
Concepts and Techniques in

Software Watermarking and

Obfuscation

William Feng Zhu

August 2007

Supervisor: Prof. Clark Thomborson

A thesis submitted in partial fulfillment of

the requirements of Doctor of Philosophy

in Computer Science

The Department of Computer Sciences

The University of Auckland

New Zealand

2

ABSTRACT

With the rapid development of the internet, copying a digital document is so easy

and economically affordable that digital piracy is rampant. As a result, software

protection has become a vital issue in current computer industry and a hot research

topic.

Software watermarking and obfuscation are techniques to protect software from

unauthorized access, modification, and tampering. While software watermarking tries

to insert a secret message called software watermark into the software program as

evidence of ownership, software obfuscation translates software into a semantically-

equivalent one that is hard for attackers to analyze. In this thesis, firstly, we present

a survey of software watermarking and obfuscation. Then we formalize two impor-

tant concepts in software watermarking: extraction and recognition and we use a

concrete software watermarking algorithm to illustrate issues in these two concepts.

We develop a technique called the homomorphic functions through residue numbers

to obfuscate variables and data structures in software programs. Lastly, we explore

the complexity issues in software watermarking and obfuscation.

i

ii

Acknowledgment

It has taken nine years to officially complete my doctoral study. This is a hard

experience, but it is also a fruitful period. I want to use this opportunity to thank all

people who helped me in this way or that way.

I would like to thank my supervisor, Professor Clark Thomborson, for valuable

guidance and financial support. I have learnt a lot from him. I would also like to thank

the advisors for my doctoral study at the University of Auckland – Professor Fei-Yue

Wang, Professor Christian Calude, and Doctor Michael Dinneen. The Department

of Computer Science also financially supported my doctoral study at Auckland. It

deserves my many thanks.

I was fortunate to be part of a very active research group here at Auckland. I have

worked closely with and learnt a lot from several students, postdoctorals and faculty

members in our group.

Especially, I would like to thank my friends. Mr. Fred He and his wife for their

strong support for my study. Dr. Mingkuan Liu also helped me a lot. Thanks also

to other friends who encouraged me and helped me.

I would also like to express my gratitude towards my daughter and my family.

Their support always makes me overcome every difficulty.

I am also indebted to the following people for their help in my academic ca-

reer: Huacan He, Dehuang Chen, Jiarui Wu, Huaxiao Zhang, Cheng Ge, Yiyu Yao,

iii

iv

Xindong Wu, Daniel Zeng, Yixin Zhong, T. Y. Lin, Qing Liu, Jingtao Yao, Guoyin

Wang, Weizhi Wu, Guilong Liu, Min Xiao, Zhongjin Cheng, Rong Su, Xuekong Yang,

Jianxin Feng, Guoliang Dai, Yizhong Zhan, Fangcai Liu, Ning Lu, and Jishou Ruan.

v

To My Dear Daughter

Miss Ruolin Zhu

vi

Contents

1 Introduction 1

1.1 Software Security and Protection . 1

1.2 Software Watermarking and Obfuscation 4

1.3 Goal, Structure and Contribution . 4

I Software Watermarking 7

2 Survey of Software Watermarking 9

2.1 Overview of Software Watermarking 10

2.2 Taxonomy of Software Watermark . 11

2.2.1 Classification by Purpose . 12

2.2.2 Classification by Extracting Technique 12

2.2.3 Robust and Fragile Software Watermark 13

2.2.4 Visible and Invisible Software Watermark 13

2.2.5 Blind and Informed Software Watermark 14

2.2.6 Tamperproofing Software Watermark 14

2.3 Attacks on Software Watermark . 14

2.4 Protection of Software Watermark . 15

2.5 Evaluation Criteria of Software Watermark 16

vii

viii CONTENTS

2.6 Research Platforms for Software Watermarking 16

2.7 Software Watermarking Algorithms 17

2.7.1 Basic Block Reordering Algorithms 17

2.7.2 Register Allocation Algorithms 18

2.7.3 Spread-spectrum Algorithms 18

2.7.4 Opaque Predicate Algorithms 19

2.7.5 The Threading Algorithm . 22

2.7.6 The Abstract Interpretation Algorithm 22

2.7.7 The Metamorphic Algorithm 22

2.7.8 Dynamic Path Algorithm . 23

2.7.9 The Mobile Agent Watermarking 23

2.7.10 Graph-based Algorithms . 23

2.7.11 Birthmarks . 25

2.8 Complexity Problems in Software Watermarking 26

2.9 Conclusion . 29

3 Extraction 31

3.1 Overview . 32

3.2 Embedding . 33

3.3 Extracting . 42

3.4 Representative Extracting . 49

3.5 A Software Watermark Embedding and Extracting System 54

3.6 Conclusions . 55

4 Recognition 57

4.1 Recognition . 58

4.1.1 Recognitions and Partial Recognitions 58

CONTENTS ix

4.1.2 Blind Recognitions . 65

4.2 A Software Watermark Embedding and Recognition System 67

4.3 Conclusions . 68

II Software Obfuscation 71

5 Survey of Software Obfuscation 73

5.1 Why Obfuscate Software? . 74

5.2 Definition of Software Obfuscation 75

5.3 Taxonomy of Software Obfuscation 75

5.4 Criteria of Software Obfuscation . 77

5.5 Status of Software Obfuscation . 78

5.6 Conclusion . 79

6 Homomorphic Functions 81

6.1 Basic Concepts about Residue Numbers 82

6.2 One-dimensional Homomorphic Obfuscations 85

6.2.1 Definition of Homomorphic Obfuscations 85

6.2.2 Examples of Homomorphic Obfuscations 86

6.2.3 Representation of Homomorphic Obfuscations 87

6.3 K-dimensional Homomorphic Obfuscations 89

6.3.1 Basic Definitions . 89

6.3.2 Representation of Homomorphic Obfuscations 90

6.4 Homomorphic Functions and Orders 93

6.5 Division of Integers by a Constant . 94

6.6 Division of Integers by Several Constants 96

6.7 Conclusion . 97

x CONTENTS

7 Application of Homomorphic Function 99

7.1 Array Transformations . 99

7.1.1 Array Index Change . 100

7.1.2 Array Folding and Flattening 100

7.2 Application of Homomorphic Function to Arrays 100

7.2.1 Index Change . 101

7.2.2 Index and Dimension Change 101

7.2.3 Array Folding . 103

7.2.4 Array Flattening . 104

7.3 Conclusions . 106

III Conclusions and Future Work 107

8 Conclusions and Future Work 109

8.1 Conclusions . 109

8.1.1 Software Watermarking . 110

8.1.2 Software Obfuscation . 111

8.1.3 Complexity and Security . 112

8.2 Future Work . 113

8.2.1 Combination of Software Watermarking and Obfuscation . . . 113

8.2.2 Applications of Rough Set Theory to Software Security 113

9 References 115

A Publications 139

B Academic services 145

Chapter 1

Introduction

With the rapid development of the Internet, copying a digital document is so easy and

economically affordable that digital piracy is rampant in the world [65]. According

to a report [16] of the Business Software Alliance (BSA) and IDC in 2003, world

software piracy resulted in lost revenue of nearly 30 billion dollars. The piracy rate

is estimated to be as high as 92 percent in some countries. As a result, software

protection has become a vital issue in current computer industry and a hot research

topic [45, 46]. This dissertation focuses on software watermarking and obfuscation,

two interconnected techniques of software protection.

1.1 Software Security and Protection

According to Main and Oorschot [77], computer security can be classified as the

following three types.

1. Data security, which is concerned with the confidentiality and integrity of data

in transit and storage.

2. Network security, which aims to protect network resources, devices, and services.

3. Software security, which protects software from unauthorized access, modifica-

1

2 CHAPTER 1. INTRODUCTION

tion, and tampering.

Computer attacks can be divided into the following three categories [77]:

1. Network threat: Applications such as browsers and mail clients are vulnerable

to remote external attack.

2. Insider threat: In this model, attackers have some privileges on either the

network or hardware for the applications.

3. Untrusted host threat: In this setting, applications are subject to attacks from

the operating system, kernel, and other application systems on the untrusted host

machine.

Legal measures and technical approaches exist for software protection. Legal pro-

tection has become increasingly important since more products of software are dis-

tributed without a signed license agreement. Legal measures are laws concerning

copyright, patent, registration and license. Software copyright protects the exclusive

rights of a software developer to reproduce or copy, adapt, distribute and publicly

perform the work. Generally, copyright laws protect the form of expression of an idea,

but not the idea itself. With respect to software, this typically means that it protects

a computer program but not the methods and algorithms within the program. Thus,

source code and object code are protected against literal copying. While software

copyright protects only the expression of an idea in software, software patent laws

protect the underlying idea and features of software. Even independent reinvention of

the same technique by others does not give them the right to use it. The protection

of software by registration has long been an accepted convention. In some countries,

registration initially secures legal rights and later use in the country maintains them.

A software license is a contract between a developer and a user of computer software.

It gives the user the privilege to use software in accordance with the conditions of

the license. That privilege might be revoked by the producer at any time, with or

without cause.

1.1. SOFTWARE SECURITY AND PROTECTION 3

While legal protection in a country generally can not be extended to other nations

and obtaining patent protection for software is relatively expensive, software produc-

ers and developers still seek technical measures to protect their software. Technical

approaches can be classified as hardware-based methods and software-based methods.

A dongle is a typical hardware-based method. It is a small hardware device that

plugs into the serial or USB port of a computer to ensure that only authorized users

can use certain software applications. Dongles are only used with expensive, high-

end software programs such as accounting and inventory management applications

and CAD systems. When a program that comes with a dongle starts, it firstly

checks the dongle for verification. If it does not find the dongle, the program quits.

Currently, this is the most reliable method of protecting software and is an approach

of preventing commercial software of high price from piracy.

The current software-based methods are code authentication, server side execution,

code encoding, software watermarking, and software obfuscation. Code authentica-

tion is efficient when authentication data are sent through network, but users have

complete code, which in theory can be mangled, thus authentication procedures can

be removed. For server side execution, software developer does not send final code to

users, but provide users the service of the software through executing whole or part of

the software on a remote server. It can be used only in presence of high availability of

broadband networks. Code encoding protects against tampering of programs and is

used very often. The main drawback of this technique is that decoder can be written

and used as a universal tool. Software watermarking tries to insert a secret message,

called software watermark, into software as the evidence of ownership of it [30, 181].

Software obfuscation translates software into a semantically-equivalent one that is

hard for attacker to analyze [33].

4 CHAPTER 1. INTRODUCTION

1.2 Software Watermarking and Obfuscation

For the first time, Davidson and Myhrvold presented a published software watermark-

ing algorithm in their patent [40]. The early works on software watermarking include

paper [52] and patents [85, 123], but the concepts in these works are preliminary and

informal. For the first time, Collberg et al. presented detailed definitions for software

watermarking [30, 31]. Since then, several new software watermarking algorithms

have been proposed [28, 92, 137].

As pioneers in software obfuscation, Collberg, Thomborson et al. explored this

research area in paper [28, 32, 33, 75]. These works include a detailed discussion

on definitions, problems, techniques, and criterion in software obfuscation. Based

on that analysis of alias in a program is an NP-hard problem, Wang et al. [138,

140] presented a software obfuscation method through global arrays and pointers.

Their techniques apply to programs written in a programming language such as C

which has pointers. For the first time, Barak et al. studied software obfuscation

based on a formal cryptographic model called virtual black box in paper [10]. They

presented several important impossibility results about software obfuscation. But

there still exist positive results for obfuscating point functions with a random oracle

in paper [76, 141].

1.3 Goal, Structure and Contribution

In this thesis, our goal is not to construct highly secured software watermarking

and obfuscation because this is an extremely difficult or even impossible problem as

discussed in Section 2.8. One of our goals is to provide a sound mathematical basis

for defining the fundamental process of software watermarking, namely, extraction

and recognition. As for software obfuscation, our goal is to correct an important

1.3. GOAL, STRUCTURE AND CONTRIBUTION 5

obfuscation algorithm by Chow et al., and show how to apply it to the obfuscation

of integer arrays.

The main content of this thesis is divided into two parts: Software watermarking

and software obfuscation.

Part 1 is devoted to discussing software watermarking. Chapter 2 is a detailed

survey of software watermarking. It overviews the problems, taxonomy, and current

techniques in this research subject. Chapter 3 discusses one of important concepts

in software watermarking, extraction. We formalize this essential concept in this

chapter. In this discussion, we develop a software watermarking with linear com-

plexity. Chapter 4 formalizes another important concept in software watermarking,

recognition. It is a tricky concept in software watermarking.

Part 2 focuses on software obfuscation. Chapter 5 is a brief survey of software ob-

fuscation. Chapter 6 is a detailed theory of homomorphic function and its application

to obfuscating variables. This method is based on residue number encoding. Further

applications of homomorphic function to obfuscating data structures are presented in

Chapter 7.

We address applications of rough sets theory to security issues, present some topics

for future research, and conclude in part 3.

In two appendixes, we list the publications and academic activities of the author

of this thesis during his doctoral study in the Department of Computer Sciences at

the University of Auckland.

The main contributions of this thesis are as follows:

1. Formalization of extraction and recognition, two essential concepts in software

watermarking.

2. Development of a software watermarking algorithm.

3. Establishment of a technique called homomorphic function to obfuscate vari-

ables and data structures.

6 CHAPTER 1. INTRODUCTION

The following issues involved in this thesis deserves further study:

1. Formalizing concepts of software watermarking from an information point of

view [86, 87, 88].

2. The security of homomorphic functions in software obfuscation.

3. Application of rough set theory to software watermarking and obfuscation.

Part I

Software Watermarking

7

Chapter 2

Survey of Software Watermarking

Software watermarking is a method of software protection by embedding secret infor-

mation into the text of software. We insert such secret information to claim ownership

of the software. This enables the copyright holders to establish the ownership of the

software by extracting this secret message from an unauthorized copy of this software

when an unauthorized use of this software occurs.

Software watermarking can be regarded as a branch of digital watermarking, which

started about 1954 [36]. Since the publication of a seminal work by Tanaka et al. in

1990 [131], digital watermarking has made considerable progress and become a pop-

ular technique for copyright protection of multimedia information. Research on soft-

ware watermarking started in the 1990s. The patent by Davidson and Myhrvold [40]

presented the first published software watermarking algorithm. The preliminary con-

cepts of software watermarking also appeared in paper [52] and patents [85, 123].

Collberg et al. presented detailed definitions for software watermarking [30, 31]. Un-

like other fields of digital watermarking such as multimedia watermarking, software

watermarking has not received sufficient attention yet.

Authors of papers [156, 181] have given brief surveys of software watermarking

9

10 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

research. This chapter presents an in-depth look at the state of the art of soft-

ware watermarking. From Section 2.1 to Section 2.6, we detail the current research

status of software watermarking – the taxonomy of software watermarks and soft-

ware watermark attack models. In Section 2.7, we give a detailed description of the

software watermarking algorithms currently available: basic block reordering algo-

rithms, register allocation algorithms, spread-spectrum algorithms, opaque predicate

algorithms, threading algorithm, abstract interpretation algorithm, metamorphic al-

gorithm, dynamic path algorithm, and graph-based algorithms. We especially focus

on the CT algorithm [25, 30] for software watermarking and the constant encoding

technique [55, 133] for protecting this watermarking.

2.1 Overview of Software Watermarking

Among the techniques that can protect software from piracy, software watermark-

ing [53, 31] is unique in that it does not aim to prevent software piracy from happen-

ing, but instead aim to show evidence of a piracy event. Multimedia watermarking

serves a similar purpose in defeating media piracy, such as protecting the copyright

of movies in DVD format. It is already a popular research topic in computer science.

Software watermarking is still a relatively new area and we believe it deserves more

attention. Though the goals of multimedia watermarking and software watermarking

are similar in that they insert some extra information into digitally-encoding objects,

their methodologies differ. In software watermarking, when a watermark is embedded

into a program, the operating semantics of the program must be preserved. In most

multimedia watermarking, there is no underlying operating sematics layer in which to

embed the watermark. Instead, the only possible “place” to hide a watermark is in the

appearance of the multimedia object. In software watermarking, such appearance-

modifying watermarks are possible and are called “Easter Eggs”. However there are

2.2. TAXONOMY OF SOFTWARE WATERMARK 11

Program

int x=1, y=2;
print(x + y);

Watermark

“This is the watermark”

⇓

Watermarked Program

int x=1, y=2;

print(“This is watermark”);

print(x + y);

Figure 2.1: Watermark embedding process.

many other possibilities as well.

Software watermarking inserts a piece of information into the program of software.

More precisely, let P denote the set of programs we want to watermark and W the

set of watermarks. Software watermarking embeds a w in W into a program P in

P and gets a watermarked program P ′. In Fig 2.1, we insert a string “This is the

watermark” into the program as a software watermark. In Fig.2.2, we show a simple

process to detect a watermark in a program.

2.2 Taxonomy of Software Watermark

We can classify software watermarks in different ways by their functions or properties.

The following are some classification schemes from published literature.

12 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

Watermarked

program
−→ Detector =⇒ Watermark

Figure 2.2: Watermark detection process.

2.2.1 Classification by Purpose

Software watermarks can be classified by their functional goals [93, 94]. Each water-

mark has a single goal in this taxonomy.

1. Prevention marks: Watermarks to prevent unauthorized uses of software.

2. Assertion marks: Watermarks to make a public claim to ownership of software.

3. Permission marks: Watermarks to allow a (limited) change or copy operation

to the software.

4. Affirmation marks: Watermarks to ensure an end-user of the software’s authen-

ticity.

2.2.2 Classification by Extracting Technique

Classification of software watermark by the extracting technique falls into two classes:

static or dynamic [55]. A static software watermark is one inserted in the data

area or the text of codes. The extraction of such watermarks needs not run the

software. Generally, there are two types of static watermarks [55]: data watermarks

and code watermarks. A data watermark is inserted directly into the data area of

a program, while a code watermark is inserted into the code area of a program. A

simple code watermark involves a permutation of the order of some instructions in a

2.2. TAXONOMY OF SOFTWARE WATERMARK 13

program. A dynamic software watermark is one inserted in the execution state of a

software object. More precisely, in dynamic software watermarking, what has been

embedded is not the watermark itself but some codes which cause the watermark to

be expressed, or extracted, when the software is run. An example is the dynamic data

structure watermark proposed by Collberg and Thomborson [30]. Dynamic software

watermarks come in three types: dynamic Easter Egg watermarks, dynamic execution

trace watermarks, and dynamic data structure watermarks [30].

2.2.3 Robust and Fragile Software Watermark

Robust software watermarks can be extracted even if it has been subjected to adver-

sarial or casual semantics-preserving or near-semantics-preserving code translation.

Such watermarks are used in systems that prevent unauthorized uses (prevention),

and in systems that make public claims to software ownership (assertion) [94].

Fragile software watermarks will always be destroyed when the software has been

changed. Such watermarks are used in integrity verification of software (affirmations)

and in systems that allow limited change and copy (permission) [94].

2.2.4 Visible and Invisible Software Watermark

According to the features that a user of software can experience, software watermarks

can be categorized as visible software watermarks and invisible software watermarks.

In visible software watermark, some special input will make software generate a legible

image like a logo, etc. to show the existence of such visible watermarks in the software

(assertion) or to assume a user of authenticity (affirmation). In contrast, invisible

software watermarks will not appear as a legible image to the end-user but can be

extracted by some algorithm not in the end-user’s direct control. These are used in

permissions and preventions.

14 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

2.2.5 Blind and Informed Software Watermark

According to whether the original program and the watermark are the input to the

watermark extractor, software watermarks can be categorized as either blind or in-

formed. [24]. With blind software watermarks, the extractor is given only the

watermarked program and the watermark key as its input. In informed software

watermark, besides the watermarked program, the extractor is also given the unwa-

termarked program, or the watermark that was inserted, or both as its input.

2.2.6 Tamperproofing Software Watermark

Tamperproof software watermarks can be extracted even when a skilled adversary

purposefully tampered them.

2.3 Attacks on Software Watermark

Attacks on software occur in two ways – malicious client attacks or malicious host

attacks. Generally, software watermarking is intended to protect software from at-

tacks by malicious hosts. There are four main ways to attack watermark in software,

described as additive attacks, subtractive attacks, distortive attacks, and recognition

attacks.

In additive attacks adversaries embed a new watermark into the watermarked soft-

ware, so the original copyright owners of the software cannot prove their ownership

from their original watermark.

With subtractive attacks, adversaries remove the watermark of the watermarked

software without affecting the functionality of the watermarked software.

Adversaries’ goal in distortive attacks is to modify watermark to prevent it from

being extracted by the copyright owners and still keep the usability of the software.

2.4. PROTECTION OF SOFTWARE WATERMARK 15

In recognition attacks, adversaries modify or disable the watermark detector, or

its inputs, so that it gives a misleading result. For example, an adversary may assert

that his watermark detector is the one that should be used to prove ownership in a

courtroom test.

There are also four common techniques for attacking watermarks [55], called re-

verse engineering, source code analysis, execution trace analysis, and stack and heap

analysis, respectively.

When we want to analyze software, but we can not get access to the source code or

the document of the software, we use reverse engineering to figure out the software’s

features or functions. We can also use reverse engineering to find watermark in

software.

In contrast, we generally use source code analysis to find bugs in software. However,

adversaries can also use it in reverse engineering, for example, to find watermarks in

software.

Execution trace analysis gives us an execution history, such as function entries and

exits, branch points and decisions. Attackers can use such information to understand

the software and find watermarks.

Lastly, stack and heap analysis involves analyzing the stack space and heap space

consumed when running software so that adversaries may find the watermark inserted

by a dynamic software watermarking algorithm.

2.4 Protection of Software Watermark

The main types of protection techniques for software watermark are obfuscation and

tamperproofing [55]. In obfuscation, there occurs a semantics-preserving translation

of a program into another program which is hard for an adversary to understand and

so it is hard for them to attack it. Obfuscation of a program also makes it hard

16 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

for an adversary to locate the watermark. Tamperproofing is, likewise, a semantics-

preserving translation of a program into another program. It differs from obfuscation

in that it is hard for an adversary to modify the new program without changing its be-

haviors. Thus, even if adversaries locate the watermark inserted into a tamperproved

program, it may be hard to remove it without affecting the program’s usability.

2.5 Evaluation Criteria of Software Watermark

Roughly speaking, people use four criteria for evaluating the quality of software wa-

termarking [27]. The criterion of data rate involves the ratio of the size of the water-

mark to that of the watermarked program. Resilience is the ability to resist against

semantics-preserving translations, whereas stealth concerns a lack of statistically-

distinct visible features between the unwatermarked program and the watermarked

program. Finally, performance criterion is the ratio of the size and the execution

time of the watermarked program to that of the original program.

2.6 Research Platforms for Software Watermarking

The following four systems dominate research platforms for software watermarking:

JavaWiz [100], Hydan [44], UWStego [29], and SandMark [26].

JavaWiz is a software watermarking system developed at Purdue University. It

can watermark Java source programs, and it is written entirely in Java. This system

has implemented the CT algorithm.

