@ COPYRIGHT NOTICE 0

© 1991 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

Delay Optimization of Carry-Skip Adders
and Block Carry-Lookahead Adders

Pak K. Chan, Martine D.F. Schlag*
Computer Engineering
University of California, Santa Cruz
Santa Cruz, California 95064

Clark D. Thomborson
Department of Computer Science
University of Minnesota
Duluth, Minnesota 55812

Vojin G. Oklobdzija
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

The worst-case carry propagation delays in carry-skip
adders and block carry-lookahead adders depend on how
the full adders are grouped structurally together into blocks
as well as the number of levels.

We report a multidimensional dynamic programming
paradigm for configuring these two adders to attain
minimum latency. Previous methods are applicable only to
very limited delay models that do not guarantee a minimum
latency configuration. Under our delay model, critical path
delay is calculated not only taking into account the intrinsic
gate delays, but also the fanin and fanout contributions.

1 Introduction

The worst-case carry propagation delays in carry-skip
adders depend on how the full adders are grouped to-
gether (into blocks). The problem of configuring carry-
skip adders to minimize the carry propagation delay
has been the subject of several papers. Lehman has
shown that carry-skip adders with variable-size blocks
are faster than adders with fixed-size blocks [1]. Later,
Majerski suggested that multilevel implementation of
the variable-block-size carry-skip adders would provide
further improvement in speed [2]. The optimization
technique developed for the choice of block sizes by Ma-
Jerski is limited to a specific ratio between the carry-
generate and carry-skip propagation delay. Almost
two decades later, Oklobdzija and Barnes developed
algorithms for determining near-optimal block sizes for
one-level and two-level implementations, and a gener-
alization of their method was given by Guyot et al [3,
4]. Their algorithms have very elegant geometrical
interpretations but do not guarantee optimality of the
design. Moreover, their algorithms work only if the
carry-skip propagation delay is a constant. In [5]
it is noted that in CMOS Manchester adders with
carry-skip, the carry-skip propagation delay is not

*Supported in part by NSF Presidential Young Investigator
Grant MIP-8896276

CH3015-5/91/0000/0154$01.00 © 1991 |IEEE

necessarily a constant, but depends on the number
of bits in the adder. Chan and Schlag developed a
polynomial time algorithm to configure block sizes to
attain minimum latency for one-level carry-skip adders
under a linear carry-skip delay model. Simultaneously,
an indirect enumeration approach was taken by Turrini
to generate (multilevel) block distributions contain-
ing the maximum number of bits under a specified
delay constraint [6]. Unfortunately, this approach is
applicable only to constant carry-skip delay models,
since it constructs a configuration from the top down
by calculating delay constraints for lower-level blocks
without knowing the number of bits encompassed in
these blocks; when the lowest level is reached each
block is filled with the maximum number of bits satis-
fying its delay constraints.

The idea of varying block sizes to further reduce
delays was also suggested in [7], where an exhaustive
search was employed to search for an optimum block
carry-lookahead adder. Much earlier, Montoye and
Cook used an analytical delay model to guide an
iterative search for area-time optimal parallel prefix
adders generated by a binary recursion [8]. They
supplied no runtime analysis of their search technique,
although they did indicate that an optimal 34-bit adder
could be found in 30 minutes of IBM 3033 time. Wei
and Thomborson [9] devised a dynamic programming
technique that found, in O(n?h?) time, all area-time
optimal parallel-prefix adders in a class generated by
a binary recursion similar to Montoye’s. Here, A is the
height of the minimum-delay adder of data width n.
They found optimal 66-bit adders in a few seconds of
SUN-3 CPU time.

In this paper, we formulate the problems of config-
uring carry-skip adders and variable-block-size block
carry-lookahead adders as dynamic programs. The
resulting dynamic programs have multidimensional ob-
Jective functions. It is thus necessary to carry forward
a list of optimal structures from each stage of the
dynamic program. In the traditional (unidimensional)

First-level skip S; —

g — |
Second-level skip S,

Figure 1: Forming a stage from blocks

dynamic program, only a single optimum structure is

carried forward. The existence of multidimensional

dynamic programs was noted in an early paper by
Dantzig {10]. Weingartner [11] was apparently the
first to suggest that this would be an effective method
of solving multidimensional knapsack problems. Sub-
sequent researchers [12, 13, 14] refined Weingartner’s
algorithm, adding more sophisticated data structures
and list-pruning strategies.

The multidimensional dynamic programming for-
mulations to configure carry-skip and block carry-
lookahead adders, in this article have not been reported
elsewhere in form, scope, or generality 1. In contrast
to previously-published optimization techniques, our
method immediately generalizes to a wide class of
gate delay models and is guaranteed to find minimum
latency circuits.

2 Carry-skip adders

2.1 Constructing a stage from blocks

We group several full adders together to form an
adder block. Each block has a block-level carry skip
mechanism S;, which can be implemented with a
multiplexor selected by the group propagate. The
basic structure of a stage of a 2-level carry-skip adder
is illustrated in Fig. 1. Each stage encompasses
several blocks, and contains a second-level carry skip
mechanism. The pertinent components of carry-
propagation delays in a block are shown in Fig. 2.

2.2 Glossary of terms

The basic notations used in this section are listed
below. The meanings of the notations are illustrated
in Figs. 1 and 2.
1. I(y) — internal-carry delay, the maximum delay
it takes a carry to generate within a block of y
full-adder units and assimilate within the block.

. G(y) — carry-generate delay, the maximum delay
it takes a carry to generate within a block of
y full-adder units. This also includes the time
it takes a carry to propagate through the buffer

1The difficulty of using the dynamic programming technique
to solve optimization problems, as noted by Dreyfus [15], lies in
the formulation.

