
The Department of Computer Science

The University of Auckland

New Zealand

Unauthorized Detection of CT

Watermarks Based on Pattern Analysis

Methods

Teng Teng

July 2006

Supervisors:

Clark Thomborson

2

A thesis submitted in partial fulfillment of the

requirements of Master of Science in Computer

Science

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that

due acknowledgement is made where appropriate and that the author’s permission is

obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply

to the collection of another prescribed library on request from that Library; and

1. I agree that this thesis may be photocopied for supply to any person in accordance

with the provisions of Section 56 of the Copyright Act 1994.

Or

2. This thesis may not be photocopied other than to supply a copy for the collection

of another prescribed library.

(Strike out 1 or 2)

Signed: .

Date: .

ii

Created: 5 July 2006

Last updated: 14 July 2006

Abstract

The CT watermark algorithm is a relatively new software watermarking algorithm. To

evaluate the robustness of the CT watermark algorithm, we tried to simulate the unau-

thorized detection of watermark attacks on the CT watermark. The main concern of this

thesis is to explore the effect of the watermark size ratio of watermarked programs on the

accuracy of attackers’ detection function.

We simulate attackers by using the statistical pattern classification method to detect

the existence of a CT watermark. The adversaries’ behaviour is confined by a set of rules

proposed by the CT watermark algorithm designers, which I extend. We judge the success

of attackers by the false positive and false negative rates of attackers’ detection function.

Results showed that when the watermarked programs that the attackers used to train

their detection function and the watermarked programs to be detected both have a high

watermark size ratio, the attackers’ detection function will be accurate. So restricting the

watermark size ratio of CT watermarked programs should increase their robustness.

We suggest two ways to amend this problem. One way is to use the numeric water-

mark option in the watermark embedding procedure to reduce the watermark size ratio.

Another way is to denote those programs which will cause a high watermark size ratio as

being unsuitable to be CT watermarked.

iii

iv

Acknowledgement

I would like to thank Prof. Clark Thomborson, my supervisor, for his encouraging and

constructive suggestions. This thesis is a continuous study based on his and Christian

Collberg’s unpublished work which was submitted to TOPLAS in 15 April 2006.

Thanks for Barbara Thomborson and Dr. Stephen Drape who taught me quite a

lot about thesis writing. Stephen also guided me on Latex and mathematical notation.

Thanks to Jasvir Nagra offering me advice for annotating Java programs. Thanks for

Dr.Collberg for providing me his collection of Java programs. I also appreciate other

group members’ useful suggestions.

v

vi

Contents

1 Introduction 1

1.1 The CT Watermark . 1

1.2 Possible Attacks . 3

1.3 Motivation of This Research . 4

1.4 Related Work . 6

1.5 Structure of This Thesis . 6

2 The Game Between the Attacker and the Defender of the CT Water-

mark 9

2.1 Introduction . 9

2.2 The CT Watermark: Defender Side . 10

2.2.1 CT Watermark Model . 10

2.2.2 Security Requirement . 11

2.2.3 Defensive Mechanism . 13

2.3 CT Watermark: Attacker Side . 15

2.3.1 Detection of Watermark Attack Models 15

2.3.2 Limited Meaning of Our Detection of Watermark Attack 17

2.4 Judgement . 18

2.5 Discussion . 20

2.5.1 Designers’ Limitation 1 on Attacker 20

vii

viii Contents

2.5.2 Designers’ Limitation 2 on Attacker 21

2.5.3 Designers’ Limitation 3 on Attacker 22

2.5.4 Designers’ Limitation 4 on Attacker 23

2.5.5 The Danger of the Detection of Watermark Attack 23

2.5.6 The Judgement Rule . 24

3 Pattern Classification Theory 25

3.1 Introduction . 25

3.2 Overview of Pattern Classification . 25

3.2.1 Data Collection . 26

3.2.2 Feature Choice . 27

3.2.3 Model Choice . 27

3.2.4 Training . 28

3.2.5 Evaluation . 28

3.3 Discussion . 29

3.3.1 Data Collection . 29

3.3.2 Feature Choice . 29

3.3.3 Model Choice . 30

3.3.4 Training Procedure . 31

3.3.5 Fisher’s Discriminant Pattern Classifier 32

4 Experiment Design 33

4.1 Introduction . 33

4.2 Experiments . 34

4.3 Sample Sets . 35

4.4 Pattern . 38

4.5 Two Roles . 39

4.6 Hypotheses . 41

4.7 Experiment Flowchart . 44

4.8 Design for Experiment Set A . 45

Contents ix

4.9 Design for Experiment Set B . 47

4.10 Design for Experiment Set C . 48

4.11 Violations of the Assumptions of Fisher’s Discriminant Function 49

4.11.1 Violation of the Assumption of Multivariate Normality 49

4.11.2 Violation of the Assumption of Equality of Variance-Covariance Ma-

trices . 50

4.11.3 Violation of the Common Rule of Sample Size 50

5 Experiment Results and Analysis 51

5.1 Introduction . 51

5.2 Experiment Results . 51

5.2.1 Results of Experiment set A . 52

5.2.2 Results of Experiment set B . 61

5.2.3 Results of Experiment set C . 62

5.2.4 Bug Report . 67

5.3 Results Analysis . 67

5.3.1 Analyzing Results for Experiment Set A 67

5.4 Discussion . 69

5.5 Example of Using the Detect Function . 69

6 Conclusion and Future Work 71

6.1 The Challenge for the CT Watermark Designer and AUDW Attacker 71

6.2 Future Work . 72

A Appendix 75

A.1 Experiment Environment . 75

A.1.1 Software System . 75

A.1.2 Hardware . 76

A.2 Experiment Procedure . 76

A.2.1 Java opcode set . 76

x Contents

A.2.2 Collberg’s Sample Set Information 81

A.2.3 Collberg’s Sample Set Clearance . 90

A.2.4 Watermark Embedding Procedure 91

A.2.5 Pattern Retrieve Procedure . 93

A.2.6 SPSS Analysis Procedure . 94

1
Introduction

1.1 The CT Watermark

A watermark is an indicator added into an intellectual product to prove the ownership

of that product [20, 26, 10, 12, 11]. The watermark embedded in software is called a

software watermark. The main categories of software watermark algorithms are static and

dynamic. The static watermark algorithm directly embeds watermarks into software. The

embedding or extracting procedures of static watermark do not require the execution of a

program. In contrast, dynamic watermark algorithms only embed codes which construct

watermarks at program run time [10]. The benefit of dynamic watermark algorithms over

static is that “dynamic watermarking techniques are more stealthy and more resilient

than the existing alternative technology of static watermarks” [10].

1

2 Introduction

As a dynamic watermark algorithm, the CT watermark algorithm embeds “a water-

mark in the topology of a dynamically built graph structure” [9]. The main benefit of

the CT watermarking algorithm over other dynamic watermark algorithms is that it uses

graph structures to represent watermark. The reason for using graph structure is that

point aliasing effects make it difficult to locate codes that build the graph structure. As

a result, statistically analyze CT watermark will be troublesome for adversaries [11]. In

addition, the designers claim that CT watermark algorithm will not be affected by some

of those transformations occurring from translations, optimizations and obfuscations [9].

These transformations are harmful for static software watermark algorithms and some

dynamic watermark algorithms other than CT algorithm.

Other defense mechanisms of the CT watermark algorithm are also employed. For

example, the CT watermark algorithm use cycle graph to resist node splitting attacks

[11]. “Node splitting attack” means that adversaries try to split nodes into several linked

components to distort the watermarking graph. [11].

Three desiderata are often used to evaluate the watermark[11]:� Stealth : Stealth is the ability of a watermark algorithm to hide watermark. It is

the measurement on how difficult for adversaries to detect a watermark.� Resilience: Resilience is the ability of a watermark to resist possible attacks. It is

the measurement on how easy for adversaries to attack a watermark successfully.� Data Rate: Data rate is the ratio of the entropy of w to “extra” program size

caused by watermark embedding[8]. It is the measurement on the efficient of wa-

termark. In this thesis, we concern more on watermark size ratio which is closely

related to data rate. Watermark size ratio is the ratio of ‘extra” program size to the

cover program size. It is the measurement of the capacity of watermark embedding.

If the watermark, the cover program and watermark embedding parameters are all

the same, then data rate is inverse related to Watermark size ratio. and A formal

definition of watermark size ratio is given in Section 4.6.

1.2 Possible Attacks 3

Sometimes, to improve one desideratum will worsen other desiderata. So watermark

design must consider the trade-off between those desiderata. [11]

One of the most important considerations in the design of the CT watermark algo-

rithm is its resilience. We will discuss possible attacks to verify the resilience of the CT

watermark algorithm in next section.

1.2 Possible Attacks

Collberg [11] suggests some types of possible attacks on CT watermark. Attack types

suggested for other watermark algorithms [12] may also be applied on CT watermark

algorithm. We summarize categories of possible attacks on CT watermark as follows.� Unauthorized detection of watermark attack (will be abbreviated as AUDW after-

wards)� Additive attack� Distortive attack� Subtractive attack� Protocol attack

AUDW tries to detect secret information about watermark without permission. Cox [12]

suggests three types of unauthorized watermark detection threats:

Type I : Attackers can decode the watermarks embedded

Type II : Attackers can detect the existence of watermarks without decoding the wa-

termark

Type III : Attackers can detect the existence of watermarks, but they can not decode

the watermark. However, they can distinguish whether two watermarks share the same

key.

Additive attack : Attackers try to embed a bogus watermark by the attacker into software

and use it as the basis of their own claim on the software [11].

4 Introduction

Distortive attack : Attackers try to transform the watermark with or without transforming

the program as well. The goal of distortive attacks is to distort a watermark so that the

authorized watermark recognizer can not longer recognize it [11].

Subtractive attack tries to remove the watermark embedded in software without degrading

the quality of software [11].

Protocol attack tries to build a bogus watermark recognizer which can recognize the bogus

watermark embedded by the attack [13]. Then they can claim their fake ownership to the

potential buyer.

In this thesis, we will focus on type II of AUDW. We choose to focus our attacks against

the CT watermarking algorithm because it is designed to resist such automated attacks

[11]. In addition, type II attacks can be the basis of other attacks such as subtractive

attack and distortive attack.

1.3 Motivation of This Research

Since the CT watermark is a relatively new approach compared to other watermark al-

gorithms, little in-depth research exists on attacks to CT watermark. In this research,

we attempt to determine the robustness of the CT watermark to AUDW. We want to

determine attackers’ accuracy in detecting the CT watermark. Specifically, we chose to

explore the effects of the watermark size ratio on accuracy. We also consider the impacts

of feature selection on attackers’ accuracy in detecting the CT watermark.