Hydan is a software watermarking system developed at Columbia University. It is

used to watermark an executable.

UWStego is a software watermarking research tool developed at the University of

Wisconsin for experimenting and testing various software watermarking techniques

2.7. SOFTWARE WATERMARKING ALGORITHMS 17

and has a toolset for developing new software watermarking algorithms.

Lastly, SandMark is a comprehensive research tool for software watermarking and

obfuscation developed at the University of Arizona. It can be used to measure the

effectiveness of software watermarking algorithms. Like JavaWiz, this platform is

written in Java.

2.7 Software Watermarking Algorithms

We will describe in this section the major software watermarking algorithms currently

available: (1) basic block reordering algorithms, (2) register allocation algorithms,

(3) spread-spectrum algorithms, (4) opaque predicate algorithms, (5) threading algo-

rithm, (6) abstract interpretation algorithm, (7) metamorphic algorithm, (8) dynamic

path algorithms, (9) mobile agent watermarking, (10) graph-based algorithms, and

(11) birthmarks.

2.7.1 Basic Block Reordering Algorithms

In 1996, Davidson and Myhrvold [40] published the first software watermarking algo-

rithm. It embeds a watermark into a program by reordering the basic blocks of the

program. In a program, a basic block is a set of sequential instructions with a single

entry point and a single exit point. The Davidson-Myhrvold algorithm first chooses a

group of basic blocks in an executable, then reorders them to form a watermark with

some special feature. This reordering needs to maintain the original flow of execution

so that the function of the original program is unchanged. Checking the order of this

group of blocks enables us to extract the inserted watermark.

It is easy to attack software watermarks inserted by this algorithm; if we use this

algorithm to watermark the watermarked program again, the original watermark will

completely be destroyed. This algorithm can be enhanced by using opaque predicate

18 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

to establish false dependencies among basic blocks, making it difficult to remove them.

2.7.2 Register Allocation Algorithms

Qu and Potkonjak [115, 116] developed some techniques to watermark solutions to

constraint problems such as the graph-coloring problem. The QP algorithm is one

of them. It aims to watermark solutions to the graph-coloring problems to protect

their intellectual properties. The graph-coloring problem concerns allocating as fewer

colors as possible to the vertices of a graph so that no vertices connected by an edge

in the graph receive the same color.

Myles and Collberg implemented the QP algorithm for the first time for software

watermarking through register allocation [89]. They pointed out that the QP algo-

rithm has a serious flaw since it does not permit reliable recognition. Myles and

Collberg proposed a new version of the QP algorithm, the QPS algorithm, which

allows robust extraction of watermark in the absence of attacks. Unfortunately, after

extensive evaluations, they concluded that the QP algorithm, even the QPS algo-

rithm, is unsuitable for software watermarking of architecture-neutral codes in the

presence of determined attackers.

Zhu and Thomborson [180] discussed certain misunderstandings in the QP and

QPS algorithms and determine the unextractability of the QP and QPS algorithm

through examples. They went on to propose an improvement for the QP algorithm

and introduced some potential topics for further research.

2.7.3 Spread-spectrum Algorithms

The spread-spectrum watermarking method was originally developed for watermark-

ing digital media [36]. It represents the data of a document as a vector and modifies

each component of the vector with a small random amount. This small amount is

2.7. SOFTWARE WATERMARKING ALGORITHMS 19

called a watermark. Such watermarks can be recognized by correlation with the

extracted watermark signal. The spread-spectrum software watermarking procedure

consists of these three steps: representation extraction, watermark insertion, and

watermark testing.

Stern et al. [128] proposed the SHKQ algorithm to apply the spread-spectrum

watermarking method to software watermarking. In the SHKQ algorithm, code is

viewed not as a set of sequential instructions, but as a statistical object. What it

really marks is the frequency counts of sets of consecutive instructions. It extracts a

group of representation of the code by the Vector Extraction Paradigm proposed by

Stern et al., and then applies the spread-spectrum techniques to insert watermarks.

We present a simple example of the SHKQ algorithm in Fig. 2.3.

Sahoo and Collberg [120] have implemented the SHKQ algorithm in the software

watermarking research tool SandMark. They introduced method overloading to in-

crease the frequency of patterns in cases where code insertion and code substitution

are not enough to achieve an acceptably strong watermark signal. Furthermore, they

experimented with various attacks on this algorithm.

Curran et al. [37] proposed a spread-spectrum software watermarking method

which uses call graph depth as a signal. In this algorithm, at first, a vector from

a running program is extracted. The call graph depth is measured at distinct points

during the execution of the program to be watermarked on certain particular input.

In the end, the program code is modified so that its call graph depth is changed, such

that it expresses the watermark when this input is given to the program.

2.7.4 Opaque Predicate Algorithms

An opaque predicate is a predicate whose outcome is known to the system or person

who introduces this predicate and the code. Its value must be difficult to analyse by

20 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

Original Program Watermarked Program

1. ... 1. ...

2. add X, Y 2. add X, Y

3. ... 3. ...

............

10. add Y, Z 10. add Y, Z

............

36. add X, Z 36. add X, Z

............

65. add X, Y 65. add X, Y

............

100. ... 78. add W, Z

............

109. add W, Z

120. ...

Frequency of the instruction “Add” Frequency of the instruction“Add”

4% 5%

The value “5%” is the watermark embedded into this program; it can be statistically recognizable

as a distinction from an expected value in 4% for “ADD” instruction in a typical program. Many

additive statistically-recognizable features, other than the frequency of the “ADD”, may be used in

a typical application.

Figure 2.3: A simple example of the frequency of patterns in a program as a watermark

2.7. SOFTWARE WATERMARKING ALGORITHMS 21

automated static analysis. It is a popular technique for software watermarking and

obfuscation.

Monden et al. [82, 83] proposed a method to insert watermark into a dummy

method never intended for execution. This dummy method is guarded by an opaque

predicate. This watermarking algorithm consists of these three phases – dummy

method injection, compilation, and stealth watermark injection

With dummy method injection, firstly, a dummy method is appended to the un-

watermarked Java source program. Then, a dummy method invocation is added to

the source program by an unsatisfied opaque predicate as in the following example.

if(opaque predicate) Dummy Method();

In contrast, compilation turns a source code into class files. Lastly, stealth water-

mark injection inserts watermarks into the dummy method by writing a bit sequence

into the dummy method, by overwriting numerical operands and replacing opcodes.

The resulting code is “nonsense” which might be detectable through careful statistical

analysis.

Fukushima and Sakurai [48] improved the above algorithm by Monden et al. in

a new algorithm. It tries to make the relations in a class file unclear by distribut-

ing methods between class files and destroying abstractions. The basic techniques

involved in this algorithm are publication of fields, publication of methods, change of

methods, distribution of methods, and change of arguments.

Arboit [7] also developed an algorithm to add watermarks into an opaque predicate

or an opaque predicate and its associated dummy method, so this algorithm is another

improvement to the above algorithm by Monden et al. Myles and Collberg [90] have

implemented these types of algorithms on the testbed of SandMark.

22 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

2.7.5 The Threading Algorithm

Nagra and Thomborson [92] proposed a threading software watermarking algorithm

and implemented it for Java bytecode. In this study we call it the NT algorithm.

This algorithm takes advantage of the intrinsic randomness for a thread to run in a

multithreaded program. Since it is very hard to analyze such a program, this algo-

rithm claims resilience. In the NT algorithm, the process of embedding watermarks

is divided into two steps. Firstly, creating multiple threads of execution – the number

of possible execution paths through the program is increased. Inserting suitable locks

in certain positions maintains the semantics of the old program. Secondly, locks are

added to ensure that only a small subset of the possible paths are actually executed

by the watermarked program. The watermark is embedded in those execution paths.

2.7.6 The Abstract Interpretation Algorithm

Cousot and Cousot [35] devised the abstract interpretation algorithm to embed the

watermark in values assigned to designated integer local variables during program

execution. These values can be determined by analyzing the program under an ab-

stract interpretation framework, enabling the watermark to be detected even if only

part of the watermarked program is present.

2.7.7 The Metamorphic Algorithm

In this algorithm, Thaker [132] applied metamorphic code transformations used by

metamorphic computer viruses to increase the diversity of software and embed a

fingerprint into the software. The pattern for the watermark to be inserted into

software is fairly simple, so it is easy to attack this watermarking method.

2.7. SOFTWARE WATERMARKING ALGORITHMS 23

2.7.8 Dynamic Path Algorithm

Collberg et al. [24] proposed the dynamic path-based software watermarking which

inserts watermarks in the runtime branch structure of a program to be watermarked.

This algorithm is based on the observation that the branch structure is an essential

part of a program and that it is difficult to analyze the branch structure completely

because it captures so much of the semantics of the program. The implementation

of this algorithm has three stages. In the first one, the tracing stage, we determine

the dynamic behaviors of the unwatermarked program by tracing its execution path

on a particular input sequence. Then suitable points to insert the watermark must

be found. Next, in the embedding stage, modifying the sequence of branches taken

and not taken, on the secret input sequence embeds the watermark into the program.

Lastly, during extracting stage, we trace the program again using the secret input

sequence and check the branch sequence to extract the watermark.

2.7.9 The Mobile Agent Watermarking

Esparza and Fernandez, et al. [47] studied mobile agent watermarking, which uses

software watermarking techniques in mobile agents. It aims to guarantee the integrity

of the execution of mobile agents. Watermark is embedded into a mobile agent, then

it is transferred to the agent’s results during its execution. When the agent returns

to the origin host, the results of all hosts involved are verified in order to assure the

integrity of the execution of the mobile agent.

2.7.10 Graph-based Algorithms

For graph-based algorithms, the watermark is encoded into a graph G in some special

kind of graphs. There are two types of graph-based software watermarking algorithms

available – the VVS algorithm which is a static one, and the CT algorithm, a dynamic

24 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

one.

Venkatesan, Vazirani and Sinha [137] proposed the first graph-based software wa-

termarking, called the VVS algorithm. It is a static software watermarking algorithm.

In the VVS algorithm, the graph is the control-flow graph of a program. The VVS

algorithm embeds a watermark into a program by adding a constructed control-flow

graph to the original control-flow graph of the program to be watermarked. The

added control-flow graph is the watermark.

The first dynamic graph algorithm, the CT algorithm, was proposed by Coll-

berg and Thomborson [30], and is one of the strongest software watermarking al-

gorithms [38]. The CT algorithm embeds the watermark in a graph data structure

which is built during the execution of the program, and thus is a dynamic software

watermarking algorithm. Its extraction process is in Fig. 2.4.

Special input

I1

I2

. . .
Ik

−→

Watermarked program

by CT algorithm
=⇒

g

g g
@

@
�

�

g g
@

@
�

�

g g
@

@
�

�

Figure 2.4: Extraction process in the CT algorithm.

There are three basic embedding steps of the CT algorithm. Firstly, a suitable

graph G to represent the watermark to be embedded is chosen. Then G is partitioned

into several subgraphs. Lastly, the CT algorithm constructs a set of graph-generating

code for each above subgraph and inserts those code along a special execution path

that is taken when some secret key is provided to the program. If the watermark

graph G is well chosen, the watermark embedded by the CT algorithm is stealthy.

2.7. SOFTWARE WATERMARKING ALGORITHMS 25

Generally, the watermark graph G should not differ from the graph data structures

built by real programs. Important conditions are that the maximum out-degree of G

should not exceed two or three, and that the graph G have a unique root node so the

program can reach other nodes from the root node.

The CT algorithm has two advantages over other software watermarking algo-

rithms. First, the graph data structures embedded in an application program are

likely to fit in (be “stealthily”) with the original codes, and second, when combined

with a suitable graph, it has some error-correcting properties.

On the other hand, the CT algorithm has a disadvantage in that there is no

dependency between the graph generating codes and the original codes. Thus, an

adversary who can recognize the graph-generating codes accurately can remove them

without damaging or affecting program behaviours.

A variant of the above CT algorithm is the CTNSH algorithm [55, 133] proposed

by Thomborson et al. The CTNSH algorithm tries to transform some constants in the

program text into function calls and to establish some dependencies of the values of

these functions on the watermark data structures. It establishes the dependencies of

constants in the original program on some codes which are similar to watermark gen-

erating code in the CT algorithm. It is a good method for tamper-proofing software

watermarks.

Palsberg et al. [100] implemented and evaluated this algorithm for the first time.

SandMark has also implemented this algorithm.

2.7.11 Birthmarks

A software birthmark is similar to a software watermark, but different in that software

watermarks are certain features inserted purposely into a program while software

birthmarks are some characteristics a program inherently owns. Software birthmarks

26 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

and software watermarks can be combined to protect each other.

Monden et al. [131] proposed a concept of Java birthmark as a unique set of

characteristics of a Java class file for detecting software theft. It is based on the

assumption that if a class file has the same birthmark as another class file, these two

class files may have the same source, i. e., one is a copy of another. Four types of

static software birthmarks were discussed in paper [131] – constant values in field

variables, the sequence of method calls, the inheritance structure, and used classes.

Monden et al. proposed two types of dynamic software birthmark for Windows

applications [131]. One birthmark is called the sequence of API function calls birth-

mark, and the other is called the frequency of API function calls birthmark. They

are based on the assumption that the API function calls cannot be easily replaced by

other instructions, so these birthmarks are expected to be robust.

Myles and Collberg [91] proposed a dynamic software birthmark according to the

whole path of a program [67] which represents the dynamic control flow of a pro-

gram. The specified two important properties of a software birthmark – credibility

and robustness. For credibility, the detector should not generate false positives. With

robustness, the birthmark should be resilient to sematic preserving transformations.

In paper [91], Myles and Collberg had also evaluated the four static software birth-

marks in [131].

2.8 Complexity Problems in Software Watermarking

It is ideal to watermark software by some one-way software watermarking algorithms.

A one-way function is a function that is easy to compute but hard to invert. In this

situation, the watermark inserted by such a one-way software watermarking algorithm

is almost totally secured.

One-way functions involve complexity of computation. Complexity theory [34,

2.8. COMPLEXITY PROBLEMS IN SOFTWARE WATERMARKING 27

124] deals with amount of resources such as time, memory, et al. needed to solve

computational problems that we encounter. Computability theory, a similar research

area, studies whether a problem can be solved at all. But they are not the same.

Computability theory does not care about the resources required.

Computational complexity is mostly interested in lower bound of the resources that

are required to solve a certain problem, but we are not interested in the exact amount

of the resources needed. Actually, we are interested in the asymptotic complexity,

the least asymptotic amount of the resources required to solve the problem.

Computational complexity studies the feasibility of an algorithm. Generally, if

an algorithm is feasible, then it runs in polynomial time. Precisely, there is some

polynomial p such that the algorithm runs in time at most p(n) on inputs of length

n. The words “easy to compute” in a one-way function mean such a function is a

feasible one.

In some cases, computational complexity is concerned with infeasible problems.

An infeasible problem means it asks impossibly large resources to be solved, even on

instances of moderate size. The words “hard to invert” in a one-way function mean

there exist no feasible for its inverse, that is, computing its inverse is an infeasible

problem. Computational complexity also investigates the relations between different

computational problems and between different modes of computation.

Algorithms and problems are categorized into complexity classes. In this thesis, our

concern is with the time complexity. We have the time complexities of an algorithm

and a problem. The time complexity of an algorithm is the number of steps that

this algorithm takes as a function of the size of the input. The time complexity of a

problem is the number of steps that it takes to solve an instance of this problem as a

function of the size of the input by using the most efficient algorithm. For example,

if an instance of a problem that is n bits long and can be solved in n3 steps, this

problem is said to have a time complexity of n3.

28 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

The class of problems that can be solved by a deterministic machine in polynomial

time is denoted as P . The class of problems that can be solved by a non-deterministic

machine in polynomial time is denoted as NP . A famous open question in complexity

theory is whether P = NP .

Since the topic of this thesis is on software watermarking and obfuscation, we

will not attempt a general discussion of complexity theory here. Lang and Dittmann

did an excellent job in evaluating complexity of five different audio watermarking

algorithms [66], but little such work exists in software watermarking and obfuscation

yet. Recently, Barak et al. did good theoretical work in this area. They defined

formally a software obfuscation as follows [10]:

An obfuscator Ob is a feasible compiler that takes as input a program P and

produces a new program Ob(Pr) satisfying the following two conditions:

• Functionality: Ob(Pr) computes the same function as Pr.

• Virtual black box property: Anything that can be efficiently computed from

Ob(Pr) can be efficiently computed given oracle access to Pr.

An important result proved by Barak et al. is that such an obfuscator is impossible.

Another important result is Theorem 3.8 in that paper which concludes that if one-

way functions exist, then circuit obfuscators do not exist. Despite the impossibility of

existing a universal obfuscator in Barak’s model, there are still some positive results.

Lynn et al. showed it is possible to obfuscate point functions with a random oracle [76].

Wee [141] provided a simple construction of efficient obfuscators for point functions

for a slightly relaxed notion of obfuscation, for which obfuscating general circuits is

nonetheless impossible.

As for software watermarking, Barak et al. also had an important conclusion about

the existence of one-way software watermarking algorithm. Theorem 8.2 in paper [10]

says if one-way functions exist, then no watermarking scheme exists in the sense of

2.9. CONCLUSION 29

Definition 8.1 in paper [10]. They also proved one-way watermarking functions do

not exist in the sense of Definition 8.1 in paper [10]. Until now, we have not seen any

discussion about the complexity of modifying a watermark in a program in software

watermarking literature. This is still an open question in software watermarking.

If we consider the one-way function from cryptographical point of view, the CT

algorithm with key is in a sense a one-way algorithm. If an attacker does not know

the key, he cannot easily extract the watermark inserted by the CT algorithm. One

approach taken by an attacker might be to use a distinctive feature of the CT algo-

rithm, such as its special data structures used for watermarking to extract all possible

watermarks. One-way function involves totally security in theory, but in real world,

“adequate security” in watermarking is still of value. For example, it would be of

practical interest if we could construct a software watermarking system that would

resist a wide range of attacks for a year.

2.9 Conclusion

Software piracy is a worldwide issue and becomes more and more important for soft-

ware developers and vendors. Software watermarking is one of the many mechanisms

to protect the copyright of software. It is a relatively new research field and de-

serves more attention. Among available software watermarking algorithms, the CT

algorithm is one of the most promising methods.

In this part, our goal is not to develop highly secured software watermarking and

obfuscation as defined in Barak et al.’s model. We focus on efficiency of software

watermark embedding algorithms and the extractability of such algorithms. We are

interested in constructing watermark embedding algorithms of linear complexity. In

addition, when an embedding algorithm is not extractable, i. e., the inverse of such

an algorithm does not exist, we explore whether it is possible to recognise the wa-

30 CHAPTER 2. SURVEY OF SOFTWARE WATERMARKING

termark. Our formal treatment makes it clear that recognition is an easier problem

than extraction, in the following sense: a watermark that is not extractable may still

be recognizable. We believe that our formalization of the core concepts in software

watermarking help researchers in this field find new directions and better techniques

for software watermarking. However, it is a task harder than it seems.

In addition, we hope the techniques of software watermarking can be applied to

watermarking natural language [8], watermarking relational databases [2, 3], and

security informatics [119].

Chapter 3

Extraction

As we said in the previous chapter, there is a need to formalize the core concepts of

software watermarking. The focus of this chapter is on formalization of extraction,

an important concept in software watermarking. We also define embedding and other

concepts related to embedding and extraction.

This chapter is organized as follows. In Section 3.1, we review the literature of the

basic concepts in software watermarking. In Section 3.2, we define the concepts of

embedding, the set of candidate watermarks, representative sets, and the representa-

tive degree. The set of candidate watermarks is used to denote all watermarks which

can actually be inserted into a program by an embedding algorithm. The representa-

tive sets and the representative degree are used to characterize the intrinsic property

of an embedding algorithm that watermarks inserted by such an algorithm are ex-

tractable or not. Section 3.3 concerns definitions of extracting, extractability, blind

extractability, and informed extractability. Section 3.4 has definitions of the repre-

sentative extracting and establishes the relationship between the extractable and the

representative extractable embedding algorithms. The concept of the representative

extracting catches the important property of a general embedding algorithm. In Sec-

31

32 CHAPTER 3. EXTRACTION

tion 3.5, we describe a model for a software watermarking embedding and extraction

system based on the concepts and algorithms in this chapter. Section 3.6 is the

summary of our chapter.

3.1 Overview

The early detailed definitions of software watermarking concepts appear in the pa-

pers [30, 32]. They detail the concepts such as attack types, static watermarks and

dynamic watermarks, stealth, resilience, data rate. In these papers, dynamic wa-

termarking techniques are divided into three classes – Easter egg watermarks, data

structure watermarks, and execution trace watermarks.

Nagra, Thomborson, and Collberg [93] did an excellent job of defining some con-

cepts in software watermarking. They introduce four terms in software watermarking

from a functional view: authorship mark, fingerprinting mark, validation mark, and

licensing mark. They also define several other concepts such as visible and invisible

watermarks, robust and fragile watermarks.

Collberg, Jha, Tomko, and Wang [29] defined embedding and extracting more

formally and these concepts are called the encoding function and exposition function.

They considered multiple watermarks in a software. In our thesis we regard them as

parts of a whole watermark.

The main contributions of this chapter are fivefold. Firstly, we present the defi-

nition of the set of candidate watermarks which includes all watermarks that can be

actually embedded into a program by a certain embedding algorithm. In addition, we

give the definitions of representative sets and the representative degree which char-

acterize an extractable embedding algorithm. Thirdly, we have the definition of the

representative extracting algorithm which shows what we can do for a general em-

bedding algorithm. In this chapter we also use these definitions to develop extracting

3.2. EMBEDDING 33

and representative extracting algorithms for software watermarking, and lastly, these

definitions enable us to design a prototype model for a software watermarking system.

These results have been published in paper [172].

3.2 Embedding

In a software watermarking system, we at least should do two basic things. Firstly,

it can embed a watermark into software. Secondly, it can extract all bits of the

watermark inserted by itself or it can judge the existence of the watermark embedded

by this system. In this section, we discuss the problem of embedding all bits of a

watermark into software.

Definition 1 (Watermark) A watermark is a message of bits of 0 and 1 with a finite

length ≥ 0. The watermark with length 0 is called an empty watermark and it is

denoted by ǫ. The length of a watermark W is denoted as len(W).

We denote the set of watermarks as W. Precisely, W = {0, 1}∞.

Concatenation of two watermarks: Let U = u1u2 . . . um, V = v1v2 . . . vn ∈ W, the

concatenation of U and V is a new watermark W = u1u2 . . . umv1v2 . . . vn where we

add all bits of V after U . U is a prefix of W and V is a suffix of W .

For a finite set S, the cardinal number of S is denoted as |S|. For an infinite set

S, |S| = ∞.

In practical application, we may restrict in a subset of the watermark set defined

above.

Definition 2 (Embedding) Let P denote the set of programs and W the set of wa-

termarks. We call a function A : P×W → P a watermark embedding algorithm, or,

to simplify, an embedding algorithm, or an embedder.

34 CHAPTER 3. EXTRACTION

If P ′ = A(P, W) for a P ∈ P and a W ∈ W, P ′ is called a watermarked program.