155

y bits
I(y)

Internal-carry delay

G(y)

Carry-generate delay

A(y)

Carry-absorb delay

Si(z)
Carry-skip delay

T

Figure 2: Characterization of delays at the block level

First-level skip lenables

Second-level skip enable

Figure 3: Skip enable generation, inputs to the first
level AND gates are the carry propagates p;

(the triangle). Typically, the buffer computes the
logical ‘or’ of its two carry-input signals.

. A(y) — carry-assimilate delay, the maximum
delay it takes a carry to enter a block of y full-
adders and assimilate within the block.

. Si(y) — lth level carry-skip delay, the time it takes
a carry to skip through y full-adder units using
the Ith-level carry skip mechanism. For | = 0,
this is the time for a carry to propagate through
a block consisting of y full-adder units. For I > 1,
this is the time to compute the logical ‘and’ of a
carry-in signal with the skip-enable signal of the
block. This also includes the time it takes a carry
to propagate through the buffer.

- Set_upi(y) — Ith level setup time, the amount of
time it takes to enable the skip circuitry at level
I, see Fig. 3. This reflects the delay to generate
a group propagate for y bits (IIY_, p;, where p; is
the carry propagate of the ith full adder).

3 A 2-D dynamic programming
formulation for finding minimum
latency configurations

In order to present the idea in a readily-understandable
form, we start the discussion with a two-dimensional
optimization problem based on one-level carry-skip
adders. The method we derive in this section deliv-
ers the same results as a previously-published algo-
rithm [5], but at a much higher computational cost.
However, this section’s method can be easily general-
ized to more complicated timing models and to higher-
dimensional optimizations.

3.1 Problem statement: one-level carry-skip
adder

Let y; denote the number of bits in block k. We
say that a vector ¥ = (y1,¥2,...,¥m) is an m-block
configuration of a one-level n-bit adder if SV =n
and all y; are positive integers. Let C, be the set of
all configurations of one-level n-bit adders. We shall
assume that all skip circuitries are setup at time zero.
The effect of nonzero setup time is treated in Section
3.5. The minimum-latency design problem for a one-
level carry-skip adder can now be stated as
Given timing models for internal-carry I(),
carry-generate G(), carry-assimilate A(), and
carry-skips So() and S;(), find the configura-
tion y* € C, with minimum latency.

The carry-propagation delay between blocks i and j
of a configuration ¥ is

p—1
D(7,a,8) = G(ya) + Z S1(yx) + A(ys) ; fora< 8,

k=a+1

D(Q’) a, a) = I(yll) .
The worst-case carry-propagation delay of a configu-
ration § is therefore D(§) = maxi<a<p<m D(7, a, B).
Then our problem is to find a minimum worst-case
delay configuration y* for given carry-generate, carry-
assimilate and skip delay functions,

Dn = D(y*) = min D(). (1)

3.2 Algorithm: one-level carry-skip adder

We refer to i-bit, j-block carry-skip adders as (i, j)-
adders. Note that j < i, since each block must have at
least one bit. Also note that, for small blocks, rippling
through a single block may be faster than using a one-
level skip. For this reason we amend the problem
formulation of section 3.1 to allow the possibility of
having an initial and/or final block without a skip.
During our construction of an optimal configuration we

156

S e —
- X X wobits X
—3J |- [; It g2
[1t 1 1 1 | S . |) I I I I |
0 1 2 j—1 j th block

Figure 4: Appending a new block

shall consider only (i, j)-adders consisting of an initial
(possibly empty) block with no skip, followed by j non-
empty consecutive blocks. Given (i,j) there are (;)
such adder configurations, since we have the freedom
to distribute ¢ — j bits among j +1 blocks. A final step
will consider adding a block to the end with no skip.
We use a pair (t4,%,) to characterize the worst-case
carry propagation delays of an (¢, j)-adder, where
o t, is the worst-case delay of any “carry chain” that
terminates before or at block j, and
e t, is the worst-case delay of any “carry chain” that
emerges from block j.
We shall construct for each ¢ and j, a list (3, j) of
pairs (ta,t,) for all (¢, j)-adders. The basis for the
dynamic programming is

(1,0) = (max{A(:), I(¢)}, max{G(3), So(i)}); for 0 < i < n,

and fori > j > 1,i—j+1 > y; > 1, the minimal worst-
case delays of (¢, j)-adders are formed by composing
(i —y;,j— 1) adders and a new jth block with y; bits.

For each (t3,1;) in (i — y;,j — 1), we construct a pair

(ta,ty) by:
ta = max{ty,t; + A(y;), I(y;)} (2)
ty = max{G(y;),t, + S1(y;)} (3)

We then solve for D,, = mingec, D(§) by 2-D dynamic
programming in a tableau that retains, for each (3, j),
a list of the minimal (t,,1,) pairs for all (4, j)-adders.
The list in tableau cell (3, j), for j > 1, is obtained by
using the recursion above to process the lists in cells
(i — yj,d — 1) for all “last block” sizes i — j + 1 >
y; 2 1. Once the entire tableau for 1 < i < n and
0 <j < i+1 has been computed, the lists in column i
are concatenated into one list 7'(¢), and a final block of
n — i bits without a skip is added. D,, is the minimum
of the set

Uo{max(te, g+ A(n—i), G(n—1), 14+ So(n = i))(ta, tg) € T(5)}.

This algorithm delivers the correct minimum for any

non-negative G(), A(), So() and Si() functions, but
it potentially requires exponential time and space.
The next section addresses this issue by presenting
techniques to prune the search and limit the number
of configurations generated.

