

Tamperproofing a Software Watermark by

Encoding Constants
by

Yong He

A Thesis Submitted in Partial Fulfilment of the

Requirement for the Degree of

MASTER OF SCIENCE

in

Computer Science

University of Auckland

Copyright © 2002 by Yong He

i

Abstract

Software Watermarking is widely used for software ownership authentication, but it is

susceptible to various de-watermarking attacks such as obfuscation. Dynamic Graph

Watermarking is a relatively new technology for software watermarking, and is believed the

most likely to withstand attacks, which are trying to distort watermark structure.

In this thesis, we present a new technology for protecting Dynamic Graph Watermarks.

This technology encodes some of the constants, which are found in a software program, into

a tree structure that is similar to the watermark, and generates decoding functions to retrieve

the value of the constants at program execution time. If the constant tree is modified, the

value of some constants will be affected, destroying program correctness. An attacker cannot

reliably distinguish the watermark tree from the constant tree, so they must preserve the

watermark tree or risk introducing bugs into the program.

Constant Encoding technology can be included in Dynamic Graph Watermarking systems

as a plug-in module to improve the Dynamic Graph Watermark protection. In this thesis, we

present a prototyping program for Constant Encoding technology, which we call the

JSafeMark encoder. Besides addressing the issues about Constant Encoding technology, we

also discuss the design and implementation of our JSafeMark encoder, and give a practical

example to show how this technology can protect Dynamic Graph Watermarking.

iii

Acknowledgement

I would like to thank Professor Clark Thomborson, my supervisor, for his guidance and

enthusiasm. Throughout my thesis year, he provided encouragement, sound advice, and many

good ideas.

I want to express my gratitude to Dr. Christian Collberg for his invaluable advice as well

as a lot of technical support.

I wish to thank Jas Nagra for numerous stimulating discussions.

I would also like to thank Dr. Ben Andrew for his precious time to give me a

proofreading.

I am grateful to all my friends for their time to help me on various problems.

Lastly, and most importantly, I wish to thank my family for their understanding, patient

and encouragement, without whose help and support, I would have had a far more difficult

time to finish this thesis.

v

Table of Contents

Abstract..i

Acknowledgement .. iii

Table of Contents ...v

Table of Figures...ix

Chapter 1 Introduction ..1
1.1 Software Piracy..1

1.2 Ownership Authentication ...1

1.3 Threat to Java Software Protection ..2

1.4 Target of this Thesis...3

1.5 Related Work ...6

1.6 Organization of this Thesis ..7

Chapter 2 Survey of Watermarking Techniques...9
2.1 Introduction..9

2.2 Watermark Technique Overview...10

2.3 Dynamic Graph Watermark (DGW)..11

2.3.1 Dynamic Graph Watermarking Process...11

2.3.2 DWG Embedding Enumeration Methods..13

2.3.3 Current Implementations of DGW...17

2.4 Attacks on Software Watermark..21

2.4.1 Overview of Attacks on Software Watermark...22

2.4.2 Attacks on DGW watermark..23

2.5 Watermark Protection ..26

2.5.1 Overview of Protection Techniques...27

2.5.2 Protections for DGW watermark ...28

2.5.3 Integration of Protection Methods ...30

2.6 Discussion..30

vi

2.7 Summary ..30

Chapter 3 Constant Encoding ...33
3.1 Introduction..33

3.2 Technology Overview..36

3.3 System Structure for JSafeMark Plug-in ...38

3.4 Constant Encoding Process..40

3.4.1 Work Flow ...40

3.4.2 Constant Analysis by the DGW System ..44

3.4.3 Building Constant Tree ..44

3.4.4 Building Constant Graph (CG) ..45

3.4.5 Searching for Constant Substructures in Dynamic structures..........................57

3.4.6 Generating the Decoding Method..60

3.4.7 Process of Modifying Source Code by the DGW System68

3.5 Discussion..68

3.5.1 Possibility of finding constants in Programs ...68

3.5.2 Possibility of finding integers in a PPCT...69

3.6 Summary ..74

Chapter 4 Overview of Our Prototyping..75
4.1 Introduction..75

4.2 System Structure ..75

4.3 Information Exchanging ..78

4.4 Summary ..82

Chapter 5 Developing the JSafeMark Tester and Codec Library ..83
5.1 Introduction..83

5.2 Building JSafeMark Tester ..83

5.2.1 Overview of the JSafeMark Tester ..84

5.2.2 JSafeMark Tester Structure..84

5.2.3 Using JSafeMark Tester...85

5.3 Building the PPCT Codec Library...88

5.4 Summary ..90

Chapter 6 Developing a JSafeMark Encoder ...91
6.1 Introduction..91

6.2 Analysis..92

6.2.1 Functional requirements: ...92

vii

6.2.2 Non-functional Requirements..92

6.2.3 Use Case View: Requirement Description ..92

6.2.4 Sequence Diagrams: Conceptual Dynamic Behavior94

6.2.5 Class Diagrams: Conceptual Static Structure ..95

6.3 Design ..96

6.3.1 Static Design: Design Level Class Diagrams ..96

6.3.2 Dynamic Design: Design Level Sequence Diagrams98

6.4 Implementation ..100

6.5 Summary ..101

Chapter 7 JSafeMark in Practice ..103
7.1 Introduction..103

7.2 Example of Using JSafeMark encoder ..103

7.2.1 Import Constants (WF1) ..104

7.2.2 Building PPCT Constant Tree (WF2)..104

7.2.3 Convert Constant to Integer (WF3) ...105

7.2.4 Generate Source Code to Reverse WF3 (WF4)...105

7.2.5 Convert Integer to Graph Structure (WF5)..106

7.2.6 Generate Source code to Reverse WF5 (WF6)..107

7.2.7 Searching (WF7)..107

7.2.8 Expand the Constant Tree (WF8) ..107

7.2.9 Generate Referencing information (WF9) ...109

7.2.10 Generate and Decoding Source Code (WF10, 11)...111

7.3 Discussion..112

7.4 Summary ..112

Chapter 8 Conclusion ..113

8.1 Pros and Cons of JSafeMark..113

8.2 Future Work ...114

8.2.1 Protect the Return Value of the Decoding Function......................................114

8.2.2 Changing Constant Tree at Runtime..115

8.2.3 Encode Constant into Watermark Structures...116

8.2.4 Using Code that builds Watermarks to build a Constant Tree.......................117

8.2.5 Using a Set of Constant Trees..117

8.2.6 Using Constant Subtrees as Masks ..118

8.3 Summary ..118

viii

Appendix A. CLOC Encoding Implementation...119

Appendix B. Experimental Data of Integer Frequency in PPCT Structures129

Appendix C. The output of the generated Source Code in testing................................133

Bibliography ..139

ix

Table of Figures

Figure 1-1 A program with no watermark is listed on the left. This program builds a single
dynamic data structure to hold the value of its variable a, which is shown on the right
side. ..5

Figure 1-2 The program of Figure 1-1, modified so that a watermark is embedded as a
dynamic graph structure g (shown on the right). Static analysis is enough to discover
that the dynamic watermark structure g doesn't affect the program output, and therefore
this watermark can be removed. ..5

Figure 1-3 The program of Figure 1-2, modified to include a dependency between the
assignment of 2 to variable a and the value of g. The assignment statement “a = 2” in
Figure 1-2 is replaced by two statements “s = f(g)” and “a = d(s)”. The value 2 of
variable a is obtained by evaluating function d(s), which takes a part of the structure g as
its parameter. Statement “s = f(g)” is used to locate s inside structure g...........................5

Figure 2-1 Dynamic watermark embedding process ...12

Figure 2-2 A Planted Plane Cubic Tree example...14

Figure 2-3 A PPCT structure, with two outgoing pointers for all nodes14

Figure 2-4 Enumeration of PPCTs with 4 Leaves ...15

Figure 2-5 Radix-k enumeration example with k = 4 ..16

Figure 2-6 Oriented parent-pointer tree enumeration with four nodes16

Figure 2-7 A circular linked list for permutation encoding number 29...................................17

Figure 2-8 Some PPCT structures of index = 0, with different numbers of leaves18

Figure 2-9 Attacks on software watermark..24

Figure 2-10 Tamperproofing a DGW against a subtractive attack ..25

Figure 2-11 Attacks on DGW watermark..26

Figure 2-12 Watermark protection techniques: obfuscation and tamperproofing.27

Figure 2-13 Protection from node splitting...29

Figure 3-1Comparison of subtree and substructures. ..35

Figure 3-2 Constant encoding process...37

Figure 3-3 Proposed watermark embedding and constant encoding process flow..................39

Figure 3-4 System structure for the DGW system and the JSafeMark encoder40

Figure 3-5 Control flow of constant encoding process..43

x

Figure 3-6 Relationships between codecs used in watermarking and in constant encoding. ..46

Figure 3-7 Java types classification ...47

Figure 3-8 CLOC index of PPCTs with 1 to 4 leaves..50

Figure 3-9 Four PPCTs that represent the integer 0 ..52

Figure 3-10 Structure for Bit-Oriented Conversion...52

Figure 3-11 Integer to graph encoding using BOC..55

Figure 3-12 The CUIC decoding function CUIC(T) for all PPCTs with 1 to 4 leaves57

Figure 3-13 Referencing a substructure at runtime..62

Figure 3-14 Finding the root of substructure by path and depth..63

Figure 3-15 Masking technology illustration...63

Figure 3-16 Estimated Probability (Expressed as a percentage) that an integer i appears in a
50 node (25 leaf) tree. ..72

Figure 3-17 Estimated Probability (Expressed as a percentage) that an integer i appears in a
100 node (50 leaf) tree. ..72

Figure 3-18 Estimated Probability (Expressed as a percentage) that an integer i appears in a
200 node (100 leaf) tree. ..73

Figure 3-19 Estimated Probability (Expressed as a percentage) that an integer i appears in a
300 node (150 leaf) tree. ..73

Figure 3-20 Estimated Probability (Expressed as a percentage) that an integer i appears in a
500 node (250 leaf) tree. ..73

Figure 4-1 Overview of an expected system structure for the JSafeMark encoder.77

Figure 4-2 Implemented system structure in prototyping..78

Figure 4-3 Sample tree structure for structure passing. ...81

Figure 4-4 Data Type for information exchanging ..81

Figure 5-1 The JSafeMark tester structure...85

Figure 5-2 The JSafeMark tester running in “manual” and “normal display” mode, showing a
PPCT structure for number 0 with 5 leaves. ..87

Figure 5-3 The JSafemark tester in “auto increase” and "compact display" mode, showing a
tree structure for number 1500000 with 15 leaves...87

Figure 5-4 Internal structure for a codec..88

Figure 5-5 PPCT codec class diagram...89

Figure 6-1 Use Case Diagram..93

Figure 6-2 Conceptual sequence diagram for the encoding function.95

Figure 6-3 Conceptual class diagram for JSafeMark encoder ...96

Figure 6-4 GraphNode class, DecodingMethodGenerator class, Error Classes and
searchingMethod package constantConvertingMethod package example classes97

Figure 6-5 Design level class diagram...98

xi

Figure 6-6 Design level sequence diagram for constant encoding ..99

Figure 7-1 The random constant tree of index 8 with 5 leaves..105

Figure 7-2 PPCT structures for first integer = 1 and second integer = 4...............................106

Figure 7-3 Constant tree and the substructure for integers 1 and 4109

Figure 7-4 Referencing to the substructures for integers 1 and 4 ..110

Figure 7-5 intersecting mask and CT to find the boundary information for integers 1 and 4110

Figure 8-1 Changing constant tree at runtime. Constant tree is changed when executing a
sequence of statements. Decoding function works well. ...116

Figure 8-2 Changing the constant tree can cause errors. ...116

Chapter 1

 Introduction

1.1 Software Piracy

Due to the dramatically increased usage of the Internet, software piracy has become more

and more serious. The ease on downloading from the Net seems to encourage people to use

software without authorization. According to Curtis [Curtis 1994], software piracy can be

defined as the illegal distribution, duplication, using and selling of a software product, which

is protected by copyright laws or covered by an applicable license agreement. The dollar

losses due to software piracy were estimated at $11.75 billion in year 2000, and the software

piracy rate rose from 36% in 1999 to 37% in 2000 [Business Software Alliance 2001]. The

software industry continues to be challenged to find ways of protecting software products and

worldwide economy.

1.2 Ownership Authentication

People are trying hard to find methods to stop software piracy, and one of the important

ways is software ownership authentication through watermark embedding. Watermark

embedding is any technique that embeds a secret message into a cover message. In the case

of software watermarking for authentication, the secret message is the digital rights

2 Chapter 1 Introduction

management information (such as a license number, and license restrictions). The cover

message is the license-controlled software. The secret message in a software-watermark will

be retrieved when this information is required for authentication purposes. In early years,

watermarking technology was used to imprint authentication information on stationery

[Webopedia DW]. Recent work in computer watermarking technology has developed

techniques for embedding a watermark into various media, such as images [Chuan-Fu and

Wen-Shyong 2000] [Kahn 1996] [Ping Wah and Memon 2001], audio [Kirovski and Malvar

2001] or video files [Hartung and Girod 1998]. In recent years, some articles [Collberg and

Thomborson 1999] [Collberg, Thomborson, et al. 1997] [Palsberg, Krishnaswamy, et al.

2000] and patents [Holmes 1994] [Moskowitz and Cooperman 1996] [Samson 1994] have

been published, showing how watermarks, such as copyright notices, can be embedded into

software programs.

1.3 Threat to Java Software Protection

In order to avoid being punished, counterfeiters sometimes go to great lengths to make

their fake software look legal. One of the most often used technologies for understanding and

modifying someone else’s software is reverse engineering [Chikofsky and Cross, 1990].

Reverse engineering originated in hardware technology. It is now widely used in software

products. It is a process that takes apart an object to analyze its internal structure and its inner

relationships, in order to duplicate the object or to improve it [Chikofsky and Cross 1990].

Reverse engineering is not always a bad action. It is widely used to improve productivity and

interoperability by manufacturers. Sometimes it is necessary for the author of software to

reverse-engineer it, for example when the original source code has been lost, or was written

in a language for which software maintenance tools no longer exist. Crackers typically use

reverse engineering techniques to convert software from a bytecode or machine code level

back into the source code level [Byrne 1992] to analyze how it works, and then modify it to

suit their own requirements. Decompilers and disassemblers are often used for reverse

engineering, together with some additional tools such as program slicers [Tip 1995] and

debuggers.

The Java Virtual Machine is designed to be independent of the Java Development Kit.

Java source code is first compiled into byte code format, and stored in a class file. The class

file does not contain information for operation on a particular platform or hardware. Instead,

1.4 Target of this Thesis 3

a Virtual Machine, written for each platform, recognizes the bytecode format and then

translates the instructions into platform-dependent code [Lindholm and Yellin 1997]. To

allow platform independence and to ensure platform security, a lot of information from the

source code must remain in the bytecode format, such as type information for object linking.

The highly informative class file format makes reverse-engineering and static analysis of a

compiled Java program much easier than in other executable formats such as native machine

code. Therefore Java bytecode is prone to decompilation [Proebsting and Watterson 1997]

and is considered to be insecure for information hiding, unless an “obfuscator” is used to

make it difficult for the reverse engineer to understand the program’s structure [Collberg,

Thomborson, et al. 1998a].

Because of its platform independent features, the Java language is widely used for

commercial product development. This gives software piracy a great chance to grow, and has

also made hiding watermarks inside source codes more difficult. Crackers can easily reverse-

engineer most Java bytecodes, understand the work flow and the function of each part, then

insert or remove some important information such as a license validity check. They may even

be able to recognize code whose only function is to watermark the code. If they can reliably

recognize this code, they are usually able to disable it without affecting the correctness of the

code.

1.4 Target of this Thesis

One instance of the newly developed software watermarking technologies is dynamic

graph watermarking (DGW) [Collberg and Thomborson 1999]. This technology uses a

dynamically created graph structure to represent a watermark message at the software

execution time, instead of directly embedding a watermark message into the software

program. Our aim in this thesis is to demonstrate a new way of protecting dynamic graph

watermarks, called Constant Encoding. This technology introduces code that closely

resembles watermark code, but which is necessary for program correctness.

The dynamic graph watermarking techniques will be discussed in Chapter 2, and detailed

constant encoding techniques will be discussed in Chapter 3. Now we just give a brief

overview of what this technology is like.

Please have a look at Figure 1-1, Figure 1-2 and Figure 1-3. The original program in

Figure 1-1 is not watermarked. In Figure 1-2, a dynamic graph watermark g has been

4 Chapter 1 Introduction

embedded into the program of Figure 1-1. The dynamic watermark g is a data structure in the

shape of a Planted Plane Cubic Tree (PPCT), where g is the seventh PPCT in some

enumeration of PPCTs. Therefore, we say that this program carries the watermark “7”.

Now we notice that the execution and output of the original program does not depend on

the watermark code. Static analysis is enough to discover this and remove the watermark

code.

In order to protect the dynamic graph watermark, in Figure 1-3, we create another

dynamic structure ct that has the same data structure as the watermark structure g. Because of

the features of alias analysis [Burke, Carini, et al. 1999] in a dynamic tree structure, an

attacker cannot reliably recognize which is the watermark structure. After that, we create a

dependency from the assignment statement “a = 2” in the watermarked program to the

dynamic data structure ct. We do this by replacing the constant 2 with a retrieving function

d(s). The function d(s) is evaluated only at runtime. It takes an argument s, where s is a part

of the dynamic data structure ct, and will always evaluate to 2. Thus, if an adversary tries to

find the watermark structure and remove it, the adversary is not quite able to remove the

watermark structure without modifying the structure ct, because ct is very similar to the

watermark tree g. However, if ct is modified, the structure s in ct will be no longer be

referenced correctly at runtime. Thus, function d(s) cannot be evaluated correctly any more

and the constant value of integer 2 cannot be retrieved. In order to remove the watermark

structure, adversary must analyze the program’s dynamic behavior, to discover that d(s) will

always evaluate to 2, or accurately determine the boundaries of the watermark structure.

However, dynamic analysis is known to be computationally intractable in general.

From the above analysis, we see that we have created a false dependency from the

watermarked program to the embedded watermark structure. Figure 1-1, Figure 1-2 and

Figure 1-3 give a rough idea of how our technology works. In practice, the method we used

for encoding and decoding constants will be much complex than the one shown above.

Our target, in this thesis, is to build the second tree ct and design a retrieval function d(s)

that might someday be proved computationally intractable. Recent theoretical work [Wang

2000] indicates that such proofs may be possible, but far too complex and subtle to be

attempted in a Master’s thesis.

1.4 Target of this Thesis 5

Figure 1-1 A program with no watermark is listed on the left. This program builds a single dynamic data
structure to hold the value of its variable a, which is shown on the right side.

Figure 1-2 The program of Figure 1-1, modified so that a watermark is embedded as a dynamic graph
structure g (shown on the right). Static analysis is enough to discover that the dynamic watermark
structure g doesn't affect the program output, and therefore this watermark can be removed.

Figure 1-3 The program of Figure 1-2, modified to include a dependency between the assignment of 2 to
variable a and the value of g. The assignment statement “a = 2” in Figure 1-2 is replaced by two
statements “s = f(g)” and “a = d(s)”. The value 2 of variable a is obtained by evaluating function d(s),
which takes a part of the structure g as its parameter. Statement “s = f(g)” is used to locate s inside
structure g.

6 Chapter 1 Introduction

Another concept, fingerprinting, is closely related to watermarking. The fingerprinting

technique is embedding different watermarks into different copies of the same program.

However, this technique is beyond our interest in this thesis, and we will focus on watermark

protection only.

1.5 Related Work

Dynamic graph watermarking is a relatively new technique, first published in 1999. So

far, the technology of protecting dynamic graph watermark in software has not received much

academic attention.

Collberg and Thomborson suggest splitting a watermark structure into pieces, and

building the watermark pieces separately according to a special input sequence. These pieces

of watermark structures will be merged together after all the input sequence has been

accepted [Collberg and Thomborson 1999]. Their Sandmark System [Collberg, Townsend, et

al. 2001], which is an implementation of their DGW technology, adopts this technique. This

technique brings difficulties to attackers on finding the watermark structure and figuring out

what the special input sequence is.

Based on earlier work by Collberg and Thomborson in [Collberg and Thomborson 1999],

Palsberg performs experiments on his implementation of a dynamic watermark [Palsberg,

Krishnaswamy, et al. 2000]. He suggests adding a dependency to a graph g’ of the same type

as the watermark graph g, by adding an if-statement with a predicate depending on g’ before

a number of statements in the original program. Presumably, the attacker will not be able to

remove g without also removing g’. The if-statements test whether two nodes in the graph

structure are distinct. This predicate is a typical example of the “opaque predicates” proposed

by Collberg et al [Collberg, Thomborson, et al. 1998b]. Such if statements will always

evaluate to true and will not affect the execution of the original program, but will create

dependencies from the original program to the data types used to build the watermark graph.

We will discuss Palsberg’s technique further in Section 2.5.2.

Apart from the above algorithms, there is no protection technology discussed specifically

for dynamic graph structure. However, technologies such as tamperproofing and obfuscation

have been suggested as ways to protect dynamic graph watermark [Collberg and Thomborson

1999] [Palsberg, Krishnaswamy, et al. 2000].

Obfuscation is the process of modifying a source code or bytecode, to hide the program

1.6 Organization of this Thesis 7

information from being attacked while preserving the program’s semantics [Collberg,

Thomborson, et al. 1997] [Collberg, Thomborson, et al. 1998b] [Low]. Through obfuscation,

the low level program either can not be decompiled due to its high level code, or else the

decompiled high level code is hard to understand, and might not be recompilable.

Tamperproofing is a technique that can detect if a program has been altered, and if so,

then the program will fail to function properly [Collberg and Thomborson 2000].

Another concept called randomization is mentioned by Palsberg. His idea is to weave the

program code and watermark code in a random way, to protect against malicious attacks

[Palsberg, Krishnaswamy, et al. 2000]. It will bring difficulties to attackers who try to

compare two different copies of the same program, maybe with different watermarks (called

fingerprint). Randomization will not be our interest in this thesis because it will not help too

much on watermark technology where watermarks in different copies of the same program

are the same, also fingerprinting is out of our focus in this thesis.

1.6 Organization of this Thesis

This thesis is divided into eight chapters. In the first chapter, the Introduction, we have

outlined some background information on watermarking, including software piracy, the need

for software protection, current research on watermarking and related technologies. We also

give a brief overview of the ideas we will talk about in this thesis.

Chapter 2 overviews the watermarking techniques currently used in software protection,

compares the main differences among them, examines the attacks on watermarking and

surveys defenses against these attacks. In each topic in this chapter, we emphasize dynamic

graph watermarking technology, show the outstanding features of it, and also discuss the pros

and cons as well as the attacks and protection of it.

Chapter 3 discusses constant encoding technology in detail; it explains the relation

between DGW watermarking technology and constant encoding technology. At the end of

this chapter, some practical work shows the applicability of our constant encoding algorithm.

Chapter 4 provides a high-level description of our JSafeMark encoder prototyping, and

discusses the system structure as well as how the information is exchanged in the system.

Chapter 5 discusses the JSafeMark tester, which we designed to tester our encoder.

Meanwhile, the codec library is also discussed in this chapter.

8 Chapter 1 Introduction

Chapter 6 presents details of how our JSafeMark encoder is designed in the style of

Software Engineering. Rational Rose is used throughout the implementation.

Chapter 7 evaluates our partially developed JSafeMark encoder with concrete examples.

Chapter 8 discusses the overall pros and cons of our JSafeMark algorithm and system. It

also suggests some improvements that can be made in the future.

Chapter 2

Survey of Watermarking Techniques

2.1 Introduction

Watermarking embeds a secret message into a cover message. In this thesis, we are only

interested in the type where the cover message is a software program. This is called software

watermarking [Collberg and Thomborson 2000]. Dynamic Graph Watermarking (DGW),

which embeds a watermark number into a graph topology that is dynamically built at

program runtime, is one of the software watermarking technologies published by Collberg

and Thomborson [Collberg and Thomborson 1999]. It inherits the benefits of earlier

watermarking techniques, also, it has its own advantages obtained from the graph structure.

In this chapter, we will introduce some background knowledge about software

watermarking including attacks and defenses. Dynamic Graph watermarking will be the focus

of our discussion. We will describe two watermarking systems, which are built on Dynamic

Graph watermark technology. The concept of the Planted Plane Cubic Tree will be

emphasized during the introduction, since we will be using this graph structure extensively.