We also call the program P ∈ P an original program corresponding to the watermarked

program P ′.

Example 1 (The trivial embedder Triv) Define an embedder Triv : P× W → P as

follows

For P ∈ P and W ∈ W, Triv(P, W) = P

This embedder is called the trivial embedder.

The following example involves the QP algorithm which watermarks software

through register allocation by coloring the interference graph of this software. This

is an important background example in our chapter. In order to describe the QP

algorithm well, we need the following terms and notations.

Firstly, we introduce the interference graph of programs which is essential for

register allocation in compiling.

Definition 3 (Interference graph) The interference graph is used for assigning reg-

isters to temporary variables in a program. If two variables in the program do not

interfere, these two variables have no edge between them. We can use the same reg-

ister for these two temporary variables. If they interfere in the program, there is an

edge between them. In this situation, we are not allowed to use the same register for

these two temporary variables.

Example 2 A program with the interference graph shown in Figure 3.1.

v1 := 1

v2 := 2

v1 := v1 + v2

v2 := 3

3.2. EMBEDDING 35

Z
Z

ZZ

�
�

��

1©

5© 2©

3©4©

Figure 3.1: The interference graph of the program in Example 2

v3 := 4

v2 := v2 + v3

v3 := 5

v4 := 6

v3 := v3 + v4

v4 := 7

v5 := 8

v4 := v4 + v5

v5 := 9

v1 := 10

v5 := v5 + v1

Definition 4 (K-colorable) We say a graph G = (V (G), E(G)) is k-colorable if it has

an ancillary coloring function C : V → {1, 2, ..., k} with the following properties.

∀(u, v) ∈ E(G) ⇒ C(u) 6= C(v)

Definition 5 (Cyclic mod n ordering) We use “<i” to denote the cyclic mod n or-

dering relation for a fixed i, such that i <i (i + 1) <i . . . <i n <i 1 <i . . . <i i − 1.

Where there is no confusion over the value of i, we omit the subscript in <i.

36 CHAPTER 3. EXTRACTION

Definition 6 (Potential watermark vertices [113, 114]) For a vertex vi of a graph G

with |V | = n, we say vi1 ∈ V and vi2 ∈ V are the potential watermark vertices with

respect to vi if i <i i1 <i i2; (vi, vi1) /∈ E; (vi, vi2) /∈ E; ∀j : i <i j <i i1, (vi, vj) ∈ E;

and ∀j : i1 <i j <i i2, (vi, vj) ∈ E.

Definition 7 (PW and PWV) For every vertex vi ∈ G, we define a predicate PW(vi, G).

If there exist two potential watermark vertices with respect to vi, the value of PW(vi, G) =

TRUE. Otherwise PW(vi, G) = FALSE. When PW(vi, G) = TRUE, the poten-

tial watermark vertices with respect to vi are denoted as PWV(vi, G, 1) = vi1 and

PWV(vi, G, 2) = vi2. Otherwise we say the values of PWV(vi, G, 1) and PWV(vi, G, 2)

are undefined.

Now we present the QP algorithm in [89].

Example 3 (The QP embedding algorithm) If the interference graph of a program to

be watermarked is G and the watermark to be inserted is W , then the QP algorithms

in Fig. 3.2

Example 4 (The time complexity of the QP algorithm in Fig.3.2) This is an algo-

rithm with linear complexity.

To illustrate the QP algorithm, we present an example to show how to insert one

bit by this algorithm.

Example 5 After embedding a bit 0 into the interference graph of the program in

Example 2 by the algorithm in Fig.3.2, we obtain the watermarked interference graph

in Fig.3.3:

The following is the corresponding program.

v1 := 1

v2 := 2

3.2. EMBEDDING 37

Input: An unwatermarked graph G with n = |V | and

An unbounded series of message bits: W = w1w2 . . .wm

Output: A watermarked graph G′.

Algorithm:

G′ := G;

j := 1;

if m > n then // not all bits of W can be inserted in G

return G

for each i from 1 to n do

if j > m then // all bits of W already inserted in G

return G′

if PW(vi, G
′) then

G′ := G′ + (vi, PWV(vi, G
′, wj + 1))

j++

if m ≥ j then // not all bits of W inserted in G

return G

return G′

Figure 3.2: A clarified version of the QP algorithm [113, 114]

Z
Z

ZZ

�
�

��

A
A
A
A
A
A
AA

1©

5© 2©

3©4©

Figure 3.3: The result interference graph by inserting one bit “0”

38 CHAPTER 3. EXTRACTION

v1 := v1 + v2

v3 := 0 //Added statement

v1 := v1 + v3 //Added statement

v2 := 3

v3 := 4

v2 := v2 + v3

v3 := 5

v4 := 6

v3 := v3 + v4

v4 := 7

v5 := 8

v4 := v4 + v5

v5 := 9

v1 := 10

v5 := v5 + v1

Definition 8 (Normal embedding) If A(P, ǫ) = P , the embedder A is called normal.

Example 6 The QP embedding algorithm in Fig. 3.2 and the trivial embedder are

normal.

Definition 9 (Set of candidate watermarks) A W ∈ W is called a candidate water-

mark with respect to a program P and an embedder A if A(P, W) 6= P .

All candidate watermarks constitute the set of candidate watermarks of the program

P and the embedder A. This set is denoted as candidate(P, A).

The set of candidate watermarks of a program P and an embedder are all water-

marks that A can actually insert into P . Embedding other watermarks into P will

not change the original program.

3.2. EMBEDDING 39

Example 7 (Set of candidate watermarks) Let A be the QP algorithm in Fig. 3.2

and P be a program with the interference graph having 4 vertices v1, v2, v3, v4 and

two edges (v1, v3), (v2, v4). Then, the set of candidate watermarks of A and P is

{0, 1, 00, 01, 10, 11, 010, 011, 110, 111}. The interference graphs of the original

program and the watermarked programs are in Fig. 3.4. We can see from Fig. 3.4

that the interference graph for the watermarked program after inserting a watermark

010 is the same as that after inserting a watermark 111. For this reason a watermark

embedded by the QP algorithm can not be extracted reliably.

Example 8 (Set of candidate watermarks of the trivial embedder) ∀P ∈ P,

candidate(P, T riv) = φ.

The trivial embedder is the only embedder A such that ∀P ∈ P, candidate(P, A) =

φ.

For most of the embedding algorithms of software watermarking, any watermark

can be inserted into a program, but for some, especially the QP algorithm, we can

really embed only a limited numbers of watermarks. Without a definition of the set

of candidate watermarks, the following confusion will occur.

Le and Desmedt [68] developed a destroy algorithm to attack the QP embedding

algorithm. The main result, Theorem 2 in [68], about this destroy algorithm is as

follows:

Let C ′′ be the output of the destroy algorithm proposed by Le and Desmedt in [68]

on input (G, C ′), where C ′ is the output of the QP embedding algorithm [113, 114] on

input graph G. Then the verification algorithm [68] will always output yes on input

(G, C ′′, M) for arbitrary signature M.

It is necessary to solve the contradiction between the arbitrary M in the above

theorem and that for a graph with n vertices, the QP algorithm can insert at most only

n bits of a message into such a graph. The concept of “set of candidate watermarks”

40 CHAPTER 3. EXTRACTION

@
@

@
@@

�
�

�
��

1© 2©

3©4©

The original interference graph.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

0 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

1 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

00 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

01 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

10 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

11 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

010 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

011 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

110 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

111 inserted.

Figure 3.4: The interference graphs of the original and the watermarked programs

3.2. EMBEDDING 41

is one of a set that includes all watermarks which are actually embeddable into a

program by a certain software watermarking embedding algorithm. If, for example,

only a part of a watermark W = UV with len(V) > 0, U , can be inserted into a

program, we think we embed U instead W into this program.

Definition 10 (Finite embedding) An embedder A : P × W → P is called a finite

embedder if, for every program P and embedder A, the set of candidate watermarks

of P and A is finite.

Example 9 The QP algorithm in Fig. 3.2 and the trivial embedder are finite.

Definition 11 (Representative sets) Let A be an embedder. For a program P , A(P, W) =

A(P, W ′), W, W ′ ∈ W is an equivalence relation in the set of candidate watermarks

of P and A. Every equivalence class is called a representative set of the embedder A

and the program P .

All watermarks in a representative set of an embedder A and a program P have

the same effect on the program P – they generate the same watermarked program by

the embedder A.

Property 1 If A is a normal embedder, then for any program P , the watermark ǫ

does not belong to the set of candidate watermarks of A and P .

Definition 12 (Representative degree) The maximal cardinal number of the repre-

sentative sets of an embedder A and a program P is called the representative degree

of the embedder A and the program P and is denoted as repdegree(P, A).

The concept of the representative degree is used to judge the quality of an embedder

A. The smaller it is, the better the A is.

Example 10 (Representative sets and degree) A and P are as in Example 3. The

representative sets of A and P are {0}, {1}, {00}, {01}, {10}, {11}, {011}, {110},

{010,111}. Thus, repdegree(P, A) = 2.

42 CHAPTER 3. EXTRACTION

3.3 Extracting

Definition 13 (Extracting) Let A be an embedder, a function X : P × P → W is

called an extracting algorithm corresponding to the embedder A if X has the following

property:

∀P, P ′ ∈ P, if W ∈ candidate(P, A) and P ′ = A(P, W), X(P ′, P) = W . Other-

wise, X(P ′, P) = ǫ.

Property 2 (Normality of extracting algorithms) Let A be an embedder; an extract-

ing algorithm corresponding to the embedder A is normal in the sense that X(P, P) =

ǫ.

Proof. From the definition of the extracting, if ǫ ∈ candidate(P, A), then P 6=

A(P, W), so X(P, P) = ǫ.

If ǫ /∈ candidate(P, A), then X(P, P) = ǫ by the definition.

Definition 14 (Extractable) Watermarks embedded by an embedding algorithm A are

extractable if there exists an extracting algorithm corresponding to the embedding algo-

rithm A. We also say X demonstrates that the embedding algorithm A is extractable,

or more simply, that A is extractable.

Theorem 1 Let A be an embedder. If A is extractable, then, for any program P , any

representative set of P and A has only one element. Especially, repdegree(P, A) = 1.

On the other hand, if, for any program P , repdegree(P, A) = 1, then A is extractable.

It is easy to prove the first part of this theorem from the definitions. Therefore we

prove only the second part of this theorem.

Define an extracting algorithm corresponding to the embedding algorithm A as fol-

lows:

3.3. EXTRACTING 43

∀P ′, P ∈ P, if there is a w ∈ candidate(P, A) such that P ′ = A(P, W), X(P ′, P) =

W .

Otherwise, X(P ′, P) = ǫ.

If the representative degree of any program and A is 1, the above function X :

P × P → W is well-defined. It is an extracting algorithm corresponding to the

embedding algorithm A.

Example 11 (The QP algorithm in Fig. 3.2 is not extractable) From Example 10

and Theorem 1, The QP algorithm is not extractable.

Example 12 (Two extractable improvements on the QP algorithm) Because the QP

algorithm is not extractable, we develop two improvements on the QP algorithm, the

QPI algorithm and the QPII algorithm. They are extractable. The reason for the QP

algorithm unextractability is the modulo n in the definition of the potential watermark

vertices. We avoid it in two ways. First, as used in the QPI algorithm, we add two

vertices to the original graph. Second, as used in the QPII algorithm, we do not use

the modulo n; i.e., define the potential watermark vertices as follows:

For a vertex vi of a graph G with |V | = n, we say vi1 ∈ V and vi2 ∈ V are the

potential watermark vertices with respect to vi if i < i1 < i2 ≤ n; (vi, vi1) /∈ E;

(vi, vi2) /∈ E; ∀j : i < j < i1, (vi, vj) ∈ E; and ∀j : i1 < j < i2, (vi, vj) ∈ E.

The QPI embedding algorithm is in Fig. 3.5 and its corresponding extracting algo-

rithm is in Fig. 3.6.

The QPII embedding algorithm is in Fig. 3.7 and its corresponding extracting al-

gorithm is in Fig. 3.8.

Example 13 (The time complexity of the QPI algorithm in Fig. 3.5) The time com-

plexity of this algorithm is O(n), where n is the number of edges of the interference

graph of the program to be watermarked. In other words, the QPI algorithm is of

linear complexity.

44 CHAPTER 3. EXTRACTION

Input: an original graph G(V, E) with n = |V |

a message to be embedded into the G(V, E): W = w1w2 . . .wm

Output: A watermarked graph G′.

Algorithm:

G′ := G;

add two vertices vn+1, vn+2 to V ′

j := 1;

if m > n then // not all bits of W can be inserted in G

return G

for each i from 1 to n do

if j > m then // all bits of W already inserted in G

exit

if PW(vi, G
′) then

G′ := G′ + (vi, PWV(vi, G
′, wj + 1))

j++

if m ≥ j then // not all bits of W inserted in G

return G

return G′

Figure 3.5: The QPI Embedding Algorithm

3.3. EXTRACTING 45

Input: the original graph G(V, E) with n = |V |

the watermarked graph G(V ′, E′)

Output: the message W embedded in the watermarked graph G(V ′, E′)

Algorithm:

if G is not a subgraph of G′ then

return ǫ

add two vertices vn+1, vn+2 to V

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wj + 1))

else if (vi, vi2) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wj + 1))

else

exit

if j=0 then

return ǫ

if |E′| 6= |E|+ j then

return ǫ

return the message W = w1w2 . . .wj

Figure 3.6: The QPI Extraction Algorithm

46 CHAPTER 3. EXTRACTION

Input: an original graph G(V, E) with n = |V |

a message to be embedded into the G(V, E): W = w1w2 . . .wm

Output: A watermarked graph G′.

Algorithm:

G′ := G;

j := 1

if m > n then // not all bits of W can be inserted in G

return G

for each i from 1 to n do

if j > m then // all bits of W already inserted in G

exit

if PW(vi, G
′) then

G′ := G′ + (vi, PWV(vi, G
′, wj + 1))

j++

if m ≥ j then // not all bits of W inserted in G

return G

return G′

Figure 3.7: The QPII Embedding Algorithm

3.3. EXTRACTING 47

Input: the original graph G(V, E) with n = |V |

the watermarked graph G(V ′, E′)

Output: the message W embedded in the watermarked graph G(V ′, E′)

Algorithm:

if G is not a subgraph of G′ then

return ǫ

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wj + 1))

else if (vi, vi2) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wj + 1))

else

exit

if j=0 then

return ǫ

if |E′| 6= |E|+ j then

return ǫ

return the message W = w1w2 . . .wj

Figure 3.8: The QPII Extraction Algorithm

48 CHAPTER 3. EXTRACTION

Example 14 (The time complexity of the QPII algorithm in Fig. 3.7) Like the QPI

algorithm, the time complexity of the QPII algorithm is of linear complexity.

Definition 15 (Blind and informed extracting) For an embedding algorithm A : P×

W → P, if there exists a function Y : P → W having the following properties:

∀P ′ ∈ P,

if P ′ = A(P, W) for a P ∈ P and a W ∈ candidate(P, A), Y (P ′) = W .

Otherwise, Y (P ′) = ǫ.

then we say that watermarks embedded in programs of P using an embedding algorithm

A : P × W → P are blindly extractable. Such an X is called a blind extractor for

embedder A. If there exists a blind extractor X for an embedder A, we say A is blindly

extractable.

It is easy to construct an extractor X : P × P → W from a blind extractor Y by

defining

X(P ′, P) = Y (P ′) if Y (P ′) 6= ǫ and P ′ = A(P, Y (P ′)).

X(P ′, P) = ǫ otherwise.

Thus blindly extractable implies extractable.

If there is no blind extractor for an embedder A, but there is an extracting algorithm

corresponding to A, A is called an informed embedder, and X is called an informed

extractor for A. The combination (A, X) is called an informed watermark extraction

system, when X is an informed extractor for A.

Note: In our above definitions, an informed embedder cannot be a blind embedder,

and vice versa.

Example 15 (A not blindly extractable embedder) The QPI embedding algorithm in

Fig. 3.5 is not blindly extractable.

Example 16 (A blindly extractable embedding algorithm) Define an embedder A as

follows.

3.4. REPRESENTATIVE EXTRACTING 49

For any program P , if W = 101, A(P, W) is P plus an extra variable declaration.

Otherwise, A(P, W) = P . A is blindly extractable. In fact, we have a blind extracting

algorithm X corresponding to A as follows:

For any P ′ ∈ P, if P ′ has at least one variable declaration, X(P ′) = 101. Other-

wise, X(P ′) = ǫ.

3.4 Representative Extracting

Definition 16 (Representative extracting) Let A be an embedder; a function X :

P × P → W is called a representative extracting algorithm corresponding to the

embedder A if it has the following property:

∀W ∈ W and ∀P ′, P ∈ P, if W ∈ candidate(P, A) and P ′ = A(P, W),

X(A(P, X(P ′, P)), P) = X(P ′, P); otherwise, X(P ′, P) = ǫ

The background for the representative extracting algorithms is as follows. For an

embedding algorithm A, for example, we may get a same watermarked program P ′

after inserting any watermark in {101, 1110, 0010} by A into a program P . As a repre-

sentative extracting algorithm X corresponding to the embedder A, X(P ′, P) should

be one of the watermarks in {101, 1110, 0010}. In the current software watermarking

algorithms available, this phenomenon appears in the QP algorithm.

Property 3 If X is an extracting algorithm corresponding to an embedder A, then

X is also a representative extracting algorithm corresponding to A.

Property 4 (Characteristic of representative extracting algorithms) Let A be an em-

bedder. If X is a representative extracting algorithm corresponding to A, then, for

any program P and any representative watermark set R = {. . . , W, . . .} of P and A,

X(A(P, W), P) ∈ R.

50 CHAPTER 3. EXTRACTION

Theorem 2 For every embedder A, there exists a representative extracting algorithm

corresponding to A.

∀W ∈ W and ∀P ′, P ∈ P, define a function X : P× P → W as follows.

Suppose R1, R2, . . . , Ri, . . . are all representative sets of A and P . Choose one

watermark W1 from R1, one watermark W2 from R2, . . ., one watermark Wi from

Ri, If W ∈ candidate(P, A) and P ′ = A(P, W), then there exists an i such that

W ∈ Ri, so we define X(P ′, P) = Wi. Otherwise, X(P ′, P) = ǫ.

It is easy to see such an X is a representative extracting algorithm corresponding

to A.

From Theorem 2, we have the following concept.

Definition 17 (Proper Representative Extractable) Let A be an embedder. It is called

proper representative extractable if it is not extractable.

Theorem 3 An embedder A is proper representative extractable if and only if, for

some program P , repdegree(P, A) > 1 .

Theorem 4 An embedder A is proper representative extractable if and only if there

are more than one representative extracting algorithms corresponding to A.

Example 17 (A QP representative extracting algorithm) The algorithm in Fig. 3.9

is a representative extracting algorithm corresponding to the QP embedding algorithm

in Fig. 3.2. The extracting algorithm outlined in [113] is really not an extracting algo-

rithm but a representative extracting algorithm. For the same program in Example 3,

if 010 is inserted, this representative extracting algorithm will get 010, but if 111 is

inserted, this representative extracting algorithm will get 010, not 111.

Generally, we can develop several other representative extracting algorithms for a

proper representative extractable embedder. As an example, another representative

extracting algorithm for the QP algorithm is in Fig. 3.10. For a same program in

3.4. REPRESENTATIVE EXTRACTING 51

Example 3, if 010 is inserted, this representative extracting algorithm will get 111,

not 010, but, if 111 is inserted, this representative extracting algorithm will get 111.

Example 18 (A proper representative extractable embedder) The QP algorithm in

Fig. 3.2 is proper representative extractable. Example 11 shows the QP algorithm is

not extractable.

Definition 18 (Informed and blind representative extracting) Let A be an embedder;

a function Y : P → W, satisfying,

∀P ∈ P and ∀W ∈ candidate(P, A), Y (A(P, Y (A(P, W)))) = Y (A(P, W)).

is called a blind representative extracting algorithm corresponding to the embedding

algorithm A.

A representative extracting algorithm corresponding to the embedding algorithm A

but is not a blind representative extracting algorithm corresponding to the embedding

algorithm A is called an informed representative extracting algorithm corresponding

to the embedding algorithm A.

Definition 19 (Blindly representative extractable) Let A be an embedder; if there is

a blind representative extracting algorithm corresponding to the embedding algorithm

A, we say watermarks embedded by algorithm A are blindly representative extractable,

or, simply, A is blindly representative extractable. The combination (A, X) is called

a blind representative watermark extraction system.

Theorem 5 If an embedding algorithm is blindly extractable, then it is also blindly

representative extractable.

Theorem 6 If an embedding algorithm is proper representative extractable, then the

representative degree of some program and A is greater than 1.

52 CHAPTER 3. EXTRACTION

Input: the original graph G(V, E) with n = |V | and the watermarked graph G(V ′, E′)

Output: the message W embedded in the watermarked graph G′(V ′, E′)

Algorithm:

G′′ := G

if G is not a subgraph of G′ then return “no watermark”

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wj + 1))

else if (vi, vi2) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wj + 1))

else exit

if |E′| = |E|+ j then return the message W = w1w2 . . .wj

G := G′′

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi2) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wi + 1))

else if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wi + 1))

else exit

if |E′| = |E|+ j then

return the message W = w1w2 . . .wj

return the message W = ǫ

Figure 3.9: A QP representative extracting algorithm: ’0’ priority

3.4. REPRESENTATIVE EXTRACTING 53

Input: the original graph G(V, E) with n = |V | and the watermarked graph G(V ′, E′)

Output: the message W embedded in the watermarked graph G′(V ′, E′)

Algorithm:

if G is not a subgraph of G′ then return “no watermark”

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi2) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wj + 1))

else if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wj + 1))

else exit

if |E′| = |E|+ j then return the message W = w1w2 . . .wj

G := G′′

j := 0

for each i from 1 to n do

if PW(vi, G) then

j++

if (vi, vi1) ∈ E′ then

wj := 0

G := G + (vi, PWV(vi, G, wi + 1))

else if (vi, vi1) ∈ E′ then

wj := 1

G := G + (vi, PWV(vi, G, wi + 1))

else exit

if |E′| = |E|+ j then return the message W = w1w2 . . .wj

return the message W = ǫ

Figure 3.10: Another QP representative extracting algorithm: ’1’ priority

54 CHAPTER 3. EXTRACTION

Example 19 (A not blindly representative extractable embedder) The QP algorithm

in Fig. 3.2 is not blindly representative extractable.

Example 20 (A blindly representative extractable embedder) Define an embedder A

as follows: For any program P , if W = 101 or if W = 110, A(P, W) is P plus an

extra variable declaration. Otherwise, A(P, W) = P . A is blindly extractable. In fact,

we have a blind extracting algorithm Y corresponding to A as follows.

For any P ′ ∈ P, if P ′ has at least one variable declaration, Y (P ′) = 101. Otherwise,

Y (P ′) = ǫ.