There is a reason to expect good performance,
however. If the t, and t, values in the retained lists
are independently distributed, then each list will have
O(logn) elements with high probability [16, 17]. In
this case, the optimization algorithm for an n-bit adder
will run in O(n®log®n) time, with high probability.
Positive correlation among the 4 and t, values would
shorten the lists and hence the runtimes; any negative
correlation would lengthen the lists. We expect to see
a slight positive correlation for any reasonable delay
model, so we believe this method will prove feasible
for optimizing adders with hundreds of bits.

3.3 Number of configurations in the tableau

The maximum number of configurations for cell (i, j) in
the tableau is the binomial coefficient (J’) Fig. 5 shows
the potential number of configurations for any 10-bit
carry-skip adder. There are ten possible configurations
for a 10-bit one-block adder because of the possibility
of an initial block (0** block) with no skip. This initial
block can hold zero to nine bits. Fortunately, many
configurations can be thrown away using the following
pruning techniques.

e In each tableau cell {(i, j) the non-dominated pairs
must be retained. For example, let (ta,ty) and
(t,, t;) be pairs in cell ¢(4, §) of the tableau. We say
(ta,ty) is dominated if either (¢, > ', and ty >t0)

or (ta >ty and ¢ > t}). From equations (2) angd
(3) it is clear that any pair constructed by adding
another block to (¢,,t,) will be sub-optimal to
the corresponding pair generated by adding the
same block to (2;,¢;), and hence the former can
be discarded. If only one optimal configuration
is desired, further pruning can be achieved by
breaking ties arbitrarily and discarding all but one
of the pairs involved (pruning by domination [11]).
Once the t(n, j) cell is filled in we can examine
its entries and determine the minimum worst-case
delay of an (n, j)-adder. This delay, D, (j), is an
upper bound on the final delay, D,, and can be
used to discard any pair generated with either
ta > Dn(j) or t; > D,(j). In order to take
full advantage of this bound, we fill each row of
the tableau from right to left so that Dy (j) can
be used in filling the rest of the row (pruning by
fathoming [13]).

Finally, it is not necessary to fill in the entire
tableau. If each pair in t(4,§) is sub-optimal or
equal to a pair in #(¢, j—1) then j—1 is the optimal
number of blocks for i bits. There is no point in
computing column ¢ above row j — 1.

Fig. 5 shows the potential number of configurations
for any 10-bit carry-skip adder. However, upon using

157

the aforementioned pruning techniques the number of
configurations can be drastically reduced. Fig. 6 shows
the actual number of configurations generated in each
cell of the tableau for the delay model

Gw=y A=y So(¥)=y Si(y)=1.

j LBlocks
8 |—1=t1—1—1—1—1—1 11 giy451
il adad i L e B I]
7|7 1=1—1=1—1=1 11381 361120
et e Ll Bl I T S I S
6 |1 10 7028 B41210
it e bl Eathe e Bl St JEt K
S |TH1=1™i1—1 1161 21 56126252
it e s St ate Shalh Shath ghall}
41711 1y 50 15 35 701126210
O e et et R Rl i e |
3 |=i™™1 1, 4, 10, 20; 35 56 84120
R A e A S |
21T 18,6, 10 15 2L 28 36 45,
[N R A R R R N I
11, 2,38,4,5,6;,7,8,9,;10,
[T T R A e R B R
0 1,1,1, 1, 1.1 1 1,1 1 .
1 1 1 1 i 1 1 1 L l' bltS
1 2 3 4 5 6 7 8 9 10 ¢

Figure 5: Potential # of entries in the tableau

7 ¢Blocks
oI I =T~ T1T-r=-"-1
8 | T T T T AT T T
7 _I_I_I_I_I_l_l__l_l_l
SR RN R W R D QO IR U D
6 |—I—1—l=—1—=1 3011173070171
="t =t = o~ = ===
5 I O L1t 1 20
it Ul i i Tl Bl et e o
1T T L 33 202,451,
—_ |] I] i 1]]
3 ——-I--J-li-l—l-z—‘—4-bll-3—l—4-l—34
2 —1112t21313141401 4141
L B el i Rl Sl adied bl IR |
111011212131314141515)
] 1 1 1 1 [}] i [} 1
of1,1,1,1,1,1,1,1,1,1 .
1 1 1 1 L 1 1 1 1 blts
1 23 4 5 6 7 8 9 10

Figure 6: Actual # of entries in the tableau

3.4 Algorithm: Llevel carry-skip adder

In this section we generalize the one-level skip algo-
rithm to multiple levels. We shall assume that all skip
circuitries are setup at time zero. The effect of nonzero
setup time is treated in Section 3.5.

We shall construct carry-skip adders having a total
of ¢ bits and j ‘stages’ at level I and denote these as
(%,4,1)-adders. Again we shall consider only (4, 4,1)-
adders where the j non-empty stages are consecutive
and follow an initial number of bits (possibly none)
forming an adder with only lower-level skips. If we
were going to apply the algorithm from the one.
level case, we would need to have available, G;_;(y),
Ai-1(y), and I,_1(y) functions. Unfortunately, these

[Zeslo, 1= 1 [Tt = D) [Tl 1= D [TaGs i -0] [Tatii-)
= O =
Figure 7: A (3”4, j,1) adder
[Teslio, 1 = 1) [Tea(iy, 1= 1) [Ter(ip,1 - 1) U ENCRE EXTE
—{ 3 1 {1

Figure 8: A (b+ Y ik, 4,1) adder

delays are configuration-sensitive and cannot solely be
characterized by y. This difficulty is surmounted by
determining the values of these delays for all (7, j,1—1)-
adders. We use a 4-tuple (t;,1,,14,1,) to characterize
the worst-case carry propagation delays of an (i, j, I)-
adder, where

e t; is the worst-case delay of any “carry chain” that
generates at or before stage j and terminates at or
before stage j (at level 1),

e t, is the worst-case delay of any “carry chain”
that generates at or before stage j and continues
through stage j,

e t, is the worst-case delay of any “carry chain” that
enters the adder and terminates at or before stage
j’

e t, is the worst-case delay of any “carry chain” that
enters the adder and continues through stage j.