10 Chapter 2 Survey of Watermarking Techniques

2.2 Watermark Technique Overview

Watermarks can be embedded into software programs in a number of ways, and they can

be classified into two categories: static watermarks and dynamic watermarks [Collberg and

Thomborson 1999].

A static watermark is stored inside program code in a certain format, and it does not

change during the program execution. According to the representation of watermark

information, there are two types of static watermarks: data watermarks and code watermarks.

A data watermark stores watermark information as program data, and can be stored anywhere

inside a program, such as in comments or in variables. A code watermark is represented by

choosing a particular sequence of instructions, in cases (and these are common) where more

than one sequence of instructions has an equivalent effect. A static code watermark may also

be stored in “dead code” (which is never executed); any sequence of instructions may be used

with equivalent effect in a dead-code area. For example, in a Java program, a particular order

of cases in a switch statement can be used to represent a watermark number. Further

discussion of static watermarking issues can be found elsewhere [Davidson and Myhrvold

1996] [Moskowitz and Cooperman 1996] [Venkatesan, Vazirani, et al. 2001].

A dynamic watermark is built during program execution, perhaps only after a particular

sequence of input. It might be retrieved by analyzing the data structures built when

watermarked program is running. In other cases, tracing the program execution may be

required. There are three kinds of dynamic watermarks: Easter Eggs, Execution Trace

Watermarks, and Dynamic Data Structure Watermarks [Collberg and Thomborson 1999].

Easter Egg Watermarks. These dynamic watermarks are revealed at the user interface, by

a secret sequence of input. These secret messages may be copyright information or an

unexpected text or image. There are many resources about Easter Egg Watermarks and

examples can be found on the Web [EEGGS]. For example, here is an undocumented Easter

Egg distributed with Microsoft Windows 2000: start a new FreeCell game in Windows 2000,

press Ctl+Shift+F10, click Abort, double click on the cards - you win!

Execution Trace Watermarks. When this type of watermarked program is run, the

watermark information will be presented in the instruction or data-reference trace of program

execution sequence. A special sequence of inputs may be required. This watermark can be

extracted by analyzing the address trace and/or the sequence of operations of a watermarked

program.

2.3 Dynamic Graph Watermark (DGW) 11

Data structure watermarks. When this type of watermarked program is executed with a

special input sequence, watermark information will be left within the state of the program

such as the heap or the stack. This watermark can be retrieved by analyzing the runtime

memory state of the program. The Dynamic Graph Watermark (DGW) described by Collberg

and Thomborson in [Collberg and Thomborson 1999] belongs to this category. Our new

constant encoding idea is an improvement on DGW technology.

2.3 Dynamic Graph Watermark (DGW)

Collberg and Thomborson discussed watermarking technologies and their protections

systematically in their paper [Collberg and Thomborson 1999]. They pointed out that current

watermarking techniques could be attacked successfully by typical obfuscating

transformations. Starting from this point, they presented a new watermarking technique

called Dynamic Graph Watermarking. DGW is a watermark that is represented in a graph

topology, which is created only at the runtime of a program, triggered by a special sequence

of input. Their DGW technique is much less susceptible than static watermarks from de-

watermarking attacks such as code optimization and code obfuscation.

2.3.1 Dynamic Graph Watermarking Process

In the following discussion of watermarking techniques, the term “Candidate Program”

will be used to refer to a software program that needs to be watermarked. According to

[Collberg and Thomborson 1999], the Dynamic Graph Watermarking process can be

described as:

(1) Choosing a watermark number.

(2) Representing the watermark number with a graph structure.

(3) Building a watermark code for generating the graph structure at runtime.

(4) Embedding this code into a software program, so that the watermark is built only

when a special input is presented to the resulting watermarked program.

Steps two to four above can be illustrated as in Figure 2-1. The watermarking process

shown in (1) of Figure 2-1 shows a watermark number can be turned into a graph structure G

according to a certain enumeration method (step (2) in the above list). The process (2) in

Figure 2-1 builds a source code for generating the watermark structure G (step (3) in the

12 Chapter 2 Survey of Watermarking Techniques

above list). When this source code is executed at runtime, the watermark graph G will be

generated. The process (3) in Figure 2-1 inserts the source code into the candidate program,

and (4) of Figure 2-1, ensures that the watermark will only be built when a special input is

presented to the program (step (4) in the above list). To retrieve the watermark, one needs to

run the watermarked program with the special input sequence, and then examine the objects

in the heap dump.

Figure 2-1 Dynamic watermark embedding process

2.3 Dynamic Graph Watermark (DGW) 13

In paper [Collberg and Thomborson 1999], Collberg and Thomborson also mentioned

two improvements on the basic DGW method. One is to split the DGW structure into pieces

that are built separately. After a particular sequence of input is accepted, all partitions of

DGW structures have been built and can be put together. We have mentioned this in Section

1.5, and we will discuss the implementation in detail in Section 2.3.3. The other improvement

is to integrate tamperproofing technologies into the DGW process. For simplicity, we did not

show this idea in Figure 2-1. Details of watermark protection techniques will be discussed in

Section 2.5.

DGW watermarking represents the watermark with a graph structure constructed at

runtime. Its biggest advantage over static watermarking is that a dynamic watermark graph

structure contains many pointers, and it is hard to analyze pointers at runtime. Also, because a

DGW watermark is constructed dynamically, runtime information must be gathered to

analyze the watermark structure. Hackers need more effort to analyze stack and heap dumps

than to analyze plain language code. All of these features ensure that a DGW watermark

gains a certain degree of protection simply by its method of construction.

2.3.2 DWG Embedding Enumeration Methods

Step (2) of the watermark embedding process, discussed in the previous section, requires

us to find a graph corresponding to a desired watermark number. This type of problem has

been studied extensively in combinatorics [Goulden and Jackson 1983]. The usual approach

is to first index a set of graph structures according to a certain enumeration method, and then

use the index number to represent the watermark. Thus, a watermark should be representable

as an integer.

In most cases, the index – to – graph structure conversion is performed in a codec. A

codec is the short term for compressor/decompressor, which is used for compressing and

decompressing data [Webopedia Codec]. In this thesis, a codec refer to the software that,

given an index number, generate a graph structure, and vise versa.

 Obviously, there are many enumeration methods and families of graphs that can be used

for embedding. In [Collberg and Thomborson 1999], four graph enumerations are discussed.

They are: (1) Planted Plane Cubic Tree encoding, (2) Radix-k encoding, (3) Parent Pointer

tree encoding, and (4) Permutation encoding. Now we will give an overview of how these

enumeration methods works. We will emphasize the enumeration for Planted Plane Cubic

Tree structure, which we will use throughout this thesis.

14 Chapter 2 Survey of Watermarking Techniques

Planted Plane Cubic Tree (PPCT) encoding enumeration

First, we need to define the class of Planted Plane Cubic Trees (PPCTs). Following the

definition given by Goulden, a Planted Plane Cubic Tree has these features [Goulden and

Jackson 1983]:

(1) Has a root node, which is a single vertex that is distinguished.

(2) The root is monovalent.

(3) The tree is embedded in the plane.

(4) All vertices are either monovalent or trivalent.

Figure 2-2 A Planted Plane Cubic Tree example

The graph shown in Figure 2-2 has all these features. Its root node is drawn in black.

All the internal nodes of the tree are trivalent. None of its edges intersect in this drawing,

thus we have a planar embedding.

The PPCT structure is used for dynamic watermark embedding. The data structure

representation chosen for PPCTs by Collberg and Thomborson has two outgoing pointers

for every node [Collberg and Thomborson 1999]. The single root is called Origin, and the

node the origin points to is called Root. The right-pointers of the leaves are self-pointers,

and the left pointers of the leaves point to the next leaf node on its left. The left pointer of

the leftmost leaf points to the origin. The Left pointer of the origin points to the rightmost

leaf node, and the right pointer points to the root. (Figure 2-3)

Figure 2-3 A PPCT structure, with two outgoing pointers for all nodes

2.3 Dynamic Graph Watermark (DGW) 15

The extended Planted Plane Cubic Tree has some useful properties. For example, a PPCT

is a binary tree and no pointer in the tree structure is null. Further, the node origin points to

the root of the binary structure. Lastly, all the leaf nodes are linked together by left pointers

and the left most node points to the origin, and finally the origin points to right most leaf

node. This structure can help us locate the tree structure, for example, to find the origin node

from any node inside a PPCT structure.

According to Catalan number theory [Goulden and Jackson 1983], a PPCT with n leaves

(2n nodes), can represent any integer in the following set:









−







−
−

1
1
221210

n
n

n
...,,,

For example, a simple enumeration of PPCTs with 4 leaves is shown in Figure 2-4. For an

algorithmic implementation of a PPCT enumeration, please refer to Section 3.4.3.

Radix-k Encoding Enumeration

Radix-k encoding is based on a circular linked list of k – 1 nodes, with a distinguished

first node. The index number is decided according to the following function:

2
1

11
2

0
1

−
−

− ×++×++×+×= k
k

i
i ka...ka...kakaindex

Figure 2-4 Enumeration of PPCTs with 4 Leaves

A node in the circular linked list contains 2 pointers, left and right. The value of ai is

decided by the left pointer of the node, based on following rules:

ai = 0, if the left pointer is null;

ai = 1, if the left pointer point to itself;

ai = 2, if the left pointer points to the next node;

……

16 Chapter 2 Survey of Watermarking Techniques

ai = k-1, if the left pointer points to the previous node in the circular list.

An example of Radix-k enumeration is shown in Figure 2-5. The figure shows the first

eight radix-4 structures.

According to the above enumeration method, a linked list of k - 1 nodes can represent any

integer in the range from 0 to kk -1 – 1 [Collberg and Thomborson 1999].

Figure 2-5 Radix-k enumeration example with k = 4

Parent-Pointer Tree Encoding Enumeration

Another way of representing a watermark with an indexed graph is by using a Parent-

Pointer Tree. In a Parent-Pointer tree, each node has a pointer to its parent. Figure 2-6 shows

all of the Parent-Pointer trees with four nodes.

Figure 2-6 Oriented parent-pointer tree enumeration with four nodes

2.3 Dynamic Graph Watermark (DGW) 17

Permutation Encoding

The permutation encoding represents a watermark with a permutation of the numbers

〈0, …, n-1〉. For example, watermark number 29 could be represented by the permutation 〈4,

5, 3, 1, 2〉 of the numbers 〈1, 2, 3, 4, 5〉. A circular linked list can be used for the data

structure for embedding. Figure 2-7 shows a circular linked list for representing the number

29, where the 1st number 4 in the permutation is represented by a pointer from the 1st node to

the 4th node, and the 2nd number 5 is represented by a pointer from the 2nd node to the 5th

node, and so on.

Figure 2-7 A circular linked list for permutation encoding number 29

2.3.3 Current Implementations of DGW

Since the announcement of the DGW algorithm, there have been three implementations

of DGW. They are: the Sandmark System from University of Arizona [Collberg, Townsend,

et al. 2001], the JavaWiz System from Purdue University [Palsberg SWM], and uwstego from

University of Wisconsin-Madison [Jha 2002]. The uwstego system is still under

implementation and we cannot find enough information to describe in any detail. Thus, in this

section, we will only briefly introduce Sandmark and JavaWiz.

JavaWiz System

The JavaWiz System was built by Palsberg et al. at Purdue University. It targets at Java

source code and its implementation is entirely in the Java Language. The JavaWiz System

uses a Planted Plane Cubic Tree (PPCT) as its dynamic watermark graph structure and

embeds watermark code into the source code of a Java program. If a bytecode program needs

to be watermarked, the bytecode must be decompiled into source code, and then it can be

watermarked. The JavaWiz System does not need to access all parts of the Java source code

and does not touch the standard library [Palsberg SWM].

18 Chapter 2 Survey of Watermarking Techniques

The source code of JavaWiz is not open-source, but the bytecode package is available

online for watermark process testing [Palsberg Source]. From our experience, the function of

the JavaWiz System is quite basic. It doesn’t need a special input sequence to trigger the

watermark-building code. Instead, the watermarked code will build a watermark graph

structure when a pre-selected class is called during the program running. It seems that the

protection methods mentioned in [Palsberg, Krishnaswamy, et al. 2000] have not been

integrated into the system yet.

 The watermarking process of Palsberg’s JavaWiz System is described in more detail

below, in terms of the following aspects: watermark enumeration, watermark embedding, and

watermark retrieval.

(1) Watermark Enumeration

The watermark structure used is the Planted Plane Cubic Tree. The enumeration is

based on Catalan number as we mentioned in previous section. A Catalan number defines

the total number of distinct tree structures with certain leaves. Thus, the JavaWiz system

indexes PPCTs according to their leaf number, which means that an integer may be

represented by many different PPCT structures. For example, the integer 0 can be

represented by any PPCT with index = 0. Four such structures, with varying numbers of

leaves, are shown in Figure 2-8. The enumeration method used in JavaWiz will be

discussed in detail in the first part of Section 3.4.4.

Figure 2-8 Some PPCT structures of index = 0, with different numbers of leaves

(2) Watermark embedding

The watermark embedding process in the JavaWiz system is quite similar to the steps

we introduced in Section 2.3.1. Please review Figure 2-1 on page 12. We will point out

some features in JavaWiz System that differ from those outlined in that section.

2.3 Dynamic Graph Watermark (DGW) 19

According to the description file [Palsberg Source] and from our examination of the

watermarked source code produced by JavaWiz, the embedding process has the following

features.

First, the node class used to build the watermark structure is obtained from the

candidate program. The user of the system needs to choose a class in the candidate

program that can be used as the node class for the PPCT structure. The JavaWiz system

will turn that class into the node class, by adding extra outgoing pointers.

Second, the execution point of building the watermark structure is manually selected.

The user needs to choose a method in a proper class into which the watermark code will

be inserted.

Third, a particular sequence of input is not explicitly required to when building the

watermark structure at runtime. The JavaWiz system will insert watermark code in the

user-selected method and once the method is called, the watermark structure will be built

without a secret input. Note that the user of JavaWiz may also select a method that is

called only when a secret input is presented to the program. However, this is not

explicitly stated in the JavaWiz system.

Last, the whole watermark graph is built all at once. Collberg and Thomborson

suggest building different parts of a watermark structure in different places of a

watermarked program, at various times during the program execution. From the source

code generated by the JavaWiz system, we see that the watermark source code is inserted

into a user-selected method, mixing with the original statements in the method. Thus, the

whole watermark graph is built during the execution of a single method, that is,

essentially all at one time.

(3) Watermark Retrieval

A watermark is retrieved by analyzing the heap dump at a certain stage of the

program execution. Because the owner knows some special properties of the watermark

structure, for example, the size of the watermark tree and the type of the watermark

structure (in this case, a PPCT), the retrieving process will be efficient.

According to practical results given by Palsberg [Palsberg, Krishnaswamy, et al.

2000], the JavaWiz System will add 4KB to 12 KB extra code to the candidate program,

and the program’s execution time will increase by at most 7%, and often much less than

this.

20 Chapter 2 Survey of Watermarking Techniques

Sandmark system

The Sandmark System was built by Collberg and Townsend from the University of

Arizona [Collberg Page]. It is closely based on Collberg and Thomborson’s theory in

[Collberg and Thomborson 1999]. Its target program language is Java. Sandmark is not only

a tool for software watermarking; it also can be used to study software obfuscation,

watermarking and tamper-proofing techniques. The most important point of the Sandmark

System is that it shows the possibility of combining and using different algorithms and

methods in a program.

The first version of the Sandmark System was written in the Java, Perl, and Icon

languages, and the source code is now freely distributed. Recently, a newer version has been

built purely in Java [Collberg 2002].

(1) Watermarking enumeration

Currently, there are three codecs (refer to the definition in Section 2.3.2) included in

the Sandmark system based on three different enumeration algorithms. They are the

Radix-k, the permutation, and the PPCT codec. The general idea of these enumeration

methods has been introduced in Section 2.3.2, and PPCT enumeration will be further

discussed in detail in Section 3.4.4, because it is closely related to the topic of this thesis.

(2) Watermark embedding

The watermark embedding process is more complex than that in the JavaWiz system.

The features of this process can be described in the following aspects.

First, the Sandmark system automatically chooses where to insert watermark code.

The system will find all possible places for inserting watermark source code and then

decide which places will be used.

Second, different parts of the watermark graph are built in different sections of the

program and at different times during the program execution. This requires more

complicated mechanism to be used to find the place for embedding. The watermark

structure will be divided into partitions, which will be built separately during program

execution with a particular input. After all of the particular input is accepted, all partitions

of the watermark structures are built and then the entire watermark structure will be

created so that it can be recognized by a program that analyzes the heap-allocated data

structures of the watermarked program. This algorithm is successfully implemented in the

2.4 Attacks on Software Watermark 21

Sandmark system.

 Last, watermark pieces are only built when a predefined secret input is presented.

This ensures that if the particular input is not present, some portions of the watermark

structure, or even none of them, will be built. This technique hides the watermark code

away from the attacker’s focus, so that a simple dynamic data analysis and execution

trace analysis will not find the watermark structure easily.

The embedding process is done in the following steps [Collberg 2002]:

• Annotation: This step is used to find out where, inside a candidate program, a

piece of watermark code can be inserted. All potential places will be marked.

• Tracing: This step is used to find out which marked potential places are related to

a predefined secret input sequence. During the execution of the program with that

secret input sequence, some of the marked places will be hit, and the places that

are hit will be used for inserting watermark code.

• Embedding: This is the real embedding step. During this step, a graph structure

for a given watermark number (or string) is generated and, depending on the

number of places hit, the watermark graph is split into a certain number of

partitions, and the code for building those partitions are inserted into the hit places

inside the candidate program. Information about root nodes of all partitions is also

stored so as to merge the partitions into an entire watermark structure.

(3) Watermark Recognition:

By executing the program with the predefined secret input sequence, all the

watermark partitions will be created and merged in the end. By examining the heap dump,

the watermark graph structure will be discovered and the watermark is retrieved.

2.4 Attacks on Software Watermark

Attacks on software programs can be classified into two different types: malicious client

attacks and malicious host attacks [Collberg and Thomborson 2000]. For the case of a

malicious client attacking a benign host computer, the privilege of the malicious client can be

limited by the benign host. Thus, the threat of a malicious client attack is not as great as in the

case of malicious host attacks, in which case the host has full privilege to examine and

modify the client code. Since watermark information is embedded in client program, the

22 Chapter 2 Survey of Watermarking Techniques

attacking of watermarks is in the category of malicious host attack.

2.4.1 Overview of Attacks on Software Watermark

Because of the privilege of a malicious host, various technologies can be used for de-

watermarking. The possible methods that could be used include reverse engineering, source

code/bytecode analyzing, program output analyzing, execution trace analyzing, stack and

heap analyzing, and so on.

Static data watermarks and code watermarks are highly susceptible to attacks using code

obfuscation techniques [Collberg, Thomborson, et al. 1998a] [Collberg, Thomborson, et al.

1998b]. This is because the obfuscation techniques will change the original representation of

the static data in a program. It will also change the order of some instructions, where the

order of these instructions is not critical. Obfuscation may also replace instruction sequences

by equivalent instruction sequences. For example, obfuscation may break strings to

substrings or change the order of the cases in a switch statement. If the watermark

information depends on the strings, or on the order of the cases, this could make the

watermark unrecognizable.

Some dynamic watermarks can also be attacked by the obfuscation techniques. Execution

trace watermarks are especially susceptible to obfuscation attacks. Easter Egg watermarks are

unaffected by obfuscation attacks. Dynamic data structure watermarks are susceptible to

some advanced data obfuscation attacks, for example, when the nodes representing a DGW

are “split” or “merged”. Further analysis of obfuscation attacks can be found in [Collberg,

Thomborson, et al. 1998a].

There are many ways of attacking watermarks other than obfuscation. According to

Collberg and Thomborson [Collberg and Thomborson 1999], attacks can be classified in the

three ways shown in Figure 2-9, and described briefly below.

• Additive attacks: the attacker inserts his own watermark. The result of this attempt is

overriding the original watermark, or at least making it plausible that the original

watermark was not inserted before the attacker’s. See Figure 2-9 (ii).

• Subtractive attacks: the attacker tries to locate and remove a watermark without

affecting the usability of the software program. See Figure 2-9 (iii).

• Distortive attacks: the attacker tries to modify the watermark without damaging the

usability of the software program. The result of this attack is that the watermark is not

2.4 Attacks on Software Watermark 23

recognizable, but the software is still of value to the attacker. See Figure 2-9 (iv).

Many tools are available to an attacker. Jobe [Jokipii] can change the identifiers of a

program. KlassMaster [Klassmaster] not only can transform the names and strings, but also

can offer flow obfuscation that changes most selections (e.g. if...else) and loops (e.g. while

and for). Jad [Kouznetsov] can decompile Java class files to source code. The use of these

tools makes the attacker more effective and efficient.

2.4.2 Attacks on DGW watermark

Now let us examine in detail how these attacks can affect Dynamic Graph watermarks.

Most of the technologies for attacking other types of watermarks, such as semantics-

preserving transformation, and code obfuscation, have no effect on DGW watermark.

However, some de-watermarking techniques can effectively make the DGW watermark

retrieving process fail. According to [Collberg and Thomborson 1999], an attack on DGW

watermark can be an additive attack, a subtractive attack or a distortive attack.

(1) Additive Attack:

Add a new watermark as discussed before. This attack will work in the same way as for

other types of watermarks.

(2) Subtractive Attack:

Remove the watermark completely, so that no watermark can be retrieved for software

authentication.

Because of the difficulty of alias analysis, a dynamic graph watermark is hard to remove.

However, once the attackers find any part of the DGW structure, they can eliminate all node

(or fields) of that type from the program, and then delete all references to these nodes (or

fields), unless there is a tamperproofing technique to protect the watermark.

Please look at Figure 2-10. The method in Figure 2-10 uses opaque predicates, creating

two pointers to a watermark structure wm (discussed in Section 2.3.3). The attacker must

succeed in an alias analysis to replace the predicate (n1 != n2) by the appropriate constant

value 1 (true).

24 Chapter 2 Survey of Watermarking Techniques

Figure 2-9 Attacks on software watermark

A second type of tamperproofing is illustrated in Figure 2-10 in which we make use of the

DGW type for some useful purpose in the program. If the attacker removes all nodes of type

DGW from the program, then they will also remove the usefulStructure of this type.

Distinguishing the wm from the usefulStructure requires an accurate alias analysis. The first

of these two tamperproofing methods was briefly suggested in [Collberg and Thomborson

1999]. Both methods were developed more fully in [Palsberg, Krishnaswamy, et al. 2000].

2.4 Attacks on Software Watermark 25

Figure 2-10 Tamperproofing a DGW against a subtractive attack

(3) Distortive Attack (Figure 2-11):

We identify five types of distortive attacks, and discuss each in turn below. See Figure

2-11.

o Add extra pointers to the graph nodes. An attacker may modify the node class of

the watermark graph structure, making the watermark retrieving process more

difficult. For example, by adding an additional field to the node class, the original

watermark structure G (shown in Figure 2-11 (i)) looks like the one in Figure 2-11

(ii).

o Delete part of the structure. An attacker may delete part of the watermark structure,

making the retrieving process fail. For example, the structure G2 in Figure 2-11

(iii) shows the node d and e in the original structure G have been removed.

o Split nodes. The node class of the watermark structure has been split into two

(Figure 2-11 (iv)). This action adds an extra level of reference to each node inside

the original watermark structure G, so that the original status of links between the

nodes is changed, and the data structure of the watermark tree may also be

changed.

o Add extra nodes to the graph structure. In Figure 2-11 (v), three extra nodes (f, g,

h) have been added into the original graph G. This will make the retrieving

process difficult because of the change of the graph structure.

26 Chapter 2 Survey of Watermarking Techniques

Figure 2-11 Attacks on DGW watermark

o Rename or reorder the fields inside a node. Figure 2-11 (vi) shows the left and

right pointer name in the original graph G have been swapped. The result is the

left subtree, which was the three node subtree, becomes a single node, and the

right subtree, which was a single node, becomes a three node subtree. This change

may affect the result of the watermark retrieving. Note: the term “subtree” will be

defined formally in Section 3.1.