One goal in our experiment is to explore how the watermark size ratio affects the

accuracy of attack. Since the data rate is in indirect proportion to the watermark size

ratio,

Among the three desiderata used to evaluate the CT watermark, resilience is an

essential metric for assessing the success of watermark algorithms [11]. Since the attack

we implemented is a detection of watermark attack, the stealth of the CT watermark

must also be evaluated. Lastly, we consider how the data rate relates to the error rate of

AUDW.

1.3 Motivation of This Research 5

In order to conduct our experiment, we need to implement some attacks on CT wa-

termark algorithm. In addition to our direct experimental measurement, we can gain

understanding of how well those defense mechanisms of the CT watermark algorithm

work. What is more, we can also check whether those defense mechanisms will introduce

other vulnerabilities. For example, as we mentioned in Section 1.1, one defense mecha-

nism of the CT watermark algorithm is using cycle graph to avoid node splitting attack.

However, cycle graph using much more nodes than uncycled graph. Obviously, it will

reduce the stealth of the CT watermark. Finally, our ultimate goal is to improve the CT

watermark algorithm by analyzing those methodologies that can be employed to attack

the CT watermark successfully.

In AUDW, attackers try to develop their own detect function based on attack methods

and/or the watermarked and unwatermarked programs they collected. Then they can

report whether a program is watermarked or not by their detect function. A more detailed

AUDW attacker model are given in Chapter2.

The purpose of this thesis is to implement some AUDWs on the CT watermark based

on statistical analysis methods. These AUDWs will be used to evaluate the stealth of the

CT watermark. The detection of the CT watermark can be unauthorized because the

CT watermark algorithm is a steganographic watermark algorithm. A steganographic

watermark algorithm is designed not only to hide the content of watermark but also

the existence of watermark [11]. The reason that we start from AUDW is given in last

subsection. We limit the methods we used in our detection to statistical analysis meth-

ods because statistical analysis methods can be implemented automatically. Since CT

watermark designers try to design their watermark algorithm against attacks can be au-

tomatically implemented.

The method we use to detect the CT watermark is pattern classification. Pattern

classification is to distinguish the CT watermarked programs from unwatermarked pro-

grams based on the “pattern” (the measurements of a set of characteristic features of an

object [40]) of programs. This method can find out whether the frequencies of features

of a CT watermarked program are “abnormal” enough to distinguish it from most other

6 Introduction

unwatermarked programs.

1.4 Related Work

Currently, although few methods to attack the CT watermark are practically imple-

mented, several attacking methods in related fields may also be applied on the CT water-

mark. Those related fields include those attacks on media watermark [22] [37] or stegano-

graphic systems [31]. Other possible useful detection methods include those methods used

in virus detection [34] and software birthmark detection [25]. In [11] [30], several possible

attacks on the CT watermark are also suggested. In addition, we also learn from the

information hiding and model of attackers setting issues discussed for media watermark

[38, 5, 24].

Collberg and Thomborson [11] discuss the evaluation of stealthy of the CT algorithm

by using feature occurrences. Their work is very related to this thesis. However, their

experiment just gives some evaluation results from the viewpoint of defenders. This

thesis tries to implement some unauthorized detection of watermark attacks on the CT

watermark so it is evaluation from the viewpoint of attacker. Maybe our research can be

viewed as a consecutive research of [11].

1.5 Structure of This Thesis

In this Chapter, we have briefly overviewed the CT watermark algorithm and possible at-

tacks on CT watermark. We realize that the unauthorized detection of CT watermark is a

kind of attack because CT watermark algorithm is a steganographic watermark algorithm.

In Chapter 2, we set up the attacker model for AUDW. Based on the designer’s limita-

tions on attackers, We defined the rules to limit the behaviours and to judge the success

of AUDW attacker. We assert that the success of attacker is decided by the accuracy of

attacker’s detect function. Additionally, we analyze the designers’ limitations on attacker

and argue that attackers should be given less information of CT algorithm.

1.5 Structure of This Thesis 7

In Chapter 3, we present the pattern classification theory. We assume that attackers

understand the pattern classification theory and will try to use the theory to optimize

his detect function. We survey factors can theoretically affect the accuracy of attacker’s

detect function in this chapter.

In Chapter 4, we explain the design of our experiment. We argue that our experiment

design basically conform the pattern classification theory with some minor violations.

In Chapter 5 we present our experiment results and analyze the meaning of them.

In Chapter 6, we make the conclusion of our thesis and give some suggestions on our

future work.

In Appendix A.1, we offer the information on our experiment environment which

includes the hardware and softwares we used in this experiment.

In Appendix A.2, we present the Java opcode set, the sample set and the watermark

set used in our experiment. The default parameters used in our watermark embedding

procedure are also listed in Appendix A.2. The syntaxes of the discriminant function of

SPSS used in our experiment are recorded and preserved in Appendix A.2.

8 Introduction

2
The Game Between the Attacker and

the Defender of the CT Watermark

2.1 Introduction

The general focus of this chapter is on describing the CT algorithm model and the

AUDW model for later discussion. We also discuss the restrictions on the CT water-

mark, e.g.designers’ limitations on attackers. In our experiments, we assume that the

attackers of the CT watermark will not violate those restrictions. Lastly, the criteria to

judge the success of attackers and/or defenders will be given and discussed.

9

10 The Game Between the Attacker and the Defender of the CT Watermark

2.2 The CT Watermark: Defender Side

2.2.1 CT Watermark Model

Currently, the CT watermark is implemented for Java programs [11]. Our experiments

are all based on Java programs.

Definition (Program Set)

Let P be the set of all the Java programs. Pu is the subset of P which consists of all the

Java programs which are not watermarked by the CT algorithm. Pw is the subset of P

which consists of all the Java programs which are watermarked by the CT algorithm.

P = Pw ∪ Pu

We denote a program as p , p ∈ P, an unwatermarked program as pu, pu ∈ Pu and a

watermarked program as pw, where pw ∈ Pw.

Definition (Watermark Set)

Let W be the set of all the watermarks which can be used in the CT watermarking

algorithm, where W ⊆ P String [15], and P String is all possible strings. A string is a

sequence of characters such as “a”, “1”,“A”. We denote a watermark as w, where w ∈ W.

The designers of the CT watermark algorithm define their CT watermark model with

following functions [11]:

embedCT (p, w, key) → pw

extractCT (pw, key) → w

recognizeCT (pw, key, w) → [0.0, 1.0]

The embed function embeds the watermark w into a program p by using a secret key.

The key is a sequence of inputs from the user. The extract takes out w from pw to prove

the ownership of the program p. The program p and its watermarked version pw should

2.2 The CT Watermark: Defender Side 11

exhibit the same input-output behaviour. The embedding of a watermark should have

little or no adverse effects on the performance of the program p. That is, pw should

execute at almost the same speed as p. pw also should not have significantly more bugs

than p.

The embed function comes in three processes. Those steps include annotation, tracing

and embedding [7]:� Annotation indicates the locations suitable for inserting watermark-graph-generating

codes in the target program. Places such as performance-critical points or condi-

tionalized points are not ideal to put watermark-graph-generating codes in.� Tracing records the list of tracepoints created by a key which is the user’s secret

inputs. The tracepoints are the selected locations for inserting watermark-graph-

generating codes after running the user’s secret inputs. The key will be used in

watermark extraction. The tracing information determines the final locations to

embed codes for constructing the watermark.� Embedding means the process of inserting watermark-graph-generating codes in the

locations determined by the tracepoints.

2.2.2 Security Requirement

The Security Goal of the CT Watermark

The purpose of the CT watermark is to prove the ownership of intellectual property. The

security goal of the CT watermark algorithm is to increase the difficulties for attackers to

implement those offensives which can be implemented automatically, such as distortive

attack or AUDW. The CT watermark algorithm seeks to maximum its resilience and

stealth [11].

12 The Game Between the Attacker and the Defender of the CT Watermark

Restrictions of the CT Watermark Algorithm

The authors of the CT watermark algorithm restrict the types of attacks that the CT wa-

termark should resist. They assert that they do not expect to develop a perfect watermark

system [11]. A perfect system should resist any non-trivial attack [11].

The CT watermark algorithm is designed to resist attacks using automated methods.

Those automated methods mainly consist of code transformations such as compilation

and decompilation, binary translation, optimizations, compressions and obfuscations [11].

The CT algorithm is also designed to maximize its stealth [11]. It tries to obstruct

the adversaries’ attempts to detect the existence of the CT watermark at all [11]. So the

CT algorithm should be able of resisting AUDW.

The CT algorithm designers restrict the capabilities of adversaries who will attack the

CT watermark as well. Their limitations on the capabilities of adversaries are as follows

[11]:� designers’ limitation 1 on attacker: Attackers can obtain all information of the CT

watermark algorithm. But they can not obtain the content of watermark and/or

the key to build and extract the CT watermark directly from the CT watermark

owner or defender.� designers’ limitation 2 on attacker: Attackers can obtain the CT watermarked pro-

grams in the form of “a collection of Java class files” [11].� designers’ limitation 3 on attacker: Attackers will find it difficult to read the CT

watermarked file manually. It means that the size of the target file should not be

too small. It also means that attackers will prefer to use automatic methods.� designers’ limitation 4 on attacker: Attackers will not rewrite the watermark after

studying the input-output behaviour of the watermarked program [11].

In our experiment, we introduce four additional limitations on adversaries to simplify

our experiment:

2.2 The CT Watermark: Defender Side 13� Additional limitation 1: Adversaries can only obtain one copy pw without its unwa-

termarked version pu.� Additional limitation 2: The embed and extract function are unavailable to adver-

saries. So the attacker should not access Sandmark which is the tool used to embed

and extract the CT watermark.� Additional limitation 3: The attacker will only use one kind of statistical pattern

classification algorithm: Fisher’s discriminant function.� Additional limitation 4: The attacker is interested only in the existence of the CT

watermark (type II AUDW).

We will discuss the meaning of the four designer’s limitations in Section 2.5. The four

designer’s limitations and the four additional limitations on the attacker will confine the

behaviour of the attacker in our experiments.

2.2.3 Defensive Mechanism

The CT watermark algorithm also employs some defensive mechanisms against AUDW.