Again, we shall compute a tableau in which ¢.,(4, j,1)
contains the minimal 4-tuples for all (i, j,!)-adders.
Fig. 7 shows a (3" ik, j,{)-adder. We also characterize
the worst-case delays of a ‘stage’ of a carry-skip adder
having ¢ number of bits and I levels regardless of the
number of stages it contains, with a (possibly zero)
number of bits in lower-level blocks at the end. We call
these (7, *,1)-adders, as illustrated in Fig. 8. Their 4-
tuples can be obtained from those of the (%, §, I)-adders
using the following equations:
Tes(3,1) ={(T;,Tq,Ta,Ts) | 35,0 < b < i,

3 (T‘.",Tg,,Ta,,Ta’) E Tcs(ba I - 1)7
35,3 (ti, tg,ta, ts) € teofi = b, 4, 1),
such that
T = max(t;, Ti', tg + Tu')
Ty = max(ty + T.', Ty')
To = max(ta,ts + T,')
T, =t +T.}. (4)

The recurrence relationship for the set t.,(3, j,1) =
{(ti,ty,t4,t5)} is defined below. The recurrence for-
mula (5) expresses the worst-case propagation delays
of (4, j,I)-adders composed of (i —b, j — 1, l)-adders and

158

(b,*,1 — 1)-adders.

={(ti,tg tasts) | 35,0 < b < 4,
(T, T, T, T') € Tes(b,1 - 1),
3 (' g ta' 1) € tea(i — b, 5 — 1,1),
such that
i = max(t', Tt + Ta")
tg = max(t,’ + Si(b),T,")
ta = max(ta’, ts + Ta')
t, =t + Si(b)}.

tes(4,4,1)

()
The basis for the dynamic programming is (I = 0)
Tes(3,0) = {(1(2), G(3), A(3), So(i))} ; for 0 < i <m,

and for I > 1, 1.,(,0, 1) is defined as

tes(3,0,1) = Teo (3,1 — 1); for0<i< n.

In this expression, the worst-case delay of an n-bit
adder using at most l-level skips is the minimum 7T}
appearing in the sets T,,(n, k), for 1 <k < .

We control the number of configurations in each
set by adopting pruning techniques similar to those
described in the previous section. In addition, once
an additional skip-level produces only sub-optimal 4-
tuples for a given number of bits i, no more new skip
levels are considered for i bits.

3.5 Incorporation of setup time for the skip
gates

The setup time Set_up;(y) is the amount of time
needed to enable the skip circuitry at level I. This
reflects the delay to generate a group propagate of y
bits. Our dynamic programming formulation cannot
be easily adapted to take care of the effects of setup
time. The problem is that the worst-case absorb and
skip times computed for (¢, *,!)-adders can no longer
be used in generating (i, j, I + 1)-adders since the setup
times have been incorporated assuming that carries
arrive to the adder at time 0. A compromise is to
charge the setup time only to the carry generate,

subsequently the formulation is modified as:

tes (i, 4, 1) = {(t:, tg,ta,ts) | 35,0< b < 4,
3T\ T, T\ T') € Tos(b,1 - 1),

3t 1y 1’ t") € tes(i — b, 5 — 1,1),
such that

ti = max(t,-', T,",tgl + Tal)

ty, = max(max(t,’, Set_up;(b)) + Si(b), T')

to = max(ts’, ty + To')
t, =t + Si(b)}.

In this formulation, the generate delay t4 is exact, while
the other three components may be under-estimated.
Care should be taken during the pruning to verify the
actual delays of the current best delay for an (n, *,1)-
adder which will be used to discard configurations.

3.6 Results

We coded our dynamic programming formulation
in the “T” programming language [18], and used
Turrini’s [6] delay model and results to validate our
algorithm. Turrini’s delay model is

Iy) =y
Si(y)=1

Gy)=y+1
Setupi(y) =1+1.

Ay =y-1

Despite the under-estimation of the delay resulting
from ignoring the setup time for skips in all but the
generate delays, our algorithm was able to generate
the same optimal size adders as Turrini [6]. However,
we emphasize that our approach is applicable to any
delay model. Turrini’s analysis is limited to models
with a constant value for the skip delay, regardless of
the number of blocks being skipped.

4 Delay optimization of block
carry-lookahead adders

This work was motivated by Wei and Thomborson [9]
who used dynamic programming techniques to opti-
mize parallel-prefix adders, as well as a study carried
out by Lee [7]. In his paper, Lee discusses the pos-
sibility of varying the block sizes in a block carry-
lookahead adder (BCLA) to further optimize the carry
propagation delay. We begin by recalling the structure
of block carry-lookahead adders.

Fig. 9 shows a 16-bit 2-level equal-block-size block
carry-lookahead adder. Each box is a 4-bit carry-
lookahead generator as shown in Fig. 10. These two
figures illustrate the notation that we shall be using
in this section. We use small letters to denote global
signal names, e.g., go, ¢1, and capital letters to denote
signal names relative to a block, e.g., Go, C;. The
goal of our optimization is to minimize the worst-case

(6)

159

915, P15

level|1
1T, P T il

€15€14€13) 1161069 €7¢6¢s5 €3c2¢y
G,P G,P G,P G,P
_————l

go, Po

level

SR I R
t-t---
t-t----

B - —
- —

, P
Figure 9: A 16-bit two-level equal-block-size BCLA

¢, C.