2.5 Watermark Protection

The goal of a software watermark protection technique is either to make it difficult for an

attacker to analyze watermarked programs so as to prevent the watermark from being found,

or to prevent the watermark code itself being modified or removed. However, software

watermark protection has not been given much attention even in recent years. Different kinds

of watermarks may need different protection techniques, and protection methods for newly

developed watermarking techniques, such as DGW, have not received much attention.

In this section, we will discuss the few protection technologies that have been published

for software watermarks. First, we will give an overview of protection technologies. Then,

2.5 Watermark Protection 27

we will focus on the methods currently available for protecting DGWs.

2.5.1 Overview of Protection Techniques

Obfuscation techniques can make it difficult for an attacker to analyze source code.

Tamperproofing can make it difficult for an attacker to modify a software program without

affecting the usability of the program. These concepts, of obfuscation and tamperproofing,

have already been introduced in Section 1.5 and in Section 2.4.2. Figure 2-12 shows how

these techniques are used to protect software from attackers.

Figure 2-12 Watermark protection techniques: obfuscation and tamperproofing.

In Figure 2-12(ii), obfuscation makes the watermark stealthier, making it hard for the

attackers to analyze the watermarked program. Obviously, if the attacker cannot find the

watermark, he will have less chance to perform a fatal attack. Figure 2-12(iii) shows another

possibility, that the attacker may have some way to remove the watermark, or at least to

destroy part of the watermark. This can be prevented by tamperproofing. Tamperproofing

×
(ii) Obfuscation: makes watermark stealthier

Obfuscating

(iii) Tamperproofing: makes watermark more resilient to attacks,

 if watermark is removed, the original program will have

 execution errors.

Remove

watermark

Watermarking Retrieving

Watermark

(i) Normal watermarking and retrieving process

Removing

The original program

is changed and can’t be

executed properly.

Hard to find

the watermark

Watermark

Watermarking

Watermark

Watermarking Retrieving

Watermark

28 Chapter 2 Survey of Watermarking Techniques

typically creates a dependency from the watermarked program to the embedded watermark

structure. If the watermark structure is modified or removed, the watermarked program might

function incorrectly.

However, the above protection methods may not be applied to all kinds of watermarks.

For example, a static watermark may be destroyed, rather than protected, by obfuscation.

Thus we see that the way in which a watermark is built can play an important role in its

protection.

2.5.2 Protections for DGW watermark

If an attacker does not know how the watermark is embedded, they will have to apply

general methods, which are effective at attacking the most common watermarks. Fortunately,

the DGW watermark algorithm has some intrinsic features that protect it from attacks, as

discussed in [Collberg and Thomborson 1999]. Thus, a general attack on a watermark may

not be a severe danger to a DGW watermark. For example, any semantic-transforming

obfuscation will not affect a DGW watermark. However, if the attacker possesses some

information about the watermark, for example that it is a DW, or specifically a PPCT DGW,

or even more specifically, the root node of the PPCT DGW, their attack will be more serious

or even fatal.

As we discussed in Section 2.4, an attack normally happens in one of two ways: either

someone is trying to destroy or distort the watermark by means such as obfuscation when the

attacker does not know the location of the watermark, or someone is analyzing the

watermarked program and trying to find the location of the watermark and then applying

attacks that aim particularly at that watermark. Therefore, we can improve the watermark

protection in three ways. First, we can make the DGW watermark more robust, so that the

DGW watermark could not be affected by advanced obfuscations such as data structure

transformations. Second, we can prevent attackers from finding the watermark structure.

Finally, we need to prevent the watermark from being removed, even when an attacker has

discovered the location of the watermark. Of course, a protection method may have one or

more functions among the three ways listed above.

In [Collberg and Thomborson 1999], Collberg and Thomborson discussed an

improvement to DGW watermarking to protect against node splitting attacks. We know that

if a node in a DGW watermark has been split into multiple parts or if an extra layer of

redirection is added into a node class, as shown in Figure 2-11(iv), then the DGW watermark

2.5 Watermark Protection 29

structure may no longer be recognizable. Collberg and Thomborson suggest replacing each

node in a DGW watermark structure with a cycle of nodes, as shown in Figure 2-13. In this

case even when an attacker tries to destroy the watermark structure by splitting a node into

two (Figure 2-13(iii)), we can still merge each node cycle into a single node so that the

original shape is acquired. Any further splitting of the node just makes a cycle bigger, but

does not affect watermark retrieval. However, as also mentioned in [Collberg and

Thomborson 1999], this method requires extra space to store many extra nodes, which seems

uneconomical.

In the same paper, Collberg and Thomborson also mentioned a way of protecting by

using reflection. Reflection in the Java language can be used to get information about a

program, such as the method, fields, and constructors [Sun Microsystems REF]. This

information can be used to verify that the node class for a watermark structure remains

unchanged. Thus, Java reflection can be used to protect against many types of attacks such as

node reordering and renaming. However, as they pointed out, it is unstealthy to use reflection

in a program that otherwise does not use reflection.

Figure 2-13 Protection from node splitting.

Palsberg, in [Palsberg, Krishnaswamy, et al. 2000], described using an if-statement to

create a dependency from watermarked program to the watermark structure. We mentioned

this idea in Section 1.5 and again in Section 2.4.2. Palsberg’s method transforms a statement

“S” in the candidate program into the following if-statement, where x and y are references to

distinct nodes in the watermark structure:

 if (x != y) S

The predicate of this if-statement will always evaluate true. Thus, the statement S will always

be executed. However, it is hard for the attacker to know whether x and y will always be

(i) Original structure (ii) Node been replaced

 with a cycle of nodes

(iii) Attacker splits

 a node into two

30 Chapter 2 Survey of Watermarking Techniques

different. Without this knowledge, the attacker cannot safely remove x and y from the

program, so at least this part of the watermark structure must be preserved.

Palsberg does not propose to protect the watermark structure directly by these if-

statements. Instead, Palsberg suggests creating a second tree structure at the beginning of the

watermarked program. This second structure is used as the source of distinct nodes for tests

of the form x != y. However, the second watermark tree is still somewhat exposed to attack.

Even so, this is a very efficient algorithm, which can build dependencies without too much

cost. We believe Palsberg’s algorithm still needs further development, in order to prevent

pattern-matching attacks.

2.5.3 Integration of Protection Methods

No technology can guarantee immunity to all attacks. Thus, we might try to use all known

methods together to achieve a higher level of software protection. The three general methods

(watermarking, obfuscation, tamperproofing) were originally developed to control software

piracy, but now they can be used for watermark protection.

2.6 Discussion

The sole purpose of the code that builds a DGW is to protect a software program. This

leads to a dangerous situation: the watermark code does not relate closely to the candidate

program. Therefore, an adversary might not find it too difficult to recognize the watermark

code from watermarked program. Obfuscation can protect a program from static analysis,

increasing the difficulty of such attacks, however, and this makes attacking more difficult,

even obfuscation cannot prevent all recognition attacks with certainty.

Currently, systems based on DGW technology achieve a certain degree of protection.

This is because of the nature of DGW technology as we discussed before. Some ways of

protecting DGWs have been discussed, but it is impossible to achieve full protection. Thus,

finding a more effective method for protecting DGWs is still an open problem.

2.7 Summary

In this chapter, we discussed the concept of watermarking and outlined technologies used

in software watermarking such as static watermark and dynamic watermark. We emphasized

Dynamic Graph watermarking, which will be useful in the following chapters. We discussed

2.7 Summary 31

protection technologies that increase the resilience of watermark, with special attention to

DGWs. In the end, we pointed out that no defensive method can protect a watermark

thoroughly. However combining different technologies may achieve a better result.

Increasing the level of protection for DGW watermarks is still an open problem. In the

following chapter, we will discuss a new algorithm for DGW watermark protection.

Chapter 3

Constant Encoding

3.1 Introduction

As we discussed in Chapter 2, a dynamic graph watermark is built at runtime in the

program-controlled memory, and it is difficult to analyze or attack such watermarks.

However, the DGW watermark does not relate closely to the functions of its candidate

program. Thus, the DGW watermark still can be attacked by intensive analysis and

modification to the watermarked program. Currently, there are several different ways of

protecting DGW watermarks, such as creating the watermark only on specific inputs, and

inserting opaque predicates as we have discussed in Section 2.5. These technologies, together

with some general methods such as obfuscation and tamperproofing, can cause difficulties to

attackers. However, there is still a need for improvements in DGW watermark protection.

In this Chapter, we discuss a new technology of DGW watermark protection that creates

false dependencies from the candidate program to the DGW watermark code embedded in the

program. In other words, we will show an algorithm that, in normal execution, builds a

second tree that is the same type as the watermark tree, and makes the execution of the

program dependent on the correctness of the second tree structure. Because of the difficulty

of alias analysis, since the second tree is the same type as the watermark tree, attackers will

have great difficulty in analyzing which is the watermark tree (which he wants to attack) and

34 Chapter 3 Constant Encoding

which is the second tree (which he must not modify). Thus, if an adversary tries to remove or

modify the watermark code without distinguishing the watermarked tree and the second tree,

he will have a significant danger of rendering the program unusable. Moreover, if we apply

opaque predicate tamperproofing such as Palsberg’s if-statement discussed in Section 2.5.2,

the second tree can be used as another source of opaque predicates. This makes the

watermark structure even more secure.

Our algorithm is based on the idea of encoding constants into the watermark structure.

We describe how this algorithm works from Section 0 to Section 3.4. After the process has

been illustrated, we discuss some issues about this algorithm in Section 3.5. In later chapters,

we show how the algorithm can be realized by building a prototyping system. We give a

name to our prototyping constant encoding software - JSafeMark encoder. Thus, from now

on we call the constant encoding technique JSafeMark Technology.

The JSafeMark technology manipulates the constants inside a candidate program, by

converting each constant into a graph topology. The graph structure it handles is a PPCT. See

Section 2.3.2. The technology will be discussed in detail later on. In some aspects, the

encoding process that the JSafeMark carries out is quite similar to the process of turning a

watermark number into a graph structure, when the watermark is embedded by a

watermarking system. In order to avoid ambiguity, before we start to describe the constant

encoding procedure, we need to introduce several terminologies that will be used later on in

this thesis. Please note that we only deal with watermark trees that are PPCT structures in this

thesis.

Embedding: refers to the process that embeds a watermark or a watermark graph structure

into a candidate program; see Section 1.4 and Section 2.3 for more details.

Decoding: refers to the process of converting a graph structure into an integer

Encoding: depending on the context, encoding has two meanings. IN restricted contexts,

it refers to the process of converting integers into graph structures. In general discussions, we

speak of a “Constant Encoding Process”, which introduces decoding and encoding processes

into a candidate program.

Binary Tree: A directed graph in which each node (other than the root) has a parent node,

and in which each node (other than the leaf nodes, is the parent of exactly two nodes. The leaf

nodes of a tree have no children.

3.1 Introduction 35

Figure 3-1Comparison of subtree and substructures.

Subtree: Refers to a branch of a binary tree. See Figure 3-1(i);

Substructure: refers to any binary tree that is a sub-graph of another binary tree. Note that

any subtree is a substructure. However, a substructure is not necessarily a subtree. Three

substructures are shown in Figure 3-1(iii), (iv) and (v). Figure 3-1(ii) shows a graph that is

not a substructure, because it is not a binary tree.

Constant Substructure: refers to a substructure that encodes from a constant.

Constant Tree: Refers to a pseudo-randomly generated PPCT whose substructures encode

constants. In the discussion at the beginning of this chapter, we called it a “second tree”. A

constant tree is initially contains a randomly generated, relatively small PPCT. The constant

tree may be expanded when encoding constants and its shape is fixed after the time of

constant encoding.

E-Constant: a constant chosen from a candidate program that has been encoded into a

36 Chapter 3 Constant Encoding

substructure of the constant tree.

Constant Graph: refers to a PPCT that encodes a constant. In the encoding process, we

will ensure that the constant tree contains at least one substructure that is isomorphic to the

constant graph of each E-constant.

3.2 Technology Overview

In chapter 2, we discussed the theory of dynamic graph watermarking, and we also

showed an example of how to watermark a simple Java program with DGW watermarking

techniques in Figure 2-1. From this example, we saw that the functionality of the original

program did not depend on the watermark code. This is a weak point of the DGW

watermarking algorithm. JSafeMark algorithm offers obfuscating and tamperproofing

technologies to protect DGW watermarks by creating dependencies from a candidate

program to a constant tree, which is hard to distinguish from the embedded DGW watermark

code. JSafeMark is intended to be as an additional step in DGW Watermarking Systems, to

protect watermarks against malicious attacks.

JSafeMark is designed for DGW watermarks with PPCT structures. We have already

briefly illustrated its operation in Section 1.4. The idea of the protection algorithm is to

convert some constants (called E-Constants), which are found inside a candidate program,

into graphic structures that have the same PPCT structure as the watermark graph to be

embedded. Graphs converted from constants are called constant graphs. For each constant

graph, we try to find a substructure in the constant tree that has the same shape as the

constant graph. We call this substructure a Constant Substructure. Then we generate a

function that can be used to retrieve the constant value out of the constant substructure inside

the constant tree. Thus, we can replace the constant with the constant retrieving function.

This procedure creates dependencies from the candidate program to the constant tree

structure.

What we expect from this algorithm is: if the attacker tries to modify the watermark code

without distinguishing the watermark tree and constant tree, the constant tree may be

modified or removed. Thus, the values of the encoded constants will not be retrieved

correctly, thereby affecting the execution of the watermarked program. This algorithm can be

illustrated in Figure 3-2.

3.2 Technology Overview 37

Figure 3-2 Constant encoding process

Figure 3-2 (i) shows a watermarked program. There is a watermark structure WM that

may be created from the watermark code at some stage of program runtime according to the

watermarking algorithm used. A constant integer 1 can be found inside the program. Figure

38 Chapter 3 Constant Encoding

3-2 (ii) shows that the constant 1 can be represented by a graph structure CG. Figure 3-2 (iii)

shows a constant tree CT is built and a constant substructure CSCG is found for the constant

graph CG inside CT. We can find CSCG in CT by using function CSCG = locateIn(CT). Figure

3-2 (iv) shows that the value of constant 1 is decoded from the constant substructure CSCG by

using decode(CSCG). Now we are ready to modify the source code. In Figure 3-2 (v), the

source code of Figure 3-2 (i) is modified to include the decoding process. We eliminate the

constant value 1 and replace it with a decoding function. We also add the code for building

the constant tree and locating the constant substructure in the constant tree. Finally, the

constant integer 1 inside the original program is replaced by the function decode(CSCG). Thus,

the proper running of the original program relays on the correctness of the constant tree.

By analyzing the process in Figure 3-2, we notice that the watermarked program relies on

the constant tree CT. The value of constant 1 will be converted from a substructure of

constant tree CT at the program’s runtime. Since the decoding function decode(CSCG) takes

the subset CSCG inside the constant tree CT as its parameter, and CT is built in the PPCT

structure, which is also used by the watermark structure, it is hard for attackers to know

which structure can be safely removed or modified.

A decoding function may have more parameters and look more complicated than the one

shown in Figure 3-2. This will bring further difficulties to that attackers while they trying to

analyze the program. In future work, we suggest using additional constant trees, and/or global

pointers into constant tree, to make it even more difficult for the attacker to discover the

watermark tree.

3.3 System Structure for JSafeMark Plug-in

Now we will have a look at the relationships between the watermarking techniques in the

DGW watermarking system and JSafeMark technology. Our suggested process flow is

illustrated in Figure 3-3. Please note, in this thesis, we use the phrase “program execution

time” and “runtime” interchangeably.

The order of the watermarking process and the constant encoding process is not important

in our implementation. However, if the constant encoding process is launched after the

watermarking process, some of the constants in the watermarking code may also be used in

constant encoding.

3.3 System Structure for JSafeMark Plug-in 39

Figure 3-3 Proposed watermark embedding and constant encoding process flow

Both the JavaWiz and Sandmark system discussed in Section 2.3.3 work with Java source

code, which means that these systems contain lexical analyzers, parsers and processes to

modify source code. Rather than duplicating these functions, we assume the DGW systems

will handle the entire source code handling process, including the constant analysis.

JSafeMark Technology can thus be focused focus on the constant encoding and decoding

method generation process (see the structure illustration in Figure 3-4; the import and export

information will be discussed in Section 4.3 when the JSafeMark encoder interface design is

introduced). This structure considers JSafeMark Technology to be a functional plug-in

module to the DGW system. It seems that the DGW watermarking system has to do more

work than before, but we can also see that the gain for such a scheme is much more than the

loss. Firstly, the integrity of the DGW system is maintained. All the processes dealing with

source code are handled by the DGW system. This makes the DGW system independent of

the JSafeMark Technology Module. Secondly, the JSafeMark Module is optional to the

DGW systems. This structure makes changing and updating JSafeMark encoder much easier,

when compared with any scheme that includes the JSafeMark Technology as a fixed part.

40 Chapter 3 Constant Encoding

Figure 3-4 System structure for the DGW system and the JSafeMark encoder

3.4 Constant Encoding Process

Now that we have discussed the integration of the JSafeMark Technology with the DGW

System, we can start to define the process of utilizing the JSafeMark algorithm in DGW

systems.

3.4.1 Work Flow

The encoding process can be described in three phases. The first phase is encoding

preparation, which is done in the DGW watermarking system. The second phase is the

constant encoding phase, which is done by the JSafeMark module, which creates constant

trees and decoding functions. The final phase is the modification of source code, which is

handled by the DGW system. Our focus in the thesis is on the constant encoding phase of this

process. The input to this phase is a list of E-constants identified by the preparation phase.

The preparation phase of the constant encoding must find the constants used by the

constant encoding phase.

3.4 Constant Encoding Process 41

The constant encoding phase consists of the steps WF1 through WF10, listed below.

Steps WF3 through WF10 are iterated, with all the E-constants are encoded and decoding

functions are defined for each E-constant.

WF1 The encoder accepts a list of E-constants.

WF2 The encoder generates a pseudorandom PPCT as an initial constant tree. This PPCT

should be big enough to have a good chance of encoding all E-constants. However,

it should not be so big as to affect the performance of the watermarked program.

The constant tree might be increased in size in step WF8.

WF3 For each constant, if the constant is too large to be encoded into a compact graph

structure, the encoder will turn it into a suitable format for encoding. For example,

the encoder will split a low precision double constant into two small integers.

WF4 The encoder generates code to invert the process of WF3, so that the original

constant can be obtained at program execution time.

WF5 An E-constant is encoded into graph structure(s) using the data structure of the

embedded watermark tree (that is, the PPCT structure).

WF6 The encoder generates code to invert the process of WF5, so that the value of the E-

constant can be decoded from the graph structure at program execution time.

WF7 The encoder searches for a constant substructure in the constant tree, of the same

shape as the constant graph (WF7-1). If the substructure is found, the encoder

records the location of the root of the constant structure (WF7-2), and start to

process the rest of the integers.

WF8 If a matching constant substructure is not found in step WF7, the encoder adds

nodes to the constant tree so that it contains a substructure of the required shape.

WF9 The encoder generates code to derive a reference, which we call InfoCS, to the root

of the constant substructure, given one (or more) references to the constant tree.

This code will be called at runtime so that the decoding function in WF6 can be

used.

WF10 The encoder generates code to call the functions generated in WF4, WF6 and

WF9, to form a final decoding function. The decoding function takes the constant

tree and the information for locating substructures in the constant tree as

parameters, and retrieves the complete E-constant value out of the constant

42 Chapter 3 Constant Encoding

substructure(s) in the constant tree. This function is slightly different from the

function decode(CSCG) shown in Figure 3-2, in which the constant substructure

was referenced directly in order to simplify the description. In practice, we do not

explicitly reference the constant substructure, to increase the stealthiness of our

encodings.

WF11 The encoder exports the decoding functions for all E-constants and for generating

the constant tree.

After the above process, the DGW system enters the final phase of constant encoding, in

which the source code is modified. In this phase, the DGW system modifies the source code

of the candidate program to include the source code of building the constant tree, and

replaces the constants by the decoding function calls. The DGW system must ensure that the

constant tree is built before any constant encoding function is called. Since the processes for

modifying source code are out of the scope of our thesis, we will not discuss these here.

The workflow for the second stage of our constant encoding process is shown in Figure

3-5. The workflow in Figure 3-5 ignores the preparation phase and the final phase, for these

are handled by the DGW system. At the bottom of the figure, in step WF11, the results of the

second stage of the constant encoding process are exported to the DGW system. The results

are the decoding functions, the constant tree (CT), and the information (Info) for finding each

constant substructure (CSi) in the constant tree.

For a much easier process in the step WF7 and WF8, if a suitable substructure cannot be

found in the constant tree, we do not need to modify the constant tree at all. Instead, the

encoder might inform the DGW system that this constant was not encoded. Alternatively, the

encoder might return to step WF3, and choose a different splitting of a difficult-to-encode

constant into smaller constants.(Note: small constants, such as 0, 1, or 2, can be encoded into

very small PPCTs, which will always be found, even in modestly-sized constant trees.)

Starting form the next section, we introduce a more detailed description for the above

steps. In Section 3.4.2, we give a few more details for the encoding preparation phase. The

constant encoding phase, steps WF1 through WF11, discussed in great detail in Sections

3.4.3, through 3.4.6. In Section 3.4.7, we consider the final phase or source code modification.

3.4 Constant Encoding Process 43

Figure 3-5 Control flow of constant encoding process

44 Chapter 3 Constant Encoding

3.4.2 Constant Analysis by the DGW System

This process is launched by the DGW System and is not in the focus of our research.

Briefly speaking, we expect the DGW System to perform the following tasks:

(1) Analyze a candidate program to find all the possible constants that can be evaluated

by a decoding function. (Note that some constants may be required before the

constant tree can be built).

(2) Decide which constants will be used for embedding (these are E-constants). A chosen

E-constant should be easy to convert into an integer in a restricted range, say 0 … 9 or

0 … 255. Some large integers and non-integer constants can be handled by the

methods described in Section 3.4.4.

(3) Record the locations of these constants in the source code, so that these can be

replaces by decoding functions in the third and final phases, of source code

modification.

3.4.3 Building Constant Tree

The first two steps in the second stage (See Figure 3-5) are inputting the E-constants in

WF1, and building the initial constant tree in WF2. The basic idea of building a constant tree

is simply to generate a structure that will look, to an attacker, very much like a watermark

tree. However, this tree will be used only to encode E-constants. We believe an attacker will

have great difficulty removing only the watermarking tree without also removing the constant

tree. The removal of both trees, without affecting program correctness, would require

extensive analysis on the part of the attacker.

The shape of a constant tree is variable during the constant encoding process, and is

unchanging during the program’s execution time.

The requirements for building a constant tree are:

(1) The constant tree for a watermarked program should use the same data structure as the

one the watermark tree using in that program. In JSafeMark, this structure is the

PPCT structure.

(2) The constant tree for a watermarked program should not be so big that it slows down

the execution of that program.

To build a constant tree, JSafeMark will follow the methods below:

3.4 Constant Encoding Process 45

(1) We choose an integer uniformly at random, in the range 0 … m, where m is a suitably

large integer (say, m = 1000) to be determined by practical considerations. If m is too

small, then we will not be able to encode a wide variety of constants in our constant

tree. If m is too large, then the runtime and space overhead will be excessive on our

candidate program after constant encoding.

(2) The initial constant tree CT is computed as the i-th PPCT in a suitable enumeration of

PPCTs. We will discuss enumerations in Section 3.4.4.

3.4.4 Building Constant Graph (CG)

Building a constant graph is a process that turns a constant into a dynamic graph structure.

In JSafeMark, this is a PPCT structure. This process includes the step WF3 and WF5 in the

workflow in Figure 3-5. The algorithm used to build constant graphs to encode an integer

constant may be different from the one used by the DGW system to encode a watermark

number. However, the algorithmic principles are the same. In both cases, we use what is

called a “codec” – a pair of encoding and decoding functions. An encoder is a function that

returns a graph, given an integer; the corresponding decoder returns the original integer given

this graph.

As we will see later in this Chapter, there are many possible codecs for building a certain

kind of constant graph structure. This choice is illustrated in Figure 3-6. In this Figure, we

notice that building watermark trees and building constant trees can share the same library of

codecs. The functionality of the codec library here is similar to the codecs defined in the

Sandmark System [Collberg 2002], except that our codec must have functions to generate the

source code for including the decoding method in the candidate program. In Sandmark and

other watermarking systems, the decoding process is part of the watermark recognizer, which

is generally not distributed with the source code. Besides showing the PPCT method library,

Figure 3-6 also shows some codec libraries for other graph structures, in order to give a more

complete view of the codecs used by the JSafeMark and the DGW system.