Those mechanisms include [11]:� Splitting a large graph into smaller components and spreading the codes to build

those components in different locations. So the codes to build the CT watermark

graph become harder for attackers to discover.� Avoiding declaration of those root nodes constructing the CT watermark subgraphs

as global variables. Good object-oriented programming will not use a lot of global

variables. As a result, using global variables to declare root nodes is not stealthy.

The solution is to “pass roots in the formal parameters of methods”.� Hiding the watermark class. The CT watermark algorithm must use a special class

to create nodes which will construct the watermark graph. However, it is not very

stealthy if the CT algorithm uses the same special class to watermark every program.

14 The Game Between the Attacker and the Defender of the CT Watermark

The solution in the CT algorithm is to pick an appropriate class in the program to

be watermarked to build those nodes for the watermarking graph. The appropriate

class here is one that fulfills the requirements for building the watermark graph.

When an appropriate class is unavailable, a less desirable choice is to select an

appropriate class in the Java library.� Tamperproofing the CT watermarks by checking the predefined character of water-

mark graphs (i.e. checking the data in a graph data structure.). For example, the

predefined character such as the diameter of a planar graph. Such checking data

operations are often used in object-oriented programming. However, other water-

mark algorithms often use the tamperproofing method of checking the integrity of

executable codes. But checking the integrity of executable codes is somewhat un-

usual because there is little need to do so in normal software programming. Thus

the tamperproofing method used by the CT watermark is stealthier.� Using obfuscating methods to resist a pattern-matching attack [11]. Since the CT

watermark can resist many code transforming operations, many obfuscating meth-

ods will not affect the CT watermark. Instead, some obfuscating methods lend them-

selves as a defense in the CT watermark algorithm. Sandmark, the tool developed

by Collberg for watermark algorithm research, already provides some obfuscation

methods such as array splitting and class encryption. Some advanced obfuscation

algorithms can be more powerful in such applications. Those advanced obfuscation

algorithms include algorithms described in [6] and [39]. However, considerations of

obfuscation effects on attacks are beyond the scope of this thesis.� Using codes related to objects creating and objects linking to construct the CT

watermark graph. In an object-oriented programming language such as Java, codes

related to create objects and link objects are popularly used by programmers. So

such codes will not be quite ‘suspicious’ to attackers.

2.3 CT Watermark: Attacker Side 15

2.3 CT Watermark: Attacker Side

2.3.1 Detection of Watermark Attack Models

Our detection of watermark attack model can be described by two functions: the train

function and the detect function. The train function is used to build the attacker’s detect

function.

train : Pw,a × Pu,a × L → D

Where Pw,a is a subset of Pw, the set of watermarked programs accessible by the attacker.

The attacker can know a program p is watermarked if p ∈ Pw,a. Similarly, Pu,a is a

subset of Pu which is the set of unwatermarked programs accessible by the attacker. The

attacker can know a program is unwatermarked if p ∈ Pu,a. L is the set of all pattern

classification algorithms, For example, pattern classification algorithms such as Fisher’s

Linear discriminant algorithm or Euclidean distance discriminant algorithm. D is the set

of all detect functions based on the pattern classification method.

The attacker’s detect function in our thesis is an detect function using the key to

embedding the watermark.

detect : P → B
Where B is the boolean set B = {T, F}, where T means true and F means false. The

function detect has the following property:

detect(p) = T ⇒ p ∈ Pw

detect(p) = F ⇒ p ∈ Pu

An early stage of developing a formal AUDW model on the CT watermark algorithm

is also explored. As Prof. Thomborson outlined in a private communication [36], “No one

has published a general, information-theoretic, model of attacks on software watermarks,

analogous to the attack model proposed recently for audio-visual watermarks [2]”. We

16 The Game Between the Attacker and the Defender of the CT Watermark

still need much more effort to complete it. The immature model is as follows:

The attackers learn from the open security information Io and use some software

analysis skills SKa to develop a detect function of

Io × SKa → detect

Then attackers use their detect to find the hidden information Ih.

detect(px) → Ih

Where px is a program that attackers do not know if it is watermarked. Ih is the hidden

information that the CT watermark algorithm tries to hide. In our experiment, the Ih

that the CT watermark algorithm tries to hide is the existence of the CT watermark.

We assume attackers can not judge whether px is pu or pw without using their own detect

function.

The Io may include one or more classes of the following information, as suggested in

[21] :� The availability of the information of the CT watermark algorithm. It is the extent

of details from which attackers can learn the CT watermark algorithm. In our attack

model, we assume that attackers can learn all the details of the CT algorithm. The

reason for accepting this assumption is discussed in the Section 2.2.2.� The number of program pw that the attackers can collect. In our attack model, we

only consider the scenario that the attackers can collect only one copy of the pw

without the unwatermarked version of pw. But we assume that attackers can obtain

as many as other possible unwatermarked programs pu without their pw versions.� The availability of embed and extract function. In our attack model, we consider

only the the scenario that attackers can not access the official embed and extract

function.

2.3 CT Watermark: Attacker Side 17

SKa can be static or dynamic or hybrid static-dynamic program analysis skills. They

differ mainly in that: static analysis obtains the information it is inspecting for by checking

the codes of the target program without running the program; however, dynamic analysis

obtains the information by executing the program. Hybrid static-dynamic analysis is

a mixture of static and dynamic analysis [23]. Statistical analysis is one kind of static

analysis method. When we do the statistical analysis based on the pattern of the program,

then the method is called software statistical pattern analysis. In our attack model, we

predefine the attackers own software statistical pattern classification skill. So they can

classify softwares into classes (in our case, the classes are the CT watermarked program

class Cw and unwatermarked program class Cu) based on pattern classification skill. The

pattern classification skill is to classify an unknown program into Cw or Cu based on the

statistically significant difference of patterns between Cw and Cu.

Ih is the information that the watermark designers try to hide. Ih may include one

or more pieces of the following information suggested by Cox [12]:� The existence of a watermark: The information about whether an unknown px ∈

Cw or ∈ Cu. In our attack model, we will consider only this scenario.� The content of watermark: The information about the secret message embedded

the watermark. We will not consider this scenario in our attack model.� Location of watermark: The information about the locations of codes to construct

the watermark in the codes of target program.

2.3.2 Limited Meaning of Our Detection of Watermark Attack

The results of our attack will only have limited meaning. Firstly, we can not distinguish

whether the vulnerability is from the CT watermark algorithm or its implementation To

distinguish where the vulnerability comes from, we need a white-box-check, i.e. checking

the codes of Sandmark. But our experiment is a black-box-test, i.e. not allowed to check

the codes of Sandmark. So we can not make the judgement in our experiment. The white-

box-check is an area for our future work. Secondly, we can not deny the possibility that a

18 The Game Between the Attacker and the Defender of the CT Watermark

smarter attacker can find a better detect function than ours. So even our attack fails, we

can only claim that the CT watermark is stealthy enough for our attack. No promise that

the CT watermark can resist all other detection attacks. Lastly, our experiment result is

only valid for our experimental sample set. So even if our attack is totally success, we still

can not deny the possibility that it will fail for some programs not in our experimental

sample set.

2.4 Judgement

To choose the winner between the defender and the attacker, we need a judgement rule.

The judgement rule is defined by the possibility of misclassification on the attacker’s

part. If the attacker misclassifies more than half of the cases to be tested, then his/her

detect function is no better than a random guess. So the attacker fails and the defender

wins completely. Otherwise the attacker at least can learn some information, so the

attacker succeeds to some extent. The judgement can be more precise by introducing

the false positive rate (FP) and false negative rate (FN). False positive means that the

classifier falsely report an input program as watermarked when that program is actually

not watermarked. False negative means the classifier falsely reports an input program that

is unwatermarked when that program is actually watermarked. According to Collberg et

al. [11], attackers will be more concerned with FN . The higher the FN , the higher the

risk that an adversary will be “caught out”. The equations for computing FP and FN

are:

FP =
|{px ∈ Cu : detect(px) = T}|

|{px : px ∈ Cu}|
(2.1)

FN =
|{px ∈ Cw : detect(px) = F}|

|{px : px ∈ Cw}|
(2.2)

Figure 2.1 shows our judgement categories are mutually exclusive. We can describe

the failure of attacker in the following equations.

2.4 Judgement 19

Figure 2.1: Judgement rules

max(FN, FP) ≥ 50% → total failure of attacker

(total success of defender) (2.3)

((0% < FN < 50%) ∩ (0% < FP < 50%)) → weak success of attacker

(weak failure of defender) (2.4)

((FN = 0%) ∩ (0% < FP < 100%)) → strong success of attacker

(strong failure of defender) (2.5)

20 The Game Between the Attacker and the Defender of the CT Watermark

((FP = 0%) ∩ (0% < FN < 100%)) → strong success of attacker

(strong failure of defender) (2.6)

((FN = 0%) ∩ (FP = 0%)) → total success of attacker

(total failure of defender) (2.7)

2.5 Discussion

In the discussion section, we discuss each of the four designers’ limitations on attacker.

Then the dangers of AUDW are also discussed. Lastly, we discuss issues about judgement

rules.

2.5.1 Designers’ Limitation 1 on Attacker

The reason behind designers’ limitation 1 on attacker is: security society people generally

believe that it is impossible to keep a security algorithm secret [21]. So the security must

completely depend on the secret key [1]. This principle is called Kerckhoffs’ principle

which is the foundation of cryptography. Kalker [21] and Furon [17] suggest applying

Kerckhoffs’ principle in watermark design too. The CT watermark algorithm obeys this

principle.

Then one question arises: what can an AUDW attacker learn from the CT algorithm?

It is very likely that the attacker may notice that the CT algorithm will use many codes

related to node building and node linking. Although node building and node linking codes

is often used in object-oriented programming, it may still not be very stealthy in some

cases. The relatively high frequencies (e.g.in cycle graph) of using nodes building and

linking codes to build the CT watermark might still be ‘abnormal’. That ‘abnormality’

2.5 Discussion 21

can then help attackers to distinguish the CT watermarked programs from unwatermarked

programs. Additionally, the attackers can also assume that the opcodes used to build the

CT watermark are those opcodes which can construct and link nodes. (Actually, in [11],

the Java opcodes and their distributions are already given.) This information can be

useful in the feature selection phase of our attack. However, we decide not to give the

attacker in our experiment this information. Thus we can find how well SPSS can select

features in its discriminant analysis.

Applying Kerckhoffs’ principle in watermark design is doubtful. The problem comes

from the fact that some techniques we used to defend against attackers can also be used

by malicious adversaries. For example, an obfuscating method used to protect the CT

watermark from detecting can also be used by adversaries. Adversaries can use that

method to escape the detection of software plagiarism. On the other hand, techniques used

in detection of software plagiarism can also be used in detection of software watermark

by adversaries. So at least one type of adversary will win.