GFPS Giz P, GyPi GoPo
t Co
INiiyl i
P G Ca Cz C'l

Figure 10: A 4-bit carry-lookahead generator

delay of carries ¢; to ¢,_; of an n-bit adder. Notice
in Fig. 10 that there is no connection from the carry
input Cy of the block to the carry propagate P and
generate G outputs. In terms of the structure of the
BCLA, this means that P and G are the only signals
which travel down the carry-lookahead tree; the carry
outputs at the lower levels travel back up to determine
the carry outputs of some of their ancestor blocks.

An equal-block-size BCLA minimizes the height of
the tree. The latency would be minimal if delays were
measured merely by summing unit gate delays along
paths. However, in practice the delay of a gate depends
on fanin and fanout. The interior of a “block” of a
BCLA is a two-level network. Hence the delay of a
block is a function primarily of the size of the gates
(fanin) as well as the fanout of the signals feeding
these gates. Each pair of generate and propagate
signals G, P fanout to only one block, however within
the block their fanout is linear and quadratic in the
size of the block, respectively. These factors tend to
limit the block size. In contrast, the carries fanout
to multiple blocks (to each of their rightmost ancestor
blocks) and hence their delay minimization is improved
by decreasing the height of the tree. Smaller blocks are
faster and their increased speed may offset additional
levels of logic on interior paths, if the sizes of blocks
can be varied to balance path delays.

Fig. 11 shows an 8-bit variable-block-size BCLA.
Lee shows that the (3-level, 8-bit) BCLA as shown
in Fig. 12(a) has the minimum latency according
to a gate delay model which considers fanouts and
fanins; the next best adder has the configuration
of Fig. 12(b). However, Lee found neither exact
algorithms nor heuristics to size a BCLA to attain
minimum latency [7].

Here, we formulate a multidimensional dynamic
program to solve the problem for a particular class of
gate delay models, in which gate delay depends linearly
on fanout and fanin. We refer to BCLA adders having
i bits as i-adders. For a given m, we construct a BCLA
i-adder by selecting m (smaller) BCLA adders of sizes
ig, 41, . . .im—1 respectively and combining them to form
an (ig + i1 + ... + im-1)-adder with an m-bit carry-
lookahead generator.

gl(apl 9_0;?0

(a)
Figure 12: Optimal 8-bit variable-block-size BCLAs

(b)

Instead of trying all possible combinations of g, 2, . . .
im—1 which total to i bits, we construct a BCLA adder
incrementally, by filling in the positions in our m-
bit carry-lookahead generator starting with the least
significant position.

A partially completed adder withi =i +4, + ...+
ij_1 bits and an m-bit block having only positions
0,1,...,j—1filled is called an (m, 1, j)-adder, as shown

160

in Fig. 13. Clearly this is only defined for 1 < j < m.
Since not all inputs of the m-bit block are provided,
we assume temporarily that these are constants and
compute worst-case delays of the adder only from the
inputs to positions 0 through j — 1 of the m-bit block.
Since our goal is to minimize the worst-case carry
of an i-adder we must maintain enough delay infor-
mation in our i-adders and (m, i, j)-adders to compute
accurately the worst-case carry delay and guarantee
the minimum latency. Because of the structure of the
carry-lookahead generator and the gate delay model,
we shall be able to compute the delay of an (m, 1, j+ 1)-
adder without retaining complete information about
the arrival time of the inputs to the (m, i, j)-adder. (In
fact, the only arrival time that must be retained is that
of the most significant generate.) One complication
with this construction is that the fanout of the carry-
in to an i-adder increases when the i-adder is connected
to another block; this may further increase its worst-
case carry delay. Fortunately, since the dependence
on fanout is linear we can account for the extra delay
by maintaining two versions of the worst-case carry
delay of an i-adder; one for paths originating from
the carry-in and the other for the overall worst-case.
Before discussing the delay components which will
characterize our i-adders and (m, i, j)-adders in any
more detail, we first present our gate delay model.

4.1 Gate delay model

We assume that the input arrival time (%;5 ;) and the
output available time (t,u:) of a gate are related by

tout = mja.x{t;,,,j} + FO -7+ A(FI) (7
where FO is the fanout of the output signal, F'I is the
fanin of the gate, T is the delay per unit fanout, and
A(FI) is the delay of a gate of fanin FI under zero
load. We define specific delay functions Anand(FI),
Aand(FI), and A;ny to model the behavior of ‘NAND’
gates, ‘AND’ gates, and inverters under zero load. The
functions Apand, Aand, and A;,, must be monotone
nondecreasing, but may take infinite values beyond a
certain point in their domain. This ensures that our
designs will not contain 17-input-NANDs if an 8-input-
NAND is the widest one available.

For simplicity of presentation, we assume that
NAND gates, AND gates, and inverters have the
same 7 value, although this is not a limitation of our
formulation. We must, however, require that all A
functions take nonnegative values over their domains.

We also define é to express the incremental change
of delay per unit fanin: §(FI) = A(FI)— A(FI-1).
When considering different gates, we add a suffix to
identify the gate in question, for example, fana and

- -~ Carry
G,P

—
prm—-—

gi-1, _Pe_ 1

go, Po

constant, sign}
afrive a

time —oco0

})j—inj_l PO,G(]
m-bit block ~-q------ 4
LT~ d '
T T)
tG“tP ycn | Cin

G.P g Ci

\’—v\/
twein

Figure 13: An (m,1, j)-adder

Snand- Under our linearity assumption on A(), 6sn4
and 6,4n4 are nonnegative constants.

The loading on the input signals of a k-bit BCLA
adder connected to the jth input of an m-bit BCLA
adder [19] can be expressed as

e G; of the k-bit BCLA adder has fanout m — j,

ie., fa(m,j) = m — j. Notice that the fanout is
largest at the Oth input position.

e P; of the k-bit BCLA adder has fanout fp(m, j) =

(m—35)(+1).
e The carry-in Cp to the m-bit carry-lookahead
generator has fanout m — 1.