In this section, we will give some examples of how to convert a constant into a constant

graph. By introducing several examples, we hope the converting process will become more

clear to the reader, also, our examples will demonstrate some of the scope of the methods we

envisage for encoding constants.

A convenient way of encoding an integer into a graph, and vice versa, is enumeration. In

46 Chapter 3 Constant Encoding

an enumeration, each graph topology assigned an index [Goulden and Jackson 1983]. Using

enumerations for this purpose in the DGW watermark embedding is suggested by Collberg

and Thomborson in their paper [Collberg and Thomborson 1999]. Clearly, enumerations can

also be used to convert between integers, constants, and graphs. In The JSafeMark, all

constants must be converted into integer type before being converted into graphs.

Figure 3-6 Relationships between codecs used in watermarking and in constant encoding.

Thus, in the process of converting constants to graphs, we need to follow two steps. First,

define methods to convert all types of constants into integer. Second, define methods to turn

the integers into graphs. When converting (decoding) a graph back into a constant, we need

to reverse the above process of encoding.

Constant Types and Type Conversion:

Different languages have different sets of constant types. The target programming

language of our implementation is Java. Therefore, in this part, we will focus on the constant

type forms in Java. The algorithms we introduce in this thesis can be migrated to other

programming languages if needed, but the basic idea of types and typecast will be the same.

The Java language is a strongly typed language. Types for all the variables must be

specified at compile time. This allows more errors to be detected at compile time, and it

ensures the safe execution of programs [Lindholm and Yellin 1997].

3.4 Constant Encoding Process 47

Data types in the Java language can be divided into two categories: primitive types and

reference types [Gosling, Joy, et al. 2000], Figure 3-7 shows the type categories in detail. The

types used for constants in Java program can be primitive types or reference types. Primitive

types include float, double, byte, short, int, long, char, Boolean. Reference types can be an

array of primitive types, or some built-in Classes, such as String, Integer, Double, Long, and

so on.

Figure 3-7 Java types classification

Constant to Integer Conversion: (WF3 in the work flow)

There are many ways of converting each constant type into one or more integers. We

could form a conversion library, with several variants for each conversion, might give

additional security to the watermark program, by making it more difficult for an attacker to

mount a pattern matching attack. Normally a statement such as a switch statement is needed

for encoding a constant into an integer in different ways according to its type, but this is not

always the case. Sometimes we can pass a particular type of constant directly into a method

that particular for that type by using method overloading. For example,

public void constantToInt(double d) and

public void constantToInt(String s)

will directly accept different types of constants, this is what we did in our prototyping.

However, some constants with types other than int are hard to be converted, because of the

extra overhead. Thus, only int’s and small part of other types of constants can be selected by

48 Chapter 3 Constant Encoding

the DGW system. We now give a simple example on how to convert a positive low-precision

floating-point constant into an integer, for use when the constant is in the format of “x.y”,

where x and y are single digit integers. For example, when x = 3 and y = 2, the double

constant is “3.2”. We can use the following algorithm to turn such a low-precision positive

double into two single digit integers in Java:

 public static Vector constantToInt(double d){

 if (d<0) throw exception; // cannot handle negative values

int firstInt, secondInt;

 firstInt = (int)d;

 if (firstInt>9) {

throw exception; //integral part is greater than 9

}

 if ((""+d).length()>3){

throw exception; //two many digits

}

 secondInt = (int)((d-(int)d)*10);

 Vector result = new Vector();

 result.add(new Integer(firstInt));

 result.add(new Integer(secondInt);

 return result;

 }

Encoding Integer into Constant Graph (WF5 in the work flow)

Different graph structures need different encoders. For example, building PPCT structures,

and building Oriented-Tree structures require different algorithms. In this thesis, we consider

only PPCT structures

Below, we introduce three methods for encoding integers to PPCT graphs. We call these

methods the Catalan Leaf-Oriented Conversion (CLOC), the Bit-Oriented Conversion (BOC),

and the Catalan Unique Indexed Conversion (CUIC). We focus our attention on the first,

3.4 Constant Encoding Process 49

which is based on the Catalan number sequence [Dershowitz and Zaks 1980]. Part of the

source code of this implementation can be found in Appendix A.

(1) Catalan Leaf-Oriented Conversion (CLOC):

After the PPCT enumeration for DGW watermark embedding was pointed out by

Collberg and Thomborson [Collberg and Thomborson 1999], Palsberg et al. published

recursive formulas for encoding and decoding these formulas use Catalan Numbers, which

are named after the French mathematician Eugène Charles Catalan [Palsberg, Krishnaswamy,

et al. 2000]. Our conversion method is based on Palsberg’s formulas. However, during our

implementation, we noticed that there is a bug in one of Palsberg’s formulas. This will be

pointed out later in this section. The Sandmark System currently adopts the core part of our

implementation as its PPCT codec [Collberg and Townsend 2001].

The number of different PPCTs with n leaves can be computed by the following formula,

for the n-th Catalan Number,









−
−

=
1
221

n
n

n
)n(c

The sequence c(n), for n in the range 1 to 16, is [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,

16796, 58786, 208012, 742900, 2674440, 9694845].

In Figure 3-8, we draw all PPCTs of four or fewer leaves. This illustrates that c(1) = 1,

c(2) = 1, c(3) = 2, and c(4) = 5.

We use the method and notation of Palsberg’s paper [Palsberg, Krishnaswamy, et al.

2000], to decode graph structures into integers. See the definition of “decoding” on page 34.

 We denote the CLOC index of a PPCT T as int(T). We write T.left for the left sub-tree of

T, T.right for the right sub-tree of T, L for the number of leaves in T.left, and R for the

number of leaves in T.right. Then we have:

int(T) = 0, if | T | =1 (3.4.1)

int(T) = int(T.left) × c(R)

 + int(T.right)

 + min_int(L, R), if |T| > 1 (3.4.2)

50 Chapter 3 Constant Encoding

Figure 3-8 CLOC index of PPCTs with 1 to 4 leaves

Palsberg suggests the following formulas for computing min_int(L, R) recursively:

min_int(1, R) = 0 (3.4.3)

min_int(L, R) = min_int(L − 1, R + 1) + c(L − 1) × R

Through our experimentation, we discovered that Palsberg’s second formula is incorrect. A

correct formula should use c(L +1) × c(R − 1) instead of c(L −1) × R, giving the following

correct version of Palsberg’s second formula:

min_int(L, R) = min_int(L − 1, R + 1) + c(L − 1) × c(R+1) (3.4.4)

The function min_int(L,R) can be described as follow.:

We can eliminate the recursion in equation (3.4.4).

∑
<<

+−=
Li

))iR(c)iL(c()R,Lint(min_
1

 (3.4.5)

From expression (3.4.5) we can see that min_int(L, R) is equal to the total number of

PPCTs on L+R leaves with less than L leaves in their left subtree.

Because Catalan number c() is monotone increasing, we believe it is possible to prove

3.4 Constant Encoding Process 51

what we have observed in practice on individual cases, that the name given by Palsberg to

min_int() is mnemonic:

{ })Tint()R,Lint(min_ min
)R,L(T T∈

= .

where T(L, R) is the set of all PPCTs with L leaves in the left subtree and R leaves in the right

subtree.

After some analysis of equations (3.4.1) through (3.4.4), we wrote the following pseudo

code for encoding a positive integer i in the CLOC enumeration of n-leaf PPCTs. We

implemented and tested this pseudo code in our createTree() method in Appendix A, see page

119.

Node encode(int nodeNo, int i){

 int L, R;

 if (i >= c(n)) return null; //the integer is too big to encode in a

//n leaf PPCT, so we return an error signal

 if(i == 0 && nodeNo = 1) build and return a PPCT tree T with one leaf and

 CLOC index 0;

 else if(i == 0 && nodeNo = 2) build and return a PPCT with two leaf and

CLOC index 0;

 else if (i<3) return null; //only i == 0 can be encoded in 1- and 2-leaf

trees, see Figure 3-8

 L = 1; while(c(L) <= i) L++;

R = n – L;

// L-1 leaves in the left subtree, and R+1 leaves in the right subtree.

 Node left_subtree, right_subtree;

left_subtree = encode((L-1, i - min_int(L – 1 , R + 1)) / c(R + 1));

 right_subtree = encode((R+1, i - min_int(L – 1 , R + 1)) % c(R + 1));

 return a PPCT whose subtrees are left_subtree and right_subtree;

}

52 Chapter 3 Constant Encoding

Please note by using this algorithm, an integer may be represented by more than one

structure. Figure 3-9 shows all the PPCTs with up to four leaves that can be used to represent

the integer 0.

Figure 3-9 Four PPCTs that represent the integer 0

(2) Bit-Oriented Conversion (BOC):
The idea of this conversion is based on the binary tree feature of PPCT. Please refer to

Figure 3-10(a). If we represent a single-leaf left subtree by the string “0”, and a single-leaf

right subtree by the string “1”, we concatenate the string “1” for right subtree and the string

“0” from the left subtree, then the two-leaf PPCT of Figure 3-10(a) can be represented by

string “10”.

Figure 3-10 Structure for Bit-Oriented Conversion

We can extend this method to encode more complicated binary structures. For example

3.4 Constant Encoding Process 53

the three leaf tree of Figure 3-10(b). Its left-subtree is isomorphic to the tree in Figure 3-10(a),

so it is decoded as the string “10”, with prefix “0” to indicate it is a left subtree (we use prefix

“1” to indicate a right subtree when needed). The right subtree has a single leaf, so it is

decoded as the string “1”. Concatenating the string “1” from the right subtree with the string

“010” from the left subtree, we obtain the string “1010”, the complete decoding of the tree of

Figure 3-10(b).

After a PPCT structure is converted into string representation, we need to represent the

string by an integer.

For example, the string representation of the structure in Figure 3-10(a) is “10”. We need

the integer 2, whose binary format is “10” (ignore the preceding 0’s), to represent the

structure.

The pseudo code for decoding general PPCTs into bit-streams is shown as follows:

String decodeBOCInString(Node T){

 if(T is leaf) return “0”;

 String left_str, right_str;

 if(T.left is a leaf)

left_str = “0”;

 else left_str = “0” + decodeBOCInString(T.left);

 if (T.right is a leaf)

right_str = “1”;

 else right_str = “1”+decodeBOCInString(T.right);

 return right_str + left_str; //reversed order

}

The above algorithm can convert a structure into a string representation. By using an

algorithm such as the following code, we can convert the string into a 32-bit integer

representation.

public static int convertBOCStringToInt(String s){

 if (s.length()>7) {

54 Chapter 3 Constant Encoding

System.out.println("String with incorrect length."); return -1;

 //test if the string is oversized. If yes, return -1 to indicate an error.

}

 int result = 0; //result integer to be returned.

 while(!s.equals("")){ //while the string is not empty

 String ss = s.substring(0,1); //take the first character.

 if (result==0 && ss.equals("0")) continue;

 //remove the preceding 0’s

 if (ss.equals("1")) {result*=2; result+=1;}

 else if (ss.equals("0")) result*=2;

 else {System.out.println("String format error");return -1;}

 //string s cannot contain characters other than 1 and 0.

 s=s.substring(1,s.length()); // remove the first character

 }

 return result;

}

Until now, we have given the algorithm for the transition, trying to build a codec to

decode a PPCT structure into an integer using BOC. Now we will give an method to encode

an positive 32-bit integer into a PPCT structure.

We convert an integer into a string. For example, the binary format of the integer 10 is

“0000,1010” (ignore the first 24 bit 0’s). We convert it into a string and remove the preceding

0’s, and get the string “1010”. When doing the encoding, we first create a new stack s, and

define a structure T as a new node, used to hold the result structure. Please refer to in Figure

3-11(a). We start working on the string from the left side. We do a push operation for

character “1”, and a pop operation for character “0”. For the first character “1” in string

“1010”, we push the structure in T into the stack. We call the structure in the stack T’, and

replace T with a new node (Figure 3-11(b)). For the second character “0” in string “1010”, we

pop the structure T’ out of the stack, and construct a new structure with T’ and T as its left

and right subtree. Then we rename the new structure to be T (Figure 3-11(c)). For the third

3.4 Constant Encoding Process 55

character “1”, we push the structure of T into the stack, and create a new node for T. We still

call the structure in stack T’ (Figure 3-11(d). For the last character “0”, we pop T’ out of the

stack and construct a new structure with T’ and T as its left and right subtree. We rename the

new structure to be T (Figure 3-11(e). Since the whole string has been processed, we get the

final structure T.

Figure 3-11 Integer to graph encoding using BOC

The pseudo code for encoding an integer into a binary structure by using BOC is listed

below.

Node IntegerToGraph(int n){

56 Chapter 3 Constant Encoding

 Node T = new Node(); //result tree, initially a single node.

 int m = n; //local copy of n

 int b; //least significant bit of n;

 Stack s = new Stack(); //initially empty

 while(m!=0){

 b = m&1;

 m = m / 2;

 if (b){

 if (s.empty()) throw Exception;

 Node temp = new node();

 temp.left = (Node)s.pop(); //use popped structure

//as left subtree

 temp.right = T; //using the existing structure

//as right subtree

 T = temp; //put the constructed structure into T

 }else{

 s. push(T);

 T = new Node();

 }

 }

 if (!s.empty()) throw Exception;

 return T;

}

Please note that not all integers can be encoded into binary structures and for ease on

understanding, we did not remove the first and the last characters in the string, which are

redundant and always are “1” and “0”.

(3) Catalan Unique Indexed Conversion (CUIC):
In the discussion in Catalan Leaf-Oriented Conversion, we saw that an integer might be

represented by different PPCT structures with varying numbers of leaves. We will now show

an efficient encoding that eliminates this duplication.

We write CUIC(T) to dente the CUIC index of a PPCT tree T, and using int(T) (recall that

we used it when discussing CLOC in page 49) to be the CLOC index of the tree T. Then the

indexing function for CUIC algorithm can be defined as follows.

3.4 Constant Encoding Process 57

∑
−

=

+=
1

1

)T(LeafNum

n
)n(c)Tint()T(CUIC

This Conversion can be illustrated by Figure 3-12.

Figure 3-12 The CUIC decoding function CUIC(T) for all PPCTs with 1 to 4 leaves

3.4.5 Searching for Constant Substructures in Dynamic structures

The idea of the constant encoding algorithm is to encode constants into a constant tree,

and to retrieve them during the execution of the program from a constant tree by using

corresponding decoding functions. In the previous section, we introduced several methods for

converting a constant into a constant graph. We now discuss step WF7 and WF8 of the

workflow in Section 3.4.1, the processes of finding a constant substructure with a particular

58 Chapter 3 Constant Encoding

shape inside a constant tree.

Our current method is to conduct an exhaustive search to look for a substructure with a

particular shape in a constant tree. Although an exhaustive search may be inefficient, it is not

a serious drawback to our algorithm because it happens only in the constant encoding process

but not during program runtime. Also we use only small Constant Trees, so that an

exhaustive search is not prohibitively expensive during the constant encoding process. If a

substructure matching the constant graph can be found in the existing constant tree, the

workflow of Figure 3-5 will go directly from WF7 to WF9. However, we cannot guarantee

that the search will be successful.

If the constant encoder is unable to find a substructure inside the constant tree CT that

matches the constant graph for CGi, for an integer i, the method of Figure 3-5 is to follow

approach A1 below.

(A1) Add additional nodes to the current constant tree CT, so that a substructure CSi,

which matches CGi appears in the modified constant tree CT.

This is what we used in our prototyping. However, we are aware of other ways solve this

problem, such as the two approaches listed below.

(A2) Find a decomposition into integers (i1, i2, …) that can be encoded in CT, such that

f(i1, i2, …) = i, where f() is a suitable composition function. As a very simple example,

we consider 2-way additive compositions of the form i =i1 + i, in which case the

composition function f(i1, i2) = i1 + i2. A slightly more complex composition function

fd() extracts the decimal digits of i

 




=
≠

=
00
01010

iif,
iif),)/i(f,modi(econcatenat

)i(f d
d

where the corresponding composition function fd
-1(), required to decode the

decomposed constant, is)i,i(fi)i,i,i(f dd KK 32
1

1321
1 −− +=

(A3) Apply a different encoding algorithm A’, for example, CUIC() instead of INT(), to

convert the integer i into a different constant graph CGi’, where CGi’ matches a

substructure of CT.

An algorithm for our second approach A2 is relatively complex, but it has some

interesting benefits, so we introduce it first. Here is some pseudo code to implement a simple

(2-way additive) decomposition algorithm P2 for approach A2.

3.4 Constant Encoding Process 59

// Algorithm P2 for Approach A2, searching a substructure in CT for integer i,

//when f(i1, i2) = i1 + i2 is used as the combining function, and i = i1 + i2

Vector search(int i){

 //Return a Vector of two substructures = (CSj, CSk),

//such that int(CSj) + int(CSk) =i

int j;

for(j=1; j<i/2; j++){

 Substructure CSj, CSk;

 Vector v = new Vector();

 CSj = exhaustiveSearch(j);

//function exhaustiveSearch(j) searches exhaustively within CT for

//a substructure CSj, such that int(CSj) = j, (this is actually the function

//of step WF7 in Figure 3-5), and return the substructure that has been found.

// if search was unsuccessful, return null.

 if (CSj != null) v.addElement(CSj);

 else continue;

 CSk =exhaustiveSearch(i-j);

 if (CSk != null) v.addElement(CSk);

 else continue;

 return v;

}

return null; //search() was unsuccessful

}

By slightly changing the algorithm P2, we can use other combining functions such as

60 Chapter 3 Constant Encoding

kj)k,j(f ×= , so that search(i) looks for CSj and CSk, such that int(CSj) × int(CSk) = i.

We now develop a specific algorithm E1 for approach A1 to step WF8 of Figure 3-5.

Approach A1 also uses search() for an exhaustive search. This step is entered only if step

WF7, implemented as exhaustiveSearch(), fails to find a matching substructure in CT. Our

algorithm El randomly chooses a node in the constant tree, and attaches a subtree isomorphic

to CGi at this point.

Approach E1 clearly guarantees that the modified CT will have a sub-graph encoding.

However, it has an obvious drawback. If too many large constants are encoded, the modified

CT becomes so large that it will impose unacceptable runtime and space costs on the

watermarked code. To prevent this drawback, we should not try to encode large constants. In

our prototype implementation, for simplicity, we have only used algorithm E1 to encode

integers. We did not test any mechanisms for avoiding large integers.

An ideal encoder would have many searching algorithms. If one algorithm fails, it will try

another, unless it is running short of computational time or resources. Even if all the

algorithms fail, our JSafeMark system will inform the DGW system that this integer is not

encoded. This kind of process flow will end up with a variety of decoding functions being

generated, which is arguably good, from the point of view of stealth – the attacker will have

additional difficulty recognizing our constant – decoding functions.

3.4.6 Generating the Decoding Method

So far, we have introduced methods for building constant tree (WF2 in Figure 3-5) and

constant graphs (WF3, WF5 in Figure 3-5). We have also introduced several ways to find

substructures for a given constant inside a constant tree (WF7 in Figure 3-5), and to modify

the constant tree so that it contains appropriate substructures (WF8 in Figure 3-5). During this

discussion, we have ignored steps WF4, WF6, WF9 and WF10, which are used to generate

decoding functions source code for the corresponding steps. However, some of the decoding

algorithms have already been introduced in our discussion of the encoding functions. In this

section, we will consider the problem of generating source code for the decoding functions to

be inserted into the watermarked programs, for the retrieval of constants at runtime.

Following the workflow we introduced in Section 3.4.1, we identify the following steps in

generating this source code.

(WF4) Generate source code for converting integer(s) into the value of a constant.

3.4 Constant Encoding Process 61

(WF6) Generate source code for decoding a substructure into an integer.

(WF9) Generate source code for referencing the substructure at runtime. This can be done

in two steps.

(WF9-a) Generate a descriptor for a substructure CS, which includes the

information about the root of the substructure CS in the constant tree

and information on the boundary of this substructure.

(WF9-b) Generate source code for the decoding function based on the descriptor.

(WF10) Combine the above source code for all of the above.

We now consider each of these steps in detail.

1) Generate source code for converting integer(s) into the value of a constant. (WF4)

If the constant is an integer that can be directly encoded into a graph structure, in which

case the step WF3 in Figure 3-5 was not performed, then this step will not be performed as

well. However, when the constant has been processed before encoding in WF3, such as being

split into two integers as discussed in Section 3.4.4 in page 48, this step is needed to reverse

the process in WF3.

This step is relatively simple. However, each type of constant to integer conversion will

need different process to reverse it. For example, the pseudo code for the process the

algorithm introduced in Section 3.4.4, page 48 can be written as follows.

public double convertTwoDigitsToDouble(int firstInt, int secondInt){

 if ((firstInt < 0 || firstInt>9)||(secondInt<0 || secondInt >9)) throw exception;

 return firstInt + secondInt * 0.1;

}

2) Generate source code for decoding a substructure into an integer. (WF6)

The method declaration for decoding integer i out of a structure CS can be as follows:

public int decodingMethod (Node CS){}

The source code for different decoding functions is different. We must provide the

encoder with the source code for each decoding function it uses, so that it can issue

appropriate code in step WF6.

62 Chapter 3 Constant Encoding

The source code for decoding an integer from a PPCT tree using CLUC encoding is listed

in Appendix C, and the one using CLOC conversion is shown in Appendix A.

3) Generate a descriptor for a substructure CSi, which includes the information about the

root of the substructure CSi in the constant tree and information on the boundary of this

substructure. (WF9-a)

Suppose there is a constant tree CT rooted at RCT (see Figure 3-13(1)). At runtime, the

watermarked program needs to retrieve an integer value i out of a constant substructure CSi

rooted at node RCS in CT (see Figure 3-13(2)). The descriptor of CSi must contain the

following information.

a) The position of the root node RCS in the constant tree.

b) The boundary of CS, because the substructure CSi may be only part of the subtree

CS’ rooted at RCS. (See Figure 3-13(3))

Now we discuss a specific way to find RCS at runtime. We used this method in our

prototyping.

Figure 3-13 Referencing a substructure at runtime

The root node position of CS is defined by three parameters. 1. a node reference to the

root of the constant tree, 2. An integer depth, indicating how far RCS is from the root of the

constant tree RCT, and 3. An integer path, whose binary representation indicates the directions

taken, when navigating the tree from RCT to RCS. See Figure 3-14.

As indicated in Figure 3-14, integer path defines the path from the root of the constant

tree to the root of the substructure to be retrieved. For example, if path = 5, the least

significant eight bits of this integer are 00000101. We interpret this as a bit-string, starting

from its least-significant bit. Since PPCT structure is a binary tree, each non-leaf node has

two children. A bit-value of 0 indicates that the path goes through the left child; a bit-balue of

1 indicates that the path goes to the right child. Starting from the least significant bit of a bit

stream, the bit stream 0101 defines the path from root node going right – left – right – left.

3.4 Constant Encoding Process 63

Figure 3-14 Finding the root of substructure by path and depth

Integer depth defines the length of the path. That is, how many steps to go. For example,

if depth = 4, only the least-significant 4 bits of in the integer will be used to define the path

from RCT to RCS.

The second part of step WF9 is to define the boundary of a substructure.

In our prototyping, we use a masking technique, in which an PPCT structure mask is used.

The substructure CSi is the intersection of the shapes of the mask tree and the subtree rooted

at RCS. See Figure 3-15 for an explanation.

Figure 3-15 Masking technology illustration

64 Chapter 3 Constant Encoding

The structure mask here is obtained in the following way. Suppose an integer i is

converted into a constant graph CG, and a substructure CS inside the constant tree CT has

been found that matches the shape of CG. The pseudo code for generating the mask structure

can be as follows:

public Node getMask(Node CT, Node CG, Node CS){

 Node mask = local copy of CG; //construct an initial mask tree that is the same as CG

 for each leaf node leafn in mask {

 find the corresponding node leafn’ in its matching substructure CS in CT;

 if leafn’ is a leaf node of CT { // leafn’ may not be a leaf node in CT

 add two children to leafn // expand mask

 }

}

return mask;

}

After the above process, the information for referencing the substructure in a CT is

obtained. Thus, the descriptor of CS includes the following information:

Integer depth;

Integer path;

PPCT structure mask (shown as a reference to the origin of the PPCT structure).