3.5 A Software Watermark Embedding and Extracting Sys-

tem

We have developed a model to illustrate how our embedding and extraction algorithms

could be used in a complete system for software watermarking. The process for the

embedding subsystem goes:

For ∀P ∈ P and ∀W ∈ W,

Step 1: Construct the interference graph G of P .

Step 2: Embed the watermark W into the graph G by the QPI embedding algo-

rithm or the QPII embedding algorithm to get the watermarked graph G′.

Step 3: Establish interference relationships of some variable pairs in P so that

the interference graph of the new program is G′ as did in paper [89].

The process for the extracting subsystem is:

For ∀P, P ′ ∈ P,

Step 1: Construct the interference graphs G, G′ of P, P ′, respectively.

Step 2: Extract the watermark W from the graphs G and G′ by the QPI extracting

algorithm or the QPII extracting algorithm.

3.6. CONCLUSIONS 55

3.6 Conclusions

Algorithmic design, even with an adequate formal statement of the problem to be

solved, is as much art as it is a science. Without a precise statement of the problem,

we cannot hope to prove the correctness of any algorithm, and indeed we may have

difficulty even explaining what the algorithm is intended to do.

When we started this research project, we thought that it would be a simple matter

to prove the QP algorithm either correct or incorrect. However we could not do this

until we devised appropriate definitions for two basic problems in watermarking –

recognition and extraction. None of our initial, intuitively-formed, problem definitions

were sufficient to support a careful analysis of the QP algorithm; and we found little

support for a careful analysis in the published literature. However we were successful

in devising a serviceable set of definitions, allowing us to complete a careful analysis

of the QP algorithm (and its variants). In the process we discovered some subtle bugs

and algorithmic issues. Our major findings are summarized very briefly below.

We use the concepts of representative sets and representative degree to character-

ize the extractable embedding algorithm. We define the concept of the representative

extracting algorithm to show the intrinsic property of a general embedding algo-

rithm. We also define the blindly extractable embedding algorithm and informedly

extractable embedding algorithm, as well as the blindly representative embedding al-

gorithm and informedly representative embedding algorithm. The concepts of the set

of candidate watermarks, the representative sets, the representative degree, and the

representative extracting algorithm are first appeared in published literature. Some

other concepts are also introduced in this chapter.

We have presented a model for a complete watermarking system which is based

on the concepts and algorithms established in this chapter. We will implement and

analyse it in our future work. In the next chapter, we will study the recognition of

56 CHAPTER 3. EXTRACTION

watermarks in software.

Though we discussed the time complexities of the QP algorithm, the QPI algo-

rithm, and the QPII algorithm, the complexity of software watermarking algorithms

is still an important research issue. We leave it for our future work. All embed-

ding and extraction algorithms discussed in this chapter are blind algorithms, i.e., in

addition to the watermarked program, we need the original program for extraction.

But we do not need any key for extraction. As for the security of the watermarking

embedding algorithms, Barak et al. [10] have already proved that it is impossible to

construct a one-way software watermarking transformation in their model. But we

still can develop software watermarking algorithms for special purposes.

Chapter 4

Recognition

When we are presented software, how can we say whether it contains a watermark or

not? When we are not sure, what is the probability of it containing a certain kind

of watermark? We formalize the concept of recognition in software watermarking to

help us find answers to these questions. In the previous chapter, we were interested in

extracting every bit of a watermark embedded in a program, but, in some situations,

we are interested in knowing if a watermark exists in a program or not. We have

already published this chapter in paper [171].

This chapter is organized as follows. In Section 4.1, we define recognition, partial

recognition, blind recognition, and blind partial recognition of software watermarks.

Here we also develop several recognition and partial recognition algorithms for a soft-

ware watermarking algorithm, called the QP algorithm. In Section 4.2, we describe

a model of a software watermark embedding and recognition system based on the

concepts and algorithms developed in this chapter. Section 4.3 has the summary of

this chapter.

57

58 CHAPTER 4. RECOGNITION

4.1 Recognition

In some situations, we may not have to extract all bits of a watermark inserted in

software; we just want to see whether software contains a watermark inserted by an

embedding algorithm. In some other situations, the software watermark embedding

algorithm may be in essence not extractable, or, even when the embedding algorithm

is extractable, the extracting algorithm may be not so efficient for a specific appli-

cation. In this section, we discuss the problem of determining the existence of a

watermark embedded in a software program.

4.1.1 Recognitions and Partial Recognitions

Definition 20 (Partial recognition) For an embedding algorithm A : P × W → P,

if a function R : P × P → {TRUE, FALSE}, satisfies that ∀P, P ′ ∈ P, if there is a

W ∈ candidate(A, P) such that P ′ = A(P, W) then R(P ′, P) = TRUE, we call R a

positive-partial recognition algorithm for the embedding algorithm A.

For an embedding algorithm A : P × W → P, if a function R : P × P →

{TRUE, FALSE}, satisfies ∀P, P ′ ∈ P, R(P ′, P) = TRUE =⇒ P ′ = A(P, W) for

some W ∈ candidate(A, P), we call R a negative-partial recognition algorithm for

the embedding algorithm A.

Definition 21 (Recognition) For an embedding algorithm A : P × W → P, if a

function R : P×P×W → {TRUE, FALSE} is both a positive-partial recognition and

a negative-partial recognition, i.e., R satisfies ∀P, P ′ ∈ W, R(P ′, P) = TRUE ⇐⇒

P ′ = A(P, W) for some W ∈ candidate(A, P), we call R a recognition algorithm for

the embedding algorithm A.

We say that A is recognizable if a recognition algorithm exists for A.

4.1. RECOGNITION 59

Example 21 (Trivial partial recognitions) The partial recognition concepts are very

flexible. The following are some trivial partial recognitions. For an embedding al-

gorithm A : P × W → P, define a function S : P × P → {TRUE, FALSE}, as

P ′, P ∈ P, S(P ′, P) = TRUE. This is a positive-partial recognition corresponding to

A. We call such a function a trivial positive-partial recognition corresponding to A

and denote it as TrivPP (A).

For an embedding algorithm A : P × W → P, define a function S : P × P →

{TRUE, FALSE} as P ′, P ∈ P, S(P ′, P) = FALSE. This is a negative-partial recogni-

tion corresponding to A. We call such a function a trivial negative-partial recognition

and denote it as TrivNP (A).

Theorem 7 For every embedder A, there exists one and only one recognition algo-

rithm corresponding to A. We denote the unique recognition algorithm corresponding

to A as Reg(A).

Proof. ∀P, P ′ ∈ P, define R(P ′, P) as follows.

R(P ′, P) = TRUE, if there is some W ∈ candidate(A, P) such that P ′ = A(P, W)

R(P ′, P) = FALSE, otherwise

It is easy to see R is a recognition algorithm corresponding to A.

From Theorem 7 and Example 11, not all embedding algorithms are extractable,

but, in a sense, every embedding algorithm is recognizable.

Property 5 For every embedder A, Reg(A) is both a positive-partial and a negative-

partial recognition algorithms corresponding to A.

Example 22 (A positive-partial recognition for the QP algorithm) A positive-partial

recognition for the QP algorithm is in Fig. 4.2. For the program with its interference

graph as in Example 7, the programs recognized by this recognition algorithm have

interference graphs as in Fig. 4.1.

60 CHAPTER 4. RECOGNITION

@
@

@
@@

�
�

�
��

1© 2©

3©4©

0 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

1 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

00 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

01 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

10 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

11 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

010 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

011 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

110 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

111 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

No watermark.

Figure 4.1: The interference graphs for watermarked programs recognized as TRUE

4.1. RECOGNITION 61

Input: an unwatermarked graph G(V, E) with n = |V |

a watermarked graph G′

Output: is a message W embedded in G′?

Algorithm:

if G is not a subgraph of G′ then

return FALSE

j:=0

for each i from 1 to n do

if find the nearest two vertices vi1 , vi2 not connected to vi in G then

j++

if (vi, vi2) ∈ G′ then

connect vi to vi2 in G

else if (vi, vi1) ∈ G′ then

connect vi to vi1 in G

else // all bits extracted

exit

if j=0 then

return FALSE

return TRUE

Figure 4.2: A positive-partial recognition for the QP algorithm

62 CHAPTER 4. RECOGNITION

@
@

@
@@

�
�

�
��

1© 2©

3©4©

00 inserted.

@
@

@
@@

�
�

�
��

1© 2©

3©4©

10 inserted.

Figure 4.3: The interference graphs for watermarked programs recognized as TRUE

Example 23 (The time complexity of the positive-partial recognition for the QP al-

gorithm) The recognition algorithm in Fig. 4.2 is of linear time complexity.

Example 24 (A negative-partial recognition for the QP algorithm) A negative-partial

recognition for the QP algorithm is in Fig. 4.4. For the program with its interference

graph as in Example 7, the programs recognized by this recognition algorithm have

interference graphs as in Fig. 4.3.

Example 25 (A recognition for the QP algorithm) A recognition for the QP algo-

rithm is in Fig. 4.5.

Definition 22 (Strength of partial recognitions) Let PP1 and PP2 be two positive-

partial recognitions corresponding to an embedding algorithm A; if ∀P, P ′ ∈ P, PP2(P ′, P) =

TRUE =⇒ PP1(P ′, P) = TRUE, we say PP2 is stronger than PP1.

Let NP1 and NP2 be two negative-partial recognitions corresponding to an embed-

ding algorithm A; if ∀P, P ′ ∈ P, NP1(P ′, P) = TRUE =⇒ NP2(P ′, P) = TRUE,

we say NP2 is stronger than NP1.

Property 6 For every embedder A, TrivPP (A) is the weakest positive-partial recog-

nition and Reg(A) is the strongest positive-partial recognition for A; TrivNP (A) is

the weakest negative-partial recognition and Reg(A) is the strongest negative-partial

recognition for A.

4.1. RECOGNITION 63

Input: an unwatermarked graph G(V, E) with n = |V |

a watermarked graph G′

Output: is a message W embedded in G′?

Algorithm:

if G is not a subgraph of G′ then

return FALSE

j:=0

for each i from 1 to n do

if find the nearest two vertices vi1 , vi2 not connected to vi in G then

j++

if (vi, vi1) ∈ G′ then

connect vi to vi1 in G

else if (vi, vi2) ∈ G′ then

connect vi to vi2 in G

else

return FALSE

if j=0 then

return FALSE

return TRUE

Figure 4.4: A negative-partial recognition for the QP algorithm

64 CHAPTER 4. RECOGNITION

Input: an unwatermarked graph G(V, E) with n = |V |

a watermarked graph G′

Output: is a message W embedded in G′

Algorithm:

if G is not a subgraph of G′ then

return FALSE

j:=0

for each i from 1 to n do

if find the nearest two vertices vi1 , vi2 not connected to vi in G then

j++

if (vi, vi2) ∈ G′ then

connect vi to vi2 in G

else if (vi, vi1) ∈ G′ then

connect vi to vi1 in G

else // all bits extracted

exit

if j=0 then

return FALSE

if |E′| 6= |E|+ j then

return FALSE

return TRUE

Figure 4.5: A recognition for the QP algorithm

4.1. RECOGNITION 65

4.1.2 Blind Recognitions

Definition 23 (Blind and informed recognition) For an embedding algorithm A :

P × W → P and a function S : P → {TRUE, FALSE} we make the following

definitions.

If S satisfies the following property:

∀P ′ ∈ P, if there is a P ∈ P and a W ∈ candidate(A, P) such that P ′ = A(P, W),

then S(P ′) = TRUE.

then we call S a blind positive-partial recognition algorithm for the embedding algo-

rithm A.

If S satisfies that

∀P ′ ∈ P, S(P ′) = TRUE =⇒ there is a P ∈ P and a W ∈ W

such that P ′ = A(P, W)’.

then we call S a blind negative-partial recognition algorithm for the embedding algo-

rithm A.

If S satisfies that:

∀P ′ ∈ P, S(P ′) = TRUE ⇐⇒ there is a P ∈ P and a W ∈ candidate(A, P),

such that P ′ = A(P, W).

then we call S a blind recognition algorithm for the embedding algorithm A.

We say that A is blind recognizable if a blind recognition algorithm exists for A.

The combination (A, S) is called a blind watermark recognition system, when S

is a blind recognizer for A.

Blind recognition is of more practical interest than informed recognition, for the

same reasons that blind extraction is more useful than informed extraction.

Example 26 (Trivial blind partial recognitions) The blind partial recognition con-

cepts are also very flexible. The following are some trivial blind partial recogni-

66 CHAPTER 4. RECOGNITION

tions. For an embedding algorithm A : P × W → P, define a function S : P →

{TRUE, FALSE}, as

∀W ∈ W, S(P ′) = TRUE. This is a blind positive-partial recognition correspond-

ing to A. We call such a function a trivial blind positive-partial recognition and denote

it as TrivBPP (A).

For an embedding algorithm A : P × W → P, define a function S : P →

{TRUE, FALSE} as ∀P ′ ∈ P, S(P ′) = FALSE. This is a blind negative-partial

recognition corresponding to A. We call such a function a trivial blind negative-partial

recognition and denote it as TrivBNP (A).

Example 27 (A blind recognition) Define an embedder A as follows.

For any program P , if W = 101 or if W = 110, A(P, W) is P plus an extra constant

declaration. Otherwise, A(P, W) = P . A blind recognition algorithm S corresponding

to A is defined as follows.

For any P ′ ∈ P, if P ′ has at least one constant declaration, S(P ′) = TRUE. Other-

wise, Y (P ′) = FALSE.

Theorem 8 For every embedder A, there exists one and only one blind recognition

algorithm corresponding to A. We denote the unique blind recognition algorithm cor-

responding to A as BReg(A).

Proof. ∀P, P ′ ∈ W, define R(P ′, P) as follows:

if there is a P ∈ P and a W ∈ candidate(A, P) such that P ′ = A(P, W),

R(P ′, P) = TRUE,

Otherwise, R(P ′, P) = FALSE.

It is easy to see R is a blind recognition algorithm corresponding to A.

Property 7 For every embedder A, BReg(A) is both a blind positive-partial and a

negative-partial recognition algorithms corresponding to A.

4.2. A SOFTWARE WATERMARK EMBEDDING AND RECOGNITION SYSTEM 67

Definition 24 (Strength of blind partial recognitions) Let BPP1 and BPP2 be two

blind positive-partial recognitions corresponding to an embedding algorithm A; if ∀W ∈

W and ∀P ′ ∈ P, BPP2(P ′) = TRUE =⇒ BPP1(P ′) = TRUE, we say BPP2 is

stronger than BPP1.

Let BNP1 and BNP2 be two blind negative-partial recognitions corresponding to

an embedding algorithm A; if ∀W ∈ W and ∀P ′ ∈ P, BNP1(P ′) = TRUE =⇒

BNP2(P ′) = TRUE, we say BNP2 is stronger than BNP1.

Property 8 For every embedder A, TrivBPP (A) is the weakest blind positive-partial

recognition and BReg(A) is the strongest blind positive-partial recognition; TrivBNP (A)

is the weakest blind negative-partial recognition and BReg(A) is the strongest blind

negative-partial recognition.

4.2 A Software Watermark Embedding and Recognition Sys-

tem

We have developed a model to illustrate how our embedding and recognition algo-

rithms could be used in a complete system for software watermarking.

The process of the embedding subsystem goes:

For ∀P ∈ P and ∀W ∈ W,

Step 1: Construct the interference graph G of P .

Step 2: Embed the watermark W into the graph G by the QP embedding algo-

rithm and we have the watermarked graph G′.

Step 3: Establish interference relationships of some variable pairs in P so that

the interference graph of the new program is G′.

The process of the recognition subsystem is as follows:

For ∀P, P ′ ∈ P,

68 CHAPTER 4. RECOGNITION

Step 1: Construct the interference graphs G, G′ of P, P ′, respectively.

Step 2: Recognize the watermark W from the graphs G and G′ by one of the QP

recognizing algorithm.

4.3 Conclusions

We already discussed a similar issue, extraction, in the last chapter, but recognition

is still an interesting research problem. For the QP extraction and recognition algo-

rithms discussed in this thesis, they are different in the following aspect; if a program

has a watermark, an extraction algorithm stops only after all bits of this watermark

have been checked, while a recognition algorithm stops as soon as the first bit of this

watermark has been checked.

As we can see from the above definitions, recognition is not a trivial concept

in software watermarking. How to construct a good recognition algorithm for a

specific situation and purpose still deserves further research. Our major findings

are summarized very briefly below.

For any software watermark embedding algorithm, there is one and only one recog-

nition algorithm corresponding to it. This recognition algorithm is also the strongest

positive-partial and the strongest negative-partial recognition corresponding to that

embedding algorithm. There are also one weakest positive-partial recognition and one

negative-partial recognition corresponding to that embedding algorithm; they are all

trivial partial recognitions. Similar results hold for the blind recognition and partial

recognitions.

Recognition is more flexible than extraction, but it is not at all obvious how to

develop a good recognition algorithm for a specific situation. We model for a software

watermark embedding and recognition system through register allocation, based on

the concepts and algorithms established in this chapter. We will implement and

4.3. CONCLUSIONS 69

analyse it in our future work.

Though the QP recognition algorithms in this chapter have the same asymptotic

time complexity as the QP extraction algorithm in previous chapter, generally, recog-

nition will be somewhat faster than the corresponding extraction. Extraction focuses

on the retrieval of the watermark that was embedded, while recognition is focused on

the possibility that a watermark has been embedded. Furthermore, not all software

embedding algorithms have corresponding extraction algorithms, but they certainly

have corresponding recognition algorithms. In these situations, recognition algorithms

are especially important.

This chapter concludes our discussion on software watermarking. In the next three

chapter, we will study another similar issue in software security: software obfuscation.

Software obfuscation can be used to protect watermark inserted in a program. The

techniques in software obfuscation can also applied to software watermarking and vice

verse.

70 CHAPTER 4. RECOGNITION

Part II

Software Obfuscation

71

Chapter 5

Survey of Software Obfuscation

In the last three chapters, we studied one technique in software security: software wa-

termarking. When a watermark is inserted into software, an attacker may use reverse

engineering tools to locate the watermark embedded in software and try to delete

this watermark. An attacker can analyse source code of software to find watermarks

in software. He can also analyse execution trace of software to find an execution

history of the software, such as function entries and exits, branch points and deci-

sions. Such information can be used to understand the software and find watermarks.

Thus, after inserting a watermark into software, our concern is about how to make it

hard for an attacker to find and destroy a watermark in software. In order to make

software watermark robust, we use several methods to keep it hard to find. One of

these methods is software obfuscation. Software obfuscation is a way of protecting

software from unauthorized modification. It translates a program into another one

which is semantically equivalent but is hard for attackers to understand and analyze

the obfuscated program.

In next three chapters, we will focus on software obfuscation. Firstly, an overview

of this topic is presented. Then we detail a technique of obfuscating integer variables

73

74 CHAPTER 5. SURVEY OF SOFTWARE OBFUSCATION

and apply this method to array obfuscation.

5.1 Why Obfuscate Software?

Since Sun Microsystems designed Java in the mid-1990s, it has been widely used to

deliver interactive web content on the Internet, such as video displays, animations, and

interactive games. As the Internet is connected with various heterogeneous hardware

with different architectures, Java is intended to be architecture-independent.

Traditionally, software developers first write source code for the software in some

high level programming language, then compile the source code into native code

which will execute only on a specific type of computer. With Java, the finished

product of software, bytecode, is actually not the code in the architecture-specific

machine language which can be understood by only a specific type of computers.

Instead, bytecode is something that can be run on a “Java virtual machine” (JVM),

a platform between the high-level language and the real computer. It is the JVM

that makes the distributed executables of Java programs portable, not architecture-

dependent.

Now that Java bytecode is architecture-independent, it contains much information

of the source codes. This makes it easy to decompile Java bytecode into Java source

code and extract important algorithms from it. This feature of Java bytecode helps

attackers reverse-engineer Java bytecode and results in software piracy, unauthorized

penetration and system modification.

After mobile code became popular in the Internet age, another type of software

piracy occurred. As we know, mobile code migrates across a network from a remote

source to a local system and is then run on that local system. The local system can

be a personal computer, or a mobile phone, or an Internet appliance, so software

developers and owners may encounter piracy from malicious hosts.

5.2. DEFINITION OF SOFTWARE OBFUSCATION 75

In order to protect software, especially that in forms such as Java bytecode and

mobile code, several measures have been proposed. Among them software obfusca-

tion seems a last approach. Software obfuscation transforms a program into another

semantically equivalent one that is harder to understand and reverse engineer [33].

5.2 Definition of Software Obfuscation

Definition 25 (Software obfuscation [33]) Let P be all programs. An algorithm O : P

−→ P is called a software obfuscation transformation if the following three conditions

hold:

• For any given source program P ∈ P, P ′ = O(P) satisfies that if P fails to ter-

minate with an error condition, then P ′ may or may not terminate. Otherwise,

P ′ must terminate and produce the same output as P .

• The run time of P ′ should be at most polynomially larger than that of P.

• The time taken by an attacker to recover P from P ′ should be at least as large

as the time to develop P from scratch.

When P ′ = O(P), P is called the unobfuscated program and P ′ is called the obfus-

cated program.

5.3 Taxonomy of Software Obfuscation

Four principal types of software obfuscations are design obfuscation, data obfuscation,

control obfuscation, and layout obfuscation.

Design obfuscation [127] includes techniques such as class merging, class splitting

and type hiding which will obfuscate the design intent of object-oriented software.

Class merging obfuscation transforms a program into another one by merging two

76 CHAPTER 5. SURVEY OF SOFTWARE OBFUSCATION

or more classes in the program into a single class. Class splitting obfuscation splits

a single class in a program into several classes. Type hiding obfuscation uses Java

interfaces to obscure the design intent. Constants, variables and data structures

are essential elements of a program. Data obfuscations [33] try to obfuscate data

types and structures in a program. The common techniques for data obfuscations

are split variable, merge variable, flatten array, fold array, promote scalar to object,

convert static data to procedure, and change variable lifetime. With split variable,

one variable is expressed in two or more variables. In merge variable, two or more

variables are expressed in one variable. Split array expresses one array in two or

more arrays. Merge array uses one array to represent two or more arrays. Flatten

arrays uses a lower-dimensional array variable for a higher-dimensional array and

fold array expresses a lower-dimensional array variable in a higher-dimensional array.

The method of promote scalars to objects expresses one simple type of variable in an

object with the same type. In contrast, converting static data to procedure replaces a

static datum with a procedure which produces this datum. Lastly, changing variable

lifetime converts a global variable to a local variable.

Information about control transitions in a program is central to exposing the lo-

cations and interpretations of sensitive states. To protect such information is an

important issue in software security. A program can be divided into basic blocks. A

basic block of a program is a sequence of codes without branches. In this way, the

control information of a program can be represented as a Control Flow graph (CFG)

which is a graph of basic blocks where the edges of the CFG is possible control flows

between basic blocks. Obfuscation of the control flow and purpose of variables in a

program can hide the intentions of a program. The followings are some techniques

for control obfuscation [75]:

1. Reducible to non-reducible control flow graphs: Insert goto statement in Java

bytecode.