4.2 Constructing BCLA adders
For this construction we need to characterize an
i-adder with a 5-tuple, (T¢,Tp,Twc, Twein, Fcin),
where
e T is the worst-case delay of the group generate
output,
e Tp is the worst-case delay of the group propagate
output,
e Tywcin is the worst-case delay of any path from
the carry input to any carry output, and
e Twc is the worst-case delay of any carry output,

Fcin is the fanout of the carry input inside the
adder.

161

All the delay values above are calculated under
the assumption of zero fanout. When we use these
adders as building blocks of larger adders, we shall add
appropriate multiples of 7 to the delay. Note the two
versions of the worst-case carry delay. As discussed,
these are necessary in order to account for additional
loading on the carry-in when the i-adder is connected
to other blocks.

Recall that an (m,{, j)-adder has a partially com-
pleted m-bit block with ¢ o+ 4+ ...+ 41
bits having only positions 0,1,2,...,7 — 1 filled. We
shall characterize an (m,1,j)-adder by an 8-tuple
(te,tp,trg,tc,tem, twe, twein, foin), where ?

e i is the worst-case delay of the group generate
output,

e tp is the worst-case delay of the group propagate
output,

e 11 is the arrival time of the group generate Gj_i,

® tcin is the worst-case path delay from the carry
input to the currently last carry output C; of the
m-bit carry-lookahead generator,

o tc is the overall worst-case delay of the currently
last carry output C; of the m-bit carry-lookahead
generator,

e iy cin is the worst-case path delay from the carry
input to any carry output,

e twc is the overall worst-case delay of any carry
output, and

o fcin is the fanout of the carry input inside the
adder.

The arrival time of the input G;j_; (tzg) at the m-
bit block is the only input arrival time retained. We
shall be able to compute all the components of an
(m,4,j + 1)-adder from those of an (m, i — b, j)-adder
and a b-adder.

As in the algorithm for carry-skip adders, we retain
a tableau of lists for constructed adders:

TGE = {(T6,Tr,Twc, Twcin, Fgin)
| for all i-adders}
t(m,i,J') = {(tG,tp,tLG,tc,tc.n,th,twc-ﬂafcm)

| for all (m,1, 5)-adders}. (8)

Three sets of equations in our dynamic programming
formulation cover respectively, filling in the first
position of an m-bit block, an intermediate position,
and the last position.

2The tcin term is redundant since it will always be equivalent
to foinT + T, but is made explicit here to elucidate the delay
equations.

An (m, i, 1)-adder is generated from a 5-tuple (Tg, Tp,
Twce,Twgin, Fein) in T(i), by

tc = Tg+ fo(m,0)T + Anand(m) + 7 + Anand(m)
tp = Tp+ fp(m,0)T + Agna(m)
tre = Tg
tein = T(Fgin +m—1)+ Anand(2) + Anana(2) + 7
tc = max{tcin,
TG + fa(m,0)7 + Ainv + T + Anana(2),
Tp + fp(m,0)7 + Anand(2) + 7+ Anana(2)}
twein = max{tgin, Tyycin +(m —1)7}
twe = max{tyci»,Twc, tc}
fcin = Fgin4+m-—1.

For j > 1 (and j < m), an (m,i,j)-adder is
generated by connecting the G;_,, Pj_; inputs of an
(m,i — b,j — 1)-adder with the G, P outputs of a b-
adder. As discussed, the worst-case carry of the b-
adder is adjusted by the increase in fanout of its carry-
in. Notice that the two-level network computing the
new carry is similar to the network for the previous
network; it differs only in that the fanin of the gates
have increased and the inputs P;_;, Gj_; and Gi_s
must be incorporated. This is the reason for the
retaining the ¢, component. As a result, the delay of
Cj can be computed based on the arrival times of P;_,,
Gj_1 (provided by the b-adder) and the t g and t¢
components of the (m,i—b, j—1)-adder. Specifically, if
(Te,Tp,Twe, Twein, Fein) is the 5-tuple which char-
a’cterizes, the b-adder and (te;’_tlprtlz,c;’t’c:tl(:.-‘n:tlvVCv
tweoin, fGin) 1s the 8-tuple which characterizes the
(m,i — b,j — 1)-adder, then the 8-tuple for our new
(m, 1, j)-adder is :

tg = max{tg,
To + fa(m,j —)T+ Apana(m —j — 1) 4+ 7
+Anana(m),
Tp+ fp(m,j - Dr + Anana(m)+ 71+ Anana(m)}
tp =max{tp, Tr + fp(m,j — 1)7 + Aana(m)}
tLg =Tg
toin =1tgin + bnand + fnana
te =max{Tc + fa(Mm,j = 1)+ Ainv + T + Apana(f + 1),
Tp+fp(m,j —)T+ Bnana(G+ 1)+ 7+ Apanal(f + 1),
tho+ fa(m,j = 2)T + Anend(2)+ T+ Brana(G +1)
+8nand + Snand, te + Snand + Snandal}
tycin = max{ti,cin toin, Tiycin +tin}
twe = max{twe, Twe, Tyein + 1o, tc}
Jcin = !é—;in‘

When the mth position of an (m, i — b, m — 1)-adder
is filled in with a b-adder, we obtain an i-adder . If
(76, Tp, Tiyc» Ty gins Flin) is the 5-tuple which char-
acterizes the b-adder and (tg,tp,trg,tc,tcin,twe,
twcin, foin) is the 8-tuple which characterizes the

m,i — b,m — 1)-adder, then the 5-tuple for our new

i-adder is :
Te = max{tg,
T6 + fa(m,m — 1)7 + Diny + T + Anana(m),
Tp + fr(m,m —)7 + Anana(m) + 7
+Anand(m)}
Tp = max{tp,Tp + fr(m,m — 1)T + Anana(m)}
Twein = max{twcin, Tiycin + toin}
Twe = max{twc,T;’;Vc,T‘,vc.-.. + tc}
Femn = fom (9)

The basis for the dynamic programming is T(1) =
{(Aand(2), Abr(2),0,0,0)}. The first two components
are the delays to generate the g; and p;, respectively.

