutation P in the previous section. The operator Pprev corresponds to P-1. Our
Onext is the same as Guibas and Stolfi's Onexr [7], while Pnext is the same as their

Rprev. Mnext maps a half-edge a to the opposing half-edge in its edge pair if it has
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one; otherwise a represents an isolated vertex and Mnext(a) = a. Mnext corresponds to
the involution T in the previous section.

as az

}‘
as '{8 as
]
as

{(a13¢), (aza3), (asa4), (a7), (ag)}
{(a1a3as), (asasay), (a7ag)}

v
w

Figure 2: A graph with a 2—pane window.

There are nine modification operators. MakeNullg simply creates an empty graph.
Addh returns a half—edge that is Onext, Pnext, and Mnext to itself. It is thus an isolated -
vertex imbedded in its own sphere. Delh(a) removes a from the graph. Before we can
apply Delh to a, however, we must ensure that a is an isolated vertex; it must not be
linked in any way to any other half-edge in the graph.

/ S

{(ajazas), (asa4a2), (a7ag)}
{(a1a6), (a2a3), (asay), (a7), (ag)}

g <
o

Figure 3: A graph with a 2—origin vertex.
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The remaining six modification operators come in pairs, corresponding to the vertex—
face duality of our presentation. The first pair of operators, Osplice and Psplice affect
the origin and pane cycles, respectively. Like Guibas and Stolfi's quadedge splice
operator [7], our Osplice and Psplice are their own inverses. Given two half-edges a;
and ap lying in distinct origins, Osplice(aj, az) merges the two origins. This is done
by writing aj's origin as a cycle starting with aj and writing az’s origin as a cycle
starting with ap and then concatenating the two cycles. If the operands of Osplice are
distinct half—edges with a common origin, this origin will be split in two. We require
that the arguments of Osplice be in the same vertex. The Psplice operator behaves
similarly, with its arguments required to be in the same window.

The remaining modification operators modify the vertex and window structures.
Given two half-edges aj and aj; in distinct vertices, Vmerge (aj, a2) merges aj's
vertex with ap's vertex. Vsplit (a) splits the vertex containing the half—edge a into two
vertices: a's origin becomes the only member of a new vertex, and the remaining
origins stay with the original vertex. Similarly, Wmerge merges two windows and
Wsplir splits a single window in two.

As an example, we show in Figure 6 how we can add the new edge with half—
edges ¢ and d to an already existing graph, using the operators described above. Note
that at intermediate stages of the construction the medial function t is not always an
involution. We are currently developing higher level operators, built on top of our
primitive operators, that will preserve the property of being a graph in the sense of
Biggs' definition.

5. Three Implementations for the Orientable Extended Graph
Representation

For these three implementations, we choose to store panes and origins in circular
linked lists, thus fitting the order of a cycle making up a pane or origin into the data
structure. The problem of storing windows and vertices is slightly more complex. A
window is represented by linking together a distinguished half-edge, called a wedged
edge, one from each pane in the window, into a circularly linked list. Similarly, a vertex
is represnted by linking together a distinguished half-edge, called a vedged edge, one
from each origin in the vertex, into a circularly linked list.
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Figure 4: A cube with 8 origins and 7 vertices on a pseudosphere.

In the data structure a record is allocated for each half-edge. In the first
implementation we store values for Onext, Pprev, Vnext, Vprev, Wnext, and Wprev.
As is common practice in pointer list implementations, we use the special value nil to
denote the value of an undefined function such as Wnext(a) when a is not wedged. We
need not store Oprev, Pnext, or Mnext, because these can be computed in O(1) time from
the others: Mnext(a) = Pprev(Onext(a)), Pnext(a) = Onext(Mnext(a)), Oprev(a) =
Mnext(Pprev(a)).

Finally, we add four query operators that allow the user to ask questions about the
form of the graph. Vfind returns the vedged half-edge in th origin of its argument, and
Wfind returns the wedged half-edge in the pane of its argument. The boolean function
Vsame indicates whether its two arguments are in the same vertex, and Wsame indicates
whether its two arguments are in the same window.

We now examine the run times for the first implementation and suggest two variants.
The first implementation requires six pointers per half—edge, using O(n) space to store a
graph of size n. The navigation and splicing operators take O(1) time. Unfortunately,
queries are slow in this implementation. It takes O(n) time to execute a Vfind, Wfind,
Vsame, or Wsame. This is comparable to the less general quadedge scheme [7], which
uses O(n) space, O(1) time for navigation and splicing, and O(n) time to determine if two
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edges are in the same face or same vertex. A second implementation stores the Vfind(a)
and Wfind(a) values with each half-edge a, in addition to the fields of the first
implementation. This scheme allows O(1)-time queries, but now the splicing operations
take O(n) time. This implementation is comparable to the DCEL representation [11]. A
third scheme, of intermediate speed, maintains the Vfind and Wfind information by
means of a self-adjusting binary tree on the half-edges in each vertex and window [13].
A self-adjusting tree supports O(log n)-time tree splices and root-finds, providing a
graph representation with O(log n)-time queries and splices, and O(1)~time navigation
operators.