5.4. CRITERIA OF SOFTWARE OBFUSCATION 77

2. Extended loop condition: Add opaque predicate in a loop to change control

flow graph but to keep the semantics of the program.

3. Table interpretation: Choose a section of code in the unobfuscated program,

then create a virtual process not existing in the host language and add a pseudo-code

interpreter for such a virtual process into the obfuscated program.

4. Inline method: For every method call in a program, delete the method call and

add a different copy of code for this method.

5. Outline statements: Convert a sequence of codes in a program into a method

call.

6. Reorder block: Replace a static variable with a procedure.

7. Reorder loop: Convert a global variable to a local variable.

8. Intra-procedural transformations: Degeneration of control flow by changing

static branches on dynamic and loose injection of data aliases.

10. Inter-procedural transformations: Convert a global variable to a local variable.

11. Creation of aliases to function pointers and data aliases.

The last type of software obfuscation is layout obfuscation [53]. It tries to obfuscate

the lexical structure of the software by changing source code formatting, renaming

variables, and removing debugging information.

5.4 Criteria of Software Obfuscation

When a software obfuscation approach is proposed, people need to evaluate it ac-

cording to certain criteria. Different settings have different requirements for software

obfuscation approaches. The following are the common criteria for software obfusca-

tion [33].

Let P be all programs and O : P −→ P a software obfuscation transformation.

P ∈ P and P ′ = O(P).

78 CHAPTER 5. SURVEY OF SOFTWARE OBFUSCATION

In the criterion of semantic-preservation, P ′ has the same observable behavior as

P . With the obscurity criterion, to understand and reverse engineer P ′ is strictly

more time-consuming than to understand and reverse engineer P . The criterion

of resilience means it is either difficult to construct an automatic tool to undo the

obfuscation transformation O, or executing such a tool is extremely time-consuming.

In stealth, the statistical properties of P ′ are similar to those of P , and lastly, cost

means that the Execution time/space penalty incurred by the obfuscation of P are

small.

5.5 Status of Software Obfuscation

As pioneers in software obfuscation, Collberg, Thomborson et al. explored this re-

search area in papers [28, 32, 33, 75]. These works included a detailed discussion on

definitions, problems, techniques, and criterion in software obfuscation. The tech-

niques in these papers mainly applied to object-oriented programs such as Java pro-

grams. Though these papers presented a comprehensive practical study for software

obfuscation, they lacked theoretical foundation for this research. Based on that aliases

in a program is an NP-hard, Wang et al. [138, 140] presented a software obfuscation

method through global arrays and pointers. Their techniques applied to programs

written in a programming language such as C which has pointers. Drape [43] proposed

a series of techniques for data structure obfuscation based on established work on pro-

gram refinement, abstract data-types and functional programming. The focus of his

work was on the correctness of the proposed software obfuscation. Wroblewski [144]

studied software obfuscation for machine code programs based on a heuristic ap-

proach. Sosonkin, Naumovich, and Memon [127] had a detailed discussion on design

obfuscation.

In 2001, Barak et al. published the first formal study of software obfuscation based

5.6. CONCLUSION 79

on a cryptographic model called the virtual black box [10]. They presented several

important impossibility results about software obfuscation. Goldwasser and Kalai

proved the impossibility of such an obfuscation even with auxiliary input in Baraks

cryptographic model [51]. Though Barak et al. proved the nonexistence of a universal

obfuscator based on their model, there are still some positive results, and Barak et

al.’s model does not apply to all settings software obfuscation practioners face. Lynn

et al. presented a positive result for obfuscating point functions with a random oracle

in paper [76]. Wee [141] provided a simple construction of efficient obfuscators for

point functions for a slightly relaxed notion of obfuscation, for which obfuscating

general circuits is nonetheless impossible. This construction relies on the existence of

a very strong one-way permutation and yields the first non-trivial obfuscator under

general assumptions in the standard model.

Other practical techniques to obfuscate software abound in [1, 4, 17, 19, 22, 45,

46, 48, 49, 53, 58, 61, 79, 78, 81, 95, 97, 98, 111, 112, 118, 121, 122, 134, 187]. As in a

game of hide and seek, people also explore deobfuscation techniques [23, 63, 64, 136].

5.6 Conclusion

Software obfuscation is a way of protecting software piracy by making software pro-

grams hard for adversaries to understand. Though researchers have developed several

techniques for software obfuscation, it is still a relatively new field and deserves fur-

ther exploration. In this thesis, we focus on developing obfuscation techniques to

hide important constants and arithmetic operations in programs and to obfuscate

data structures in software.

80 CHAPTER 5. SURVEY OF SOFTWARE OBFUSCATION

Chapter 6

Homomorphic Functions

In software obfuscation, variable transformation is a major method to transform cer-

tain variables in a program into new ones so that it is hard for attackers to understand

the true meaning of the variables [33]. Residue number coding [62] is an approach

used in hardware design, high precision integer arithmetic, and cryptography. It is

also used for software obfuscation [21, 97], but there is a big flaw in this application

of residue number coding to data flow transformations. In this chapter, we propose

the concepts of homomorphic obfuscations, a potential area for further exploration.

Based on these concepts, we establish a sound grounding for residue number cod-

ing for software obfuscation and a precise relationship between the natural orders of

residue numbers and homomorphic obfuscation. We also use this method to develop

an algorithm for division by several constants. Some of the of results in this chapter

have already been published [179].

This chapter is structured as follows. In Section 6.1 we describe basic concepts

about residue numbers. In Sections 6.2 and 6.3 we establish a systematic theory for a

solution to obfuscating addition, subtraction, and multiplication of residue numbers.

Section 6.4 has an explanation for the difficulty of obfuscating the order operations

81

82 CHAPTER 6. HOMOMORPHIC FUNCTIONS

for integers through homomorphic obfuscations. The technique to obfuscate division

of integers by a constant is presented in Section 6.5, while in Section 6.6 we propose a

solution to the division of residue numbers which is easy to implement. This chapter

concludes in section 6.7.

6.1 Basic Concepts about Residue Numbers

Let Z be the set of all integers, n a given positive integer. For any x ∈ Z, denote

[x]n = {y ∈ Z | y − x is divisible by n} and we call [x]n the residue class of x modulo

n. We omit the subscript when there is no confusion. Let Z/nZ be the set of all

these residue classes with respect to modulo n, where Z/nZ = {[0], [1], . . . , [n − 1]}.

For Z/nZ, we introduce a natural order relation ≤ among its members as [0] ≤

[1] ≤ . . . ≤ [n − 1]

Z/nZ has three operations +, -, × defined as follows: for any two [x], [y] ∈ Z/nZ,

[x] + [y] = [x + y], [x] − [y] = [x− y], [x] × [y] = [x× y].

The product Z/m1Z × Z/m2Z × . . .× Z/mkZ also has three operations +, −, ×

defined as follows: for any two ([x1]m1
, . . . , [xk]mk

), ([y1]m1
, . . . , [yk]mk

) ∈ Z/m1Z ×

. . . × Z/mkZ,

([x1]m1
, . . . , [xk]mk

) + ([y1]m1
, . . . , [yk]mk

) = ([x1 + y1]m1
, . . . , [xk + yk]mk

)

([x1]m1
, . . . , [xk]mk

) − ([y1]m1
, . . . , [yk]mk

) = ([x1 − y1]m1
, . . . , [xk − yk]mk

)

([x1]m1
, . . . , [xk]mk

) × ([y1]m1
, . . . , [yk]mk

) = ([x1 × y1]m1
, . . . , [xk × yk]mk

)

In software obfuscation, sometimes we need to hide some constants. Generally,

we will use coding methods to encode these constants and decode them. A simple

example is shown in Fig. 6.2.

For the unobfuscated program in Fig. 6.1, an attacker might try to learn a valid li-

cense key “x”. If this attacker puts a break point at the statement “if((c*x+d)%n!=e)”,

6.1. BASIC CONCEPTS ABOUT RESIDUE NUMBERS 83

void licenseCheck(int x){

const int c = 5, d = 6, e = 7, n = 99;

if((c*x+d)%n!=e)

exit();

}

Figure 6.1: An unobfuscated function for license key checking

Obfuscated program

void obfLicenseCheck(int xe){

const int ce = obf(5),de = obf(6), ee = obf(7);

if(obfNeq(obfMod99(obfAdd(obfMulti(ce,xe),de),ee))

exit();

}

Figure 6.2: Obfuscated version of Fig. 6.1

they can learn the license-checking equation and its constants. If they are able to

solve this equation for x, they will be able to compute a valid license key. License

keys should, of course, only be revealed to licensed users. So it is important to find

ways to prevent such attacks on the key-checking function.

By obfuscating the constants and variables in Fig. 6.1, and by replacing its in-

teger arithmetic operations with their equivalents, we could obtain the obfuscated

program in Fig. 6.2. In this program, “obf(5)”, “obf(6)”, and “obf(7)” will be re-

placed by corresponding new concrete constants by compiler, so “obf” and all these

original constants will disappear in this program. The attacker may still put a break

point at the statement “if(obfNeq(obfMod99(obfAdd(obfMulti(ce,xe),de),ee))”, but

this statement and its constants are obfuscated. The attacker must work harder to

compute the license key from this statement. At least, it requires more mathematical

84 CHAPTER 6. HOMOMORPHIC FUNCTIONS

void licenseCheck2(int x, int y)

const int c = 5, d = 6, e = 7;

if((c*x+d)%y!=e)

exit();

}

Figure 6.3: Another program for license key checking. It takes two secret keys (x,y).

void obfLicenseCheck2(int xe, int ye){

const int ce = obf(5),de = obf(6), ee = obf(7);

int te = obfAdd(obfMulti(ce,xe),de));

int t = deobf(te);

int y = deobf(ye);

int ze = obf(t% y);

if(obfNeq(ze, ee))

exit();

}

Figure 6.4: An example of improper data obfuscation

and reverse-engineering skills for the attacker to understand this function and to find

a valid key.

It is essential not to allow the deobfuscation function to appear in the same pro-

cedure or even in the same program as the corresponding obfuscation function. Oth-

erwise, the attacker can use them to compromise the license checking function by

using it to deobfuscate its input constants and its intermediate results. This analysis

would quickly reveal the identity of the obfuscated operators, putting this attacker

in essentially the same position as the attacker who is given debugger access to the

unobfuscated function of Fig 6.1.

Since there is no known obfuscation function for division by a variable that has been

6.2. ONE-DIMENSIONAL HOMOMORPHIC OBFUSCATIONS 85

obfuscated in residue arithmetic, it is not possible to use this method to obfuscate this

arithmetic operation. For example, if we obfuscate the program in Fig. 6.3 and obtain

the obfuscated program in Fig. 6.4, we have not significantly increased the difficulty

of obtaining its license keys, “x” and “y”. It is easy for an adversary to attack the

obfuscated program. If the attacker sets a break point at “int t = deobf(te)”, he will

find a way to call the deobfuscation function on an arbitrary argument. Deobfuscation

in the statement “int y = deobf(ye);” is necessary, since we have no function available

for division by a variable. By contrast, the function “obfMod99” is available for the

obfuscation (in Fig. 6.2) of the function of Fig. 6.1, since we have a function for

division by a constant.

6.2 One-dimensional Homomorphic Obfuscations

There are an infinity of potential coding methods for encoding and decoding, but, in

practice, we should choose one that is easy to implement. In this thesis, we consider

encoding only integer constants and variables. For integers, there are four common

operations: addition, subtraction-, multiplication, and division. In order to encode

variables in residue numbers, we propose the following definitions.

6.2.1 Definition of Homomorphic Obfuscations

Definition 26 (Homomorphic and isomorphic obfuscations) If a function f : Z/nZ →

Z/mZ satisfies the following condition that

for any two [x], [y] ∈ Z/nZ, we have f([x] + [y]) = f([x]) + f([y]).

We call f : Z/nZ → Z/mZ a homomorphic obfuscation from Z/nZ to Z/mZ.

If a homomorphic obfuscation from Z/nZ to Z/mZ is also a bijection, we call it

an isomorphic obfuscation from Z/nZ to Z/mZ.

86 CHAPTER 6. HOMOMORPHIC FUNCTIONS

From f([x] + [y]) = f([x]) + f([y])), it is easy to prove the following basic results:

1. f([0]n) = [0]m

2. f([x] − [y]) = f([x])− f([y])

3. f([x][y]) = f([x])f([y]), so f([x]n) = [x]mf([1]n)

6.2.2 Examples of Homomorphic Obfuscations

1. For any Z/nZ and Z/mZ, there is always a trivial homomorphic obfuscation

f : Z/nZ → Z/mZ:

f([x]n) = [0]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

2. For any Z/nZ, there is an identity homomorphic obfuscation f : Z/nZ → Z/nZ

as follows:

f([x]n) = [x]n, for any [x]n ∈ Z/nZ

In fact, it is an identity isomorphic obfuscation from Z/nZ to itself.

3. For any Z/nZ and Z/2nZ, there is a homomorphic obfuscation f : Z/nZ →

Z/2nZ as follows:

f([x]n) = [2x]2n ∈ Z/2nZ, for any [x]n ∈ Z/nZ

4. For Z/10Z and Z/5Z, there is a homomorphic obfuscation f : Z/10Z → Z/5Z

as follows:

f([x]10) = [2x]5 ∈ Z/5Z, for any [x]10 ∈ Z/10Z

that is

6.2. ONE-DIMENSIONAL HOMOMORPHIC OBFUSCATIONS 87

f([0]10) = [0]5, f([1]10) = [2]5, f([2]10) = [4]5, f([3]10) = [1]5, f([4]10) = [3]5

f([5]10) = [0]5, f([6]10) = [2]5, f([7]10) = [4]5, f([9]10) = [1]5, f([9]) = [3]5.

5. For any Z/pZ and Z/qZ in which p, q are two distinct prime numbers, there is

only the trivial homomorphic obfuscation from Z/pZ to Z/qZ.

6.2.3 Representation of Homomorphic Obfuscations

Theorem 9 (First representation theorem for homomorphic obfuscations) For any

Z/nZ and Z/mZ, if l is an integer such that m|nl, then the function

f([x]n) = [lx]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

is a homomorphic obfuscation from Z/nZ to Z/mZ.

On the other hand, if f is a homomorphic obfuscation from Z/nZ to Z/mZ, then

f([x]n) = [lx]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

and

m|nl

where [l]m = f([1]). Furthermore, there exists at least one l satisfying the above

conditions in the range 0 ≤ l < m.

Proof.

Let l be an integer such that m|nl; we first prove that the

f([x]n) = [lx]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

is really a function. That means, if [x]n, [y]n ∈ Z/nZ and [x]n = [y]n, we should have

f([x]) = f([y]), e.g. [lx]m = [ly]m in Z/mZ. Since [x]n = [y]n we have n|(x − y), so

there is an integer d such that x−y = nd. As a result, lx−ly = l(x−y) = lnd = nl ·d.

By the assumption m|nl, we have m|nl · d, so m|(lx − ly); that means [lx]m = [ly]m

88 CHAPTER 6. HOMOMORPHIC FUNCTIONS

in Z/mZ. It is easy to prove that this function f satisfies f([x]n + [y]n) = f([x]n) +

f([y]n).

On the other hand, if f is a homomorphic obfuscation from Z/nZ to Z/mZ and

[l]m = f([1]), from [n]n = [0]n ∈ Z/nZ, [nl]m = [n]m[l]m = [n]mf([1]n) = f([n]n) =

f([0]n) = [0]m ∈ Z/mZ; that is, m|nl. By [(l ± m)x]m = [lx]m, it is easy to see we

can choose an l such that 0 ≤ l < m.

Corollary 1 For any Z/nZ and Z/mZ, there is only the trivial homomorphic obfus-

cation from Z/nZ to Z/mZ if and only if n and m are two relatively prime numbers.

Proof. It is easy to see that n and m are two relatively prime numbers if and only if

m|nl means m|l. While m|l if and only if [l]m = [0]m in Z/mZ, we can conclude our

result from the above corollary.

Corollary 2 For any Z/nZ and an integer l, the following function f is a homo-

morphic obfuscation from Z/nZ to Z/nZ:

f([x]) = [xl] for all [x] ∈ Z/nZ

On the other hand, if a function f from Z/nZ to Z/nZ is a homomorphic obfuscation,

then there exists an integer l such that

f([x]) = [xl] for all [x] ∈ Z/nZ

Corollary 3 (First representation theorem for isomorphic obfuscations) For any Z/nZ

and an integer l such that l and n are relatively prime, then the following homomor-

phic obfuscation f from Z/nZ to Z/nZ is an isomorphic obfuscation:

f([x]) = [xl] for all [x] ∈ Z/nZ.

On the other hand, if a homomorphic obfuscation f from Z/nZ to Z/nZ is an iso-

morphic obfuscation, then there exists an integer l such that l and n are relatively

prime and

6.3. K-DIMENSIONAL HOMOMORPHIC OBFUSCATIONS 89

f([x]) = [xl] for all [x] ∈ Z/nZ

Corollary 4 For any Z/nZ, there are total of φ(n) isomorphic obfuscations from

Z/nZ to Z/nZ, where φ(n) is the Euler phi function.

6.3 K-dimensional Homomorphic Obfuscations

In the previous section, we discussed homomorphic obfuscation in a one-dimensional

setting. In this section, we extend this concept to multiple-dimensional cases through

definitions and representations of homomorphic obfuscations.

6.3.1 Basic Definitions

Definition 27 (Homomorphic and isomorphic obfuscations) If a function f : Z/nZ →

Z/m1Z × Z/m2Z × . . . × Z/mkZ satisfies the condition that

for any two [x], [y] ∈ Z/nZ, we have f([x] + [y]) = f([x]) + f([y]),

then we call it a homomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . ×

Z/mkZ.

If a homomorphic obfuscation from Z/nZ to Z/m1Z ×Z/m2Z × . . .×Z/mkZ is also

a bijection, we call it an isomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z ×

. . . × Z/mkZ.

For any Z/nZ and Z/m1Z × Z/m2Z × . . . × Z/mkZ, there is always a trivial homo-

morphic obfuscation as follows:

f([x]n) = ([0]m1
, [0]m2

, . . . , [0]mk
) for any [x] ∈ Z/nZ.

For a homomorphic obfuscation f : Z/nZ → Z/m1Z × Z/m2Z × . . . × Z/mkZ and

[x], [y] ∈ Z/nZ, it is easy to prove the following properties:

90 CHAPTER 6. HOMOMORPHIC FUNCTIONS

1. f([0]n) = ([0]m1
, [0]m2

, . . . , [0]mk
).

2. f([x] − [y]) = f([x])− f([y]).

3. f([x][y]) = f([x])f([y]), so f([x]n) = ([x]m1
, [x]m2

, . . . , [x]mk
)f([1]n).

6.3.2 Representation of Homomorphic Obfuscations

Theorem 10 (The first representation theorem for homomorphic obfuscations) For

any Z/nZ and Z/m1Z ×Z/m2Z × . . .×Z/mkZ, if l1, l2, . . . , lk are integers such that

mi|nli, for i = 1, 2, . . . , k, then the function

f([x]n) = ([l1x]m1
, [l2x]m2

, . . . , [lkx]mk
), for any [x]n ∈ Z/nZ

is a homomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ.

On the other hand, if f is a homomorphic obfuscation from Z/nZ to Z/m1Z ×

Z/m2Z × . . . × Z/mkZ, then

f([x]n) = ([l1x]m1
, [l2x]m2

, . . . , [lkx]mk
), for any [x]n ∈ Z/nZ and

mi|nli, for i = 1, 2, . . . , k where ([l1]m1
, [l2]m2

, . . . , [lk]mk
) = f([1]).

Furthermore, we can choose these integers such that 0 ≤ li < mi for i = 1, 2, . . . , k,

and we say the homomorphic obfuscation f has the representation (l1, l2, . . . , lk).

Corollary 5 For any Z/nZ and Z/m1Z × Z/m2Z × . . .× Z/mkZ, there is only the

trivial homomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ if

and only if, for i = 1, 2, . . . , k, n and mi are two relatively prime numbers.

Corollary 6 Assuming that Z/nZ and Z/m1Z ×Z/m2Z × . . .×Z/mkZ satisfy n =

m1 × m2 × . . . × mk, we have the following results:

For any integers l1, l2, . . . , lk, the function

f([x]n) = ([l1x]m1
, [l2x]m2

, . . . , [lkx]mk
), for any [x]n ∈ Z/nZ

6.3. K-DIMENSIONAL HOMOMORPHIC OBFUSCATIONS 91

is a homomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ.

On the other hand, if f is a homomorphic obfuscation from Z/nZ to Z/m1Z ×

Z/m2Z × . . . × Z/mkZ, then

f([x]n) = ([l1x]m1
, [l2x]m2

, . . . , [lkx]mk
), for any [x]n ∈ Z/nZ

where ([l1]m1
, [l2]m2

, . . . , [lk]mk
) = f([1]).

Theorem 11 (The second representation theorem for homomorphic obfuscations)

Assume that Z/nZ and that Z/m1Z×Z/m2Z×. . .×Z/mkZ satisfy that m1, m2, . . . , mk ∈

Z are pairwise relatively prime and n = m1 × m2 × . . . × mk, we have the following

results:

For any integer l, then the function

f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ

is a homomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ.

On the other hand, if f is a homomorphic obfuscation from Z/nZ to Z/m1Z ×

Z/m2Z × . . . × Z/mkZ, then there exists an integer l such that

f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ.

Proof. We need to prove only the second part of our result. By Corollary 6, for a

homomorphic obfuscation f from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ, there

are integers l1, l2, . . . , lk such that

f([x]n) = ([l1x]m1
, [l2x]m2

, . . . , [lkx]mk
), for any [x]n ∈ Z/nZ.

By Theorem A.28 in [41, page 255], there is an integer l such that [l]mi
= [li]mi

, for

i = 1, 2, . . . , k. Therefore, for any x, [lx]mi
= [lix]mi

, for i = 1, 2, . . . , k. We get

f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ.

92 CHAPTER 6. HOMOMORPHIC FUNCTIONS

Theorem 12 (The representation theorem for isomorphic obfuscations) Assuming

that Z/nZ and thatZ/m1Z ×Z/m2Z × . . .×Z/mkZ satisfy n = m1 ×m2 × . . .×mk

and m1, m2, . . . , mk ∈ Z are pairwise relatively prime integers, we have the following

results:

For any integer l such that l and n are relatively prime, the function

f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ

is an isomorphic obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . . × Z/mkZ.

On the other hand, if f is an isomorphic obfuscation from Z/nZ to Z/m1Z ×

Z/m2Z × . . . × Z/mkZ, then there exists an integer l such that

f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ.

Furthermore, ([l]m1
, [l]m2

, . . . , [l]mk
) = f([1]) and l and n are relatively prime.

Proof. By Theorem 10, for any integer l satisfying that l and n are relatively prime, the

function f([x]n) = ([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ is a homomorphic

obfuscation from Z/nZ to Z/m1Z × Z/m2Z × . . .× Z/mkZ. We prove this function

is also a bijection. Firstly, we prove that

if f([x]n)=([0]m1
, [0]m2

, . . . , [0]mk
), then [x]n = [0]n.