The minimum worst-case delay of an n-bit BCLA
adder is the minimum Tw ¢ appearing in the set T(n).

4.3 Implementation

Instead of a 2-D tableau to fill as in the case of
the carry-skip adders, we must fill the 3-dimensional
volume as depicted in Fig. 14. To construct an
(m,i,j)-adder for j > 1, we must have already
constructed all (m,b,j — 1)-adders and all b-adders,
for 1 < b < i. To construct all i-adders we must have
constructed all (m,i — b,m — 1)-adders for 1 < b < ¢
and 2 < m < i. Finally, to construct an (m,i,1)-
adder, we must have constructed all i-adders. These
dependencies lead us to the following steps depicted in
Fig. 14 which are repeated for 2 = 2,3,..., n.

1. Construct all (z,b,1)-addersforb=1,2,...,z~1.

2. Construct all (z,b, j)-adders for j = 2,3,...,z—1
andb=j,57+1,...,2~1.
Construct all (m, z, j)-adders for m = 2,3,.. .,z
and j = 2,3,...,m. (We now have all z-adders,
since they are in fact the (m,z,m)-adders for
m=23,...,2.)
. Construct all (m, z,1)-adders from the z-adders,

form=2,3,...,z2.

3.

Figure 14: Filling the volume

4.4 Pruning techniques

The maximum number of configurations in the volume
even for a small number of bits is prohibitively high.
We have employed the following pruning techniques to
reduce the number of configurations.

e Set an upper bound on m, the maximum number
of inputs to a block, based on a known technolog-
ical constraint.

Compute the worst-case delays of equal-block-size
adders using the gate delay model. This sets
an upper bound on any delay component of the
variable-block-size adders that we are building in
the “volume.” Hence any configuration which has
a delay component greater than this upper bound
can be thrown away.

Since the worst-case delays of equal-block-size
adders are typically 20% higher than the mini-
mal latency ones, a tighter upper bound can be
obtained by temporarily disregarding some delay
components during the ranking of the configura-
tions (e.g., tp or Tp), and running the algorithm
to obtain a suboptimal configuration. In effect,
this is optimization by a lower-order dynamic
program. We then use the maximum delay com-
ponent of this suboptimal configuration as the
new upper bound for a new trial (after reinstating
the deleted delay components). This iterative
improvement scheme turns out to be very effective
in pruning infeasible configurations and reaching
the minimum latency configurations.

4.5 Results

We use a gate delay model obtained by fitting data
from an ASIC-CMOS standard cell library [20] to
linear A functions [21]. We select 7 to be 5 so that all
the parameters in the equations are scaled to integers.
Note that an unloaded inverter has delay of 12 units.

r = 5
INANDout = tin+FO.T+FI.20
toRout = tin+FO.74+ FI-20+17
taNDout = tin+FO.7+FI-204+17
tINVous = tin+ FO-74+12. (10)

We shall represent the carry-lookahead adder tree
in parentheses notation. For example, the adder
structures shown in Figs. 12a and b are represented
as ((113)111)and ((1113)11), respec-
tively; and the equal-block-size 16-bit BCLA of Fig. 9
appears as (4 4 4 4). The numbers in the expression
represent the block sizes at the top level.

For an n-bit adder, Twc in Table 1 indicates
the worst-case delay to generate the carries c¢; to

163

n TgTp T configuration
2 152 124 153 2
3 202 154 202 3
4 309 258 347 ((12)1)
252 184 252 4
6 424 350 314 ((QQ@2)1y)
337 351 319 11322
7 399 318 347 ((1122)1)
362 281 364 (1133
8 434 355 369 (1 (13)3)1)
382 286 379 (11223)
317 251 434 (3312)
347 251 499 (4 4)
16 559 477 489 (Q@a@a2)@12)32)11)
489 410 506 (((12)(112)4(21)) 2)
407 350 569 ((2 (31)) (323) (32)
437 311 597 (4444)
24 479 385 609 ((13)(2(32))(332)(322)
532 378 789 ((44) (4444))
32 631 544 627 (2 (1 (2 2)) (3 2) ((12)3)
(2 32) (323))22)
532 378 879 ((4444) (44144)
48 716 599 716 (1 2) (1 (12) (22) ((12) (12)(32)
((12) 332)(433))332)
577 408 932 ((4444)(4444)(4444)
64 789 639 797 ((23((1233)(234(22))((122)(222)
(33)) ((2232) (32)3)) (32)2)
622 438 977 ((4444)(4444)(4444)(4444))
66 794 649 802 ((23((1233)(334(22))((122)(222)
(33)) ((322) (32)(22)) (32))2)
717 505 97T (B((4444)(4444)(4444)(44419)))
84 803 674 856 ((34(23(123)(322) ((122)(232)(322))
((232) (322) (32) ((322)(32)3)) (32) 2)
762 5301069 | (A (4444) ((4444)(4444)(4444)(4444)
Table 1: Delays of equal-block-size vs var-

able-block-size n-bit BCLAs. Configurations for 2-bit
to 16-bit adders are optimal (in latency)

¢n—1. The overflow condition is indicated by the final
carry ¢, which depends on the carry generate and
propagate (T and Tp). Table 1 shows the delays
of variable-block-size BCLAs versus their equal-block-
size counterparts. These results are generated by
restricting the maximum fan-in of any CMOS gate to
4. The delay of an inverter in a typical 1.5um CMOS
technology is roughly 0.3 ns, so we can convert our
integer delay values in Table 1 to nanoseconds in such
a technology by multiplying by (0.3/12) ns. For 8-bit
adders, we have 9.225 ns and for 16-bit adders we have
12.225 ns.