4) Generate source code for the decoding function based on the descriptor. (WF9-b)

From step WF9-a, we have the information needed to reference the substructure CS at

runtime. We also need to generate source code so that the watermarked program can

reference to the substructure at runtime.

According to the information in the descriptor, which includes two integers depth, path

and a PPCT structure mask, the constant substructure CS can be obtained by the following

method call:

Node CS = getSubstructure(RCT, path, depth, mask);

To generate the source code for the above method, we first need to generate the source

3.4 Constant Encoding Process 65

code for getting the root of the substructure RCS from RCT, path, and depth. This source code

can be as follows:

public Node getSubstructureRoot(Node RCT, int path, int depth){

 Node result = RCT;

 int temp = path; // create a local copy of integer path

 for(int i = 0; i<depth; i++){

 int least = temp&1; //get the least significant bit

 if (least == 1) result = result.right; //goto the right child

 else result = result.left; //goto the left child

 temp = temp>>1; //shift right

 }

 return result;

}

Now we have the root of the substructure CS. Next, we need to generate the source code

for getting the substructure CS according to the boundary information stored in the mask tree.

The following is the pseudo code for getCS() method, which return a standalone PPCT

structure CS (called tempCS) rather than only find the original CS in CT, so that tempCS can

be used for integer retrieval.

public Node getCS(Node RCS, Node mask){

Node tempCS = copy of mask; // create a local copy of mask to be the

 // initial structure of CS

 Node current = tempCS.right; //create a reference to the root of tempCS.

// because node tempCS is the

//origin of the PPCT.

checkNode(RCS, current); // is a recursive method, explained below

return tempCS; // in chekNode(), tempCS is modified to be

//isomorphic to the substructure CS in CT

66 Chapter 3 Constant Encoding

}

The above method, checkNode(), recursively goes through all the nodes in the tempCS

structure. It compares each node in the tempCS tree with the corresponding node in the CS

substructure. By analyzing the structures in Figure 3-15(4) in page 63, we understand that, for

a pair of corresponding nodes in mask tree and CS, if any of these two nodes is leaf, then that

node is the leaf of the CS substructure. According to this analysis, we write the checkNode()

method as follows. For ease of understanding, we write it in pseudo code format.

public void checkNode(Node RCS, Node current)

 if(RCS is NOT leaf && current is NOT leaf){

 checkNode(RCS.right, current.right); //recursively check the right child

 checkNode(RCS.left, current.left); //recursively check the left child

}else if (RCS is leaf){

 cut off the child of current //when RCS is leaf, current node should

 //be corresponding to the leaf of the CS.

}

// when current is leaf, do not need to do anything

}

After the above analysis, the getSubstructure(RCT, path, depth, mask) can be generated as

follows.

public Node getSubstructure(Node RCT, int path, int depth, Node mask){

 Node RCS = getSubstructureRoot(RCT.right, path, depth);

 return getCS (RCS, mask);

}

5) putting source code together (WF10)

We need a final step to put all the generated source codes together, so as to form a series

of method calls that can be inserted into the watermarked program.

A method call, which can be used to replace a constant, can be written as follows:

int const = getConstant(RCT, path1, depth1, mask1, path2, depth2, mask2);

3.4 Constant Encoding Process 67

And the decoding method source code can be as follows:

public double getConstant(Node RCT, int path1, int depth1, Node mask1, int path2, int

depth2, Node mask2){

 int firstInt, secondInt;

 Node CS1 = getSubstructure(RCT, path1, depth1, mask1);

 Node CS2 = getSubstructure(RCT, path2, depth2, mask2);

firstInt = decodeMethod(CS1);

secondInt = decodeMethod(CS2);

return convertTwoDigitsToDouble(firstInt, secondInt);

}

public Node getSubstructure(Node RCT, int path, int depth, Node mask){

 Node RCS = getSubstructureRoot(RCT, path, depth);

 return getCS(RCS,, mask);

}

public Node getSubstructureRoot(Node R, int path, int depth){/*Please see page 65 */}

public Node getCS(Node RCS, Node mask){/*Please see page 65*/}

public int decodeMethod(Node CS){/*Discussed in page 61*/}

public double convertTwoDigitsToDouble(int firstInt, int secondInt){

/*Please see page 61*/

}

All the processes described in this section are illustrated in Section 7.2 with a sample

encoding of the double constant 1.4, and the source code generated in the testing is listed in

Appendix C. Please note, in Section 7.2, the PPCT structure, which our JSafeMark system

exports to the DGW system, is in the format of a two dimensional array. This is the

consideration of independency, and the JSafeMark expects the DGW system to turn the array

representation of a PPCT into a tree structure. This will be further discussed in Section 4.3.

68 Chapter 3 Constant Encoding

3.4.7 Process of Modifying Source Code by the DGW System

In the preceding sections, we have discussed steps WF1 through WF10 of Figure 3-5. We

now discuss the final step, WF11, in which JSafeMark outputs the following information to

the DGW system.

(1) The constant tree structure.

(2) The source code for decoding each constant from the constant tree. This code includes

a method call, which can be used to replace a constant, and the source code for

decoding method as described in the previous section.

In the third phase of constant encoding, described in Section 3.4.1 in page 40, the DGW

system modifies the sources code of the program and makes sure that constant tree is built

before any decoding function is called This phase is outside the scope of our research.

3.5 Discussion

Now that we have illustrated the whole process of constant encoding, we are able to

discuss some important aspects of this algorithm. These discussions will cover the feasibility

of applying this algorithm, and some other aspects.

3.5.1 Possibility of finding constants in Programs

Since our algorithm protects watermark by encoding constants, the applicability of our

algorithm heavily depends on the likelihood of finding constants in a program. Thus we need

to find out how many constants can be found in a typical program.

The testing is accomplished by analyzing constant accessing operations in Java programs

class files.

In Java, the constant pool is used for storing several kinds of constants for a class or an

interface. Numeric constants and constant references to objects are accessed via the constant

pool, for example, constants of type int, long, float, double and references to an instance of a

String object. The bytecode operations that access constant pool include ldc, ldc_w, ldc2_w,

bipush, sipush, iconst_<i>, fconst_<f>, and dconst_<d>. Thus, by analyzing the constant pool

accessing operations, we can roughly know the constants contained in a class file.

We choose some software to analyze the frequency of constant accesses. The programs

we tested, and our results, are displayed in Table 3-1. These programs, which were randomly

3.5 Discussion 69

chosen by Palsberg and recorded in his paper [Palsberg, Krishnaswamy, et al. 2000], were

used to test the JavaWiz system. In all cases, we found thousands of constant accesses,

strongly suggesting that our constant encoding processes will have plenty of opportunities to

protect a watermarked program.

Program Name Number of Constant References

Javac 7400

Java 4201

javadoc 772

javacup 6192

javawiz/JavaWiz2 8411

javawiz/Hipi 5495

JTB 9926

Table 3-1 constant loading operations found in Java class files

Some obfuscation techniques introduce additional constants (especially integers) in the

transformed program. These integers also can be used in constant encoding, and our encoding

process may increase the difficulty of deobfuscation, by obscuring the values of these

obfuscating constants. However, we note that if an attacker can de-obfuscate the program,

these additional constants are no longer essential for program correctness.

3.5.2 Possibility of finding integers in a PPCT

In order to find out how large a PPCT structure should be so that it can be used as a

constant tree, and what range of integers is suitable for encoding, we performed the practical

analysis described in this section.

Before describing our analysis, we need to define a concept to describe the possibility of

finding an integer in a PPCT structure.

Given a collection of constant trees T, each equally likely to be chosen as a constant tree

CT, and given a fixed encoding function such as CUIC() decoding function defined in 56, we

define f(i) as the probability of the existence of at least one constant substructure CSi

70 Chapter 3 Constant Encoding

encoding an integer i, in a randomly chosen CT ∈ T as follows.

[]CS)i(CUIC:CTofresubstructuaCSobPr)i(f =∃= , where CT is chosen

uniformly at random from T.

Because f(i) is a probability, %)i(f% 1000 ≤≤ .

We are interested in knowing the likelihood of being able to encode a constant integer i in

a substructure that appears in a randomly chosen constant graph with a fixed number m of

leaves. Thus, we introduce another parameter to our probability function.

We write T(m) for the set of an PPCT with exactly m leaves.

We write)i(
)m(f to be the value of f(i), when T = T(m).

We conduct the following Monte Carlo experiment to estimate)i(
)m(f for small values of

m and i.

Our experiment consists of choosing an n-vector of samples)m(
iT
v

 from T(m) with uniform

probability:

 ><=)m()m()m(T...,T,T n21
(m)T
v

Then we form our estimate)i(
)m(f̂ for)i(

)m(f by computing

 n

]CS)i(CUIC:TofresubstructuaCS[
)i(f̂ nj

)m(
j

)m(
∑
≤≤

=∃
≡ 1

δ

where the delta function δ() defined in the usual manner as

 { trueisxif,
otherwise,)x(1

0=δ

We examined PPCT structures with m ≤ 300 leaves, and i in the range from 0 to 1000.

We formed our n-vector (m)T
r

 of PPCTs by choosing n random numbers (r1, r2, … rn)

uniformly in the range from 0 to c(m) – 1, where c() is the Catalan function defined in

Section 3.4.4 in page 49. We encoded this number into PPCTs using the Catalan Leaf

Oriented Conversion decoder CLOC-1(rj) to obtain Tj
(m)

The specific values of m we tested were m = 25, 50, 150, 250. These trees have 50 nodes

3.5 Discussion 71

(in the case that m = 25) up to 500 nodes (in the case that m = 250). In each case we formed

our estimate)i(
)m(f̂ on the basis of n = 100randomly-chosen trees.

In Appendix B, we tabulate our estimate)i(
)m(f̂ for selected i in the range from 0 to 1000.

The values of m are 25, 50, 150, 250. To conserve space, the table of Appendix B covers all i

in the range o to 1000, but only i = 0 mode 5 for i between 101 and 200; only i = 0 mode 10

for i between 201 and 500; an only i = 0 mode 50 for i between 501 and 1000. In Appendix B

and in the following figures, we report our estimated probabilities)i(
)m(f̂ as percentages

100*)i(
)m(f̂ .

Please have a look at Figure 3-16. This is our estimates probability of encoding integers,

ranging from 0 to 256, in the random 50-node PPCTs (such trees have m = 25 leaves). We

conclude that all integers smaller than 8 are almost certain to be found in a randomly-chose

50-node tree. Integers in the range 9 to 22 have about a 95% possibility of appearing.

Figure 3-17 shows our result for 100 node trees (m = 50). In this case, integers ranging

from 0 to 22 have a probability of about 100% of appearing. Integers in the range of 23 to 66

have a probability of at least 90% of appearing. Integers up to 196 have probabilities above

70%

Figure 3-18 shows our result for 200 node trees (m = 100). Here we see that integers in

the range of 0 to 61, have a probability of about 100% of appearing.

Figure 3-19 shows that in a 300 node trees (m = 150). Integers, in the range of 0 to 180,

have a probability of nearly 100% of appearing.

Finally, in Figure 3-20, in the 500 node trees (m = 250), we find that all of the integers

from 0 to 200 have a probability of about 100% of appearing. Referring to appendix B, we

see that most of the integers from 1 to 600 have a 95% or greater probability of appearing in

trees with m = 250 leaves.

After the above analysis, we believe a small PPCT with 100 nodes, is large enough to

encode integers less than 60, with better that 90% probability.

A bigger tree with 500 nodes, can encode integers from 0 to 600, with probability ≥ 95%.

Different encoding algorithms may give different results for the probabilities. In our

Monte Carlo experiments, we used the CUIC decoding to find an integer in a constant tree.

However, according to discussion in Section 3.4.4, if we use the Catalan Leaf Oriented

72 Chapter 3 Constant Encoding

Conversion (CLOC), we will have much greater chance of finding small integers. This is

because the CLOC encoding represents an integer by more than one PPCT structure. (Please

see Figure 3-9 in page 52 for a reference). By contrast, the CUIC encoding eliminates the

duplication of the CLOC encoding. A drawback of using CLOC encoding is that the chance

of finding larger integers is decreased.

Estimated Probability f(i)
(50 nodes/25 leaves, 100 runs)

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Integer i

E
st

im
at

ed
 P

ro
ba

bi
lit

y
 f(

)

Figure 3-16 Estimated Probability (Expressed as a percentage) that an integer i appears in a 50 node (25
leaf) tree.

Estimated Probability f(i)
(100 nodes/50 leaves, 100 runs)

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Integer i

E
st

im
at

ed
 P

ro
ba

bi
lit

y
 f(

)

Figure 3-17 Estimated Probability (Expressed as a percentage) that an integer i appears in a 100 node (50
leaf) tree.

3.5 Discussion 73

Estimated Probability f(i)
(200 nodes/10 leaves, 100 runs)

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Integer i

E
st

im
at

ed
 P

ro
ba

bi
lit

y
 f(

)

Figure 3-18 Estimated Probability (Expressed as a percentage) that an integer i appears in a 200 node
(100 leaf) tree.

Estimated Probability f(i)
(300 nodes/150 leaves, 100 runs)

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Integer i

E
st

im
at

ed
 P

ro
ba

bi
lit

y
 f(

)

Figure 3-19 Estimated Probability (Expressed as a percentage) that an integer i appears in a 300 node
(150 leaf) tree.

Estimated Probability f(i)
(500 nodes/250 leaves, 100 runs)

0

20

40

60

80

100

120

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254

Integer i

E
st

im
at

ed
 P

ro
ba

bi
lit

y
 f(

)

Figure 3-20 Estimated Probability (Expressed as a percentage) that an integer i appears in a 500 node
(250 leaf) tree.

74 Chapter 3 Constant Encoding

3.6 Summary

In this chapter, we have discussed the constant encoding algorithm. We discussed the

process of encoding in detail together with some algorithms we used in prototyping. In

Section 3.5.1, we presented experimental results indicating that typical Java classes load

many constants. In Section 3.5.2 of this chapter, we presented experimental results

demonstrating that small integers are very likely to be found in a randomly chosen, relatively

small PPCT. In the following chapters, we will focus on the prototyping of the algorithms we

discussed in this chapter.

Chapter 4

Overview of Our Prototyping

4.1 Introduction

Our JSafeMark encoder is the prototyping of our constant encoding algorithm. It is

designed and implemented based on the issues discussed in the previous chapter. In this

chapter, we will first give a brief introduction on our prototyping, showing the system

structure of our prototyped system, which includes three parts: a JSafeMark tester for

simulating a DGW system, a PPCT Codec library, and most importantly, our JSafeMark

encoder, then we will introduce how the information is exchanged between the different parts

of the system. In the next chapter, we will briefly introduce the design of the JSafeMark tester

and the codec library. After that, in Chapter 6, we will concentrate on the design and

implementation of our JSafeMark encoder.

4.2 System Structure

As we discussed in Section 3.3, the JSafeMark encoder works as a plug in module for a

DGW watermark system. When designing the encoder, we try to make it work independently,

which means the watermark functionality of the DGW system does not rely on the JSafeMark

encoder and the encoder does not rely on the DGW system as well, so that it can be an

76 Chapter 4 Overview of Our Prototyping

optional part of a DGW system. Thus, we adopt the encapsulation concept in the component-

based software engineering [Brown 2000] and make the JSafeMark encoder a self-contained

unit with its own functionality. It works as an optional part of a DGW system, to add extra

obfuscating and tamperproofing functions, so as to protect the watermark structures generated

by the DGW system. Meanwhile, we also adopt the interface concept in the component-based

design for exchanging information among different part of our system.

The structure of a normal component includes three aspects: Export Interface, Component

Body, and Import Interface [Mann and Borusan 2001]. The structure of our JSafeMark

encoder is based on this scheme. It offers export and import interfaces for information

exchanging. The JSafeMark encoder is connected to the DGW watermarking system through

these interfaces and offers a constant encoding service.

The Import Interface defines the service the encoder requires from its external

environment; for example, how the external DGW watermarking system can pass a series of

constants into the JSafeMark encoder.

The Export Interface defines the service that the encoder offers to its external

environment. These services include exporting the structure of a constant tree and a series of

decoding functions.

The Encoder Body (shown as “JSafeMark” in Figure 4-1) is the core section of the

JSafeMark encoder. It contains all the control and encoding/decoding logic for encoding the

constants, and manages the interaction between the encoder and its external world.

The JSafeMark encoder structure, together with the whole constant encoding system

structure, is expected as in Figure 4-1.

Figure 4-1 shows that in an expected implementation, the entire watermarking system,

including constant encoding, has split into three parts. The DGW system and JSafeMark

works individually. The third part is called Codec Library, which is a collection of codecs,

offering the functionality of integer encoding and graph structure decoding.

In fact, the services, provided by codec library, for the JSafeMark and the DGW system

are slightly different, because the encoder requires source code of encoding and decoding

functions, which is not needed by the DGW system. The different services for the JSafeMark

and the DGW system are obtained by calling different services in the interface of the codec

library. By building the codec library as a separate part, the implementation can be

simplified because we do not need to duplicate a codec library in the JSafeMark and the

4.2 System Structure 77

DGW system.

Figure 4-1 Overview of an expected system structure for the JSafeMark encoder.

So far we have discussed the expected system structure of a JSafeMark encoder and the

DGW system, now we show how this is implemented in our prototyping.

In our prototyping, the JSafeMark encoder is built as described above. A DGW system

simulator, called JSafeMark tester, which will be discussed in Chapter 5, is built to simulate a

DGW watermarking system. The codec library is built within the tester. However, from the

point of view of the JSafeMark encoder, the codec library is still a third party service. Both

the JSafeMark encoder and the codec library handle only PPCT structures. Please see the

structure in Figure 4-2.

78 Chapter 4 Overview of Our Prototyping

Figure 4-2 Implemented system structure in prototyping.

4.3 Information Exchanging

We introduced JSafeMark encoder structure in Section 4.2. We mentioned that the

JSafeMark have two interfaces to interact and communicate with other components: the

import interface and the export interface. In this section, we will discuss about the interfaces

and we concentrate on the variable definition for the information exchanging between the

JSafeMark encoder and other parts of the system. These will be discussed in the following

two steps: what to exchange and how to exchange.

(1) What needs to be exchanged

Since the codec library is built in the tester, we ignore the information exchanging

between the codec library and the tester. From the discussion in previous chapters, we

realized the following operations will happen between the JSafeMark encoder and the DGW

system.

(i) A set of E-constants needs to be input into the JSafeMark encoder for constant

encoding process. This requires the import interface of the encoder can accept a

set of constants.

(ii) The encoder needs to export the constant tree structure.

(iii) The encoder needs to export the source code of the decoding functions and the

4.3 Information Exchanging 79

reference information InfoCS, which includes path, depth and mask structure as

discussed in Section 3.4.6, for each constant.

And the following operations will happen between the JSafeMark encoder and the codec

library.

(i) The integer-to-PPCT encoding is done in the codec library. This requires the

codec accept an integer and export a PPCT structure to the encoder1. The codec

needs to return the source code for decoding method to the encoder.

(ii) There are many encoding methods to choose. This is done in a random manner

except pre-selected by the user.

Considering the above operations, the information exchanged between the encoder, the

DGW system and the codec library can be described as in Table 4-1.

From To Information

DGW
system

JSafeMark - a set of constants

JSafeMark DGW
system

 - constant tree structure

 - a series of decoding functions
and reference information InfoCS

JSafeMark Codec - an integer

Codec JSafeMark - a PPCT structure for the integer

 - decoding function for decoding
the PPCT into the imported integer

Table 4-1 Information exchanged for encoding

(2) Data Structures of exchanging information

(i) Wrap everything in a Vector

When the data exchanged is complex, we put them in a Vector. All the

information in Table 4-1 are exchanged within a Vector except the third row of the

table, which contains only an integer in primitive type.

1 In order to trace and analyse the system operations in the program debugging time, an encoding/decoding
method may be selected for a particular constant by the user. For simplicity, this function is hard-coded in our
prototyping.

80 Chapter 4 Overview of Our Prototyping

(ii) Data Structure for exchanging a set of constants from the DGW system to the

JSafeMark

The DGW system may import different kinds of constants into the encoder. All

these constants are wrapped in a Vector. Since only objects can be added into a

Vector in Java [Kamin, Mickunas, et al. 1998], a primitive type constant needs to

convert into object type before adding to a Vector. For example, an integer need to

convert into an Integer object first (please refer to Figure 3-7 for the data types in

Java). It is difficult for the encoder to distinguish between an integer and an Integer

object. However, this is not a serious problem. We design our encoder to handle only

primitive types when this ambiguity happens. Thus, the DGW system is required to

export primitive types, such as int, double, instead of the object type, such as Integer,

Double.

(iii)Data Structure for exchanging PPCT

Please consider the following fact. From the DGW Watermarking technique

discussed in Chapter 2, we know that a user may choose a class (or a similar data

structure) to be the node structure for constructing watermark trees. This class may be

chosen from a candidate program (See Section 2.3.3).

Since the constant tree, which is constructed in the encoder, and the watermark

tree, which is constructed in the DGW system, must have the same data structure for

the tree nodes, we need to have the same data structure in both the encoder and the

DGW system. However, if the node class is chosen from the candidate program, the

node class is not easy to be imported to the encoder because the encoder is

independent from the DGW system. Thus, if an encoder needs to be independent of

the DGW system it connected to, it is better not to exchange node class between the

DGW system and the encoder.

A better way is to rebuild the structure in the encoder using local available

resources, so that DGW watermark systems are free to use any data structure for

watermark building.

A possible answer for exchanging the tree structure is to turn a PPCT structure

into a two-dimensional array, which contains only the relationships between the tree

nodes, but without any node information. For example, a PPCT structure in Figure 4-3

can be turned into an array as follows.

4.3 Information Exchanging 81

a[][] = {{3,1}, {2,3}, {4,5}, {5,3}, {0,4}, {4,5}}

In this array, the first dimension describes the indexes of the tree nodes, and the

second dimension shows which two nodes this node is pointing to. Since each of the

PPCT nodes contains two outgoing pointers, a two dimensional array is enough for

holding the relationships.

Figure 4-3 Sample tree structure for structure passing.

After this information is passed into the encoder, the encoder will convert it back

to a tree structure using local available resources for further manipulation. This

technique is used for all structure passing in the constant encoding process including

the mask structure mentioned above.

Thus, we expand the Table 4-1 to include the data type for information exchanging as

follows.

From To Information Type for exchanging

DGW system JSafeMark - a series of constants Vector

JSafeMark DGW
system

 - constant tree structure

 - a series of decoding functions
and reference information InfoCS

Vector

JSafeMark Codec - an integer integer

Codec JSafeMark - a PPCT structure for the integer

 - decoding function for decoding
the PPCT into the imported integer

Vector

Figure 4-4 Data Type for information exchanging

82 Chapter 4 Overview of Our Prototyping

4.4 Summary

In this chapter, we discussed the ideal system structure for encoding constants, and

showed the system structure in our prototyping. After that, we discussed the interfaces for

information exchanging by analyzing the data type among the different parts of the system. In

the next two chapters, we start to introduce the design and the implementation of our

prototyping.

Chapter 5

Developing the JSafeMark Tester and
Codec Library

5.1 Introduction

In the previous chapter, we introduced a high-level system structure of our prototyping.

We mentioned that we designed a JSafeMark tester to simulate the functionality of the DGW

system. In order to understand fully the workflow of our encoder, we first briefly introduce

how the tester is designed and how it works. As indicated in the previous chapter, the codec

library is built in the tester. Thus, in this chapter, we will also introduce how the codec is

designed,

5.2 Building JSafeMark Tester

A DGW System PPCT simulator is designed mainly for three reasons. First, we need to

know how this Encoder can work and communicate with a DGW watermark system. Second,

while building and testing the JSafeMark encoder, many PPCT structures need to be fed into

the encoder and it is not a wise idea to create them manually. Creating a simulator can help us

work efficiently. Finally, we need to understand how a PPCT structure works and how the

84 Chapter 5 Developing the JSafeMark Tester and Codec Library

structure may change while watermark number changes. This will help us with studying and

understanding the PPCT structure, also can help us thinking about how the JSafeMark

structure need to be, so that the encoder can be connected to a real DGW watermarking

system. Now let us have a look how this simulator is built.

5.2.1 Overview of the JSafeMark Tester

The tester has two main functions: working as a DGW system to exchange information

with the encoder; visually displaying tree structure of a given integer. Apart from the above,

the tester can automatically increase a watermark number to show how the PPCT structure

changes when the integer changes.