Although Kerckhoffs’ principle is appropriate in cryptography, it is less appropriate in

watermark design. Adversaries who attack the password put in enormous effort because

the benefit of breaking passwords can be enormous, too. However, Adversaries who attack

the watermark will not extend more effort beyond developing their own similar program.

Similar program here means the program can perform the similar functions as the program

protected by the watermark. Otherwise attackers who break the watermark can gain

no economic benefits. So adversaries who attack watermark should be “weaker” than

adversaries who break passwords. Another fact is that the effort paid to understand the

watermark algorithm can be a large part of the effort paid to attack the watermark. As a

result, Kerckhoffs’ principle may be not quite suitable for watermark design consideration.

2.5.2 Designers’ Limitation 2 on Attacker

Designers’ limitation 2 on attacker gives the restriction that an attacker can not access

the source code of the target watermarked program. Normally an attacker can seldom

22 The Game Between the Attacker and the Defender of the CT Watermark

access the source code of the target program in the real world. Since the Java class files

can be easily disassembled into opcodes, we reason those opcodes and their sequences

(k − gram) used as our features are appropriate.

2.5.3 Designers’ Limitation 3 on Attacker

Designers’ limitation 3 on attacker restricts the size of the CT watermarked program. That

is, it will make it difficult for attackers to read the CT watermarked program manually. If

the attacker must pay a significant effort, the security goal of the CT algorithm is already

somehow achieved.

However, we should take care with this limitation. Some types of “manual” attacks

are not quite “difficult” for attackers. For example, attackers may manually read the

constant pool with ease while reading the entire codes of that program line by line is

difficult. Another possible scenario is suggested in [11]. The attacker may develop an

automated tool which can reveal a small part of suspicious codes related to watermark

construction. Then he can check those suspicious codes manually.

In addition, we can not quantitatively define how large a file has to be to make it

“difficult” for an attacker to read it “manually”. The skill of reading code manually can

vary much from attacker to attacker. What is more, the programmer can make the code

more difficult to be read manually according to Roedy’s paper [18].

But we can argue this limitation according the generally believed fact that programs

are “Easier written than read” [35]. That is, the effort on reading (and understanding

)the entire program line by line often will be more than the effort of writing the same

program. The effort can be measured by person months. According to Norman et al. [27],

“because staff costs often dominate overall project cost, the term ‘cost estimation’ and

‘effort estimation’ are sometimes used interchangeably”. So we can make an assumption

that the cost to read a program (manual attack cost) will also be more than the cost to

write the same program (program developing cost). From an economic viewpoint, those

attacking for business reasons will choose the lower cost between the manual attack cost

2.5 Discussion 23

and the program developing cost. Since the program developing cost is often lower than

the manual attack cost, attackers will not choose manual attack. That means we need

not consider manual attack in most cases.

So when performing our AUDW, we can not exclude those relatively “small” programs.

However, the success of detecting a watermarked program is related to the size of the target

watermarked file. So we need to limit the file size to keep the CT watermark stealthy.

2.5.4 Designers’ Limitation 4 on Attacker

Designers’ limitation 4 on attacker excludes a certain type of attack based on dynamic

analysis. It is not relevant to our attack which is based on static analysis.

2.5.5 The Danger of the Detection of Watermark Attack

Attackers can use the AUDW for two purposes:� Attackers’ purpose 1 : when attackers can use their detect function to decide

whether a unlabeled program is CT watermarked, they can collect programs judged

as CT watermarked by their detect function. The collected CT watermarked pro-

grams can be used for further attacks.� Attackers’ purpose 2 : when attackers can use their detect function to decide

whether an unlabeled program is CT watermarked, they can avoid pirating the

programs watermarked by the CT watermark algorithm to avoid being caught.

One example of the dangers of AUDW is that if attackers can detect a watermark

with (FP = 0%) ∩ (0% < FN < 100%), then they can obtain more than one copy of

watermarked programs pw. So a collusion attack can be applied. A collusion attack relies

on owning more than one copy of watermarked programs pw [12]. In addition, the collusion

attack can be more dangerous when more and more copies of watermarked programs are

collected by the unauthorized detect function.

24 The Game Between the Attacker and the Defender of the CT Watermark

2.5.6 The Judgement Rule

Equation (2.3) means that the detect function will do no better than a random guess

which will have max(FN, FP) = 50%. So the detect function is useless. We define such

a detect function as the total failure of attackers.

Equation (2.4) means that the detect function can do better than a random guess.

So the detect function will somehow reveal the existence of the watermark. However,

this is risky for attackers because sometimes they will judge a watermarked program as

an unwatermarked program. So we define such a detect function as a weak success for

attackers.

Equation (2.5) means that the detect function can detect a watermarked program

without judging an unwatermarked program as a CT watermarked program. The detect

function will be useful for attackers if their purpose is the Attackers’ purpose 1 which

was discussed in Section 2.5.5. It is because the collected watermarked programs by the

attacker will not mix with unwatermarked programs. So we define such a detect function

as a strong success for attackers.

Equation (2.6) means that the detect function can detect a watermarked program with-

out judging a watermarked program as an unwatermarked program. The detect function

will be useful for attackers if their purpose is the Attackers’ purpose 2 which was dis-

cussed in Section 2.5.5. It is because the attacker will not risk pirating a CT watermarked

programs. So we define such a detect function as a strong success for attackers.

Equation (2.7) means that the detect function will not make any mistakes, so it a full

success for attackers.

3
Pattern Classification Theory

3.1 Introduction

In this chapter, we focus on pattern classification theory and the choices involved in

pattern classification procedure. How those different choices will change the accuracy

of classification results are also discussed. In the next chapter, we will show that our

experiment design obeys the theory discussed in this chapter.

3.2 Overview of Pattern Classification

Pattern classification is one method which can be used for the detecting watermarks. In

the procedure of watermark detection, unknown programs are classified into two cate-

25

26 Pattern Classification Theory

gories: watermarked programs Cw and unwatermarked programs Cu. When the decision

is based on some patterns of programs, it is an application of pattern classification. Usu-

ally, pattern classification system will include steps such as data collection, feature choice,

model choice, training, evaluation[16]. Steps can be repeated more than once. Our ex-

periment design will basically follow those steps. We will discuss them in the following

subsections.

3.2.1 Data Collection

The most important thing in data collection is to ensure the collected sample set can

represent the sample set to be collected [40]. Otherwise we must reason why and how

the samples collected are different from the samples to be collected [40]. Webb [40] also

discussed that other aspects should be considered in data collection. Those aspects include

the total sample size, the ratio of sample numbers between Cw and Cu, cost related to

data collection and the randomly sampling rule. Our choices are as follows.� sample size: The maximum size (number of samples) of our collected sample set

is 234. It is because that we decide to only use the same 234 samples collected by

Collberg in our experiment. We will not optimize our sample set as presented in

Section 3.3.1. It will be one of the reasons for lowering the accuracy of our classifier.� the ratio between Cw and Cu: In the real world, Cw ≪ Cu. In our experiment, we

set our ratio of Cw to Cu above 1:150 for training purposes. The training procedure

will be discussed in Section 3.2.4� cost related to data collection : In our experiment, the main cost related to

data collection is in embedding watermark manually.� randomly sampling rule: We are using the sample set from the research group

of Prof. Collberg. We choose to trust their randomly sampling rule which is used

to collect the sample set.

3.2 Overview of Pattern Classification 27

3.2.2 Feature Choice

Feature choice includes two-level choices: level one choice involves features suitable for

representing softwares while level two choice has features for data reduction purposes.

Both of these considerations are described, and our reasons for choosing them, below.

Choosing Features Suitable for Representing Softwares

We choose opcode level k-grams as features to present the patterns of software programs

because it is a general technique for detecting the similarities between programs [4, 25].

We only consider the situation that k ≤ 3 in our experiment. We keep k a small number

because the number of features will increase dramatically when k increases. The so-called

curse of dimensions problem will be discussed in Section 3.3. Features can also be based

on bytecode sequences or other software metrics. We choose k-grams as our features

because they are resilient to semantic-preserving transformations [25].

We retrieve the pattern of a program by measuring the features (k − grams) of that

program. The details about how to measure the k − grams to form the pattern of a

program are shown in Figure 4.1.

Choosing features for data reduction purposes

For data reduction purposes, we will select only a subset of k-grams in our pattern clas-

sification. The need to reduce the number of features for two reasons [16, 40]:

1. Reducing the time and space used in statistical analysis.

2. Increasing the accuracy of statistical analysis.

We will discuss the second reason more in Section 3.3.

3.2.3 Model Choice

Our model choice (classifier choice) is Fisher’s linear discriminant classifier. A classifier is a

“rule to assign a class (or doubt or outlier) to new examples” [3]. A classifier takes an input

28 Pattern Classification Theory

example (a program), and gives a classification result as the output. The classification

result is given by applying a classification algorithm to some measurements of the features

of that program. We name the classifier after the classification algorithm used in this

thesis.

According to Raudys [32], there exist more than two hundred pattern classification

algorithms and six important algorithm are described. These six important algorithm

have demonstrated practical uses. Among them, Fisher’s linear discriminant algorithm is

the most popular [32]. Besides, it often gives good results [32]. So very likely, an attacker

would be likely to try Fisher’s linear discriminant classifier first, especially when he/she

does not have other information to determine which classifier is better.

3.2.4 Training

A training procedure adjusts the coefficients of the classification function to fit those

“known programs”. “known programs” means that the attacker knows whether the pro-

grams are watermarked or not.

“Known programs” are those programs whether watermarked or not are known to the

attacker. After training, we can use the classification function with adjusted coefficients

to classify new programs or unknown programs.

3.2.5 Evaluation

Evaluation estimates the “real” misclassification rate by additional experiments. Four

main methods are often used [32].� The resubstitution method: All training samples are reused in evaluation� The hold-out method: The sample set is divided into two parts. One part is for

training and another part is for evaluation purpose. We adopt this method for our

experiments.� The cross-validation method: Suppose we have n number of samples, each time we

3.3 Discussion 29

select k samples as the training set and the remaining n− k samples as the test set.

When the k samples should not be repeated, then we can result in
(

n

k

)
choices. Each

choice will have an error rate. Finally the average error rate of all the
(

n

k

)
choices

will be computed and used in evaluation.� The bootstrap method: In bootstrap, resampling samples from the training set r

times forms r bootstrap sample sets. The error rate of each bootstrap sample set

is compared with the error rate of the whole training set. Then we can use the

differences of error rate for evaluation purpose.