In fact, if f([x]n) = ([0]m1
, [0]m2

, . . . , [0]mk
), then ([lx]m1

, [lx]m2
, . . . , [lx]mk

) = ([0]m1
,

[0]m2
, . . . , [0]mk

), that means mi|lx for i = 1, 2, . . . , k. Because m1, m2, . . ., mk ∈ Z are

pairwise relatively prime integers, we have m1m2 . . .mk|lx. By n = m1×m2×. . .×mk

and l and n are relatively prime, we have n|x; that means [x]n = [0]n. Secondly, by the

Property 2 of homomorphic obfuscations, f([x] − [y]) = f([x]) − f([y])), we have: if

[x]n = [y]n, then f([x]n) = f([y]n). Because Z/nZ and Z/m1Z×Z/m2Z×. . .×Z/mkZ

are finite sets with the same cardinality, the above function f must be a bijection, so

it is an isomorphic obfuscation.

6.4. HOMOMORPHIC FUNCTIONS AND ORDERS 93

On the other hand, if a function f from Z/nZ to Z/m1Z ×Z/m2Z × . . .×Z/mkZ

is an isomorphic obfuscation, by Theorem 11, we have an integer l such that f([x]n) =

([lx]m1
, [lx]m2

, . . . , [lx]mk
), for any [x]n ∈ Z/nZ.

We prove l and n are relatively prime. Otherwise, l and n have a common divisor

d > 1. Let n = n′d and l = l′d, then [n′]n 6= [0]n, but [ln′]mi
= [l′d × n′]mi

= [l′ ×

n′d]mi
= [l′×n]mi

= [0]mi
, for i = 1, 2, . . . , k; that is f([n′]n) = ([0]m1

, [0]m2
, . . . , [0]mk

).

This concludes our result.

6.4 Homomorphic Functions and Orders

Definition 28 For a homomorphic obfuscation f : Z/nZ → Z/mZ and the natural

orders of Z/nZ and Z/mZ, if for any [x], [y] ∈ Z/nZ, [x] ≤ [y] implies f([x]) ≤

f([y]), we call it an order-keeping homomorphic obfuscation.

Clearly, the trivial homomorphic obfuscation from Z/nZ to Z/mZ is an order-keeping

homomorphic obfuscation, but not all homomorphic obfuscations are order-keeping

homomorphic obfuscations. For example, f : Z/5Z → Z/10Z,

f([x]5) = [4x]10 ∈ Z/10Z, for any [x]5 ∈ Z/5Z.

that is

f([0]5) = [0]10, f([1]5) = [4]10, f([2]5) = [8]10, f([3]5) = [2]10, f([4]5) = [6]10.

The above function is a homomorphic obfuscation from Z/5Z to Z/10Z, but it does

not keep the natural orders of Z/5Z and Z/10Z.

Theorem 13 (First characteristic theorem for order-keeping homomorphic obfusca-

tions) For a homomorphic obfuscation f from Z/nZ to Z/mZ, represented as

f([x]n) = [lx]m ∈ Z/mZ, for any [x]n ∈ Z/nZ

94 CHAPTER 6. HOMOMORPHIC FUNCTIONS

where [l]m = f([1]) and 0 ≤ l < m according to Theorem 9, then f is an order-keeping

homomorphic obfuscation if and only if 0 ≤ (n − 1)l < m.

Corollary 7 If n > m, there is no order-keeping homomorphic obfuscation from

Z/nZ to Z/mZ other than the trivial homomorphic obfuscation.

Corollary 8 For any Z/nZ, there are only two order-keeping homomorphic obfusca-

tions from Z/nZ to Z/nZ, the trivial one and the identity homomorphic obfuscations.

6.5 Division of Integers by a Constant

The division of residue numbers is a complicated problem. In line 38 and 39 of a

patent [21, page 17], Chow et al. wrote in [21] “Most texts like [62] also indicate

that division is impossible.” In reality, we can not say division of residue numbers is

impossible. Knuth commented on the division of residue numbers, writing “It is even

more difficult to perform division” in line 21 of pp. 285; see also Exercise 4.3.2-11

at pp. 293 [62]. Chow et al.’s patent [21, page 17] describes a method for division

of residue numbers, at line 39 and 40, “However, the invention provides a manner of

division by a constant.” We assert and will prove that this method is invalid. The

main problem is that the equations (19) and (20) in the patent [21, page 17] are

incorrect. Because these two equations are the basis for the techniques of the division

of residue numbers, the invention as described in [21, page 17] is completely invalid.

The solution to division by a constant d in the patent [21] has another problem – an

overly restrictive condition that such d can be only one of its bases.

In Sections 6.2 and 6.3 of this chapter, we have laid a sound grounding for con-

structing a mechanism for division by constants. Firstly, we give a solution to division

by a constant d. Assume that Z/nZ and Z/m1Z × Z/m2Z × . . . × Z/mkZ satisfy

n = m1 × m2 × . . . × mk and m1, m2, . . . , mk are pairwise relatively prime integers

6.5. DIVISION OF INTEGERS BY A CONSTANT 95

and l and n are relatively prime. We define an isomorphic obfuscation f from Z/nZ

to Z/m1Z × Z/m2Z × . . . × Z/mkZ as follows:

f([y]n) = ([dy]m1
, [dy]m2

, . . . , [dy]mk
), for any [y]n ∈ Z/nZ.

Then, for any 0 ≤ x < n such that d|x, we have

f([
x

d
]) = ([x]m1

, [x]m2
, . . . , [x]mk

).

This solution is simple and easy to implement, and it is better than that in Patent [21].

As for the following restrictions to our solution, we make the following comments.

1. Our first constraint is that d|x. This is unsurprising, for if this constraint is not

met, then
x

d

is not a linear function of x.

2. Our second constraint is that d and n are relatively prime. This is not problem-

atic in some applications, for when obfuscating a program containing a single

constant d, we have the freedom to choose n so that this condition is satisfied.

In the case that d is one of m1, m2, . . . , mk, as in Chow et al.’s patent [21], we see

some fundamental difficulties, for we can prove the following result.

Theorem 14

[
y

mi

]mi
is not a linear function of [y]m1

, [y]m2
, . . . , [y]mk

; that is, there are no

constants with respect to y, c1, c2, . . . , ck, such that

[
y

mi

]mi
= c1[y]m1

+ c2[y]m2
+ . . . + ck[y]mk

(6.1)

where mi|y.

96 CHAPTER 6. HOMOMORPHIC FUNCTIONS

Let us first consider the case k = 2 and i = 1 and m1 < m2. If the above linear

function exists, then

[
y

m1

]m1
= c1[y]m1

+ c2[y]m2
(6.2)

holds for all m1|y. Let y = m2
1; we have

[
m2

1

m1

]m1
= c1[m

2

1
]m1

+ c2[m
2

1
]m2

. (6.3)

So, c2[m
2
1]m2

= 0. For m1 and m2 are relatively prime, c2 = 0.

Now Equation (6.2) is reduced to

[
y

m1

]m1
= c1[y]m1

. (6.4)

Let y = m1m2, we have [m2]m1
= 0. This is a contradiction. For other cases, the

proof is similar.

Compared with the method in Chow et al.’s patent [21], where d can be only

one of m1, m2, . . . , mk, our solution has more freedom for choosing d. When d is

one of m1, m2, . . . , mk, our solution does not work, but we can choose another set

of parameters m1, m2, . . . , mk so that our solution works. In fact, the solution in

Chow et al.’s patent [21] itself does not really work for the case that d is one of

m1, m2, . . . , mk.

6.6 Division of Integers by Several Constants

Assume that Z/nZ and Z/m1Z×Z/m2Z×. . .×Z/mkZ satisfy n = m1×m2×. . .×mk

and m1, m2, . . . , mk are pairwise relatively prime integers, d1, d2, . . . , dp are p integers,

and di and n are relatively prime for any i = 1, 2, . . . , p. Let d = d1d2 . . . dp; we define

an isomorphic obfuscation f from Z/nZ to Z/m1Z×Z/m2Z×. . .×Z/mkZ as follows:

f([y]n) = ([dy]m1
, [dy]m2

, . . . , [dy]mk
), for any [y]n ∈ Z/nZ

6.7. CONCLUSION 97

Then, for any 1 ≤ i ≤ p and 0 ≤ x < n such that di|x, denote d/di = d1 · · · di−1di+1 · · · dk

as d′

i, we have

f([
x

di

]) = ([d′

ix]m1
, [d′

ix]m2
, . . . , [d′

ix]mk
).

6.7 Conclusion

While residue number coding can be used in RSA cryptography, its applications to

software obfuscation to encode variables to hide the real meaning of these variables

as said in patent [21] has a big flaw. The solution to division of residue numbers

proposed in this thesis is based on a sound grounding in number theory and can

be used in software obfuscation to hide integers. This result is new in the software

obfuscation literature.

The method proposed in this chapter, an improvement to Chow’s approach, is

used to hide important constants and operations in programs. The impossibility

results [10] by Barak et al. reveal that programs cannot be securely concealed would

greatly increase the difficulties faced by a reverse engineer. the method developed in

this chapter or any other obfuscation techniques. But, especially if combined with

other techniques, our method might help protect program from reverse engineering.

Some points in our methods require further exploration, such as the security of

our methods and the combination of our methods with other software obfuscation

techniques. These are topics for future research. In next chapter, we will further

apply homomorphic function to obfuscate data structures.

98 CHAPTER 6. HOMOMORPHIC FUNCTIONS

Chapter 7

Application of Homomorphic

Function

In the previous chapter, we established a sound ground for residue number coding for

software obfuscation. Especially, we used this to develop an algorithm for division by

several constants, correcting an error in an earlier publication [21]. In this chapter, we

describe further applications of homomorphic functions to software obfuscation [173,

174].

The remainder of this chapter is structured as follows. In Section 7.1 we describe

array transformation, an important technique in software obfuscation. In Section 7.2,

the focus of this chapter, we apply homomorphic functions to array transformations.

This chapter concludes in section 7.3.

7.1 Array Transformations

Data transformation is one of several algorithms used in software obfuscation [33].

Array index change, array folding, and array flattening are some data transformations.

As said in [33], by adding data complexity into the program, array index change, array

99

100 CHAPTER 7. APPLICATION OF HOMOMORPHIC FUNCTION

folding and flattening make a program more difficult to understand and to reverse

engineer.

7.1.1 Array Index Change

The following Fig. 7.1 is a simple example of the array index change method [33]:

int A[9]; int A1[5], A2[4];

A[i] = ... if((i%2 == 0))

⇒ A1[i/2] =...

else

A2[i/2] = ...

Figure 7.1: An example of array index change

7.1.2 Array Folding and Flattening

Array folding increases the dimension of an array in the code, such as transforming

a two-dimensional array to a one-dimensional array. In contrast, array flattening de-

creases the dimension of an array in the code, such as transforming a two-dimensional

array to a four-dimensional array.

7.2 Application of Homomorphic Function to Arrays

Homomorphic functions can be used to obfuscate programs through changing the

index or the dimension of an array in the programs to obfuscate them. In the fol-

lowing, we describe in detail four methods, which we reported in [173, 174], to apply

homomorphic functions to software obfuscation.

7.2. APPLICATION OF HOMOMORPHIC FUNCTION TO ARRAYS 101

7.2.1 Index Change

Homomorphic functions can change the index of an array in software to obfuscate it.

For an array A[n], the procedure has two steps as follows:

1. Find an m such that m > n, and n and m are relatively prime.

2. Change the array into another array B[n], and the element A[i] is turned into

b[i*m mod n].

The homomorphic function f : Z/nZ → Z/nZ defined by f([i]n) = [i ∗ m]n is an

isomorphism, thus the above replacement guarantees the semantics of the original

program.

Example 28 (Index change:) For the program in Fig. 7.2, we choose m = 3. The

obfuscated program is in Fig. 7.3.

We cannot use this index change method to arrays of real numbers, since round-

off errors may occur in some operations of floating numbers. A round-off error is the

difference between the calculated approximation of a number and its exact value in

mathematical meaning. It occurs in a computation by rounding results at one or more

intermediate steps. The other common cases of round-off errors happen when two

quantities very close to each other are subtracted, a number is divided by a number

which is close to zero, and a big number and a small one are added. This index

change method can be applied safely only to sequences of array operations which are

fully commutative.

7.2.2 Index and Dimension Change

Homomorphic functions can be used to change the index and the length of dimension

of an array in programs to obfuscate them. To achieve this, for an array A[n], we has

the following procedure:

102 CHAPTER 7. APPLICATION OF HOMOMORPHIC FUNCTION

...

int A[100];

...;

S = 0;

for(i = 0; i < 100; i++)

S = S + A[i];

...

Figure 7.2: An unobfuscated program

...

int B[100];

...

S = 0;

for(i = 0; i < 100; i++)

S = S + B[i*3 mod 100];

...

Figure 7.3: An obfuscated version of the program in Fig. 7.2

1. Find an m such that m > n, and n and m are relatively prime.

2. Change the array into another array B[m] and the element A[i] is turned into

b[i*n mod m].

The above method can be regarded as two steps. Firstly, extend array A[n] to C[m]

with C[i] = A[i] for 0 ≤ i < n and C[i] undefined for n ≤ i < m]. Then, change

the array C[m] into b[m] by replacing C[i] with B[i*n mod m] as in the index change

method.

Example 29 (Index and dimension change:) For the program in Fig. 7.4, we

choose m = 101. The obfuscated program is in Fig. 7.5.

7.2. APPLICATION OF HOMOMORPHIC FUNCTION TO ARRAYS 103

...

int A[100];

...;

S = 0;

for(i = 0; i < 100; i++)

S = S + A[i];

...

Figure 7.4: An unobfuscated program

...

int B[101];

...

S = 0;

for(i = 0; i < 100; i++)

S = S + B[i*100 mod 101];

...

Figure 7.5: An obfuscated version of the program in Fig. 7.4

7.2.3 Array Folding

Homomorphic functions can increase the number of dimensions of an array in software

to obfuscate it. The technique is called array folding. For an array A[n], we assume

n > 2. The array folding procedure is as follows:

1. If n is a prime, let m = n + 1; otherwise m = n.

2. Extend A[n] into C[m] by C[i] = A[i] for 0 ≤ i < n and C[i] undefined for

n ≤ i < m.

3. Factor m into m1 and m2. Replace C[m] with B[m1, m2] through B[i mod m1, i

mod m2] = C[i] for 0 ≤ i < m.

4. Replace any A[i] with B[i mod m1, i mod m2] in the unobfuscated program.

104 CHAPTER 7. APPLICATION OF HOMOMORPHIC FUNCTION

Example 30 (Array folding:) For the program in Fig. 7.6, we choose m = 3.

1. Factor 100 into 4 × 25, two relatively prime integers.

2. Turn the one-dimensional array A[100] into a two-dimensional array B[4, 25]

and let B[i mod 4, i mod 25] = A[i] for 0 ≤ i < 100.

3. Replace any A[i] with B[i mod 4, i mod 25] in the unobfuscated program.

The obfuscated program is in Fig. 7.7.

...

S = 0;

for(i = 0; i < 100; i++)

S = S + A[i];

...

Figure 7.6: An unobfuscated program

...

S = 0;

for(i = 0; i < 4; i++)

for(j = 0; i < 25; j++)

S = S + B[i, j];

...

Figure 7.7: An obfuscated version of the program in Fig. 7.6

7.2.4 Array Flattening

Homomorphic functions can be used to decrease the number of dimension of an array

in software to obfuscate it and is called array flattening. For a two-dimensional array

A[n1, n2], the array flattening procedure is as follows:

7.2. APPLICATION OF HOMOMORPHIC FUNCTION TO ARRAYS 105

1. Find two relatively prime integers m1 and m2 such that n1 ≤ m1 and n2 ≤ m2.

Let m = m1 ∗ m2.

2. Turn the two-dimensional array A[n1, n2] into another two-dimensional array

C [m1, m2] by C [i, j] = A[i, j] for 0 ≤ i < m1 and 0 ≤ j < m2, and C [i, j]

undefined otherwise. Replace all A[i, j] with C [i, j].

3. Find two relatively prime integers k1 and k2 such that k1 ∗ m1 + k2 ∗ m2 = 1.

4. Turn the two-dimensional array C [n1, n2] into a one-dimensional array B[m] and

let B[i] = C [i mod m1, i mod m2] for 0 ≤ i < m.

5. Replace any A[i, j] with B[(i ∗ k1 + j ∗ k2) mod m] for 0 ≤ i < n1 and 0 ≤ j < n2

in the unobfuscated program.

Example 31 (Array flattening) For the program in Fig. 7.8,

1. We choose 4 and 27.

2. Time 4 and 27 into 108

3. Turn the two-dimensional array B[4, 26] into a one-dimensional array A[108]

and let

• A[i] = B[i mod 4, i mod 27] for 0 ≤ i < 104.

• A[i] = any value for 104 ≤ i < 108.

4. Replace any B[i mod 4, i mod 27] with A[i] for 0 ≤ i < 104 in the unobfuscated

program.

The new obfuscated program is as in Fig. 7.9.

106 CHAPTER 7. APPLICATION OF HOMOMORPHIC FUNCTION

...

int B[4, 26];

...

S = 0;

for(i = 0; i < 4; i++)

for(j = 0; i < 26; j++)

S = S + B[i, j];

...

Figure 7.8: An unobfuscated program

...

int A[108];

...

S = 0;

for(i = 0; i < 104; i++)

S = S + A[i];

...

Figure 7.9: An obfuscated version of the program in Fig. 7.8

7.3 Conclusions

Array transformation is an important method in software obfuscation. This chapter

concerns applications of the residue number coding to obfuscate data structures in

software. Because of round-off errors, array transformation methods developed in

this chapter can be applied to only operations which are fully commutative. We will

investigate more applications of homomorphic functions to software obfuscation in

our future research.

This chapter concludes software obfuscation. Part III contains our conclusions and

area for future research.

Part III

Conclusions and Future Work

107

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Computer and communication industries develop so rapidly that the demand for

software becomes larger and larger and the demand for software protections, such

as copyright and anti-tampering defense, are becoming more important to software

users and developers. Software watermarking and obfuscation are two software-based

techniques to protect software from piracy and tampering. In this thesis, we study

software watermarking and obfuscation. Firstly, we review the current security issues

in the software community. Then a detailed survey of software watermarking to de-

scribe aims, problems, and techniques in this field is given. The main contributions

of this thesis is to formalize two important concepts in software watermarking (ex-

traction and recognition), to propose an algorithm for software watermarking, and to

establish a technique for software obfuscation.

109

110 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1.1 Software Watermarking

In order to trace actions of unauthorized use, modification, and tampering, software

watermarking inserts a piece of secret information into the protected software. The

developer can use this secret message to prove a claim to the ownership of this software

if piracy occurs. Since this research subject is a relatively new one, many core concepts

in it are informal. Some terms have different meanings in different literatures. As a

result, there is a need to formalize several key concepts which are essential for progress

in this area.

In this thesis, we formalized two core concepts in software watermarking: extrac-

tion and recognition. For extraction, we defined important concepts such as water-

mark, embedding, candidate watermark, extractable embedding, and representatively

extractable embedding. A software watermark is the bits of information we try to

insert into a program. An embedding algorithm is a process that inserts a watermark

into a program and makes the new program still executable. A candidate watermark

is the bits of information we can really insert into a program through an embedding

algorithm. An extractable embedding is such an algorithm for software watermark-

ing that the watermark inserted by this algorithm can extracted by some algorithm.

For a representatively extractable embedding, not all watermarks inserted by such an

algorithm can be extracted. We proved that not all embeddings are an extractable

embedding, but all are representatively extractable.

For recognition, in addition to the concepts of watermark, embedding, candi-

date watermark, we defined important concepts such as positive-partial recognition,

negative-partial recognition, recognition, and the strength of recognition. A positive-

partial recognition will report the existence of a watermark in a program if this

watermark is really in this program, but a positive-partial recognition might say a

watermark exists in a program even though this watermark is actually not in this

8.1. CONCLUSIONS 111

program. On the contrary, a negative-partial recognition will report the nonexistence

of a watermark in a program if this watermark is not in this program. A positive-

partial recognition might report the nonexistence of a watermark in a program even

though this watermark is actually in this program. Given an embedding algorithm,

we prove the existence and uniqueness of its corresponding recognition algorithm. We

also proved the existence of the weakest positive-partial recognition and the strongest

positive-partial recognition. This result is also valid for negative-partial recognitions.

We present an algorithm for software watermarking. It embeds a watermark into

a program through the register allocation graph of this program. When developing

this algorithm, we pointed out one flaw in previous work in this field. It is in this

algorithm that we found the importance of the concept such as extractable embedding

and representatively extractable embedding.

Through the work mentioned above, we have established a sound mathematical

foundation for extraction and recognition, two important concepts in the software

watermarking process.

8.1.2 Software Obfuscation

Software obfuscation transforms a program into another one which is hard for people

and software analysis tools to understand. In this thesis, we also studied software

obfuscation since it is closely related with software watermarking. Additionally, soft-

ware obfuscation is a technique to protect software watermark from detection and

attack.

After a brief survey of software obfuscation, we propose a technique to obfuscate

variables and data structures in software. This approach is based on a sound the-

ory called homomorphic function we established in this thesis. This is one of main

contributions of this thesis.

112 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Chow et al. used residue number technique to software obfuscation by encoding

variables in the original program to hide the true meaning of these variables [21].

But the technique proposed in their work is not correct. In order to establish a

sound ground for this type of issue, we used homomorphic functions to hide addition,

subtraction, and multiplication in integer operations. With a suitable choice, this

method can also apply to division operation. Through examples, we show it is costly

to hide comparisons in integer operations.

Data structures are important components of programme and they are key clues

for people to understand codes. Obfuscating data structures of programme will make

it very hard for an enemy to attack them. The homomorphic functions are also

used to obfuscate the data structures of software. We proposed several methods

for different cases in data structure obfuscation such as array index change, array

index and dimension change, array folding, and array flattening. These methods

strengthened existing techniques in data structure obfuscation.

In summary, we corrected the obfuscation method proposed by Chow et al. and

applied it to obfuscating integer arrays.

8.1.3 Complexity and Security

In this thesis, all the embedding, extraction, and recognition algorithms connected

with the QP algorithm are all of linear time complexity.

As shown by Barak et al., there are no totally secured software watermarking and

obfuscation algorithms, so we should combined our methods developed in this thesis

with other techniques such as hardware security methods. Though, from Barak et

al.’s result, there does not exist any one-way software watermarking function, different

situations in real world require different kinds of security. Our thesis aims to construct

software watermarking algorithms with linear complexity and obfuscators to hide

8.2. FUTURE WORK 113

important constants, arithmetic operations, and data structures in programs.

8.2 Future Work

Many issues in software watermarking and obfuscation need further research. Firstly,

though Barak et al. presented negative results about a universal obfuscater, suitable

software obfuscation models for special settings is central for researchers to develop

new techniques and evaluate these approaches. Secondly, more work is needed to

formalize the core concepts in software watermarking and obfuscation. It will certainly

benefit the development of this research area. In the future, we will study the following

issues in software watermarking and obfuscation.