In order to communicate with the JSafeMark encoder, the tester includes a function to

convert a PPCT structure into a two-dimensional array, which contains the relationships

among the nodes as described in Section 4.3. It does not parse the source code of a program.

Instead, it accepts some input, which can be used as the information from a candidate

program.

The tester is built as a Java swing application, with a JScrollPane to display watermark

structures. It is used as a client to request constant encoding service from the JSafeMark

encoder.

5.2.2 JSafeMark Tester Structure

A JSafeMark consists of three parts (Figure 5-1): the Controller, the TreeViewer, and the

Codec.

The Controller is the entry point for all the functions. It controls which function of the

tester will be launched, also controls what information need to exchange with the encoder.

The Controller also offers the array-PPCT converting function that builds a PPCT structure

from a two dimensional array and also convert a two dimensional array into the

corresponding PPCT structure. The array will only hold node indexes and relationships in

order to pass into the JSafeMark encoder as discussed in Section 4.3.

The TreeViewer is used to display tree structures. Tree structures will be displayed in a

Java Graphic User Interface. The user can set different parameters for convenient viewing.

The TreeViewer is not a basic function in the DGW System, but acts as a monitor when a

DGW system is simulated, so that the user may get visual information about PPCT structures.

The TreeViewer can also be used together with the Codec for studying the PPCT structures.

5.2 Building JSafeMark Tester 85

 The Codec is used to convert between an integer and a graph representation of the integer.

It is a shared function that offering service to both the encoder and the tester. This will be

discussed more fully in Section 5.3.

Figure 5-1 The JSafeMark tester structure

5.2.3 Using JSafeMark Tester

The tester is built on a Windows platform. Because it is written in Java, it will not be

difficult to migrate it to other platforms.

The tester is started from a command line. It can be invoked by typing the following

command at Windows command line window.

 java JSTester – option

where option is one of the following:

-s DGW system simulation.

-d display PPCT structures.

With specific parameter settings, the simulator will launch one or the other of the

following two different sessions.

(1) DGW System Simulator.

Command: java JSTester -s

This command will run the JSafeMark tester in command line mode. The user will be

86 Chapter 5 Developing the JSafeMark Tester and Codec Library

prompted to input constants for encoding. The source code for constructing the constant

tree and for the decoding functions will be generated by the JSafeMark encoder, and

output to a file by the tester. This option will be further described when we demonstrate

constant encoding.

(2) PPCT Structure viewer:

Command: java JSTester -d

This command will launch a Java Swing graphic user interface. The user can type in a

watermark number, and the watermark structure for that number will be displayed inside

the Java GUI panel. The encoding uses the Catalan Leaf-Oriented Conversion (CLOC),

which is discussed in Section 3.4.4 in page 49. Meanwhile, every node inside the

displayed tree structure will have an integer beside it. This is the watermark number for

the subtree rooted at that node using CLOC encoding. These watermark numbers are

useful information for understanding distribution of the watermark integers inside a PPCT.

The user can also specify one of the following two ways to display the PPCT

structures.

1) Manual Select mode, and

2) Auto Increase mode.

Please see Figure 5-2 for a snapshot of the JSafeMark tester interface, in which a PPCT

structure for watermark number 0 with 5 leaves is displayed.

When running in the Manual Select mode, The “Delay” option is disabled. The user

can type an integer into the “Watermark number to draw” field, and specify the “Leaf

number”. In this mode, the tester encode integers using CLOC encoding. Thus a leaf

number is required.

Option “x-distance” is used to specify the space between two adjacent leaves and “y-

distance” is used to specify the vertical space between a node and its parent node, if there

is one.

Option “Normal display” specifies the tree structure displayed in the panel as shown

in Figure 5-2, in which the horizontal space of two adjacent child nodes is slightly smaller

than the space between their parent node and the adjacent node beside it. The tree

structures in “normal display” have a better look. However, if the watermark number is

too big, the displayed structure will take a lot of space. To conserve space, “Compact

5.2 Building JSafeMark Tester 87

display” mode can be used, in which the space is decreased.

Figure 5-2 The JSafeMark tester running in “manual” and “normal display” mode, showing a PPCT
structure for number 0 with 5 leaves.

Figure 5-3 The JSafemark tester in “auto increase” and "compact display" mode, showing a tree
structure for number 1500000 with 15 leaves.

88 Chapter 5 Developing the JSafeMark Tester and Codec Library

When running in the “Auto increase” mode, the tester will increment the input

watermark number automatically. In this mode, the “Delay” option is enabled, which can

be used to specify how long each tree structure will be displayed. A tree structure for each

watermark number will be displayed for the specified period of time until all the possible

watermark numbers are displayed. The range of the watermark numbers to be displayed is

from the input-watermark-number to c(input-Leaf-Number) – 1, where c() is the Catalan

number introduced in page 49.

5.3 Building the PPCT Codec Library

We have discussed system structure for the JSafeMark encoder in Section 4.2. As the

structure shows in Figure 4-1, Codec becomes an individual part of the system, offering

service to both the encoder and the DGW system. In fact, a codec contains the function for

integer encoding and decoding, which is a very important part for the encoder. Thus, it is

worth discussing in our implementation.

As shown in Figure 5-1, a codec library is built in the JSafeMark tester. Each codec in the

Codec Library includes two parts: a TreeBuilder and a WMRetriever. The structure of codec

is shown in Figure 5-4.

Figure 5-4 Internal structure for a codec

 The TreeBuilder is the encoder of the codec, in charge of building PPCT structures for an

integer according to a particular encoding algorithm, such as CLOC, CUIC etc. as discussed

in Section 3.4.4. In the Java language, an integer can be in the type of int, short, long or

BigInteger. In our implementation, our encoder will only accept BigIntegers.

The WMRetriever is used to decode a PPCT structure into its integer representation. The

WMRetriever has two functions: getWmNum function converts a whole PPCT tree into a

single integer. This is normally how a watermarking process works. The other function,

5.3 Building the PPCT Codec Library 89

getSubTreeWmNumber function, is to retrieve an integer out of a subtree of a whole PPCT.

The latter function is mainly for the purposes of analysis.

As we know, there should be many codecs in a codec library, and there should also be

many encoding/decoding methods for each codec, so as to avoid pattern matching attacks. In

order to expand the system in the future, organizing these codecs and methods in an

appropriate way is needed. Thus, we write a class for each algorithm, and put them into a

package called CodecLibrary, and all of the classes in the package need to extend an abstract

class. This abstract class defines the basic format of the codec classes. It also defines the

interface that the codec classes used to interact with the other parts of the system. In the

future, if there are more algorithms needed to add into the encoder, we simply need to write a

new codec class, which extends the abstract class, and put it in the encoder package. Figure

5-5 describes the structure of the PPCT codec package. It shows 3 PPCT codecs in the

structure. All of them extend an abstract class PPCTCodecLib.

Apparently, codecs for other data structures can be easily added into the system by

specifying new abstract classes such as RadixKCodecLib, which is similar to the

PPCTCodecLib shown in Figure 5-5.

Figure 5-5 PPCT codec class diagram

90 Chapter 5 Developing the JSafeMark Tester and Codec Library

5.4 Summary

In this chapter, we discussed the structure and the usage of the JSafeMark tester. We also

discussed the structure of the codec library and how the codec library is designed in our

prototyping. In the next chapter, we start to discuss the design of our JSafeMark encoder.

Chapter 6

Developing a JSafeMark Encoder

6.1 Introduction

In Chapter 4, we introduced the high-level concept of the JSafeMark encoder, including

the system structure for the encoder. In Chapter 5, we discussed the structure and the design

of the JSafeMark tester and the codec library, which are used to interact with the JSafeMark

encoder for encoding constants. Now that we have the overall concept of the system

environment, and in this chapter, we will discuss the analysis, design, and implementation

issues of our JSafeMark encoder. This will cover the system structure, and the detailed

technology used for implementation. The development of the JSafeMark encoder follows the

procedure of software engineering [Sommerville 1996], and most of the analysis and design

work uses The Unified Modeling Language (UML) [Martin and Kendall 2000]. The CASE

tool [Hoffer, George, et al. 1999] used in this chapter is Rational Rose [Rational Software].

Different watermark graph structures need to work with different kinds of JSafeMark

encoders. Therefore, there should be different JSafeMark encoders in the encoder library,

such as a JSafeMark PPCT Encoder for PPCT constant encoding, a Radix-k Encoder for

Radix-k tree constant encoding as we discussed in the previous chapter. Although different

Encoders are based on different technologies, the implementation procedures for them are

92 Chapter 6 Developing a JSafeMark Encoder

quite similar. In this chapter, our analysis, design and implementation are based on the

JSafeMark PPCT Encoder.

6.2 Analysis

Requirement analysis is the first thing to do when developing a system [Heineman and

Councill 2001]. Most of the requirements for the JSafeMark PPCT encoder have been

discussed in the previous chapters. Now from the point view of the software engineering, we

give a review and outline these requirements as follows.

6.2.1 Functional requirements:

The functional requirement analysis describes the functionality of the system. Since we

have fully discussed the functions of the encoder in Chapter 3, we will not repeat them in this

chapter, please see Section 3.4 especially 3.4.1 for the tasks that the encoder should perform.

6.2.2 Non-functional Requirements

(1) Human factors: Users of the encoder should be moderately experienced.

Configuration knowledge is needed when setting up the system.

(2) Documentation: Required to explain the algorithms of the encoding methods, and

explain the operation procedure of the encoding.

(3) Hardware: same as DGW System.

(4) Software: JDK 1.3.

(5) Performance: the performance of the encoding process is not critical. However, the

generated source code cannot noticeably slow down the performance of the candidate

program.

(6) Error Handling: An Error log has to be generated for any error occurred.

6.2.3 Use Case View: Requirement Description

Conceptual static structure of a JSafeMark encoder is described by the UML Use Case

Diagrams. The use case diagram is a high-level description about the activities happened

within the encoder and the interactions between the encoder and the external systems.

The most important function the JSafeMark encoder should have is encoding constants

6.2 Analysis 93

into constant graphs; and for each constant, searching for a substructure, which matches the

constant graph for that constant, in a constant tree. Then, it should generate a decoding

function for the process of retrieving constant, and output the result (that is, the Encode

Constant use case). Another important function associating with the Encode Constant use

case is that an encoder needs to generate a constant tree at the beginning of the encoding

process (the Build Constant Tree use case). The constant tree is built in a pseudo-random

manner as described in Section 3.4.4. Besides, the user needs to configure the encoder when

the JSafeMark encoder is first connected to the DGW Watermarking System (the Configure

Encoder use case1). These activities are described in Following Use Case Diagram (Figure

6-1).

Configure EncoderUser

Build Constant Tree

DGW Watermarking
System

Encode Constant

Codec

Figure 6-1 Use Case Diagram

Use case description

Use Case Description briefly shows the purposes and high-level overview of the functions

of a use case, describes the activities the system needs to perform. A description of the use

case Encode Constant is shown below.

Brief description of the Encode Constant use case:

This use case is started by the DGW watermarking system the JSafeMark PPCT

encoder (JPE) is connected to. It provides the capability to process a series of

constants. For each constant, the JPE converts it into a PPCT constant graph, finds a

substructure, which matches the constant graph, in a constant tree, and generates a

decoding function for the constant that can be used to retrieve the value of the

1 This function is not implemented in our prototyping.

94 Chapter 6 Developing a JSafeMark Encoder

constant from the constant tree.

Use Case Event Flow

A brief description of the Event Flows for the Encode Constant use case is listed below.

An Event Flow describes the interactions that the use case captured between the encoder and

the actors (the person or system outside the encoder that interacts with the encoder, in this

case, DGW watermarking systems and codec library are the actors) [Martin and Kendall

2000].

Event Flow for the use case “Encoding Constant”:

1. Preconditions: the Build Constant Tree use case has been executed, a constant tree

already exists.

2. Used by DGW watermarking system.

3. Event Flows

3.1. DGW System input a set of constants.

3.2. Repeat until all constants have been processed.

For each constant, a decoding function is generated, and used to get the value of

the constant out of a substructure in a constant tree. If constant input error, goto

3.3.

3.3. An invalid constant is encountered: error message is displayed showing constant

invalid. Goto 3.1

6.2.4 Sequence Diagrams: Conceptual Dynamic Behavior

A sequence diagram describes the dynamic behaviors of a system. It is displayed according to

time sequence and shows the interactions among objects. Figure 6-2 shows the sequence

diagram for the Encode Constant use case in operation.

Brief explanation of Sequence diagram for Encoding function:

This activity starts from the DGW System calling encodeConst() method in the interface

class IConstantEncoder in the JSafeMark. IConstantEncoder class then passes the call to its

implementation class ConstantEncoderImp. ConstantEcoderImp starts the real process by

finding a particular method (calling selectEncodingMethod() method), building constant

graph for the given constant (calling buildConstantGraph() in GraphManager class), then

6.2 Analysis 95

searching for a substructure, which matches the constant graph , in the constant tree structure

(search() method in GraphManager class), finally, calling generateDecodingCode() method

and get the decoding method source code built. Then the source decoding method can be

returned to the DGW system to modify the source code. During the process, if a searching

does not find any substructure, which matches the given constant graph, then GraphManager

will add additional nodes to the constant tree. So that the substructure required can be found

inside the constant tree. After the source code for the decoding method is generated, the code

will be returned to the DGW system together with the constant tree structure.

 : DGW
Watermarking

AIConstEnc :
IConstantEncoder

AConstEnc :
ConstantEncoderImp

AGraphManager :
GraphManager

encodeConst ()

encodeConst ()

buildConstantGraph()

selectEncodingMethod(int)

when search
returns null

search()
expendConstantTree()

generateDecodingCode()

Figure 6-2 Conceptual sequence diagram for the encoding function.

6.2.5 Class Diagrams: Conceptual Static Structure

A class diagram describes the conceptual static structure of the system. It is composed of

interrelated classes together with their relationships. The classes need further development in

design phase. More classes may need to be added later as well. Figure 6-3 shows the

conceptual classes for the JSafeMark encoder.

Brief description of classes:

(1) IConstantEncoder. This is the interface class for the JSafeMark encoder. It is in

charge of the interaction with the DGW Watermarking System.

96 Chapter 6 Developing a JSafeMark Encoder

(2) ConstantEncoderImp. This is the Control class for the JSafeMark encoder controlling

the workflow and the activities inside the JSafeMark encoder. It manages the

functions of encoding, building PPCTs, and finding existing encoding methods. It is

also responsible for generating decoding method, generating and display error

message should an error occur.

(3) GraphManager. This is used for building the constant tree, building constant graphs,

expanding constant tree, as well as searching a PPCT substructure inside the PPCT

constant tree.

IConstantEncoder

encodeConst()

GraphManager

buildConstantGraph()
expendConstantTree()
search()
buildConstantTree()

ConstantEncoderImp

selectEncodingMethod()
encodeConst()
generateDecodingCode()
generateErrorlog()
setupEncoder()

Figure 6-3 Conceptual class diagram for JSafeMark encoder

6.3 Design

After we have defined the functionality, conceptual structure and objects in the

JSafeMark encoder, now we need to further develop them to define how they can be

implemented. Because of the simple functionality of the JSafeMark, the design phase is

relatively simple. We will introduce this process from two aspects: one is static design by

further implementing the conceptual class diagrams, and the other is dynamic design by

further specifying the workflow using sequence diagrams.

6.3.1 Static Design: Design Level Class Diagrams

In this section, we will refine the conceptual level classes into design level classes. The

design level class constants solid information that can be used directly in system

implementation.

One thing we need to consider is to introduce a node class into the system because we

need to rebuild PPCT structures in the JSafeMark using local available resources. As we said

before, the structures of PPCT are passed into the JSafeMark in the format of a two-

dimensional array, and only the relations between nodes are passed, without any node

information (see Section 4.3). Thus, we add a node class GraphNode into the JSafeMark

encoder.

6.3 Design 97

We have also split the function, generatDecodingCode, out of the ConstantEncoderImp

class, because generating the decoding function is too complex to be a method in a control

class. Meanwhile, an ErrorLog class is added into the model, for recording errors generated.

The search methods and constant converting methods are packaged separately.

ConstantHandler and Searcher class are in charge of there operations. The classes are shown

in Figure 6-4.

GraphNode
left : GraphNode
right : GraphNode

DecodingMethodGenerator
decodingCode
tempCode

DecodingMethodGenerator()
generat()

ErrorData
date
time
name
description

ErrorLog
errors : Vector

addError()
clearErrorLog()
DeleteError()
printErrors()

SearchMethodLib
code : Vector

search()
getCode()
SearchMethodLib()

SearchMethod1

SearchMethod1()

ConstConvertMethodLib
code : Vector

convert()
getCode()
ConstConvertMethodLib()

ConstConvertMethod1

ConstMethod1()

Figure 6-4 GraphNode class, DecodingMethodGenerator class, Error Classes and searchingMethod
package constantConvertingMethod package example classes

After above discussion, we draw the design level class diagrams in Figure 6-5.

Description of selected design level classes in class diagram:

ConstantEncoderImp. It controls the workflow in the JSafeMark encoder, including

setting up the encoder, encoding constant, building tree structures, searching, generating

decoding method and error log.

GraphNode. This is the node structure for build a PPCT. It is used by GraphManager

class to build all local PPCT structures.

DecodingMethodGenerator. This is used for generating source code of the decoding

functions for a constant.

ConstantHandler. It handles constant to integer conversion, and offers source code for the

converting constant value back from the integers.

98 Chapter 6 Developing a JSafeMark Encoder

Searcher: It searches a constant tree for a substructure that matches a constant graph,

generates the source code for defining the location and boundary of the substructure.

ErrorData: contains error information.

ErrorLog: controls error generated.

SearchMethodLib

code : Vector

search()
getCode()
SearchMethodLib()

(f rom SearchingMethod)

IConstantEncoder

setupEncoder()
encodeConst()

buildConstantTree()
encodeConst()
encodeConst()

GraphNode
left : GraphNode
right : GraphNode

GraphManager
graphNode : GraphNode

buildConstantTree()
buildConstantGraph()
ExpendCT()
search()
setMethod()

DecodingMethodGenerator
decodingCode
tempCode

DecodingMethodGenerator()
generat()

ErrorData
date
time
name
description

ErrorLog
errors : Vector

addError()
clearErrorLog()
DeleteError()
printErrors()

ConstantEncoderImp
encoderLib : EncoderLib
decodingMethodGenerator : DecodingMethodGenerator
methodSelector : MethodSelector
ppctInfo : PPCTInfo
graphManager : GraphManager
constantTree : Vector
watermarkTreeList : int
methodNumber : int
methodName : String
treeNodeInfor : TreeNodeInfo
constantInt : int

selectEncodingMethod()
encodeConst()
setupEncoder()
buildConstantTree()
encodeConst()
encodeConst()
encodeConst()
encodeConst()

constantHandler
decodingMethod : Vector

generat()
constantToInt()

ConstConvertMethodLib

code : Vector

convert()
getCode()
ConstConvertMethodLib()

(f rom ConstConvert ingMethod)

Searcher
code : Vector

search()
Searcher()

Figure 6-5 Design level class diagram

6.3.2 Dynamic Design: Design Level Sequence Diagrams

The Sequence Diagrams in design level not only describe the dynamic behavior of the

encoder, but also examine if the defined activities for the encoder can work properly. They

display more details than the ones in the conceptual level. Figure 6-6 illustrates the design

level sequence diagram for Encode Constant use case.

6.3 Design 99

Figure 6-6 Design level sequence diagram for constant encoding

100 Chapter 6 Developing a JSafeMark Encoder

Explanation of design level Converting sequence diagram:

(1) encodeConst(double, Vector, int) method in IConstantEncoder class and

ConstantEncoderImp class will start an operation to encode a double variable and get

the source code back, using an algorithm from SearchMethodLib.

(2) handleDouble() will convert a double constant into integers, and generate a function

for converting it back.

(3) selectEncodingMethod() will decide which method to use if the JSafeMark needs to

choose randomly.

(4) setMethod() tells which method need to use, to construct the constant graph.

(5) buildConstantGraph() method builds a constant graph with the method defined by the

method index. The actual building process is done in the Codec. GraphManager will

call the building method in the Codec and restore the constant graph structure

returned by the Codec.

(6) search() tells Searcher() to find a substructure that matches the constant graph, using

a selected algorithm from searchingMethodLib.

(7) If search() doesn’t find any substructure required, a expandCT() process is required to

add additional nodes into the constant tree, so that the substructure will appear in the

constant tree.

(8) generate() method will generate the source code to retrieve the double value out of the

substructure which is inside the constant tree.

6.4 Implementation

In the last two sections, we analyzed the requirements and conceptual functionalities of

the encoder, and we also gave the software structures in design level. All the analysis and

design is in UML style.

Our implementation of the encoder is developed using JDK 1.3, part of the source code is

listed in Appendix A.

In our implementation, the codecs use the CLOC and CUIC technology introduced in

Section 3.4.4 in page 49. From the discussion in Section 3.4.4, we notice that the calculation

of Catalan numbers is heavily involved. Thus, we pre-calculate all Catalan numbers needed.

6.5 Summary 101

Moreover, the min_int(L, R)’s we defined in Section 3.4.4 are also pre-calculated because its

calculation also involves large amount of Catalan number processing. By pre-calculate the

Catalan numbers and min_int(L, R)’s, we can make the program execution much more

efficient.

In our implementation, this is done in Util.java class.

The best way a codec can use is storing all Catalan numbers in a Vector, instead of

calculating at runtime. Unfortunately, this approach cannot be easily used in run time

retrieval, because a list of unusual numbers will be a great target for attackers to start from.

6.5 Summary

In this chapter, we developed a prototyping system for constant encoding. We did the

analysis and design using UML, and showed the detailed activities of some important part of

the system. In next chapter, we will show how our JSafeMark dealing with the constant

encoding with an example.

Chapter 7

JSafeMark in Practice

7.1 Introduction

In Chapter 4, we overviewed the concept of the JSafeMark encoder, and in Chapter 6, we

discussed the detailed design and implementation issues mostly using the UML notation

following the software engineering process. Although UML can describe the system clearly

including what a class or even a method should look like, we still have no experience in how

our encoder works in real world. In this chapter, we will show a solid example to see how this

constant encoding algorithm works.

7.2 Example of Using JSafeMark encoder

In this section, we follow the workflow of the constant encoding described in Section 3.4

(page 40) to demonstrate how a constant is encoded. In the testing example, we use a double

constant 1.4 as the E-constant and encode it in a small constant tree with five leaves. By

using such a small number, and by choosing a small constant tree, we can easily track the

status of the constant tree structures during execution.

We ignore the finding E-constants process, which is carried out in the DGW system (This

is the encoding preparation phase in Section 3.4), because our simulator does not perform

104 Chapter 7 JSafeMark in Practice

these tasks. In the following testing, all of the intermediate data are obtained by tracing the

runtime status of the encoder, and intercepting the intermediate output of the encoding

process.

7.2.1 Import Constants (WF1)

Our workflow of Figure 3-5 in page 43 begins with step WF1, which is that the encoder

accepts a list of constant. This is shown as follows in the test.

The test is launch by execute the tester in the DGW system simulator mode, as described

in Section 5.2.3 by the following command:

java JSTester –s -1.4

The option –s tells the JSafeMark tester to launch the DGW system simulator session, and

the parameter 1.4 tells the tester to export 1.4 to the encoder as the constant value.

We trace the program method calls and get the following output.

 Entering ConstEncoder: encodeConst(Vector).

 The imported constant is double 1.4.

This indicate that the JSafeMark tester called the encodeConst() method in the

ConstantEncoderImp class and found the constant is a double value 1.4.

7.2.2 Building PPCT Constant Tree (WF2)

The next in the output is:

 Entering GraphManager: buildConstantTree().

 Constant tree 8 with leaf 5.

This indicates the building constant tree process is executed and a constant tree of index 8

with 5 leaves is constructed. This is the step WF2 in Figure 3-5.

 In the testing, in order to simplify the testing, we chose 5 to be the leaf number of the

random tree, and hardcoded in the buildConstantTree() method.

We launch another session of the JSafeMark tester in the “PPCT Structure Viewer” mode

by typing the following command:

java JSTester -d

A graphic user interface is shown. We choose “manual select” and “compact display” mode.