3.3 Discussion

In this section, we will discuss how to optimize the pattern classification activities. In

practise and in our experiment, an attacker may not be able to optimize each of his/her

pattern classification activities. Then the error rate of attacker’s detect function will

increase.

3.3.1 Data Collection

To determine the appropriate sample size, we must consider several factors. Those factors

include dimension d, the cost of classification the desired performance, the complexity of

the classification rule and the asymptotic probability of misclassification. However, it is

very difficult to theoretically calculate the relationship between the finite sample size and

the performance of a certain classifier performance. So we just adopt the guidance of

“having 5-10 times more samples per class than feature measurements”[40].

3.3.2 Feature Choice

Data reduction is important because of the curse of dimensions. The Curse of dimensions

means that the complexity of high dimensions greatly increase the difficulty in developing

an optimized discriminant function [16].

30 Pattern Classification Theory

The dimension used in pattern classification can affect both of the feature extractor

and classifier [16]. An high dimension will increase “the cost and complexity of both

the feature extractor and classifier” [16]. An high dimension can also affect PMC as

described below:

In that if the training sample size is unlimited, adding new features will help to increase

the accuracy of the classifier (or reduce PMC) [16]. At least, adding new features will

not increase PMC. So the higher the dimension, the lower the PMC.

However, if the sample number is fixed, according to [32], a peak phenomenon appears.

With a peak phenomenon, the initial increase of feature numbers will reduce the possibility

of misclassification (PMC). However, when the feature numbers exceed a certain number

(dopt), the increase of feature numbers will increase PMC too. In the case of using linear

discriminant function, dopt = N
2

− 1 when N is the total number of features.

3.3.3 Model Choice

Fisher’s discriminant function might not be the best function we can use. However,

according to the No Free Lunch Theorem [16], no classifier or learning algorithm is always

better than others without considering the nature of the task. The nature of the task

includes those factors that can affect the PMC. According to Raudys [33], the PMC of

all discriminant functions depend on the following factors :� The classification rule type;� Training sample size |Pt|;� Asymptotic probability of misclassification PMC∞

PMC∞ = lim
|Pt|→∞

EPMC(expect PMC when training size is|Pt|)

;� Dimensionality d.

3.3 Discussion 31

Raudys also gives the analytical formulas to calculate the PMC of four popular linear

discriminant functions (including Fisher’s discriminant function which is called “standard

linear DF” in that article). So we can obtain the theocratical PMC of Fisher’s discrim-

inant function when we know the PMC∞, |Pt|, and d. If we can calculate the EPMC,

then we know the theoretical PMC which is independent from those samples in the train-

ing set. So we can overcome one of the restrictions of AUDW: our experiment result is

valid only for our collected sample set PE0 . Nevertheless, the computation is complex. So

in practice Raudys [33] uses the average error rate of 10-100 runs to estimate the EPMC,

where each run should randomly draw |Pt| samples from the sample set.

Such a calculation needs |Pt| to be relatively large. However, currently we do not have

many CT watermarked programs for training. Since we can only embed watermarked

programs manually, the time spent on preparing a large number of CT watermarked

programs will be too much for our experiment. So calculating the EPMC is beyond the

scope of our experiment.

Currently we can not estimate well which classification algorithm is better. There

are no published reports comparing classification algorithm on the accuracy of classifying

watermark and unwatermarked programs. We can only select the classification algorithm

in our experiment by our experience. In our experiment, we select Fisher’s discriminant

function as our classification algorithm. If we consider only the accuracy of classifiers,

Fisher’s discriminant function classifier might not be the best choice. According to [33],

when |Pt| is small, it is better to choose simpler classification rules or reduce d. Some

algorithms like Euclidean discriminant function may work better. However, it is easier to

select features by using Fisher’s discriminant function. The selection procedure can be

automatically done in SPSS. That is why we finally choose Fisher’s discriminant function.

3.3.4 Training Procedure

In the training procedure, we should be aware that our classifier should not overfit the

training set. Overfitting means our classifier is too complex so that it works excellently

32 Pattern Classification Theory

on training set but poorly on test set [16]. To avoid overfitting, we need to control d.

3.3.5 Fisher’s Discriminant Pattern Classifier

Fisher’s discriminant pattern classifier should be based some assumptions. SPSS, the tool

we use to do the statistical analysis work, also uses those assumptions. However, in the

real world, those assumptions often are not valid. We will discuss the assumptions and

the effect of violating them in Chapter 4.

4
Experiment Design

4.1 Introduction

For the most part, our experiment design is based on the classification design cycle as

we discussed in Chapter 3. We also adopt the experiment design techniques presented in

[19].

In this experiment design, we introduce the two roles of attacker and experimenter.

The attacker is confined by the restrictions on attackers as defined in Chapter 2. His/her

job is to develop a classifier (or detect function) on the samples provided by the experi-

menter. The experimenter’s job is to distribute samples to the attacker and evaluate the

classifier developed by the attacker. The relationship between the experimenter and the

attacker will be discussed in Section 4.5.

33

34 Experiment Design

As discussed in Chapter 2, the error rate (FN and FP) of the attacker’s detect function

determines the winner of the match between the watermark designer and the attacker.

So we make some hypotheses on factors that can affect the error rate of the attackers’

detect function. We design one main experiment set and two additional experiment sets

to verify our hypotheses.

4.2 Experiments

All the experiments we made in this thesis form our experiment set.

Definition (Experiment Set)

The experiment set X is an ordered set of runs. A run is an experiment which runs with

a certain combination of experiment parameters [19], and runr denotes the r− th run in

our case [15].

X = {run1, run2, . . . , runr, . . . , run14}

and XA is a subset of X which is our main experiment set.

XA = {run1, run2, . . . , run9}

XB and XC are also subsets of X which is our additional experiment sets.

XB = {run13, run14}

XC = {run10, run11, run12}

Both of XA and XC are based on pattern classification. We use XA and XC to simulate the

AUDW of attackers. The goals of XA and XC are to find factors which can significantly

affect the accuracy of attacker’s detect function. Details of XA and XC will be discussed

in Sections 4.8 and 4.9 respectively.

4.3 Sample Sets 35

XB is a simple experiment with only one run. With it, we explore the change of

watermark size ratio caused by the different selection of watermark embedding parameters.

We will give the experiment flowchart of r − th run in Section 4.7 (1 ≤ r ≤ 12). The

13-th and 14th runs (XB) are simple, so the flowchart of them is not need.

4.3 Sample Sets

The sources of our experiment sample sets are from the Java programs collected by Coll-

berg’s group from the internet. We assume none of those Collberg’s samples are water-

marked.

Definition (Original Experiment Sample Set)

Let the PE0 be the finite, ordered subset of Pu which is selected for our experiment:

PE0 = {p1, p2, . . . , pi, . . . p234}

where pi is the i-th program in PE0 (Table A.2 has the name and size of the element

programs in PE0 .)

Our experiment requires building some CT watermarked programs. The watermarks

used for those programs for our experiment are listed in Table A.4.

Definition (Watermark Set for Experiment)

Let watermark set for experiment WE be the subset of W which will be used in our

experiment. (The elements of WE are listed in Table A.4.) We denote Wr
E as the subset

of WE which is used in r − th run.

The combinations of CT watermark embedding parameters in Sandmark should also

be considered in our experiment. For our experiment, we focus on two options of em-

bedding parameters: numeric watermark, use cycle graph. Numeric watermark means

that Sandmark will only accept a numeric number as watermark [7]. Collberg claims

that by using only the numeric number as watermark, the watermark algorithm will be

36 Experiment Design

parameters Numeric Use Other fixed
selection watermark Cycle graph parameters ∗

m1 0 1 ∗∗
m2 1 0 ∗∗

“1” means select, “0” means not select
∗ The fixed parameters list in Appendix A.2.4.

∗∗ Using default value. Those default values are listed in Appendix A.2.4.

Table 4.1: Combinations of CT watermark embedding parameters in Sandmark

more efficient than using an arbitrary string watermark [7]. Use cycle graph means that

Sandmark will build a more complex watermark graph to resist node splitting attacks [7].

When Sandmark embeds watermark by using use cycle graph option, it will replace each

node in the watermark graph with a 3-node cycle [7]. In our experiment, we will only

consider these two options. Other fixed watermark embedding parameters are kept in

their default values. The default values of those fixed watermark embedding parameters

are in Appendix A.2.4.

Definition (Embedding parameter combination Set for Experiment)

Let embedding parameter combination Set for Experiment ME be the ordered subset of

M. ME = {m1, m2}. The combinations used for m1, m2 are listed in Table 4.1.

Definition (Experiment Sample Set)

Let Pr
E be the subset of P which is used for r − th run. We map Pr

E from PE0 by the

transform function (for r ≤ 12).:

PE0 ×WE ×KE ×ME → Pr
E

4.3 Sample Sets 37

transform(p0,j) =







pj = embed(p0,j , wj, keyj, m1) if j ∈ {1, 5, 15, 16, 18, 30, 50, 54, 60,

69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234}and (10 ≤ r ≤ 12)

pj = embed(p0,j , wj+1000, keyj, m1) if j ∈ {1, 5, 15, 16, 18, 30, 50, 54, 60,

69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234} and (1 ≤ r ≤ 9)

pj = ∅ if j ∈ {19, 37, 9, 22, 24, 33, 40, 47, 48,

88, 94, 100, 103, 114, 119, 125, 138,

147, 157, 159, 162, 164, 175, 176, 177,

178, 207, 229, 230, 129, 152,

144, 75, 143, 182}

and (1 ≤ r ≤ 9)

pj = p0,j otherwise

All watermarked programs in Pr
E are denoted as Pr

w,E.

Pr
w,E = Pw ∩ Pr

E ;

All unwatermarked programs in Pr
E are denoted as Pr

u,E.

Pr
u,E = Pu ∩ Pr

E

In r − th run, Pr
E will be split into Pr

t and Pr
v . Pr

t is the subset of Pr
E which is used

by adversaries to build classifierr in the r − th run. Pr
v is the subset of Pr

E which is

used by the experimenter to verify the accuracies of adversaries’ classifierr. Pr
t and Pr

v

should be mutually exclusive:

Pr
t ∩ Pr

v = φ

38 Experiment Design

The subsets of Pr
t and Pr

v are:

Pr
w,t : Pr

w,t = Pw ∩ Pr
t

Pr
w,v : Pr

w,v = Pw ∩ Pr
v

Pr
u,t : Pr

u,t = Pu ∩ Pr
t

Pr
u,v : Pr

u,v = Pu ∩ Pr
v

4.4 Pattern

As we mentioned in Chapter 1, a pattern consists of the measurements of a set of char-

acteristic features of an object [40]. In our experiment, the characteristic features are

k − grams.