Except for the n < 8 cases, Twc is the dominant
delay component. This experiment demonstrates that
variable-block-size BCLAs out-perform their equal-
block-size counterparts by 15-25%, in terms of their
Twe. However, variable-block-size adders are not
as modular as the equal-block-size adders. The best
variable-block-size BCLAs tend to have more levels but
less fan-ins than their equal-block-size counterparts.
This suggests that the number of levels is not a good
measure of latency for VLSI technology.

5 Conclusion

We have formulated the problems of minimizing the la-
tencies in carry-skip and block carry-lookahead adders
as multidimensional dynamic programs. Based on
these formulations, we implemented programs to carry
out the minimization. The dynamic programming for-

mulations are appealing because of their generality. On
the other hand, the computational requirement of the
optimization process is also high. All the algorithms
presented are coded in the “TI” language [18]. The
program requires 60 Megabyte of swap space and ran
for over 3 hours before completion on a SPARC station.
The algorithms generate adder configurations that are
not modular, but the adders’ latencies are 15-25% less
than their modular counterparts.

The delay model that we have established considers
fanin and fanout, and is therefore more realistic than
counting the number of levels. However, we do not
account for the effect of wire lengths in the model, this
will be considered in future work.

References

[1] M. Lehman and N. Burla, “Skip Techniques for
High-Speed Carry-Propagation in Binary Arith-
metic Units,” IRE Transactions on Electronic
Computers, vol. EC-10, pp. 691-698, Dec. 1961.
S. Majerski, “On determination of optimal dis-
tribution of carry skips in adders,” IEEE Trans-
actions on Electronic Computers, vol. EC-16,
pp. 4548, Feb. 1967.

A. Guyot, B. Hochet, and J.-M. Muller, “A
Way to Build Efficient Carry-Skip Adders,” IEEE
Transactions on Computers, vol. C-36, pp. 1144~
1151, Oct. 1987.

V. G. Oklobdzija and E. R. Barnes, “Some op-
timal schemes for ALU implementation in VLSI
technology,” in 7** Computer Arithmetic Sympo-
stum, pp. 2-8, 1985.

P. K. Chan and M. Schlag, “Analysis and De-
sign of CMOS Manchester Adders with Variable
Carry-Skip,” IEEE Transactions on Compulers,
vol. C-39, pp. 983-992, Aug. 1990.

S. Turrini, “Optimal group distribution in carry-
skip adders,” in 9** Computer Arithmetic Sympo-
sium, (Santa Monica, Los Angeles), pp. 96-103,
Sept 1989.

B. Lee, “VLSI Implementation of Fast Arithmetic
Algorithms: Optimizing Delays in Carry Looka-
head Adders.” CS292I: Class project report, UC
Berkeley, December 1989.

R. K. Montoye, “Area-time efficient addition
in charge based technology,” in ACM IEEE
18" Design Automation Conference Proceedings,
pp. 862-872, 1981.

B. W. Wei and C. D. Thompson, “Area-Time
Optimal Adder Design,” IEEE Transactions on
Computers, vol. C-39, pp. 666-675, May 1990.

G. Dantzig, “Discrete-Variable Extremum Prob-
lems,” Operations Research, vol. 5, pp. 266-277,

(2]

(4]

(6]

7

—

(10]

164

1957.

[11] H. Weingartner, “Capital Budgeting of Interre-
lated Projects: Survey and Synthesis,” Manage-
ment Science, vol. 12, pp. 485-516, Mar. 1966.

[12] H. Weingartner and D. Ness, “Methods for the
solution of the multidimensional 0/1 knapsack
problem,” Operations Research, vol. 15, pp. 83—
103, 1967.

[13] T. Morin and R. Marsten, “Branch-and-bound
strategies for dynamic programming,” Operations
Research, vol. 24, pp. 611-627, July-August 1976.

[14] R. Marsten and T. Morin, “A hybrid approach to

discrete mathematical programming,” Mathemat-

ical Programming, vol. 15, no. 1, pp. 21-40, 1978.

S. E. Dreyfus and A. M. Law, The Art and Theory

of Dynamic Programming. 111 Fifth Avenue, New

York, New York 10003: Academic Press, Inc.,

1977.

J. Bentley, H. Kung, M. Schkolnick, and

C. Thompson, “On the average number of maxima

in a set of vectors and applications,” Journal of

ACM, vol. 11, no. 1, pp. 536-543, 1978.

L. Devroye, “A note on finding convex hulls

via maximal vectors,” Information Processing

Letters, vol. 11, pp. 53-56, Aug. 1980.

J. A. Rees, N. I. Adams, and J. R. Meehan,

The T Manual. New Haven, Connecticut: Yale

University, March 1983.

[19] T. Rhyne, “Limitations on Carry Lookahead
Networks,” IEEE Transactions on Computers,
vol. C-33, pp. 373-373, Apr. 1984.

[20] LSI Logic Corporation, 1551 McCarthy Boule-
vard, Milpitas, CA 95035, Compacted Array Tech-
nology Data Book, July 1987.

[21] V. G. Oklobdzija and E. R. Barnes, “On imple-
menting addition in VLSI technology,” Journal of
Parallel and Distributed Computing, vol. 5, 1988.

(15]

(16]

(17]

(18]