7.2 Example of Using JSafeMark encoder 105

Then display the PPCT structure of index 8 with 5 leaves. A screenshot is shown below.

Figure 7-1 The random constant tree of index 8 with 5 leaves

7.2.3 Convert Constant to Integer (WF3)

The next step in Figure 3-5 is WF3, splitting constant into integers. In the testing, this

step can be illustrated by the following output of the encoder.

 Entering ConstantHandler: constantToInt(double).

 double 1.4 >>>> integers 1, 4

The above output shows that the encoder called the constantToInt() method in the

ConstantHandler class. The double constant 1.4 has been converted into integers 1 and 4.

For the detailed algorithm of method constantToInt(), please refer to page 48.

7.2.4 Generate Source Code to Reverse WF3 (WF4)

This is the step WF4 in Figure 3-5. In this step, the following output is intercepted, which

is the source code stored in a Vector.

public double convertTwoDigitsToDouble(int firstInt, int secondInt){

 return firstInt + secondInt * 0.1;

106 Chapter 7 JSafeMark in Practice

}

The above code is used to convert two single digit integers into a double value, which is

introduced in Section 3.4.6 in page 61 .

7.2.5 Convert Integer to Graph Structure (WF5)

The next step in Figure 3-5 is WF5, building a constant graph. We use Catalan Unique

Indexed Conversion (CUIC in page 56) to be the conversion algorithm for converting the

integers into the graph structures. This is hard coded in the encoder source code. The reason

we choose CUIC encoding is, by using CUIC encoding, an integer can be converted into

exactly one PPCT structure.

 The following output shows the result of the conversion.

 1 >>> {{3,1},{2,3},{0,2},{2,3}}

 4 >>> {{7,1},{2,3},{0,2},{4,5},{2,4},{6,7},{4,6},{6,7}}

The above two two-dimensional arrays represent the corresponding integer, as we

discussed in Section 4.3. We can manually draw the following structures according to the two

dimensional arrays as shown in Figure 7-2.

Figure 7-2 PPCT structures for first integer = 1 and second integer = 4

Please have a look at Figure 3-12 in page 57. The index 0 of CLOC encoding with 2

leaves in Figure 3-12, which is also the index 1 of CUIC encoding, is exactly the same as the

first integer 1 in Figure 7-2 above. The index 4 of CUIC encoding in Figure 3-12, which is

also the index 0 of CLOC encoding with 4 leaves, is the same as the second integer 4 in

Figure 7-2 above.

7.2 Example of Using JSafeMark encoder 107

7.2.6 Generate Source code to Reverse WF5 (WF6)

When the integers 1 and 4 are converted into PPCT structures, the source code for

decoding the structures into integers has also been generated. We intercept the generated

source code from the returned Vector, and get the following output.

public int decodingMethod(Node node){

}

This function is base on Catalan Unique Indexed Conversion (CUIC). Because of the

complexity of the CUIC decoding function, we do not list it here. Please see Appendix C in

page 133 for the decoding function source code. It is similar to the source code of the

watermark retrieving function attached in Appendix A, which is based on Catalan Leaf

Oriented Conversion (CLOC).

7.2.7 Searching (WF7)

This is the step WF7 (including WF7-1 and WF7-2) in Figure 3-5. As described in

Section 3.4.5 (page 57), this step will search exhaustively through the constant tree to find the

constant substructure for an integer. If a specified substructure cannot be found inside the

constant tree, we need to expand the constant tree to include that substructure (WF8,

discussed in the following section).

The following output shows the result of this step.

 1 >>> found, node 4

 4 >>> not found

This result shows that the search for integer 1 succeeded. However, a substructure for

integer 4 was not found.

In fact, when an integer is found, the node index, at which the integer is found, will also

be recorded as described in WF7-2 in Figure 3-5. This information was also output after an

integer is found (“node 4” after “1>>>4”). However, after the constant tree is fully expanded

later on, the indices of the tree nodes will be sorted again. Thus, we do not output where the

integer is found at this stage. It will be traced again after the constant tree is fully expanded.

7.2.8 Expand the Constant Tree (WF8)

Once a substructure for an integer is not found in the constant tree, according to the

108 Chapter 7 JSafeMark in Practice

workflow in Figure 3-5, the constant tree will be expanded (WF8).

From the previous output, listed in Section 7.2.7, we know that the substructure for

integer 4 was not found. Thus, we get the following output.

Entering GraphManager: expandCT(int)

4 >>> found, at node 3

The above output shows that the expandCT method in the GraphManager class is called.

Thus the constant tree is expanded.

The output also shows that after the WF8, which expand constant tree is performed, the

step WF7-1 in the Figure 3-5 is performed again, and a substructure is found at node with

index 3.

After this process, all the integers are found. The node indices of the constant tree are

sorted and output the following information.

Entering GraphManager: sortIndex()

CT >>> {{13,1},{2,3},{4,5},{6,7},{8,9},{9,5},{5,6},{10,11},{0,8},{8,9},{6,10},

{12,13},{10,12},{12,13}}

1 >>> sorted at node 4

4 >>> sorted at node 3

The above information is output for debugging. The first two lines contain the

information of the fully built constant tree. The next line indicate that after the indices of the

constant tree are sorted, the substructure for the integer 1 is rooted at node 4, and the

substructure for integer 4 is rooted at node with index 3.

According to these output, we manually draw the constant tree as shown in Figure 7-3.

In Figure 7-3, the PPCT structure on the left shows the fully built constant tree, which is

drawn according to the output two-dimensional array. The diagram on the right shows two

substructures. The substructure rooted at the node 4 is for the integer 1 and the substructure

rooted at the node 3 is for the integer 4.

7.2 Example of Using JSafeMark encoder 109

Figure 7-3 Constant tree and the substructure for integers 1 and 4

7.2.9 Generate Referencing information (WF9)

In the workflow in Figure 3-5, the next step is WF9, generate referencing information.

According to the discussion in Section 3.4.6 in page 62, our implementation uses three

parameters to find the root of the substructure at runtime. They are path, depth and mask. The

following output shows the values of the three parameters for each of the integers.

1 >>> path 0 depth 2 mask {{7,1},{2,3},{4,5},{6,7},{0,4},{4,5},{5,6},{6,7}}

4 >>> path 1 depth 1 mask {{15,1},{2,3},{4,5},{6,7},{0,4},{4,5},{8,9},{10,11},

{5,8},{8,9},{12,13},{14,15},{9,12},{12,13},{13,14},{14,15}}

Figure 7-4 shows how to use path = 0 and depth = 2 to find the root of the substructure

for the first integer = 1, and use path = 1 and depth = 1 to find the root of the substructure for

the second integer = 4.

According to the output information about the mask structures, we draw the mask trees on

the left side of Figure 7-5. Referring to the substructure information in the diagram on the

right side of Figure 7-3, we mark the overlapping part of the mask tree and the constant tree

in black, as shown in Figure 7-5.

From the analysis, we know that the output value of the path, depth, and mask

information is correct. Now we have a look at the generated source code for runtime

referencing.

110 Chapter 7 JSafeMark in Practice

Figure 7-4 Referencing to the substructures for integers 1 and 4

Figure 7-5 intersecting mask and CT to find the boundary information for integers 1 and 4

7.2 Example of Using JSafeMark encoder 111

Part of the source code for runtime referencing is output as follows.

 public Node getSubstructure(Node RCT, int path, int depth, Node mask){

 Node RCS = getSubstructureRoot(RCT.right, path, depth);

 return getCS (RCS, mask);

 }

 public Node getSubstructureRoot(Node RCT, int path, int depth){}

 public Node getCS(Node RCS, Node mask){}

The source code generation has been discussed in Section 3.4.6. Please also refer to

Appendix C in page 133 for the full functional source code.

7.2.10 Generate and Decoding Source Code (WF10, 11)

Now that we have finished the source code generation for different steps in the workflow

in Figure 3-5, the next step is combine the generated code together to make it work (WF10)

and out export the source code to the tester.

We test this by examine the final output of the encoder.

In the Vector that contains the output, we find the following information.

 Two-dimensional int arrays:

{{13,1},{2,3},{4,5},{6,7},{8,9},{9,5},{5,6},{10,11},{0,8},{8,9},{6,10},{12,13},

{10,12},{12,13}}

{{7,1},{2,3},{4,5},{6,7},{0,4},{4,5},{5,6},{6,7}}

{{15,1},{2,3},{4,5},{6,7},{0,4},{4,5},{8,9},{10,11},{5,8},{8,9},{12,13},{14,15

},{9,12},{12,13},{13,14},{14,15}}

Expression used to replace the E-constant in the candidate program.

getConstant(rct, 0,2,m1,1,1,m2))

Source code of the definitions of the functions.

The source code is listed in the Appendix C. Please see page 133 for detailed source code.

For ease of understanding, the variable names in the Appendix C have been modified to make

them meaningful.

112 Chapter 7 JSafeMark in Practice

The first line in Appendix C is the expression used to replace the E-constant in the

candidate program, as discussed above. The rest parts are the function definitions. Simple

comments are added into the source code to make it understandable.

We copied these output and tested it in a Java program by

System.out.println(“The constant is ”+getConstant(rct, 0,2,m1,1,1,m2));

and get the following output.

 The constant is 1.4

7.3 Discussion

The testing performed in this Chapter is successful. However, since the encoder is partly

prototyped, it can only handle one constant at this stage.

The decoding function generated during the testing is about 3.9KB, and the runtime

decoding process cost 10ms.

The performance of the decoding process in the testing is acceptable. However, since the

source code is generated for a single constant, we believe the code size will increase when

encoding for more constants with more algorithms.

7.4 Summary

In this chapter, we demonstrated some practical aspects of the encoder, and tested it with

a simple double constant. In the next chapter, we will point out some good and bad points

about our JSafeMark, and also discuss some future work.

Chapter 8

Conclusion

8.1 Pros and Cons of JSafeMark

The JSafeMark algorithm is a new technology that can be used to give additional

protection to the dynamic graph watermarks. By encoding constants into a constant tree,

which is very similar to the watermark structure, the watermark source code is protected from

removal by automated attacks based on dependency analysis. An attacker might hope that a

static dependency analysis would reveal that the watermark tree is independent of the

program computation, and thus that it could be removed without affecting program function.

However, a static analysis on watermark node will reveal only that they may have the same

dependencies as the nodes in the constant tree, and many portions of the watermarked code

will depend on these nodes for correct evaluation of program constants. Thus, the attacker

will be unable to remove the watermark tree safely, on the basis of a static dependency

analysis.

Our constant encoding method will be protected against pattern-matching attacks because

that in a fully developed encoder, there are many different algorithms that can be chosen from.

Each algorithm uses different set of methods to decode the values of E-constants at runtime.

Moreover, the source code generated from the same algorithm can be much different when

working with different candidate programs. Thus, it is hard for the attacker to find out a

114 Chapter 8 Conclusion

common pattern to work on.

As we discussed in Section 3.5.1, the possibility of finding a constant in a watermarked

program is satisfying. As shown in Table 3-1 in page 69, in a randomly selected program,

there are thousands of constant loading operations. In the encoding process, we expect that

the DGW system can find some small integers in the candidate program for encoding. This

will make the decoding process much simpler, because the steps WF3 and WF4 in Figure 3-5

in page 43 are not needed for the simple integers that can be encoded into constant tree

directly.

However, since our technology is not yet mature, it has some obvious weaknesses. For

example, our algorithm is based on finding constants inside a candidate program. It is

possible that there are not any constants in a small program. In this case, our algorithm cannot

be applied unless, perhaps, suitable constants are introduced in an obfuscation step. Another

weakness is that the code generated for the decoding function seems a little bit complicated.

For example, in our testing, 3.9KB code is required to encode a double constant 1.4 using

CUIC encoding algorithm. This complexity can be reduced by carefully choosing simpler

algorithms and encoding simple integers instead of complex constants.

8.2 Future Work

Given the time constraints of our Master’s thesis, we were not able to fully specify,

implement, test, and document the JSafeMark encoder. We believe that many improvements

to the encoder are still needed, both in the algorithm and in the implementation before we

could convincingly demonstrate its effectiveness at protecting the DGW watermarks against a

wide variety of attacks. Now we indicate some ideas for improvement below.

8.2.1 Protect the Return Value of the Decoding Function

There is a weakness in JSafeMark algorithm, namely, if an attacker can monitor the

returned value of a decoding function, he will realize that the returned value will always be

the same. Although this weakness is protected to some extent in our implementation by using

multiple parameters in the decoding functions, and by applying obfuscation techniques, we

are not completely satisfied.

We would like to implement a more secure algorithm for the encoding. For example, if

we can merge the decoding function directly with the statement accessing this constant, then

8.2 Future Work 115

the returned value will not be so obvious, and it may be much harder to analyze. For example,

in the following statement, if x is an integer variable,

int a = x + 2;

if we replace 2 with a decoding function call decode(),

 int a = x + decode();

the method decode() will always evaluate to 2. However, if we can use the following format,

 int a = decode(x);

then the attacker will not be able to see the weakness. Because the result of the entire

decoding function is partially depending on the value of x.

However, if a true dependency is not created, the constant value 2 still needs to be

protected. Thus, a true dependency is what we expected. However, it is hard to create,

because a variable cannot be easily encoded into a constant structure, which is worth further

research.

8.2.2 Changing Constant Tree at Runtime

Currently, the constant tree is built at the beginning of the program execution, and it is

unchanged during the program execution. This is because decoding function might return an

inappropriate value if the constant tree structure changes at runtime. Please look at Figure 8-1

and Figure 8-2.

In Figure 8-1, a program is executed with certain statement sequence. During this

sequence, statement s1 and s2 are executed, and a constant tree CT is built The statement s3

includes the decoding functions decode(CT). Suppose the decoding function is built on this

structure, it will work well.

Figure 8-2 shows the same program is executed with a different statement sequence.

During the execution, statement s4 is executed, and the constant tree is built in a different

shape. When the program executes the same statement s3 as in Figure 8-1, the decoding

function will work on a different constant structure. This will cause an error in decoding.

However, if the execution can be carefully analyzed, it may be possible to change

portions of the constant tree at runtime. If this is possible, constant encoding will be more

secure, because a changing structure is harder to analyze than a constant structure.

116 Chapter 8 Conclusion

Figure 8-1 Changing constant tree at runtime. Constant tree is changed when executing a sequence of
statements. Decoding function works well.

Figure 8-2 Changing the constant tree can cause errors.

8.2.3 Encode Constant into Watermark Structures

When we encode the constant into a constant tree, we create a false dependency for

watermark tamperproofing. That is, the watermarked program is protected by the constant

8.2 Future Work 117

tree, because the attacker cannot reliably distinguish the watermark structure from the

constant tree. Thus, an attacker who tries to remove or alter the watermark tree is in danger of

altering the constant tree.

However, we can create a true dependency from the watermarked program to the

watermark structure if we encode E-constants in the watermark structure. If this portion of

the watermark structure is removed, then watermarked program is damaged.

This approach must consider that the watermark structure will change at runtime. In

Section 2.3.3, we indicated that the Sandmark system would create different parts of the

watermark structure at different times and different places of a program that is presented with

a special input sequence. Thus, the watermark structure embedded by Sandmark will change

during the execution of the program. For some program inputs, no nodes might be allocated

for the watermark structure. This degree of variability will bring great difficulties if we try to

encode constant into Sandmark watermark structure.

8.2.4 Using Code that builds Watermarks to build a Constant Tree

We could build a constant tree at runtime, at least partially by executing the same source

methods that will be used to construct a watermark structure if the special input sequence is

presented. By executing the source code of the watermark structure, we create a constant tree

that is essentially a new instance of the watermark structure (or part of the watermark

structure). This new instance of the watermark structure will not be used for the retrieval of

the watermark number. Instead, we will use it as a substructure of the constant tree. What we

expect is, if an attacker modifies or removes the source code for constructing the watermark

structure, the constant tree will not be built correctly, and the correct value of the encoded

constant will not be retrieved.

8.2.5 Using a Set of Constant Trees

Another idea is to build a set of constant trees for different integers in different time slices,

or in different statement sequences, of the execution of program execution. According to this

idea, a large number of small constant trees are built, and each of the small constant trees

may contain only a subset of the whole constant tree, but there is no large the constant tree.

To adopt this algorithm, we must redesign our encoder, so that it can decode an integer from

multiple substructures.

118 Chapter 8 Conclusion

8.2.6 Using Constant Subtrees as Masks

With one miner modification to our encoding process of Figure 3-5, we could search for

subtrees of the constant tree that would serve as masks during the decoding of constant. The

“boundary information” field of a decoding function could then specify a mask by a pair

(mPath, mDepth) of integers, defining the location of the mask in the constant tree. By

applying this modification, the amount of export information will be reduced. More

importantly, because the mask structure and the constant structure are both obtained from the

constant tree, the degree of protection is increased.

8.3 Summary

This thesis introduced a new idea for protecting DGW watermarks, gave an outline of an

algorithm for encoding constants, and examined the possibility of using our constant

encoding algorithm. We gained some practical experience of our constant encoding

technology. We concluded that there is still a lot of work to be done, to improve the

algorithm and the implementation of our encoder to demonstrate an efficient and practical

method for protecting dynamic graph watermarks.

Appendix A.

CLOC Encoding Implementation

In this appendix, we attached part of the source code of the Catalan Leaf Oriented

Conversion codec. There are three classes in the source code. The WMRetriever class is used

to convert a PPCT graph structure into an integer, and the TreeBuilder class is used to

convert an integer into a graph structure. Both of the classes will use the information in the

Util class, which is used to generate Catalan Numbers and min_int() values to speed up the

encoding/decoding process.

/**

 * This class is used to retrieve watermarks from a dynamic watermark tree structure.

 * The tree structure needs to be a PPCT style, with only public left and right leaves,

 */

public class WMRetriever {

 PPCTTreeNode base;

 /**

 * Constructor of WMRetriever, create this object, doesn't do anything.

 */

 public WMRetriever(){

 }

 /**

 * Retrieve watermark number for whole tree structure.

 * @param top PPCTTreeNode

 * top can be any node inside the tree structure,

 * doesn't need to be the root or origin of PPCT.

120 Appendix A CLOC Encoding Implementation

 * @return a BigInteger representation of watermark number.

 */

 public BigInteger getWmNum(PPCTTreeNode top){

 while(top.right!=top){top = top.left;}

 do{ top = top.left;}

 while(top.right == top);

 base = top.right;

 return cNum(top.right);

 }

 /**

 * Retrieve watermark number for a given subtree of a PPCT.

 *

 * @param top PPCTTreeNode

 * top must be the root of subtree

 * @return a BigInteger representation of watermark number.

 */

 public BigInteger getSubTreeWmNumber(PPCTTreeNode top){

 PPCTTreeNode current=top;

 do {current = current.right;}

 while(current.right!=current);

 if(top.left == current){ return cNum(top.right);}

 return cNum(top);

 }

 /**

 * Actual operation for retrieving a watermark number.

 * Used by both getWmNum() and getSubTreeWmNumber().

 * @param top PPCTTreeNode

 * top must be the root of a subtree

 * @return a BigInteger representation of watermark number.

 */

 private BigInteger cNum(PPCTTreeNode top){

 if(top.right == top) return BigInteger.ZERO;

 return cNum(top.left).multiply ((BigInteger)Util.getCat().

elementAt(getRightLeafNum(top))).

Appendix A CLOC Encoding Implementation 121

add(cNum(top.right)).add(minInt(getLeftLeafNum(top),

getRightLeafNum(top)));

 }

 /**

 * Method used to find the minimum number according to the left and

 * right leaf numbers of a given subtree.

 * @param left the leaf number of the left subtree.

 * @param left the leaf number of the right subtree.

 * @return a BigInteger representation of the minimum number.

 */

 private BigInteger minInt(int left, int right){

 if(left==1) return BigInteger.ZERO;

 return minInt(left-1,right+1).add(((BigInteger)

Util.getCat().elementAt(left-1)).

multiply((BigInteger)Util.getCat().elementAt(right+1)));

 }

 /**

 * Method used to get the leaf number of a given subtree.

 * @param top PPCTTreeNode

 * top must be the root of subtree

 * @return a integer representation of the leaf number.

 */

 private int getLeafNum(PPCTTreeNode top){

 if (top.right == top) return 0;

 PPCTTreeNode left,right;

 int num=0;

 left = top;

 right = top;

 while(right.right!=right) right = right.right;

 while(left.right !=left) left = left.left;

 while(left!=right) {

 right=right.left;

122 Appendix A CLOC Encoding Implementation

 num++;

 }

 return num+1;

 }

 /**

 * Method used to get the leaf number of the left subtree

 * @param top PPCTTreeNode

 * top must be the root of subtree

 * @return a integer representation of the leaf number.

 */

 private int getLeftLeafNum(PPCTTreeNode top){

 if (top.right == top) return 0;

 if(top.left.right == top.left) return 1;

 return getLeafNum(top.left);

 }

 /**

 * Method used to get the leaf number of the right subtree

 * @param top PPCTTreeNode

 * top must be the root of subtree

 * @return a integer representation of the leaf number.

 */

 private int getRightLeafNum(PPCTTreeNode top){

 if (top.right == top) return 0;

 if(top.right.right == top.right) return 1;

 return getLeafNum(top.right);

 }

}

Appendix A CLOC Encoding Implementation 123

/**

 * This class is used for creating some static variables and also for debugging.

 */

public class Util{

 private static Vector cat,mid;

 public static int MAXLEAF = 150;

 public static final boolean DBG = false;

 public static final boolean DBG1 = false;

 public static int nodeNo=0;

 /**

 * Create a new Util object, meanwhile setup some variables

 * to be used to speed up operation.

 */

 public Util(){

 setupVec();

 }

 /**

 * Setup Catalan number vector and min_int vector for calculating

 * to be used in other class to speed up progress

 */

 public static void setupVec(){

 long t1 = System.currentTimeMillis();

 cat = new Vector();

 cat.setSize(MAXLEAF + 1);

 cat.setElementAt(BigInteger.ZERO, 0);

 cat.setElementAt(BigInteger.ONE, 1);

 for(int i = 2; i <= MAXLEAF; i++)

 {

 BigInteger biginteger = ((BigInteger)cat.

elementAt(i - 1)).multiply(BigInteger.valueOf

124 Appendix A CLOC Encoding Implementation

(2 * (2 * i - 3))).divide(BigInteger.valueOf(i));

 cat.setElementAt(biginteger, i);

 }

 mid = new Vector();

 mid.setSize(MAXLEAF + 1);

 mid.setElementAt(new Vector(), 0);

 mid.setElementAt(new Vector(), 1);

 for(int j = 2; j <= MAXLEAF; j++)

 {

 Vector temp = new Vector();

 temp.setSize(j);

 temp.setElementAt(BigInteger.ZERO, 0);

 for(int k = 1; k < j; k++)

 {

 BigInteger biginteger = (((BigInteger)cat.elementAt(k)).

multiply((BigInteger)cat.elementAt(j - k))).

add((BigInteger)temp.elementAt(k - 1));

 temp.setElementAt(biginteger, k);

 }

 mid.setElementAt(temp, j);

 }

 }

 /**

 * method used to get catalan number vector

 * @return a Vector representation of catalan number.

 */

 public static Vector getCat(){

 if (cat==null) setupVec();

 return cat;

 }

 /**

Appendix A CLOC Encoding Implementation 125

 * method used to get minimum integer vector

 * @return a Vector mid.

 */

 public static Vector getMid(){

 if (mid==null) setupVec();

 return mid;

 }

}

126 Appendix A CLOC Encoding Implementation

/**

 * This class is used to create a dynamic watermark tree structure. Based on a given

 * watermark number and given leaf number.

 * Because the value range of integers or longs is relatively small, BigInteger is used.

 */

public class TreeBuilder

{

 public Leaf origin; // the origin of a watermark tree

 /**

 * Create a watermark tree structure according to given leaf number

 * and given watermark number.

 * If the wm is not too large to encode in a tree with nodeNo leaves,

 * then a tree that encoding wm is built at origin.

 *

 * @param nodeNo an integer

 * nodeNo is the number of leaves in the tree to be built

 * @param wm a BigInteger

 * wm is the watermark index of the tree to be built

 */

 public void createTree(int nodeNo, BigInteger wm)

 {

 if(wm.compareTo((BigInteger)Util.getCat().elementAt(nodeNo)) > 0){

 System.out.println("The watermark number is out of range.");

}else{

 origin = buildTree(nodeNo,wm);

}

 }

 /**

 * Actual process to create a watermark structure according to given leaf number

 * and given watermark number

 * @param i an integer

 * i is the number of leaves for building the tree or subtree.