Definition (Experiment Gram Set)

Let the gram set for r−th run be Gr. Gr = {k−gram1, k−gram2, . . . , k−grami, . . . , k−

gramn}, where k is the length of the k − gram, n is the number of k − grams in Gr. For

a particular r − th run, we always use the same k. So Gr is a subset of Ak.

Ak = A× . . . ×A
︸ ︷︷ ︸

n times

where A is defined as the ordered set of Java opcodes, A = {op1, op2, . . . , opj, . . . , op206};

opj is the j-th opcode in A; the elements of A are shown in Table A.1.

In r − th run, we retrieve a pattern vector −→p r from a p by a measure procedure.

The measure procedure is based on Gr. The pattern vectors retrieved from Pr
E are used

by attackers to train his classifierr and used by experimenter to evaluate attackers’

classifierr.

Definition (Pattern Set)

4.5 Two Roles 39

Let T r
∗ be the set of pattern vectors retrieved from Pr

∗ in r − th run. T r
∗ relates to Pr

∗

for the r − th run under the measure procedure described in Figure 4.1; the measure

procedure will take a p ∈ Pr
∗ and the Gr as input and return a pattern vector −→p ∈ T r

∗ as

output; e.g. T r
w,t relate to Pr

w,t for the r − th run.

Figure 4.1 shows the measure procedure in r − th run for a arbitrary program whose

jar file is called A.jar. The meaning of each step is as follows:� Step 1 : We obtain Java .class files for Java .jar file then disassemble Java class files

into Java byte code.� Step 2 : We filter out the opcode list.� Step 3 : We sweep a window of size k on the opcode list to retrieve the k − gram

sequence of A.jar.� Step 4 : We count the frequencies of occurrence of all k − grams belong to Gr upon

the k − gram sequence of A.jar retrieved in Step 3. Then we obtain a frequency

vector
−→
f r of A.jar for r − th run.

−→
f r = {f1, . . . , fn}, where n is the number of

k − grams in Gr.� Step 5 : We retrieve the pattern vector −→p r from
−→
f r. −→p r = {f ′

i ∈ −→p r, fi ∈
−→
f r :

f ′
i = fi

P

n

i=1 fi

}

4.5 Two Roles

We define two roles operate in our experiment design: the attacker and the experimenter.

As a restriction in Section 2.3, an attacker can not access the official embed and extract

functions of the CT watermark algorithm. Also an attacker can not evaluate his/her

classifier. So we need to define a role as experimenter to prepare the Pr
E for r − th run

and evaluate the classifier of attacker.

Figure 4.2 shows the relationship between them in the r−th run. We denote attackerr

as the attacker in the r − th run. In the r − th run, the experimenter distributes the

40 Experiment Design

Figure 4.1: Measuring Procedure

Pr
t to the attackerr, then the attackerr trains his/her classifierr with Pr

t and Fisher’s

discriminant function. The trained classifierr will be evaluated by the experimenter with

Pr
v . The experimenter uses FN r and FP r to evaluate the accuracy of classifierr. We

4.6 Hypotheses 41

Note: dotted line means exchanges between the Attacker and the Experimenter

Figure 4.2: The Relationship Between the Attacker and the Experimenter in r − th run

denote the output of r − th run as Or.

Or = {FN r, FP r}

4.6 Hypotheses

In our experiment, we try to explore the factors which will significantly affect the accuracy

of an attacker’s classifier. Since no surveyed paper can report which factor can significantly

affect the accuracy of an attacker’s classifier, we keep hypotheses and verify them by our

experiment.

Our main hypothesis relates to the levels of watermark size ratios of Pr
w,t and Pr

w,v.

The watermark size ratio is defined as follows.

42 Experiment Design

Levels definitions
QTL1 ∀q ∈ Qr

w,t, 0 < q ≤ 0.2
QTL2 ∀q ∈ Qr

w,t, 0.2 < q ≤ 2.0
QTL3 ∀q ∈ Qr

w,t, 2.0 < q
QV L1 ∀q ∈ Qr

w,v, 0 < q ≤ 0.2
QV L2 ∀q ∈ Qr

w,v, 0.2 < q ≤ 2.0
QV L3 ∀q ∈ Qr

w,v, 2.0 < q

Table 4.2: The levels of watermark size ratio of Pw,t and Pw,v

Definition (watermark size ratio)

Let q be the watermark size ratio of a watermarked program, Qr
w,∗ is the set of watermark

size ratios of programs in Pr
w,∗, Q

r
w,∗ ⊆ R, and the ratio function maps Qr

w,∗ from Pr
w,∗:

Qr
w,∗ = {q ∈ Qr

w,∗, pw ∈ Pr
w,∗ : q = ratio(pw)}

The ratio function is defined as:

ratio : Pw → R
ratio(pw) = {pw ∈ Pw :

|pw| − |pu|

|pu|
}

Where pw = embed(pu, w, key, m); w is the watermark to be embedded; key is the

input sequence used to embed watermark, m is the combination of parameters used in

watermark embedding. |pw| and |pu| are the size of pw and pu respectively, the size is

measured by the sum of all the frequencies of the occurrence of all ops in a program p.

e.g.a program p ≡ 〈ADD, SUB, ADD, ADD, SUB, AASTORE〉, then |p| = 6

Then we denote the levels of watermark size ratios of Pr
w,t as QTLr: QTLr ∈ {QTL1, QTL2, QTL3},

where QTL1, QTL2, QTL3 are defined in Table 4.2.

Similarly, we denote the levels of watermark size ratios of Pr
w,v as QV Lr: QV Lr ∈

{QV L1, QV L2, QV L3}, where QV L1, QV L2, QV L3 are defined in Table 4.2.

Our main hypothesis of the experiment is Hypothesis One: While all other ex-

periment parameters are fixed, FN r and/or FP r of attacker’s classifierr will decrease

4.6 Hypotheses 43

when QTLr and/or QV Lr increase. On the other hand, FN r and/or FP r of attacker’s

classifierr will increase when QTLr and/or QV Lr decrease.

The basis of Hypothesis One comes from a well known fact in media watermark

techniques: The error rate of media watermark detection will increase when the size of

the embedded watermark decreases for a fixed media file size [38, 5].

Although software watermark algorithms are quite different from the media watermark

algorithms, they share many of the same information hiding problems. i.e. in media water-

marking, watermark designers should control their watermark size small enough compare

to the size of the picture to be watermarked. So the watermark will be imperceivable to

human eyes [38, 5]. In software watermarking, we believe that we should also keep the size

of the watermark building codes small compare to the size of program to be watermarked.

Thus statistical analyzing methods used by attackers can not detect the watermark.

We test Hypothesis One using XA. The details to implement XA will be discussed

in Section 4.8.

If Hypothesis One is true, then we need to consider the variables which can change

the watermark size ratio. According to Collberg and Townsend [7], in Sandmark, when

we embed watermark using the “numeric watermark” option, the watermark embedded

will be more efficient. When we embed watermark using the “cycle graph” option, each

node of the watermark graph will be changed into a 3-cycle. So we assume using the

“cycle graph” option will use more codes to build the same watermark than using the

“numeric watermark” option.

So our Hypothesis Two states that for the same watermark and same program,

embedding a watermark employing m2 parameter combinations (using the “numeric wa-

termark” option) will cause lower water mark size ratio than employing m1 parameter

combinations (using the “cycle graph” option) in Sandmark.

To verify our Hypothesis Two, we design a simple one factor experiment XB to

check it. The details of how to implement XB will be in Section 4.9.

The idea of our third hypothesis is from Christian Collberg and Clark Thomborson

[11]. They believe that the selection of the length of k − grams will affect the accuracy

44 Experiment Design

of attacker’s detect function. So we want to check the effect of the length of k − gram on

the accuracy of attacker’s detect function.

Our last hypothesis is Hypothesis Three where we posit that the selection of k

(length of k−grams) in the feature selection phase of attack will change the FN r and/or

FP r of that attacker’s detect function while all other experiment parameters are fixed.

To verify our Hypothesis Three, we design a simple experiment XC to check it. The

implementation details of XC will be in Section 4.10.

4.7 Experiment Flowchart

We design our experiment mainly according to the design cycle described in Chapter 3.

The design cycle consists of following activities: data collection, feature choice, model

choice, training and evaluation. In the design cycle described in Pattern Classification

[16], some activities will repeat to optimize the outputs of the experiment.

However, our experiment design is slightly different from the above design cycle. We

assume that attackers can not repeat above the activities to achieve better results to

simplify our experiment. Each activity is executed only once.

Figure 4.3 is the flowchart of r − th run in our experiment (1 ≤ r ≤ 12). Each r − th

run consists of six steps (1 ≤ r ≤ 12). The six steps sequentially implement the activates

of data collection, feature choice, model choice, training and evaluation. Details are as

follows:� Step 1 : The experimenter builds Pr
E from PE0 by the transform function.� Step 2 : The experimenter builds Pr
w,t, P

r
u,t, P

r
w,v, P

r
u,v from programs in Pr

E.� Step 3 : The experimenter distributes Pr
w,t and Pr

u,t and Gr to attackerr and attackerr

uses them to retrieve the pattern set T r
t .� Step 4 : The attackerr builds and trains his detectr function (or classifierr) by T r

t

and using Fisher’s linear discriminant function.

4.8 Design for Experiment Set A 45� Step 5 : The experimenter uses Pr
w,v, P

r
u,v and Gr to retrieve the pattern set T r

v .� Step 6 : The experimenter evaluates attackerr’s detectr function.� Step 7 : The experimenter obtain the FN r and FP r of attackerr’s detectr function

as Or.

Step 1 and 2 implement the data collection activity in the pattern classification de-

sign cycle. Step 3 implements the feature selection and model choice activities. Step 4

implements the training activity. Steps 5, 6 and 7 implement the evaluation activity.

In Figure 4.3, the attackerr can access items only inside the dotted oval area. On the

other hand, the experimenter can access items only outside the dotted oval area.

4.8 Design for Experiment Set A

We adopt the two-factor full factorial design without replications [19] as our experiment

design for experiment set A XA. We choose this design because we want to test combi-

nations of all levels of those two factors while each combination runs only once[19]. The

two factors we will explore in our experiment are called primary factors [19] and those we

selected for XA are QTLr and QV Lr.