8.2.1 Combination of Software Watermarking and Obfuscation

As we know software watermarking and software obfuscation are two closely related

branches in software security. Especially, software obfuscation is one of the tech-

niques to protect software watermark. Therefore, how to combine these two methods

into a software watermarking system is an important research issue for future work.

For example, we will study developing algorithms to insert software watermark into

software obfuscation algorithms. This algorithm will be an integrated algorithm for

software watermarking and obfuscation.

8.2.2 Applications of Rough Set Theory to Software Security

Rough set theory is a method proposed by Pawlak in 1982 for data mining [104]. The

characteristic advantage of rough set method is that it does not need any additional

information about data, such as probability in statistics or grade of membership in

fuzzy set theory. Many examples of applications of the rough set method to process

control, economics, medical diagnosis, biochemistry, environmental science, biology,

114 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

chemistry psychology, conflict analysis and other fields are found in [6, 42, 54, 60, 99,

107, 108, 109, 130, 157]. It has also been applied to software security [145, 57] and

digital watermarking [56]. As software watermarking is a branch of digital watermark-

ing, we hope rough set theory can be applied to software watermarking, especially to

detection and recognition of software watermark.

We have already done some research on rough set theory and attempted to apply

it to security problems [158, 159, 160, 161, 162, 163, 164, 167, 168, 169, 170, 175, 176,

177, 178, 182, 183, 184, 185, 186]. We hope we can find more applications of this

theory to software watermarking and obfuscation.

Chapter 9

References

115

116 CHAPTER 9. REFERENCES

Bibliography

[1] B. Adida and D. Wikstrm, “Obfuscated ciphertext mixing,” in Cryptology

ePrint Archive, Report 2005/394, 2005, http://eprint.iacr.org/.

[2] R. Agrawal, P. Haas, and J. Kiernan, “Potpourri: A system for watermarking

relational databases,” in the 2003 ACM SIGMOD international conference on

Management of data, June 2003.

[3] R. Agrawal, P. Haas, and J. Kiernan, “Watermarking relational data: frame-

work, algorithms and analysis,” The International Journal on Very Large Data

Bases, vol. 12, no. 2, Aug 2003.

[4] B. Anckaert, B. D. Sutter, D. Chanet, and K. D. Bosschere, “Steganography

for executables and code transformation signatures,” in ICISC 2004, ser. LNCS,

vol. 3506, 2005, pp. 425–439.

[5] R. Anderson and A. Petitocolas, “On the limits of steganography,” Public Key

Encryption ’99, Lecture Notes in Computer Science, May 1998.

[6] F. Angiulli and C. Pizzuti, “Outlier mining in large high-dimensional data sets,”

IEEE Trans. On Knowledge and Data Engineering, vol. 17, no. 2, pp. 203–215,

2005.

117

118 BIBLIOGRAPHY

[7] G. Arboit, “A method for watermarking java programs via

opaque predicates,” in The Fifth International Conference on Elec-

tronic Commerce Research (ICECR-5), 2002. [Online]. Available:

http://citeseer.nj.nec.com/arboit02method.html

[8] M. Atallah, V. Raskin, C. hempelmann, M. Karahan, R. Sion, K. Triezenberg,

and U. Topkara, “Natural language watermarking and tamperproofing,” ser.

LNCS, vol. 2578, 2003, pp. 196–212.

[9] D. Aucsmith, “Tamper resistant software: an implementation,” in LNCS 1174,

1996, pp. 317–333.

[10] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and

K. Yang, “On the (im)possibility of obfuscating programs (extended abstract),”

in Advances in Cryptology - CRYPTO 2001, ser. LNCS, J. Kilian, Ed., vol. 2139,

2001, pp. 1–18.

[11] M. Bobeica, J.-P. Jeral, and CliveGarciaBest, “A study of “root causes of con-

flict” using latent semantic analysis,” in ISI 2005, ser. LNCS, vol. 3495, 2005,

pp. 595–596.

[12] Z. Bonikowski, E. Bryniarski, and U. Wybraniec-Skardowska, “Extensions and

intentions in the rough set theory,” Information Sciences, vol. 107, pp. 149–167,

1998.

[13] Z. Bonikowski, “Algebraic structures of rough sets,” in Rough Sets, Fuzzy Sets

and Knowledge Discovery, W. Ziarko, Ed. Springer, 1994, pp. 243–247.

[14] D. Brewer and M. Nash, “The chinese wall security policy,” in IEEE Symposium

on Security and Privacy, 1989, pp. 206–214.

BIBLIOGRAPHY 119

[15] E. Bryniaski, “A calculus of rough sets of the first order,” Bull. Pol. Acad. Sci.,

vol. 36, no. 16, pp. 71–77, 1989.

[16] BSA and IDC, “Bsa and idc global software piracy study,” in

http://www.bsa.org/usa/research/, Nov. 22, 2004.

[17] J. Burridge, “Information preserving statistical obfuscation,” STATISTICS

AND COMPUTING, vol. 13, no. 4, pp. 321–327, Oct 2003.

[18] G. Cattaneo, “Abstract approximation spaces for rough theorie,” in Rough Sets

in Knowledge Discovery 1: Methodology and Applications, 1998, pp. 59–98.

[19] J. Chan and W. Yang, “Advanced obfuscation techniques for java bytecode,”

JOURNAL OF SYSTEMS AND SOFTWARE, vol. 71, no. 1, pp. 1–10, Apr.

2004.

[20] H. Chang and M. Atallah, “Protecting software code by guards,” in ACM Work-

shop Security and Privacy in Digital Rights Management. ACM Press, 2001,

pp. 160–175.

[21] Chow and et al, “Tamper resistant software encoding,” US patent, vol. 6594761,

pp. 1–32, Oct. 2003.

[22] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach to the ob-

fuscation of control-flow of sequential computer programs,” in ISC 2001, ser.

LNCS, vol. 2200, 2001, pp. 144–155.

[23] S. Cimato, A. D. Santis, and U. F. Petrillo, “Overcoming the obfuscation of java

programs by identifier renaming,” The Journalof Systems and Software, 2005.

[24] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, and M. Stepp, “Dy-

namic path-based software watermarking,” in SIGPLAN ’04 Conference on Pro-

gramming Language Design and Implementation, June 2004.

120 BIBLIOGRAPHY

[25] C. Collberg, C. Thomborson, and G. Townsend, “Dynamic path-based soft-

ware watermarking,” in Computer Science Department, University of Arizona

(USA), Technical report, vol. TR04–08, April 2004.

[26] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–a tool for software pro-

tection research,” IEEE Security and Privacy, vol. 1, no. 4, pp. 40–49, 2003.

[27] C. Collberg, S. Kobourov, E. Carter, and C. Thomborson, “Error-

correcting graphs for software watermarking,” in 29th Workshop on Graph

Theoretic Concepts in Computer Science, July 2003. [Online]. Available:

http://www.cs.arizona.edu/people/kobourov/papers.html

[28] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and obfus-

cation - tools for software protection,” IEEE Transactions on Software Engi-

neering, vol. 28, pp. 735–746, Aug. 2002.

[29] C. Collberg, S. Jha, D. Tomko, and H. Wang, “Uwstego: A general architecture

for software watermarking,” Technical Report TR04–11, Aug. 31 2001.

[30] C. Collberg and C. Thomborson, “Software watermarking: Models and dynamic

embeddings,” in Proceedings of Symposium on Principles of Programming Lan-

guages, POPL’99, 1999, pp. 311–324.

[31] C. Collberg, C. Thomborson, and D. Low, “On the limits of software water-

marking,” in Technical Report #164, Department of Computer Science, The

University of Auckland, 1998.

[32] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, resilient, and

stealthy opaque constructs,” in POPL’98, 1998, pp. 184–196.

BIBLIOGRAPHY 121

[33] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating trans-

formations,” in Tech. Report, No.148, Dept. of Computer Sciences, Univ. of

Auckland, 1997.

[34] Stephen A. COOK, “AN OVERVIEW OF COMPUTATIONAL COMPLEX-

ITY,” Communications of the ACM, Vol. 26, No. 6, 1983, pp. 401–408

[35] P. Cousot and R. Cousot, “An abstract interpretation-based framework for soft-

ware watermarking,” in Principles of Programming Languages 2003, POPL’03,

2003, pp. 311–324.

[36] I. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust watermark

for multimedia,” in LNCS 1174, 1996, pp. 317–333.

[37] D. Curran, M. O. Cinneide, N. Hurley, and G. Silvestre, “Dependency in soft-

ware watermarking,” in First International Conference on Information and

Communication Technologies: from Theory to Applications, 2004, pp. 311–324.

[38] D. Curran, N. Hurley, and M. O. Cinneide, “Securing java through software

watermarking,” in Proceedings of the 2nd international conference on Principles

and practice of programming in Java, 2003, pp. 311–324.

[39] R. Davidson and N. Myhrvold, “Computer software protection,” US Patent,

vol. 5,287,407, 1994.

[40] R. Davidson and N. Myhrvold, “Method and system for generating and auditing

a signature for a computer program,” US Patent, vol. 5,559,884, 1996.

[41] H. Delfs and H. Knebl, Introduction to cryptography, principles and applications.

Springer-Verlag, 2002.

122 BIBLIOGRAPHY

[42] G. Dong, J. Han, J. Lam, J. Pei, K. Wang, and W. Zou, “Mining constrained

gradients in large databases,” IEEE Trans. On Knowledge and Data Engineer-

ing, vol. 16, no. 8, pp. 922–938, 2004.

[43] S. Drape, “Obfuscation of abstract data-types,” Ph.D. dissertation, The Uni-

versite of Oxford, 2004.

[44] R. El-Khalil and A. Keromytis, “Hydan: Embedding secrets in program bina-

ries,” in http://www.andrew.cmu.edu/user/dgao/InfoHiding/binary-stego.pdf,

Aug. 14 2004.

[45] L. Ertaul and S. Venkatesh, “Novel obfuscation algorithms for software secu-

rity,” in 2005 International Conference on Software Engineering Research and

Practice, SERP’05, june 2005, pp. 209–215.

[46] L. Ertaul and S. Venkatesh, “Jhide - a tool kit for code obfuscation,” in 8th

IASTED International Conference on Software Engineering and Applications

(SEA 2004), Nov. 2004, pp. 133–138.

[47] O. Esparza, M. Fernandez, M. Soriano, J. Munoz, and J. Forne, “Mobile agent

watermarking and fingerprinting tracing malicious hosts,” in LNCS 2736, 2003,

pp. 927–936.

[48] K. Fukushima and K. Sakurai, “A software fingerprinting scheme for java using

classfiles obfuscation,” in LNCS 2908, 2003, pp. 303–316.

[49] J. Ge and S. C. A. Tyagi, “Control flow based obfuscation,” in DRM’05. ACM,

Nov. 2005, pp. 83–92.

[50] D. Gollmann, Computer Security. New York: Willey, 1999.

[51] S. Goldwasser and Y. Kalai, “On the Impossibility of Obfuscation with Auxiliary

Input,” in FOCS’05, 2005, pp. 553-562.

BIBLIOGRAPHY 123

[52] D. Grover, The Protection of Computer Software - Its Technology and Applica-

tions, 2nd ed. Cambridge University Press, 1997.

[53] G. Hachez, “A comparative study of software protection tools suited for e-

commerce with contributions to software watermarking and smart cards,” Ph.D.

dissertation, Universite Catholique de Louvain, Mar 2003.

[54] M. Hall and G. Holmes, “Benchmarking attribute selection techniques for dis-

crete class data mining,” IEEE Trans. On Knowledge and Data Engineering,

vol. 15, no. 6, pp. 1437–1447, 2003.

[55] Y. He, “Tamperproofing a software watermark by encoding constants,” Master’s

thesis, University of Auckland, Mar 2002.

[56] D. He and Q. Sun, “A RST resilient object-based video watermarking scheme,”

in ICIP 2004, vol. 2, Singapore, 24–27 october 2004, pp. 737–740.

[57] E. Hughes, A. Kazura, and A. Rosenthal, “Policy-based information sharing

with semantics,” in ISI 2004, ser. LNCS, vol. 3073, June 2004, pp. 508–509.

[58] K. Ivanov and V. Zakharov, “Program obfuscation as obstruction of program

static analysis,” in Volume 6. ISPRAN 2005. Russian Academy of Sciences

Technical Report Series, 2005, pp. 137–156.

[59] M. Jakobsson and M. Reiter, “Discouraging software piracy using software ag-

ing,” in Proc. ACM Workshop Security and Privacy in Digital Rights Manage-

ment. ACM Press, 2001, pp. 1–12.

[60] R. Jensen and Q. Shen, “Semantics-preserving dimensionality reduction: Rough

and fuzzy-rough-based approaches,” IEEE Trans. On Knowledge and Data En-

gineerin, vol. 16, no. 12, pp. 1457–1471, 2004.

124 BIBLIOGRAPHY

[61] S. R. Kirk and S. Jenkins, “Information theory-based software metrics and

obfuscation,” The Journal of Systems and Software, vol. 72, pp. 179–186, 2004.

[62] D. Knuth, The art of computer programming, Vol. 2, Seminumerical algorithms,

3rd ed. Addison-Wesley, 1997.

[63] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly

of obfuscated binaries,” in Proceedings of USENIX Security, Aug 2004, pp.

255–270. [Online]. Available: citeseer.ist.psu.edu/kruegel04static.html

[64] A. Lakhotia, E. U. Kumar, and M. Venable, “A method for detecting obfus-

cated calls in malicious binaries,” IEEE Transactions on Software Engineering,

vol. 13, no. 11, pp. 955–968, 2005.

[65] B. Lampson, “Computer security in the real world,” Computer, vol. 37, no. 6,

pp. 37–46, 2004.

[66] A. Lang and J. Dittmann, “Transparency and Complexity Benchmarking of Au-

dio Watermarking Algorithms Issues” in the 8th ACM Multimedia and Security

Workshop, 26-27, September, 2006, Geneva, Switzerland, pp. 190–201.

[67] J. R. Larus, “Whole program paths,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation(PLDI 99), 1999. [Online].

Available: http://citeseer.ist.psu.edu/stern00robust.html

[68] T. Le and Y. Desmedt, “Cryptanalysis of ucla watermarking schemes for in-

tellectual property protections,” in LNCS 2578. Springer-Verlag, 2003, pp.

213–225.

[69] T. Y. Lin, “Granular computing - structures, representations, and applications,”

in LNAI, vol. 2639, 2003, pp. 16–24.

BIBLIOGRAPHY 125

[70] T. Y. Lin, “Granular computing on binary relations-analysis of conflict and

chinese wall security policy,” in Rough Sets and Current Trends in Computing,

ser. LNAI, vol. 2475, 2002, pp. 296–299.

[71] T. Y. Lin, “Placing the chinese walls on the boundary of conflicts,” in Proc. 26th

Annual International Computer Software and Applications Conference, 2002,

pp. 966–971.

[72] T. Y. Lin, “Chinese walls security model and conflict analysis,” in Proc. 24th

Annual International Computer Software and Applications Conference, 2000,

pp. 122–127.

[73] T. Y. Lin and Q. Liu, “Rough approximate operators: axiomatic rough set

theory,” in Rough Sets, Fuzzy Sets and Knowledge Discovery, W. Ziarko, Ed.

Springer, 1994, pp. 256–260.

[74] T. Y. Lin, “Chinese walls security policy - an aggresive model,” in Proc. 5th

Annual International Computer Software and Applications Conference, 1989,

pp. 282–289.

[75] D. Low, “Protecting java code via code obfuscation,” Master’s thesis, University

of Auckland, 1998.

[76] B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques for

obfuscation,” in EUROCRYPT 2004, ser. LNCS, vol. 3027, 2004, pp. 20–39.

[77] A. Main and P. van Oorschot, “Software protection and application

security: Understanding the battleground,” 2004. [Online]. Available:

www.scs.carleton.ca/ paulv/papers/softprot8a.ps

[78] A. Majumdar and C. Thomborson, “Manufacturing opaque predicates in dis-

tributed systems for code obfuscation,” in Twenty-Ninth Australasian Computer

126 BIBLIOGRAPHY

Science Conference, V. Estivill-Castro and G. Dobbie, Eds., vol. 48. CRPIT,

ACM Digital Library, pp. 187–196.

[79] A. Majumdar and C. Thomborson, “On the use of opaque predicates in mobile

agent code obfuscation,” in ISI 2005, ser. LNCS, vol. 3495, May 2005, pp.

648–649.

[80] B. Aleman-Meza, P. B. M. Eavenson, D. Palaniswami, and A. Sheth, “An on-

tological approach to the document access problem of insider threat,” in ISI

2005, ser. LNCS, vol. 3495, 2005, pp. 486–491.

[81] A. Monden, A. Monsifrot, and C. Thomborson, “A framework for obfuscated

interpretation,” in Australia Information Security Workshop 2004, 2004, pp.

7–16.

[82] A. Monden, H. Iida, and K. ichi Matsumoto, “A practical method for wa-

termarking java programs,” in The 24th Computer Software and Applications

Conference, 2000, pp. 191–197.

[83] A. Monden, H. Iida, K. ichi Matsumoto, K. Inoue, and K. Torii, “Watermarking

java programs,” in International Symposium on Future Software Technology ’99,

October 1999, pp. 119–124.

[84] J. Mordeson, “Rough set theory applied to (fuzzy) ideal theory,” Fuzzy Sets and

Systems, vol. 121, pp. 315–324, 2001.

[85] S. Moskowitz and M. Cooperman, “Method for stega-cipher protection of com-

puter code,” US Patent, vol. 5,745,569, 1994.

[86] P. Moulin and A. Ivanovic, “Game-theoretic analysis of watermark detection,”

in ICIP (3), 2001, pp. 975–978.

BIBLIOGRAPHY 127

[87] P. Moulin and J. O’Sullivan, “Information–theoretic analysis of watermarking,”

in Proc. Int. Conf. on Ac., Sp. and Sig. Proc. (ICASSP), 2000.

[88] P. Moulin and J. O’Sullivan, “Information–theoretic analysis of information

hiding,” IEEE Transactions on Information Theory, vol. 49, no. 3, pp. 563–

593, 2003.

[89] G. Myles and C. Collberg, “Software watermarking through register allocation:

Implementation, analysis, and attacks,” in LNCS 2971, 2004, pp. 274–293.

[90] G. Myles and C. Collberg, “Software watermarking via opaque predicates: Im-

plementation, analysis, and attacks,” in ICECR-7, 2004.

[91] G. Myles and C. Collberg, “Detecting software theft via whole program path

birthmarks,” in Information Security Conference, 2004.

[92] J. Nagra and C. Thomborson, “Threading software watermarks,” in IH’04, 2004.

[93] J. Nagra, C. Thomborson, and C. Collberg, “A functional taxonomy for

software watermarking,” in Twenty-Fifth Australasian Computer Science

Conference (ACSC2002), M. J. Oudshoorn, Ed. Melbourne, Australia: ACS,

2002. [Online]. Available: http://citeseer.nj.nec.com/508809.html

[94] J. Nagra, C. Thomborson, and C. Collberg, “Software watermarking: Protective

terminology,” in Proceedings of the ACSC 2002, 2002.

[95] A. Narayanan and V. Shmatikov, “Obfuscated databases and group privacy,”

in CCS’05, Alexandria, Virginia, USA, November 7–11 2005, pp. 264–173.

[96] G. Naumovich and N. Memon, “Preventing piracy, reverse engineering, and

tampering,” Computer, vol. 36, no. 7, pp. 64–71, 2003.

128 BIBLIOGRAPHY

[97] J. Nicherson, S. Chow, and H. Johnson, “Tamper resistant software: extending

trust into a hostile environment,” in Proceedings of ACM Multimedia ’01. ACM

Press, 2001.

[98] P. van Oorschot, “Revisiting software protection,” in ISC 2003, ser. LNCS, vol.

2851, 2003, pp. 1–13.

[99] S. Pal and P. Mitra, “Case generation using rough sets with fuzzy representa-

tion,” IEEE Trans. On Knowledge and Data Engineering, vol. 16, no. 3, pp.

292–300, 2004.

[100] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, Q. Shao,

and Y. Zhang, “Experience with software watermarking,” in Pro-

ceedings of the 16th Annual Computer Security Applications Con-

ference, ACSAC ’00. IEEE, 2000, pp. 308–316. [Online]. Available:

http://www.cs.purdue.edu/homes/madi/wm/watermarking.ps

[101] Z. Pawlak, “Some remarks on conflict analysis,” European Journal of Opera-

tional Research, vol. 166, pp. 649–654, 2005.

[102] Z. Pawlak, “An inquiry into anatomy of conflicts,” Journal of Information Sci-

ences, vol. 109, pp. 65–78, 1998.

[103] Z. Pawlak, “Analysis of conflicts,” in Joint Conference of Information Science,

March 1997, pp. 350–352.

[104] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data. Kluwer

Academic Publishers, Boston, 1991.

[105] Z. Pawlak, “On conflicts,” International Journal of ManMachine Studies,

vol. 21, pp. 127–134, 1984.

BIBLIOGRAPHY 129

[106] Z. Pawlak, “Rough sets,” Internat. J. Comput. Inform. Sci., vol. 11, pp. 341–

356, 1982.

[107] L. Polkowski and A. Skowron, Eds., Rough sets and current trends in computing.

Springer, 1998, vol. 1424.

[108] L. Polkowski and A. Skowron, Rough sets in knowledge discovery. Heidelberg:

Physica–Verlag, 1998, vol. 1.

[109] L. Polkowski and A. Skowron, Rough sets in knowledge discovery. Heidelberg:

Physica–Verlag, 1998, vol. 2.

[110] J. A. Pomykala, “Approximation operations in approximation space,” Bull. Pol.

Acad. Sci., vol. 35, no. 9-10, pp. 653–662, 1987.

[111] M. D. Preda and R. Giacobazzi, “Semantic-based code obfuscation by abstract

interpretation,” in Proceedings of the 32th Internarional Colloquium on Au-

tomata, Language and Programming, vol. 3580. Springer Verlag, 2005, pp.

1325–1336.

[112] M. D. Preda and R. Giacobazzi, “Control code obfuscation by abstract interpre-

tation,” in Proceedings of the Third IEEE International Conference on Software

Engineering and Formal methods. IEEE Computer Society, 2005, pp. 1–10.

[113] G. Qu and M. Potkonjak, “Fingerprinting intellectual property using constraint-

addition,” in Design Automation Conference ’00, 2000, pp. 587–592.

[114] G. Qu, J. Wong, and M. Potkonjak, “Fair watermarking techniques,” in

EEE/ACM Asia and South Pacific Design Automation Conference, ’00, 2000,

pp. 55–60.

130 BIBLIOGRAPHY

[115] G. Qu, J. Wong, and M. Potkonjak, “Optimization-intensive watermarking tech-

niques for decision problems,” in Design Automation Conference, ’99, 1999, pp.

33–36.

[116] G. Qu and M. Potkonjak, “Hiding signatures in graph coloring solutions,” in

Information Hiding Workshop ’99, 1999, pp. 348–367.