 * @param wm a BigInteger

Appendix A CLOC Encoding Implementation 127

 * wm is the watermark number for building the tree or subtree.

 * @return a Leaf representation of the origin of PPCT subtree.

 */

 private Leaf buildTree(int i, BigInteger biginteger)

 {

 if(i == 1 && biginteger.compareTo(BigInteger.ZERO) == 0){

 Leaf tree = new Leaf();

 Leaf leaf = new Leaf();

 tree.left = leaf;

 tree.right = leaf;

 leaf.left = tree;

 leaf.right = leaf;

 return tree;

 }else if(i == 2 && biginteger.compareTo(BigInteger.ZERO) == 0){

 Leaf tree = new Leaf();

 Leaf leaf1 = new Leaf();

 Leaf leaf2 = new Leaf();

 Leaf leaf3 = new Leaf();

 tree.left = leaf3;

 tree.right = leaf1;

 leaf1.left = leaf2;

 leaf1.right = leaf3;

 leaf2.left = tree;

 leaf2.right = leaf2;

 leaf3.left = leaf2;

 leaf3.right = leaf3;

 return tree;

 }else if(i < 3){

 return null;

 }

 int k = 1;

 Vector temp= (Vector)Util.getMid().elementAt(i);

 while(biginteger.compareTo((BigInteger)temp.elementAt(k))>=0) {

 if(k == temp.size()) {

128 Appendix A CLOC Encoding Implementation

 return null;

 }

 k++;

 }

 biginteger = biginteger.subtract((BigInteger)temp.elementAt(k - 1));

 Leaf leaf1 = buildTree(k, (biginteger.divide((BigInteger)

Util.getCat().elementAt(i - k))));

 Leaf leaf2 = buildTree(i - k, (biginteger.remainder(

(BigInteger)Util.getCat().elementAt(i - k))));

 return merge(leaf1, leaf2);

 }

 /**

 * Process to merge two PPCT into one.

 * @param tree1 a Leaf to use for the origin of the first subtree.

 * @param tree2 a Leaf to use for the origin of the second subtree.

 * @return a Leaf representation of the origin of merged PPCT subtree.

 */

 private Leaf merge(Leaf tree1, Leaf tree2)

 {

 if(tree1 == null || tree2 == null) return null;

 Leaf left = tree2.right;

 while(left.right!=left) left = left.left;

 left.left=tree1.left;

 tree1.left = tree2.left;

 tree2.left = tree1.right;

 tree1.right = tree2;

 return tree1;

 }

}

Appendix B.

Experimental Data of Integer
Frequency in PPCT Structures

The data listed in this appendix are part of our experimental result showing the

probabilities of integers that can be found in PPCTs with 50, 100, 200, 300, 500 nodes. The

“Number of nodes in PPCT” indicates the size of the PPCTs. The integer values on the left-

side shows the integers that can be found in the PPCTs. The experimental result is shown in

the range of 0 to 100, where 100 mean the estimated probability is 100%.

integer Number of nodes in PPCT

50 100 200 300 500

0 100 100 100 100 100

1 100 100 100 100 100

2 100 100 100 100 100

3 100 100 100 100 100

4 100 100 100 100 100

5 100 100 100 100 100

6 100 100 100 100 100

7 100 100 100 100 100

8 100 100 100 100 100

9 82 100 100 100 100

10 96 100 100 100 100

11 96 100 100 100 100

integer Number of nodes in PPCT

50 100 200 300 500

12 91 100 100 100 100

13 99 100 100 100 100

14 97 100 100 100 100

15 94 100 100 100 100

16 95 100 100 100 100

17 99 100 100 100 100

18 100 100 100 100 100

19 93 100 100 100 100

20 99 100 100 100 100

21 98 100 100 100 100

22 93 100 100 100 100

23 53 77 93 98 100

130 Appendix B Experimental Data of Integer Frequency in PPCT Structures

integer Number of nodes in PPCT

50 100 200 300 500

24 60 94 99 100 100

25 60 97 100 100 100

26 67 94 100 100 100

27 75 97 100 100 100

28 63 95 100 100 100

29 72 96 99 100 100

30 63 98 100 100 100

31 78 100 100 100 100

32 76 97 100 100 100

33 67 92 100 100 100

34 71 97 100 100 100

35 76 98 100 100 100

36 83 100 100 100 100

37 65 97 99 100 100

38 74 98 100 100 100

39 70 96 100 100 100

40 60 99 100 100 100

41 74 93 100 100 100

42 76 97 100 100 100

43 75 97 100 100 100

44 78 97 100 100 100

45 75 97 99 100 100

46 77 99 99 100 100

47 71 96 100 100 100

48 72 94 100 100 100

49 79 98 100 100 100

50 73 91 100 100 100

51 70 100 100 100 100

52 78 98 100 100 100

53 68 95 100 100 100

54 66 96 100 100 100

55 71 97 100 100 100

integer Number of nodes in PPCT

50 100 200 300 500

56 82 97 100 100 100

57 68 97 100 100 100

58 71 93 100 100 100

59 77 95 99 100 100

60 77 100 100 100 100

61 72 98 100 100 100

62 72 95 99 100 100

63 74 95 99 100 100

64 51 90 98 100 100

65 21 44 77 95 99

66 30 59 85 98 100

67 27 62 88 97 100

68 34 64 95 98 100

69 39 75 97 99 100

70 37 63 87 98 100

71 31 78 87 98 100

72 29 73 93 100 100

73 39 74 92 100 100

74 40 71 92 98 100

75 34 71 96 100 100

76 44 76 94 99 100

77 40 78 98 98 100

78 51 83 99 100 100

79 31 58 87 96 100

80 27 74 93 100 100

81 37 75 93 99 100

82 30 74 93 98 100

83 42 72 91 100 100

84 31 77 95 98 100

85 36 80 89 99 100

86 40 69 96 100 100

87 36 80 92 99 100

Appendix B Experimental Data of Integer Frequency in PPCT Structures 131

integer Number of nodes in PPCT

50 100 200 300 500

88 42 75 92 99 100

89 33 72 94 99 100

90 37 80 97 100 100

91 43 80 93 100 100

92 43 78 98 100 100

93 32 74 94 99 100

94 39 77 96 98 100

95 39 69 96 99 100

96 35 68 95 99 100

97 36 75 95 100 100

98 45 75 94 99 100

99 41 73 94 98 100

100 44 70 95 100 100

105 44 84 97 100 100

110 33 74 97 100 100

115 47 66 89 99 100

120 51 78 96 99 100

125 38 68 98 98 100

130 47 70 93 100 100

135 44 75 95 100 100

140 44 72 93 98 100

145 42 77 100 98 100

150 37 81 94 100 100

155 44 70 92 98 100

160 37 80 99 100 100

165 39 65 97 98 100

170 50 83 93 100 100

175 43 70 100 99 100

180 43 69 93 100 100

185 38 81 97 98 100

190 35 71 90 96 100

195 40 73 90 99 100

integer Number of nodes in PPCT

50 100 200 300 500

200 14 36 64 82 97

210 19 52 86 89 99

220 18 40 67 84 98

230 28 46 69 88 98

240 14 37 74 86 93

250 18 39 72 84 98

260 14 44 70 94 97

270 17 47 76 93 98

280 17 51 72 96 99

290 18 44 73 89 98

300 14 48 76 93 96

310 22 41 74 90 100

320 26 53 73 93 98

330 16 35 71 94 95

340 18 49 64 92 100

350 19 42 69 86 96

360 21 42 78 89 98

370 27 53 80 88 97

380 18 43 80 87 99

390 16 53 70 87 98

400 13 41 73 92 100

410 23 58 74 88 98

420 20 50 72 86 98

430 18 48 79 91 98

440 24 48 68 87 94

450 16 41 71 90 100

460 21 44 83 90 97

470 17 45 77 92 99

480 12 45 78 91 98

490 16 46 81 91 98

500 19 54 68 90 98

550 22 56 79 88 98

132 Appendix B Experimental Data of Integer Frequency in PPCT Structures

integer Number of nodes in PPCT

50 100 200 300 500

600 16 48 67 93 99

650 5 21 37 64 84

700 10 23 47 64 80

750 9 27 64 72 91

800 5 21 44 66 74

850 5 25 45 68 78

900 10 25 50 70 87

1000 15 21 46 61 91

Appendix C.

The output of the generated Source
Code in testing

 getConstant(rct, 0,2,m1,1,1,m2))

 public double getConstant(Node RCT, int path1, int depth1, Node mask1, int path2,
int depth2, Node mask2){

//The entry point of the decoding process.

 int firstInt, secondInt;

 Node CS1 = getSubstructure(RCT, path1, depth1, mask1);

 Node CS2 = getSubstructure(RCT, path2, depth2, mask2);

 firstInt = decodeMethod(CS1);

 secondInt = decodeMethod(CS2);

 return convertTwoDigitsToDouble(firstInt, secondInt);

 }

 public Node getSubstructure(Node RCT, int path, int depth, Node mask){

 //control the process of getting the substructure

//return the substructure that can be used to retrieve integer value

 Node RCS = getSubstructureRoot(RCT.right, path, depth);

 return getCS (RCS, mask);

 }

 public Node getSubstructureRoot(Node RCT, int path, int depth){

 // return the root of the substructure in the constant tree

 Node result = RCT;

134 Appendix C The output of the generated Source Code in testing

 int temp = path; // create a local copy of integer path

 for(int i = 0; i<depth; i++){

 int least = temp&1; //get the least significant bit

 if (least == 1) result = result.right; //goto the right child

 else result = result.left; //goto the left child

 temp = temp>>1; //shift right

 }

 return result;

 }

 public Node getCS(Node RCS, Node mask){

 //return the substructure when the root of the substructure and

//the mask tree is known.

// RCS: root of the constant substructure

 Node tempCS = mask;

// create a local copy of mask to be the initial structure of CS

 Node current = tempCS.right;

//create a reference to the root of tempCS.

//because node tempCS is the origin of the PPCT.

 checkNode(RCS, current);

 return tempCS;

 }

 public void checkNode(Node RCS, Node current){

 // modify the tempCS structure to be the CS (constant substructure) that

// can be used to retrieve integer

 if(RCS.right!=RCS && current.right !=current){

 checkNode(RCS.right, current.right);

//recursively check and modify the right child

 checkNode(RCS.left, current.left);

//recursively check and modify the left child

 }else if (RCS.right==RCS){

 Node temp = current;

 while (temp.right!=temp) temp = temp.right;

 Node temp2 = temp;

Appendix C The output of the generated Source Code in testing 135

 while (temp2.left !=temp) temp2 = temp2.left;

 temp2.left = current;

 temp = current;

 while (temp.right !=temp) temp = temp.left;

 current.left =temp.left;

 current.right = current;

 //cut off the child of current when RCS is leaf, current node should

 //be corresponding to the leaf of the CS.

 }

 // when current is leaf, do not need to do anything

 }

 public double convertTwoDigitsToDouble(int firstInt, int secondInt){

 return firstInt + secondInt * 0.1;

 }

 //the methods below are used to decode a PPCT to an integer representation.

 public int decodeMethod(Node top){

 int l = getLeafNum(top.right);

 int sum = 0;

 for (int j = 1; j< l; j++){

 sum+=((Integer)getCat().elementAt(j)).intValue();

 }

 return cNum(top.right)+sum;

 }

 private int cNum(Node top){

 if(top.right == top) return 0;

 return cNum(top.left)*((Integer)getCat().elementAt(

getRightLeafNum(top))).intValue()+(cNum(top.right))+(

minInt(getLeftLeafNum(top),getRightLeafNum(top)));

 }

 private int minInt(int left, int right){

136 Appendix C The output of the generated Source Code in testing

 if(left==1) return 0;

 return minInt(left-1,right+1)+(((Integer)getCat().elementAt(

left-1)).intValue()*((Integer)getCat().elementAt(right+1)).intValue());

 }

 private int getLeafNum(Node top){

 if (top.right == top) return 0;

 Node left,right;

 int num=0;

 left = top;

 right = top;

 while(right.right!=right) right = right.right;

 while(left.right !=left) left = left.left;

 while(left!=right) {

 right=right.left;

 num++;

 }

 return num+1;

 }

 private int getLeftLeafNum(Node top){

 if (top.right == top) return 0;

 if(top.left.right == top.left) return 1;

 return getLeafNum(top.left);

 }

 private int getRightLeafNum(Node top){

 if (top.right == top) return 0;

 if(top.right.right == top.right) return 1;

 return getLeafNum(top.right);

 }

 public static void setupVec(){

 cat = new Vector();

 cat.setSize(MAXLEAF + 1);

 cat.setElementAt(new Integer(0), 0);

 cat.setElementAt(new Integer(1), 1);

Appendix C The output of the generated Source Code in testing 137

 for(int i = 2; i <= MAXLEAF; i++)

 {

 int b = ((Integer)cat.elementAt(i - 1)).intValue()*(2 * (2 * i - 3))/i;

 cat.setElementAt(new Integer(b), i);

 }

 mid = new Vector();

 mid.setSize(MAXLEAF + 1);

 mid.setElementAt(new Vector(), 0);

 mid.setElementAt(new Vector(), 1);

 for(int j = 2; j <= MAXLEAF; j++)

 {

 Vector temp = new Vector();

 temp.setSize(j);

 temp.setElementAt(new Integer(0), 0);

 for(int k = 1; k < j; k++)

 {

 int b = (((Integer)cat.elementAt(k)).intValue()*

((Integer)cat.elementAt(j - k)).intValue())+

((Integer)temp.elementAt(k - 1)).intValue();

 temp.setElementAt(new Integer(b), k);

 }

 mid.setElementAt(temp, j);

 }

 }

 public static Vector getCat(){

 if (cat==null) setupVec();

 return cat;

 }

 private static Vector cat,mid;

138 Appendix C The output of the generated Source Code in testing

 public static int MAXLEAF = 20;

}

Bibliography

[Brown 2000] A. W. Brown, Large-Scale, Component-Based Development. Princes Hall,

2000.

[Burke, Carini, et al. 1999] M. Burke, P. Carini, J.-D. Choi, and M. Hind, "Interprocedural

pointer alias analysis," ACM Transactions on Programming Languages & Systems,

vol. 21 (4), pp. 848-94, Jul 1999.

[Business Software Alliance 2001] Business Software Alliance, "Sixth annual BSA global

software piracy study," <http://www.bsa.org/resources/2001-05-21.55.pdf>, undated,

(Accessed: 6 Nov 2001).

[Byrne 1992] E. J. Byrne, "A conceptual foundation for software re-engineering," presented

at Conference on Software Maintenance, Los Alamitos, CA, USA, 1992.

[Chikofsky and Cross 1990] E. J. Chikofsky and J. H. Cross, "Reverse engineering and

design recovery: A taxonomy," IEEE Software, vol. 7 (1), pp. 13-17 1990.

[Chuan-Fu and Wen-Shyong 2000] W. Chuan-Fu and H. Wen-Shyong, "Image refining

technique using digital watermarking," IEEE Transactions on Consumer Electronics,

vol. 46 (1), pp. 1-5 2000.

[Collberg Page] C. Collberg, "Sandmark homepage," <http://www.cs.arizona.edu/sandmark/>,

undated, (Accessed: 20 Jan 2002).

[Collberg 2002] C. Collberg, "Hacking sandmark," private communication, 10 Jan 2002.

[Collberg and Thomborson 1999] C. Collberg and C. Thomborson, "Software watermarking:

models and dynamic embeddings," presented at POPL '99. 26th ACM SIGPLAN-

SIGACT. Symposium on Principles of Programming Languages. ACM, New York,

NY, USA, 1999.

140 Bibliography

[Collberg and Thomborson 2000] C. Collberg and C. Thomborson, "Watermarking, tamper-

proofing, and obfuscation - tools for software protection," Computer Science

Department Technical Report 2000-03, University of Arizona(USA), 2000.

[Collberg, Thomborson, et al. 1997] C. Collberg, C. Thomborson, and D. Low, "A taxonomy

of obfuscating transformations," Computer Science Department Technical Report 148,

University of Auckland(New Zealand), Jul 1997.

[Collberg, Thomborson, et al. 1998a] C. Collberg, C. Thomborson, and D. Low, "Breaking

abstractions and unstructuring data structures," presented at IEEE International

Conference on Computer Languages, Chicago, May 1998.

[Collberg, Thomborson, et al. 1998b] C. Collberg, C. Thomborson, and D. Low,

"Manufacturing cheap, resilient, and stealthy opaque constructs," in Conference

Record of POPL '98: 25th ACM SIGPLAN-SIGACT. ACM, New York, NY, USA,

1998.

[Collberg and Townsend 2001] C. Collberg and G. Townsend, "Sandmark system source

code," <http://www.cs.arizona.edu/sandmark/sandmark-0.2-src.tgz>, undated,

(Accessed: 10 Nov 2001).

[Collberg, Townsend, et al. 2001] C. Collberg, G. Townsend, and C. Thomborson,

"SandMark - a tool for the study of software protection," private communication, Oct

2001.

[Curtis 1994] D. Curtis, "Software piracy and copyright protection," presented at Wescon/94:

Idea/Microelectronics, New York, NY, USA, 1994.

[Davidson and Myhrvold 1996] R. L. Davidson and N. Myhrvold, "Method and system for

generating and auditing a signature for a computer program," US Patent 5,559,884,

Microsoft Corporation, Sep 1996.

[Dershowitz and Zaks 1980] N. Dershowitz and S. Zaks, "Enumerations of ordered trees,"

Discrete Math, vol. 31 (1), pp. 9-28 1980.

[EEGGS] EEGGS.COM, "The Easter Egg Archive," <http://www.eeggs.com>, undated,

(Accessed: 6 Nov 2001).

[Gosling, Joy, et al. 2000] J. Gosling, B. Joy, and G. Steele, The Java Language Specification.

Second ed: Addison-Wesley, 2000.

Bibliograph 141

[Goulden and Jackson 1983] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration.

New York: Wiley, 1983.

[Hartung and Girod 1998] F. Hartung and B. Girod, "Digital watermarking of uncompressed

and compressed video," Signal Processing, vol. 66 (3), pp. 283-301, May 1998.

[Heineman and Councill 2001] G. T. Heineman and W. T. Councill, "Component-based

software engineering : putting the pieces together," Addison-Wesley, 2001.

[Hoffer, George, et al. 1999] J. A. Hoffer, J. George, and J. Valacich, Modern Systems

Analysis and Design. Second ed: Addison-Wesley, 1999.

[Holmes 1994] K. Holmes, "Computer software protection," US Patent 5,287,407,

International Business Machines, Feb 1994.

[Jha 2002] S. Jha, private communication, 18 Jan 2002.

[Jokipii] E. Jokipii, "Jobe - The Java obfuscator," <http://www.meurrens.org/ip-

Links/Java/CodeEngineering/jobe-doc.html>, undated, (Accessed: 20 Feb 2002).

[Kahn 1996] D. Kahn, "The history of steganography," presented at Information Hiding. First

International Workshop Proceedings. Springer-Verlag, Berlin, Germany, 1996.

[Kamin, Mickunas, et al. 1998] Samuel N. Kamin, M. Dennis Mickunas and Edward M.

Reingold, An introduction to computer science using Java. WCB/McGraw-Hill, 1998.

[Kirovski and Malvar 2001] D. Kirovski and H. Malvar, "Robust spread-spectrum audio

watermarking," in 2001 IEEE International Conference on Acoustics, Speech, and

Signal Processing, Piscataway, NJ, USA, 2001.

[Klassmaster] Zelix Pty Ltd, "It's a 2nd Generation Java Obfuscator,"

<http://www.zelix.com/klassmaster/feature3.html>, 2001, (Accessed: 20 Feb 2002).

[Kouznetsov] P. Kouznetsov, "Jad - The fast Java decompiler,"

<http://kpdus.tripod.com/jad.html>, 20 Feb 2002, (Accessed: 20 Feb 2002).

[Lindholm and Yellin 1997] T. Lindholm and F. Yellin, The Java Virtual Machine

Specification. Addison-Wesley, 1997.

[Low] D. Low, "Protecting Java code via code obfuscation,"

<http://www.acm.org/crossroads/xrds4-3/codeob.html>, 25 Jan 2001, (Accessed: 28

Jan 2001).

142 Bibliography

 [Mann and Borusan 2001] S. Mann and A. Borusan, "Towards a component concept for

continuous software engineering," <http://cis.cs.tu-berlin.de/Lehre/WS-

0102/Sonstiges/esi-pages/Encoder_conception_tr5500.pdf>, undated, (Accessed: 20

Dec 2001).

[Martin and Kendall 2000] F. Martin and S. Kendall, UML Distilled. Second ed: Addison-

Wesley, 2000.

[Moskowitz and Cooperman 1996] S. A. Moskowitz and M. Cooperman, "Method for

stegacipher protection of computer code," US Patent 5,745,569, The Dice Company,

Jan 1996.

[Palsberg Source] J. Palsberg, "JavaWiz source code," <

http://www.cs.purdue.edu/homes/madi/wm/JavaWiz.tar.gz>, undated, (Accessed: 20

Jan 2002).

[Palsberg SWM] J. Palsberg, "Software watermarking,"

<http://www.cs.purdue.edu/homes/madi/wm/>, undated, (Accessed: 20 Oct 2001).

[Palsberg, Krishnaswamy, et al. 2000] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, S.

Qiuyun, and Y. Zhang, "Experience with software watermarking," presented at 16th

Annual Computer Security Applications Conference (ACSAC'00). IEEE Comput.

Soc., Los Alamitos, CA, USA, 2000.

[Ping Wah and Memon 2001] W. Ping Wah and N. Memon, "Secret and public key image

watermarking schemes for image authentication and ownership verification," IEEE

Transactions of Image Processing, vol. 10 (10), pp. 1593-601, Oct 2001.

[Proebsting and Watterson 1997] T. A. Proebsting and S. A. Watterson, "Krakatoa:

decompilation in Java (does bytecode reveal source?)," presented at Third USENIX

Conference on Object-Oriented Technologies and Systems (COOTS). USENIX Assoc,

Berkeley, CA, USA, 1997.

[Rational Software] Rational Software Corporation, "Rational Rose,"

<http://www.rational.com/products/rose/>, undated, (Accessed: 31 Jan 2002).

[Samson 1994] P. R. Samson, "Apparatus and method for serializing and validating copies of

computer software," US Patent 5,287,408, Autodesk Inc., Feb 1994.

[Sommerville 1996] I. Sommerville, Software Engineering. Fifth ed: Addison-Wesley, 1996.

Bibliograph 143

[Sun Microsystems REF] Sun Microsystems, "Reflection,"

<http://java.sun.com/j2se/1.3/docs/guide/reflection/>, undated, (Accessed: 20 Feb

2002).

[Tip 1995] F. Tip, "A survey of program slicing techniques," Journal of Programming

Languages, vol. 3 (3), pp. 121-89, Sep 1995.

[Venkatesan, Vazirani, et al. 2001] R. Venkatesan, V. Vazirani, and S. Sinha, "A graph

theoretic approach to software watermarking," presented at 4th International

Information Hiding Workshop, Pittsburgh, PA, USA, Apr 2001.

[Wang 2000] C. Wang, "A security architecture for survivability mechanisms," The Faculty

of the School of Engineering, The University of Virginia(USA), 2000.

[Webopedia Codec] webopedia.lycos.com, "The lycos tech glossary definition - CODEC"

<http://www.webopedia.com/TERM/c/codec.html>, 25 Jan 1998, (Accessed: 15 Feb

2002).

[Webopedia DW] webopedia.lycos.com, "The lycos tech glossary definition - digital

watermark" <http://webopedia.lycos.com/TERM/d/digital_watermark.html>, 25 Jan

1998, (Accessed: 15 Feb 2002).

	Abstract
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Survey of Watermarking Techniques
	Chapter 3: Constant Encoding
	Chapter 4: Overview of Our Prototyping
	Chapter 5: Developing the JSafeMark Tester and Codec Library
	Chapter 6: Developing a JSafeMark Encoder
	Chapter 7: JSafeMark in Practice
	Chapter 8: Conclusion
	Appendix A: CLOC Encoding Implementation
	Appendix B: Experimental Data of Integer Frequency in PPCT Structures
	Appendix C: The output of the generated Source Code in testing
	Bibliography