az4
azaa
7
a7/ Mg s ag
a9 as as
ai a
a1 as 3
210
a3
a1
¢ »
ay

2

(a12z4a726), (aZaBaZOaZI), (a123as), (%aloas), \
V = {(aasaian),  (asais2iedo) _ ’(39311313), (a14218216)s
(ai2anasa), (A16323822217) - ‘(317319821), (a2224222), ’
(a4az0a12) (a7215823)

Figure 5: The dual of Figure 4, an octahedron on a torus.
6. An Extension to the Nonorientable Case

Ringel {12], Stahl [14] and Tutte [16] have investigated imbeddings of graphs on
nonorientable manifolds as well as orientable manifolds. Tutte represents each edge as a
set of four crosses, called a cell. If X is a cross, the other members of its cell are 6X,
¢X, and 60X, where 6 and ¢ are involutions on the finite set of all crosses making up
the graph. The pair X and 6X can be thought of as a half-edge with ¢X and 00X
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making up the opposing half—edge in the edge. The involution 6 is a flip, or reversal of
orientation, so that X and 6X represent different sides of a half-edge. The involution
¢ is a facial rotation, so that X and ¢X are adjacent elements of the boundary of the
face on one side of the edge. A permutation Q is then defined on the crosses to give the
rotations of the half—edges around their vertices. Breaking an edge into four crosses and
defining 8, ¢, and Q on the crosses gives enough flexibility to represent imbeddings of
these graphs in nonorientable manifolds. Guibas and Stolfi [7] have developed a graph
representation reminiscent of Tutte's, and they have also designed a data structure for
representing and manipulating graphs with a computer.

Following Tutte, we use four records (crosses or quarter—edges) to represent an
edge. An origin is then a pair of cycles of quarter—edges, one for each local orientation.
As before, a vertex is a set of origins. Thus, in our presentation, we tabulate a rotation
O of quarter—edges around origins, as well as a set V of sets of origins. We also
tabulate Tutte's involution 8, mapping quarter-edges onto quarter—edges of opposite
orientation. The involution € is restricted by Tutte's axiom: 08 = 60-1,

A
NV

¢ VAN
4 J

Addh(c)
Vmerge(a,c)
Wmerge(a,c)
Osplice(a,c)
Psplice(a,c)

Addh(d)
Vmerge(b,d)
Wmerge(b,d)
Osplice(b,d)
Psplice(b,d)
Psplice(a,b)

Figure 6: Adding edge with half-edges ¢ and d to an existing graph.
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The facial structure of a graph is treated analogously. A pane is a pair of cycles of
quarter-edges, one for each orientation of its boundary. A window is a set of panes.
We thus tabulate a rotation P of quarter—edges around panes as well as a set W of sets
of panes. The rotation P is restricted by Tutte's axiom: for each quarter—edge q, the
orbits of P through q and ©q are distinct. Our medial rotation T as well as Tutte's
involution ¢ are implict in our presentation: T =P-10 and ¢ = 6r.

In a straightforward data structure based on the above, we could represent a quarter—
edge with one seven—pointer record: (Onext, Pprev, 0, Vnext, Vprev, Wnext, Wprev).
Preliminary research indicates that a much more compact representation is possible. We
believe we can represent each pair of oppositely oriented quarter—edges (g, 6g) witha
single record containing four pointer fields and one boolean field.

7 . Conclusions and Open Problems

This paper makes contributions in two areas: graph theory and data structures. We
have given a succinct and general presentation for graphs imbedded on pseudomanifolds.
We have also extended surface duality theory by showing how our representation gives
rise to a natural dual for graph that may be disconnected or contain isolated vertices.
This representation is useful in graph data structures: we have described three
implementations with various query and update time preformances. Perhaps most
importantly, we have defined a general set of operators for navigating, querying, and
manipulating graphs.

At present, we are testing a fast-update and slow—query implementation of our data
structure, in preparation for coding an algorithm for generating optimal rectilinear Steiner
trees [15]. Dobkin and Laszlo have expressed interest in incorporating our ideas into
their extension of the quadedge concept to three-dimensional subdivisions [3].
Relaxing the requirement that the medial function T be involution gives rise to graphs
whose edges have more than two sides and endpoints. It is possible to interpret
imbeddings of such graphs. The k-sided edges may be useful in representing the output
of an edge—detector in their computer vision application [2]. It may be possible to
extend our results to graphs on manifolds with boundary, following Mohar [10]. We
expect that many other graph—theoretic algorithms, from connectivity testing to Voronoi
diagram computation, would gain clarity and conciseness if our data structures were
used.

A host of open questions arise from this work. It remains to see whether our
representation can be used to prove extensions of the major theorems in the area of
surface imbeddings and duality. In particular, it will be interesting to see whether the
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notions of genus and characteristic of a graph can be extended to our generalized graphs
and whether equations linking these two integers can be obtained.
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