[117] D. Radlauer, “Incident and casualty databases as a tool for understanding low-

intensity conflicts,” in ISI 2005, ser. LNCS, vol. 3495, 2005, pp. 153–170.

[118] J. C. Rabek, R. I. Khazan, S. M. Lewandowski, and R. K. Cunningham, “De-

tection of injected, dynamically generated, and obfuscated malicious code,” in

WORM03, Washington, DC, USA, October 27 2003, pp. 76–82.

[119] E. Reid and H. Chen, “Mapping the contemporary terrorism research domain:

Researchers, publications, and institutions analysis,” in ISI 2005, ser. LNCS,

vol. 3495, May 2005, pp. 648–649.

[120] T. Sahoo and C. Collberg, “Software watermarking in the frequency domain:

Implementation, analysis, and attacks,” in Computer Science Department, Uni-

versity of Arizona (USA), Technical report, vol. TR04–07, March 2004.

[121] Y. Sakabe, “Java obfuscation approaches to construct tamper-resistant object-

oriented programs,” IPSJ Digital Courier, vol. 1, pp. 349–361, 2005.

[122] Y. Sakabe, M. Soshi, and A. Miyaji, “Java obfuscation with a theoretical basis

for building secure mobile agents,” in Communications and Multimedia Security,

ser. LNCS, vol. 2828, 2003, pp. 89–103.

[123] P. Samson, “Apparatus and method for serializing and validating copies of com-

puter software,” US Patent, vol. 5,287,408, 1994.

BIBLIOGRAPHY 131

[124] M. Sipser “Time Complexity, Introduction to the Theory of Computation,” 2nd

edition, USA: Thomson Course Technology, 2006.

[125] J. S. A. Skowron, “Tolerance approximation spaces,” Fundamenta Informaticae,

vol. 27, pp. 245–253, 1996.

[126] R. Slowinski and D. Vanderpooten, “A generalized definition of rough approxi-

mations based on similarity,” IEEE Trans. On Knowledge and Data Engineer-

ing, vol. 12, no. 2, pp. 331–336, 2000.

[127] M. Sosonkin, G. Naumovich, and N. Memon, “Obfuscation of design intent in

object-oriented applications,” in DRM’03. ACM, Oct. 2003, pp. 142–153.

[128] J. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater, “Robust object

watermarking: Application to code,” in Information Hiding Workshop ’99, 1999,

pp. 368–378. [Online]. Available: http://citeseer.ist.psu.edu/stern00robust.html

[129] M. Stytz and J. Whittaker, “Software protection: security’s last stand?” IEEE

Security & Privacy Magazine, vol. 1, no. 1, pp. 95–98, 2003.

[130] C. Su and J. Hsu, “An extended chi2 algorithm for discretization of real value

attributes,” IEEE Trans. On Knowledge and Data Engineering, vol. 17, no. 3,

pp. 437–441, 2005.

[131] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Design and evalu-

ation of birthmarks for detecting theft of java programs,” in Proc. IASTED In-

ternational Conference on Software Engineering (IASTED SE2004), Feb 2004,

pp. 569–575.

[132] S. Thaker, “Software watermarking via assembly code transformations,” Mas-

ter’s thesis, San Jose State University, 2004.

132 BIBLIOGRAPHY

[133] C. Thomborson, J. Nagra, Somaraju, and Y. He, “Tamper-proofing soft-

ware watermarks,” in Proc. Second Australasian Information Security Work-

shop(AISW2004), 2004, pp. 27–36.

[134] T. Toyofuku, T. Tabata, and K. Sakurai, “Program obfuscation scheme us-

ing random number to complicate control flow,” in EUC Workshops 2005, ser.

LNCS, vol. 2823, 2005, pp. 916–925.

[135] E. Tsang, D. Cheng, J. Lee, and D. Yeung, “On the upper approximations

of covering generalized rough sets,” in Proc. 3rd International Conf. Machine

Learning and Cybernetics, 2004, pp. 4200–4203.

[136] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation reverse engineering

obfuscate code,” in Proceedings of the 12th Working Conference on Reverse

Engineering(WCRE’05). IEEE, 2005.

[137] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic approach to soft-

ware watermarking,” in 4th International Information Hiding Workshop, Pitts-

burgh, PA, 2001.

[138] C. Wang, “A security architecture for survivability mechanisms,” Ph.D. dis-

sertation, University of Virginia, School of Engineering and Applied Science,

October 2000, —www.cs.virginia.edu/ survive/pub/wangthesis.pdf—.

[139] F.-Y. Wang, “Outline of a computational theory for linguistic dynamic systems:

Toward computing with words,” International Journal of Intelligent Control and

Systems, vol. 2, no. 2, pp. 211–224, 1998.

[140] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper

resistance: Obstructing static analysis of programs,” University of

Virginia, Tech. Rep. CS-2000-12, Dec. 2000. [Online]. Available: cite-

seer.nj.nec.com/wang00software.html

BIBLIOGRAPHY 133

[141] H. Wee, “On obfuscating point functions,” in STOC’05, H. N. Gabow and

R. Fagin, Eds. ACM, 2005, pp. 523–532.

[142] R. Wille, “Formal concept analysis as mathematical theory of concepts and

concept hierarchies,” in Formal Concept Analysis, ser. LNCS, B. Ganter and

et al, Eds., vol. 3626, 2005, pp. 1–33.

[143] R. Wille, “Restructuring lattice theory: an approach based on hierarchies of

concepts,” in Ordered sets, I.Rival, Ed. Reidel, Dordrecht-Boston, 1982, pp.

445–470.

[144] G. Wroblewski, “A general method of program code obfuscation,” Ph.D. dis-

sertation, Wroclaw University, 2002.

[145] Z. Xia, Y. Jiang, Y. Zhong, , and S. Zhang, “A novel policy and information

flow security model for active network,” in ISI 2004, LNCS, vol. 3073, June

2004, pp. 42–55.

[146] Y. Yao, “A partition model of granular computing,” LNCS, vol. 3100, pp. 232–

253, August 2004.

[147] Y. Y. Yao, “Granular computing: basic issues and possible solutions,” in Pro-

ceedings of the 5th Joint Conference on Information Sciences, vol. 1, 2000, pp.

186–189.

[148] L. Zadeh, “Fuzzy logic = computing with words,” IEEE Transactions on Fuzzy

Systems, vol. 4, pp. 103–111, 1996.

[149] L. Zadeh, “The concept of a linguistic variable and its application to approxi-

mate reasoning – I,” Information Sciences, vol. 8, pp. 199–249, 1975.

[150] L. Zadeh, “The concept of a linguistic variable and its application to approxi-

mate reasoning – II,” Information Sciences, vol. 8, pp. 301–357, 1975.

134 BIBLIOGRAPHY

[151] L. Zadeh, “The concept of a linguistic variable and its application to approxi-

mate reasoning – III,” Information Sciences, vol. 9, pp. 43–80, 1975.

[152] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

[153] W. Zakowski, “Approximations in the space (u, π),” Demonstratio Mathematica,

vol. 16, pp. 761–769, 1983.

[154] B. Zhang and L. Zhang, Theory and Allication of Problem Solving. Elsevier

Science Publishers B. V., Noth-Holland, 1992.

[155] L. Zhang and B. Zhang, “The quotient sapce theory of problem solving,” in

RSFDGrC 2003, ser. LNCS, vol. 2639, 2003, pp. 11–15.

[156] L. Zhang, Y. Yang, , X. Niu, and S. Niu, “A survey on software watermarking,”

Journal of Software, vol. 14, no. 2, pp. 268–277, 2003.

[157] N. Zhong, Y. Yao, and M. Ohshima, “Peculiarity oriented multidatabase min-

ing,” IEEE Trans. On Knowledge and Data Engineering, vol. 15, no. 4, pp.

952–960, 2003.

[158] W. Zhu, “Generalized Rough Sets Based on Relations,” to appear in Informa-

tion Sciences, 2007.

[159] W. Zhu and F. Y. Wang, “On Three Types of Covering Based Rough Sets,” to

appear in IEEE TKDE, Vol. 19, No. 8, 2007, pp. 1131–1144.

[160] W. Zhu and F. Y. Wang, “Properties of the Third Type of Covering-Based

Rough Sets, ” in ICMLC 2007, Hong Kong, 19–22 August, 2007.

[161] W. Zhu and F. Y. Wang, “Topological properties in Covering-Based Rough

Sets,” to appear in FSKD’07, Haikou , China , 24–27 August, 2007.

BIBLIOGRAPHY 135

[162] W. Zhu, “Basic Concepts in Covering-Based Rough Sets,” to appear in

ICNC’07, Haikou , China , 24–27 August, 2007.

[163] W. Zhu, “A Class of Fuzzy Rough Sets Based on Coverings,” to appear in

FSKD’07, Haikou , China , 24–27 August, 2007.

[164] W. Zhu and F. Y. Wang, Covering-Based Granular Computing,” to appear as

a book chapter in “Granular Computing: Past, Present, and Future” to be

published by Science Press in China, 2007.

[165] B. Zhang, W. Zhu and Z. Xue, “Mining Privilege Escalation Paths For Network

Vulnerability Analysis,” to appear in ICNC-FSKD’07, Haikou , China , 24–27

August, 2007.

[166] W. Zhu, “Informed Recognition in Software Watermarking, in PAISI 2007,

Chengdu, China, April 11-12, 2007, LNCS 4430, pp. 257C261.

[167] W. Zhu, “Topological approaches to covering rough sets,” Information Sciences,

Vol. 177, No. 6, 2006, pp. 1499–1508.

[168] W. Zhu, “Properties of the Fourth Type of Covering-Based Rough Sets,” in

HIS-NCEI’06, 13–15 December, 2006, New Zealand.

[169] W. Zhu and F. Y. Wang, “Properties of the First Type of Covering-Based Rough

Sets,” in ICDM Workshop 2006, 18–22 December, 2006, Hong Kong.

[170] W. Zhu, “Properties of the Second Type of Covering-Based Rough Sets,” in

GrC&BI’06 Workshop 2006, 18–22 December, 2006, Hong Kong.

[171] W. Zhu and C. Thomborson, “Recognition in Software Watermarking” in the

1st ACM Workshop on Content Protection and Security, October 27th, 2006,

Santa Barbara, CA, USA.

136 BIBLIOGRAPHY

[172] W. Zhu and C. Thomborson, “Extraction in Software Watermarking” in the

8th ACM Multimedia and Security Workshop, 26-27, September, 2006, Geneva,

Switzerland.

[173] W. Zhu, C. Thomborson, and F.-Y. Wang, “Obfuscate Arrays by Homomorphic

Functions” in Special Session on Data Security and Privacy in IEEE GrC 2006,

2006, pp. 770–773.

[174] W. Zhu, C. Thomborson, and F.-Y. Wang, “Application of homomorphic func-

tion to software obfuscation,” in WISI 2006, ser. LNCS, vol. 3917, April 2006,

pp. 152–153.

[175] W. Zhu and F.-Y. Wang, “Relationships among three types of covering rough

sets,” in IEEE GrC 2006, May 2006, pp. 43–48.

[176] W. Zhu and F.-Y. Wang, “A new type of covering rough sets,” in to appear

IEEE IS 2006, 4-6 September 2006, Sept 2006.

[177] W. Zhu and F.-Y. Wang, “Axiomatic systems of generalized rough sets,” in

RSKT 2006, ser. LNAI, vol. 4062, 2006, pp. 216–221.

[178] W. Zhu and F.-Y. Wang, “Binary relation based rough set,” IEEE FSKD 2006,

2006, pp. 276–285.

[179] W. Zhu and C. Thomborson, “A Provable Scheme for Homomorphic Obfusca-

tionin in Software Security,” in CNIS’05, 2005, pp. 208–212.

[180] W. Zhu and C. Thomborson, “Algorithms to watermark software through reg-

ister allocation,” in DRMTICS 2005, ser. LNCS, vol. 3919, October 2005, pp.

180–191.

[181] W. Zhu, C. Thomborson, and F.-Y. Wang, “A survey of software watermark-

ing,” in IEEE ISI 2005, ser. LNCS, vol. 3495, May 2005, pp. 454–458.

BIBLIOGRAPHY 137

[182] W. Zhu and F.-Y. Wang, “Reduction and axiomization of covering generalized

rough sets,” Information Sciences, vol. 152, pp. 217–230, 2003.

[183] F. Zhu, “On covering generalized rough sets,” Master’s thesis, The Universite

of Arizona, Tucson, Arizona, USA, May 2002.

[184] F. Zhu and F.-Y. Wang, “Some results on covering generalized rough sets,”

Pattern Recognition and Artificial Intelligence, vol. 15, no. 1, pp. 6–13, 2002.

[185] F. Zhu and H.-C. He, “The axiomization of the rough set,” Chinese Journal of

Computers, vol. 23, no. 3, pp. 330–333, March 2000.

[186] F. Zhu and H.-C. He, “Logical properties of rough sets,” in Proc. of The Fourth

International Conference on High Performance Computing in the Asia-Pacific

Region, vol. 2. IEEE Press, 2000, pp. 670–671.

[187] X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande, “Hardware assisted control

flow obfuscation for embedded processors,” in CASES’04, Washington, DC,

USA, September 22-25 2004, pp. 292–302.

138 BIBLIOGRAPHY

Appendix A

Publications

Publications During My PhD Study at
the University of Auckland

1. William Zhu, Generalized Rough Sets Based on Relations, to appear in Infor-

mation Sciences, 2007.

2. William Zhu and Fei-Yue Wang, On Three Types of Covering Based Rough Sets,

IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 8, 2007,

pp. 1131–1144.

3. William Zhu, Fei-Yue Wang, Properties of the Third Type of Covering-Based

Rough Sets, to appear in ICMLC 2007, Hong Kong, 19–22 August, 2007.

4. William Zhu, Fei-Yue Wang, Topological properties in Covering-Based Rough

Sets, to appear in FSKD’07, Haikou , China , 24–27 August, 2007.

5. William Zhu, Basic Concepts in Covering-Based Rough Sets, to appear in ICNC’07,

Haikou , China , 24–27 August, 2007.

139

140 APPENDIX A. PUBLICATIONS

6. William Zhu, A Class of Fuzzy Rough Sets Based on Coverings, to appear in

FSKD’07, Haikou , China , 24–27 August, 2007.

7. William Zhu, Fei-Yue Wang, Covering-Based Granular Computing, to appear

as a book chapter in “Granular Computing: Past, Present, and Future” to be

published by Science Press in China ,2007.

8. Baowen Zhang, William Zhu, Zhi Xue, Mining Privilege Escalation Paths For

Network Vulnerability Analysis, to appear in ICNC-FSKD’07, Haikou , China ,

24–27 August, 2007.

9. William Zhu, Informed Recognition in Software Watermarking, in PAISI 2007,

Chengdu, China, April 11-12, 2007, LNCS 4430, pp. 257C261.

10. William Zhu, Properties of the Fourth Type of Covering-Based Rough Sets, in

HIS-NCEI’06, 13–15 December, 2006, New Zealand.

11. William Zhu, Fei-Yue Wang, Properties of the First Type of Covering-Based

Rough Sets, in ICDM Workshop 2006, 18–22 December, 2006, Hong Kong.

12. William Zhu, Properties of the Second Type of Covering-Based Rough Sets, in

GrC&BI’06 Workshop 2006, 18–22 December, 2006, Hong Kong.

13. Han Zhang, Gerald Weber, William Zhu, Clark Thomborson, B2B E-commerce

Security Modeling – Case Study, in International Conference on Computational

Intelligence and Security (CIS2006), 3-6 November, 2006, Guangzhou, China.

14. William Zhu, Clark Thomborson, Recognition in Software Watermarking, in 1st

ACM Workshop on Content Protection and Security, October 27th, 2006, Santa

Barbara, CA, USA.

15. William Zhu, Clark Thomborson, Extraction in Software Watermarking, in ACM

141

Multimedia and Security Workshop 2006, 26-27 September, 2006, Geneva, Switzer-

land, pp. 175–181.

16. William Zhu, Topological Approaches to Covering Rough Sets, Information Sci-

ences, Vol. 177, 2006, 1499–1508.

17. William Zhu, Dualities in Covering Rough Operations, in IFTGrCRSP 2006,

20-22 July, 2006, Nanchang, China, pp. 59–63.

18. William Zhu and Fei-Yue Wang, Binary Relation Based Rough Set, in IEEE

FSKD 2006, 24-28 September, 2006, Xi’an, China, LNAI 4223, pp. 276-285.

19. William Zhu and Fei-Yue Wang, A New Type of Covering Rough Sets, in IEEE

IS 2006, 4-6 September, 2006, London, UK, pp. 444–449.

20. William Zhu and Fei-Yue Wang, Axiomatic Systems of Generalized Rough Sets,

in RSKT 2006, 24-26 July, 2006, Chongqing, China, LNAI 4062, pp. 216-221.

21. William Zhu and Fei-Yue Wang, Covering Based Granular Computing for Con-

flict Analysis, in IEEE ISI 2006, 22-24 May, 2006, San Diego, CA, USA, LNCS

3975, pp. 566–571.

22. William Zhu, Clark Thomborson, and Fei-Yue Wang, Obfuscate Arrays by Ho-

momorphic Functions, in IEEE GrC 2006, 10-12 May, 2006, Atlanta, GA, USA,

pp. 770–773.

23. William Zhu and Fei-Yue Wang, Relationships among Three Types of Covering

Rough Sets, in IEEE GrC 2006, 10-12 May, 2006, Atlanta, GA, USA, pp. 43–48.

24. William Zhu, Clark Thomborson, and Fei-Yue Wang, Application of Homomor-

phic Function to Software Obfuscation, in WISI 2006, April 9, 2006, Singpore,

LNCS 3917, pp. 152–153.

142 APPENDIX A. PUBLICATIONS

25. William Zhu and Clark Thomborson, A Provable Scheme for Homomorphic Ob-

fuscationin in Software Security, in CNIS 2006, 14-16 November, 2005, Phoenix,

AZ, USA, pp. 208–212.

26. William Zhu and Clark Thomborson, Algorithms to Watermark Software through

Register Allocation, in DRMTICS 2005, Oct 30 - Nov. 1, 2005, Sydney, Aus-

tralia, LNCS 3919, pp. 180–191.

27. William Zhu, Clark Thomborson, and Fei-Yue Wang, A Survey of Software Wa-

termarking, in IEEE ISI 2005, Atlanta, GA, USA, LNCS 3495, pp. 454–458.

28. William Zhu and Clark Thomborson, On the QP Algorithm in Software Water-

marking, in IEEE ISI 2005, Atlanta, GA, USA, LNCS 3495, pp. 646–647.

Previous Publications

1. William Zhu and Fei-Yue Wang, Reduction and Axiomization of Covering Gen-

eralized Rough Sets, Information Sciences, 152(2003), pp. 217–230.

2. Feng Zhu and Fei-Yue Wang, Some Results on Covering Generalized Rough Sets,

Pattern Recognition & Artificial Intelligence(in Chinese), Vol.15, No.1 (2002) 6-

13.

3. Feng Zhu and Huacan He, Logical Properties of Rough Sets, Proceedings of

TheFourth International Conference on High Performance Computing in the

Asia-Pacific Region, Los Alamitos, CA: IEEE Press, Vol.2(2000) 670-671.

4. Feng Zhu and Huacan He, The axiomatization of the rough set, Chinese Journal

of Computers (in Chinese), Vol.23, No.3 (2000) 330-333.

5. Feng Zhu and Huacan He, Characteristics of Rough Sets, Journal of Northwest-

ern Polytechnical University (in Chinese), Vol. 19, No.3 (2001) 422-425.

143

6. Feng Zhu and Huacan He, The Logical Properties of Lower and Upper Approx-

imation Operations in Rough Sets, Computer Science (in Chinese), Vol. 27, No.

11 (2000) 79-81.

7. Feng Zhu and Huacan He and etc., The Rough Elements in the Rough Set: Their

Structures and Generalizations, Computer Science (in Chinese), Vol. 27, No. 6

(2000) 38-39,34.

8. Feng Zhu and Huacan He and etc., Properties of Rough Sets in Topological

Boolean Algebra, Microelectronics & Computer(Special Issue) (in Chinese), 1999.

9. Yuanquan Zhou and Huacan He and Feng Zhu, Association rules based on Gen-

eralized Logic, Microelectronics & Computer(Special Issue) (in Chinese), 1999.

10. William Zhu, Consistency Relations in the Theory of Rough Sets, Journal of

Huaqiao University (in Chinese), Vol.22, No.2 (2001) 217-220.

144 APPENDIX A. PUBLICATIONS

Appendix B

Academic services

Member of the Programme Committee:

1. GrC 2007, 2-4 November, Silicon Valley, USA

2. ICMLC2007,Hong Kong, 19-22 August, 2007.

3. ICNC’07, Haikou, China, 24–27 August, 2007.

4. ISI 2007, Hyatt Hotel, New Brunswick, NJ, 23 - 24 May, 2007.

5. PAISI 2007, Chengdu, China, April 11-12, 2007.

6. PRICAI 2006, Guilin, China, August 7-11, 2006.

7. RSKT 2006 in July 24-26, 2006, Chongqing, China.

8. IEEE ISI 2006, San Diego, USA, 22-24 May, 2006.

9. WISI 2006 in Singapore on 9 April, 2006.

Reviewer:

1. IEEE ISI 2005, Atlanta, GA, USA 19-20 May, 2005.

145

146 APPENDIX B. ACADEMIC SERVICES

2. CogSci 2006, Vancouver, BC, Canada July 26-29, 2006.

3. ICCS 2006, Vancouver, BC, Canada July 26-29, 2006.

4. International Journal of Approximate Reasoning.

5. IEEE Transaction on Knowledge and Data Engineering.

6. Journal of Systems and Software.

7. Soft Computing.

8. Information Sciences.

Session Chair:

1. The Session on Rough Computing in IEEE GrC 2006, Atlanta, GA, USA 10-12

May, 2006.

2. IFTGrCRSP2006, 20 July, 2006, Nanchang, China.

3. The Session on Rough Computing in RKST 2006, Chongqing, China, 25 July,

2006.

Panellist:

1. IFTGrCRSP2006, 20 July, 2006, Nanchang, China.

Invited Talk:

1. College of Information Science, Beijing Language and Culture University, 23

May, 2007.

2. College of Computer Information Engineering, Jiangxi Normal University, Nan-

chang, China, 25 April - 17 May, 2007.

147

3. Department of Computer Science, Nanchang Institute of Technology, Nanchang,

China, 16 May, 2007.

4. UFIDA School of Software, Jiangxi University of Finance and Economics, Nan-

chang, China, 12 May, 2007.

5. Hunan University, Changsha, China, 4 January, 2007.

6. The First Summer School for Postgraduates of Jiangxi Province, July 19, 2006.

Visiting Scholar:

1. Chern Institute of Mathematics, Nankai University, Tianjin, China, 18–30 May,

2007.

2. Chern Institute of Mathematics, Nankai University, Tianjin, China, 1–31 De-

cember, 2006.

3. Chern Institute of Mathematics, Nankai University, Tianjin, China, 20–25 Septem-

ber, 2006.

148 APPENDIX B. ACADEMIC SERVICES