Table 4.3 shows the experiment design for experiment set A. Table 4.4 shows the

elements of Pr
w,t for experiment set A. Table 4.5 shows the elements of Pr

w,v for Experiment

set A. For all runs of XA:

Pr
u,v = {pi : pi ∈ Pr

E , i ∈ {11, 14, 25, 35, 38, 49, 85, 93, 112, 133,

105, 148, 156, 163, 164, 174, 137, 189, 191, 196}}

46 Experiment Design

(Notice: The fonts of Sets are slightly changed because the drawing software do not
support fonts used by Latex)

Figure 4.3: Flowchart of r − th run in Experiment (1 ≤ r ≤ 12)

For all runs of XA:

Pr
u,t = {pi : pi ∈ Pr

E , i /∈ {11, 14, 25, 35, 38, 49, 85, 93, 112, 133, 105, 148,

156, 163, 164, 174, 137, 189, 191, 196, 1, 5, 15, 16,

18, 30, 50, 54, 60, 69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234}}

4.9 Design for Experiment Set B 47

Levels QTL1 QTL2 QTL3

QV L1 run1 run2 run3

QV L2 run4 run5 run6

QV L3 run7 run8 run9

Table 4.3: experiment design for Experiment Set A

Pr
w,t Elements

Pr
w,t, r ∈ {1, 2, 3} {pi : pi ∈ Pr

E , i = 73}
Pr

w,t, r ∈ {4, 5, 6} {pi : pi ∈ Pr
E , i = 155}

Pr
w,t, r ∈ {7, 8, 9} {pi : pi ∈ Pr

E , i = 234}

Table 4.4: Elements of watermarked programs in the training set for Experiment set A

The training and evaluation of detect function are accomplished in the SPSS. The

SPSS syntax used for runi, (1 ≤ i ≤ 9) is same and is presented in Appendix A.2.6.

The Gr used in XA is:

Gr = A, 1 ≤ r ≤ 9

4.9 Design for Experiment Set B

Unlike the two-factor design of experiment set XA , XB is a simple, one factor experiment.

The primary factor used in XB is the embedding combination mi, i ∈ {1, 2} It consists of

two runs : run13, run14

the transform function (for 13 ≤ r ≤ 14).:

Pr
v,t Elements

Pr
w,v, r ∈ {1, 4, 7} {pi : pi ∈ Pr

E , i ∈ {5, 30, 78, 123, 141, 205}}
Pr

w,v, r ∈ {2, 5, 8} {pi : pi ∈ Pr
E , i ∈ {15, 16, 18, 69, 87, 197}}

Pr
w,v, r ∈ {3, 6, 9} {pi : pi ∈ Pr

E, i ∈ {1, 50, 54, 60, 77, 92}}

Table 4.5: Elements of watermarked programs in the test set for Experiment set A

48 Experiment Design

k run
1 run10

2 run11

3 run12

Table 4.6: experiment design for Experiment Set C

transform(p0,j) =







pj = embed(p0,j, wj, keyj, m1) if j ∈ {1, 5, 15, 16, 18, 30, 50, 54, 60,

69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234} and r = 13

pj = embed(p0,j, wj, keyj, m2) if j ∈ {1, 5, 15, 16, 18, 30, 50, 54, 60,

69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234} and r = 14

4.10 Design for Experiment Set C

As with experiment set XB, XC is also a simple, one-factor experiment. The primary

factor used in XC is the length of k − grams used in Gr. Table 4.6 shows the experiment

design of XC .

For all runs in XC , Pr
w,t, P

r
w,v, P

r
u,t, P

r
u,v :

Pr
u,v = {pi : pi ∈ Pr

E, i ∈ {11, 14, 25, 35, 38, 49, 85, 93, 112, 133,

143, 148, 156, 163, 164, 174, 177, 189, 191, 196}}

Pr
u,t = {pi : pi ∈ Pr

E , i /∈ {11, 14, 25, 35, 38, 49, 85, 93, 112, 133, 143, 148,

156, 163, 164, 174, 177, 189, 191, 196, 1, 5, 15, 16,

18, 30, 50, 54, 60, 69, 73, 77, 78, 87, 92, 123, 141, 155,

197, 207, 234}

r ∈ {10, 11, 12}}

4.11 Violations of the Assumptions of Fisher’s Discriminant Function 49

Pr
w,v = {pi : pi ∈ Pr

E , i ∈ {5, 15, 16, 18, 30, 50, 54, 60, 69, 73, 77, 78, 87, 92,

123, 141, 155, 197, 207, 234}

r ∈ {10, 11, 12}}}

Pr
w,t = {pi : pi ∈ Pr

E , i = 1}

r ∈ {10, 11, 12}}

As in XA, the training and evaluation of detect function are accomplished in the SPSS.

The SPSS syntax used for runi, (10 ≤ i ≤ 12) is presented in Appendix A.2.6. The G10

is listed between “/VARIABLES=” and “/ANALYSIS ALL” of SPSS syntax for 10-th

run in Appendix A.2.6. The G11 is listed between “/VARIABLES=” and “/ANALY-

SIS ALL” of SPSS syntax for 11-th run in Appendix A.2.6. The G12 is listed between

“/VARIABLES=” and “/ANALYSIS ALL” of SPSS syntax for 12-th run in Appendix

A.2.6.

4.11 Violations of the Assumptions of Fisher’s Dis-

criminant Function

4.11.1 Violation of the Assumption of Multivariate Normality

Fisher’s Discriminant Function assumes that variables are multivariate normality [28].

However, in practice, this assumption can often be violated [14]. According to [14, 28],

this violation will not cause a big problem if the distribution of variables is not far away

from the multivariate normality. Otherwise the results will not be accurate.

50 Experiment Design

4.11.2 Violation of the Assumption of Equality of Variance-

Covariance Matrices

Fisher’s Discriminant Function also assumes that the variance-covariance matrices are

equal [14, 28]. The violation of this assumption will cause the classification result not

optimal [28]. However, according to [28], the classification result will still be good even

this assumption is violated.

4.11.3 Violation of the Common Rule of Sample Size

In [14], a common rule about sample size is that “the number of cases in the smallest group

should be five times the number of predictors [here predictor means feature]”. However,

we have only one sample in the watermarked program group in PE . So our feature number

should be 0.2. This is impossible. Thus we violate this common rule and will make our

results inaccurate.

5
Experiment Results and Analysis

5.1 Introduction

In this chapter, the experiment results are presented and analyzed. The validation of our

experiment results are discussed in Section 5.4. Finally, we report some bugs of Sandmark

in the CT watermark extracting process in Section 5.2.4.

5.2 Experiment Results

Experiment set XA is used to verify the Hypothesis One which is stated in Chapter

4. Experiment set XB is used to verify the Hypothesis Two and Experiment set XC is

used to verify the Hypothesis Three.

51

52 Experiment Results and Analysis

5.2.1 Results of Experiment set A

Training Results of Experiment set A

In this experiment, the attacker uses SPSS to build his/her detect function. We present the

Fisher’s linear discriminant functions provided by SPSS as the attacker’s detect function.

According to SPSS 12.0 statistical procedures companion p314 [28], “[the classification

results by using the Fisher’s linear discriminant functions] are identical to what you get

using the discriminant function scores.”. Since by using the discriminant function score,

we can read the classification result of each case directly from the “predicted group”

column of the “casewise result” Table of SPSS output, our experiment results are actually

achieved by SPSS’s discriminant function scores.

An example of how to classify the cases by using the Fisher’s linear discriminant

functions are given in Section 5.5. Here we give only the coefficients of Fisher’s linear

discriminant functions. Table 5.1, 5.2 and 5.3 present Fisher’s linear discriminant function

coefficients for (run1, run2, run3), (run4, run5, run6),(run7, run8, run9) respectively,

where function 1 is the function for unwatermarked program class and function 2 is the

function for watermarked program class. We present Fisher’s linear discriminant functions

as attacker’s detectr functions for run1 to run9.

Table 5.1: Fisher’s Linear Discriminant Function Coefficients

for run1, run2, run3

1 − gram Function1 Function2 1 − gram Function1 Function2

dcmpg 476922.2 472120.5 dsub -135886.2 -125462

l2i 16548 14620.7 fastore 227475 216594.6

aastore 10488.5 11509.1 ldc 6121.2 6433.9

dcmpl 2462.7 3639.8 iaload -5885 -5186

dload 0 -65024.7 -72776.2 iload 0 22702.3 24403.6

dload 1 93611.5 92531.2 i2l 17034.7 26645.8

Continued on next page

5.2 Experiment Results 53

Table 5.1 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

fload 0 -192193.2 -134889.8 daload -39713.1 -38936.7

dload 2 68557.5 87797.4 iload 1 -80.4 -213.8

fload 1 700803.1 637704.2 iload 2 -4934.5 -2073.4

iand 35281 32629.9 iload 3 25430.2 26831.9

dload 3 -48879.3 -42993.4 lsub 150688.5 132959.9

fload 2 -841932.7 -767289.3 dreturn -183709.1 -196458.9

fload 3 1345628.2 1270922.3 dadd -24681.2 -37104.3

lreturn 240247 199354.5 i2s -105045.1 -94941.8

athrow 28253.5 25618.3 bastore 315.3 577.3

dmul 139813.9 145706.1 lxor 974939.3 786790.4

ifle 9039 5161.4 imul 40271.2 40512.9

lastore 59644.9 31241.8 dastore -4181 -7939.3

aaload 16046.2 15268.5 new -22617.7 -21840.3

anewarray -55662.6 -55806 ifge 108769.2 115556.7

if icmple -20871.8 -17842.1 ladd -387013.3 -374373.3

irem 222357.5 217004.9 invokeinterface 20184.7 20356.7

pop 12019.8 11451.8 if icmpge -22637.6 -23760.7

checkcast 26302.3 25978.4 iushr 124828.5 118715.7

fsub 191976.5 184478 sipush 2367 2198

lmul 129142.4 101798.9 monitorenter 44515.1 49381.9

putfield 15801.6 15639.2 ifeq 27483 26771.2

ifne -21458.6 -19873.4 dconst 0 643.1 2537.5

ifnonnull 365.5 1208.7 dconst 1 70273.6 67280.4

saload -42626 -62464.3 if icmpeq 7400.4 6618.5

invokespecial 11763.5 11829.2 tableswitch -9033.2 6148.2

if icmpne 15257.6 16735.3 frem 142712.6 935103.5

fcmpg 9954.3 40359.1 dup x1 -59551.1 -56331.6

Continued on next page

54 Experiment Results and Analysis

Table 5.1 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

ineg -98850 -108921.8 newarray 12366.1 12123.1

fstore 200509.1 202692 dup x2 125084.1 132111.1

fadd -545213.4 -537826.4 caload 52584.8 51607.5

fcmpl -1021941.1 -999832.2 fconst 0 70535.3 69818.6

d2f -591314.6 -568719.1 istore 32990.3 29878.8

idiv 44566.3 46227.7 fconst 1 -350456.2 -375150.4

astore 13783.6 14201.1 ifgt -34233.8 -48032.7

instanceof 20769.2 19358.8 fconst 2 170927.9 256264.9

iflt 21879.3 9887.6 ior -94967.2 -78994.2

bipush 1584.5 1122.2 putstatic -2445.8 -648.8

if icmplt 54304.1 53024.3 if icmpgt -53659.4 -53725

d2i -189346.5 -190576.5 dstore 62482.1 68946.3

invokestatic 19405.7 18392 iconst 0 346.5 -78.8

invokevirtual 12984.7 12494.7 lshl -36751.9 -161477

lor 338583.7 438751.7 iconst 1 19775.3 18489.6

dup2 x1 -190002.7 -255484.3 iconst 2 2619.9 984.9

lookupswitch 45703.6 50568.5 getfield 1938.6 1541.1

d2l 2358637.9 2215489.6 fneg 882378.5 673188.1

dup2 x2 294447 392300.8 iconst 3 15512.1 16182.2

if acmpeq 52537.9 51169 lconst 0 93115.9 90934.7

i2b 138389.3 121263.9 iconst 4 -43640.9 -36837.8

freturn 72176.7 77327.8 dup 22675.6 22489.1

i2c -3479.3 -4554.5 lconst 1 155313.5 207031.9

return 2428.7 1438.2 f2l -1014953 -1197502.5

i2d 9394 9948.8 aload 0 8400.6 8714.8

ret -210147.6 -200269.8 ireturn 3582.4 1895.7

i2f -35559.8 -39951.6 iinc -24575.8 -20772.7

Continued on next page

5.2 Experiment Results 55

Table 5.1 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

sastore -73249 -51515.6 castore -5759.2 -4877.7

dload -21514.1 -26032.6 (Constant) -3330.8 -3282.8

lload -112180.4548 -99961.26121

Table 5.2: Fisher’s Linear Discriminant Function Coefficients

for run4, run5, run6

1 − gram Function1 Function2 1 − gram Function1 Function2

dcmpg 476922.2 534027.2 dsub -135886.2 -137199.5

l2i 16548 4966.6 fastore 227475 237511.8

aastore 10488.5 11526.2 ldc 6121.2 5573.2

dcmpl 2462.7 590.3 iaload -5885 -4494.6

dload 0 -65024.7 -68056.3 iload 0 22702.3 23021.5

dload 1 93611.5 87806.8 i2l 17034.7 11510.7

fload 0 -192193.2 -216809.1 daload -39713.1 -38031.8

dload 2 68557.5 55665.9 iload 1 -80.4 640.5

fload 1 700803.1 718794 iload 2 -4934.5 -2418.5

iand 35281 33683 iload 3 25430.2 27445.7

dload 3 -48879.3 -49352.4 lsub 150688.5 172971.1

fload 2 -841932.7 -855240.6 dreturn -183709.1 -170914.9

fload 3 1345628.2 1394908.2 dadd -24681.2 -12936.5

lreturn 240247 280732.1 i2s -105045.1 -116120.8

athrow 28253.5 26714.7 bastore 315.3 1327.3

dmul 139813.9 141792.1 lxor 974939.3 606330.6

ifle 9039 8319.9 imul 40271.2 42581

lastore 59644.9 136080.5 dastore -4181 -3042

Continued on next page

56 Experiment Results and Analysis

Table 5.2 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

aaload 16046.2 15491.4 new -22617.7 -20692.8

anewarray -55662.6 -54542.5 ifge 108769.2 107385

if icmple -20871.8 -12813.7 ladd -387013.3 -436632.4

irem 222357.5 242953.6 invokeinterface 20184.7 18636

pop 12019.8 12579 if icmpge -22637.6 -16237.3

checkcast 26302.3 26105.6 iushr 124828.5 132889.4

fsub 191976.5 194177.8 sipush 2367 657.2

lmul 129142.4 150757 monitorenter 44515.1 42503.4

putfield 15801.6 16961.5 ifeq 27483 26797.4

ifne -21458.6 -22573 dconst 0 643.1 250.6

ifnonnull 365.5 -932.2 dconst 1 70273.6 62733.6

saload -42626 -11191.3 if icmpeq 7400.4 9468.1

invokespecial 11763.5 10705.1 tableswitch -9033.2 -23406.8

if icmpne 15257.6 9753.6 frem 142712.6 548499.5

fcmpg 9954.3 66108.5 dup x1 -59551.1 -61168.1

ineg -98850 -97338.5 newarray 12366.1 14654.3

fstore 200509.1 184600.3 dup x2 125084.1 83772.4

fadd -545213.4 -539713 caload 52584.8 57185

fcmpl -1021941.1 -1005639 fconst 0 70535.3 67184.5

d2f -591314.6 -568592.6 istore 32990.3 34157.8

idiv 44566.3 37635.9 fconst 1 -350456.2 -348727.4

astore 13783.6 15524.3 ifgt -34233.8 -77254.2

instanceof 20769.2 20982.8 fconst 2 170927.9 101995.3

iflt 21879.3 17253 ior -94967.2 -109865.6

bipush 1584.5 882.1 putstatic -2445.8 -3207.9

if icmplt 54304.1 58915.1 if icmpgt -53659.4 -53991.8

d2i -189346.5 -202074.7 dstore 62482.1 48810

Continued on next page

5.2 Experiment Results 57

Table 5.2 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

invokestatic 19405.7 20209.7 iconst 0 346.5 -867.8

invokevirtual 12984.7 12497.7 lshl -36751.9 -7836.8

lor 338583.7 361662.4 iconst 1 19775.3 19706.3

dup2 x1 -190002.7 -269845.4 iconst 2 2619.9 -2244.6

lookupswitch 45703.6 34488 getfield 1938.6 1903.8

d2l 2358637.9 2597313.2 fneg 882378.5 610601.3

dup2 x2 294447 247840.2 iconst 3 15512.1 10820.4

if acmpeq 52537.9 49646.8 lconst 0 93115.9 104197.8

i2b 138389.3 150428.9 iconst 4 -43640.9 -37313.4

freturn 72176.7 -13795.8 dup 22675.6 23137

i2c -3479.3 -8626.4 lconst 1 155313.5 152153

return 2428.7 1029.1 f2l -1014953 -1238374.3

i2d 9394 9603 aload 0 8400.6 8192.6

ret -210147.6 -223124.9 ireturn 3582.4 3400.3

i2f -35559.8 -39197 iinc -24575.8 -33504

sastore -73249 -71275.7 castore -5759.2 -5229.5

dload -21514.1 -20779 (Constant) -3330.8 -3341.8

lload -112180.5 -127434.5

Table 5.3: Fisher’s Linear Discriminant Function Coefficients

for run7, run8, run9

1 − gram Function1 Function2 1 − gram Function1 Function2

dcmpg 476922.2 644686.9 dsub -135886.2 -128950.4

l2i 16548 14276.9 fastore 227475 192810.8

aastore 10488.5 12652 ldc 6121.2 5694.6

Continued on next page

58 Experiment Results and Analysis

Table 5.3 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

dcmpl 2462.7 -14440.6 iaload -5885 1267.7

dload 0 -65024.7 -49586.7 iload 0 22702.3 25900.8

dload 1 93611.5 78746.8 i2l 17034.7 -12646.4

fload 0 -192193.2 -53678.9 daload -39713.1 -26834.4

dload 2 68557.5 100059 iload 1 -80.4 2078.6

fload 1 700803.1 628635.2 iload 2 -4934.5 4254.5

iand 35281 14744 iload 3 25430.2 26826

dload 3 -48879.3 -52303.1 lsub 150688.5 119179.3

fload 2 -841932.7 -798799.9 dreturn -183709.1 -174666.9

fload 3 1345628.2 1333213.3 dadd -24681.2 -11892.3

lreturn 240247 242202.6 i2s -105045.1 -111326.5

athrow 28253.5 18241.8 bastore 315.3 2280.9

dmul 139813.9 143690.7 lxor 974939.3 180695.1

ifle 9039 4366.5 imul 40271.2 42536.4

lastore 59644.9 136577.7 dastore -4181 -4263.9

aaload 16046.2 12468.5 new -22617.7 -13903.8

anewarray -55662.6 -50538.8 ifge 108769.2 123483.5

if icmple -20871.8 -3302.1 ladd -387013.3 -302530.9

irem 222357.5 221135.7 invokeinterface 20184.7 16522.3

pop 12019.8 11427 if icmpge -22637.6 -17487.3

checkcast 26302.3 21160.5 iushr 124828.5 137726.2

fsub 191976.5 234358.7 sipush 2367 -860.4

lmul 129142.4 78380.7 monitorenter 44515.1 48259.7

putfield 15801.6 17867.4 ifeq 27483 21919.5

ifne -21458.6 -18461.6 dconst 0 643.1 3929.7

ifnonnull 365.5 -3043.7 dconst 1 70273.6 47882.6

saload -42626 30160 if icmpeq 7400.4 15920.3

Continued on next page

5.2 Experiment Results 59

Table 5.3 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

invokespecial 11763.5 6784.2 tableswitch -9033.2 1912.1

if icmpne 15257.6 5791.6 frem 142712.6 2816745.4

fcmpg 9954.3 216015 dup x1 -59551.1 -35846.1

ineg -98850 -72522.4 newarray 12366.1 17647.6

fstore 200509.1 169539.7 dup x2 125084.1 30538.9

fadd -545213.4 -473625.5 caload 52584.8 60049.3

fcmpl -1021941.1 -1018621.1 fconst 0 70535.3 61890.5

d2f -591314.6 -566005.6 istore 32990.3 29054.4

idiv 44566.3 36778 fconst 1 -350456.2 -358347.6

astore 13783.6 19034 ifgt -34233.8 -100860.6

instanceof 20769.2 23045.8 fconst 2 170927.9 212747

iflt 21879.3 -10649.7 ior -94967.2 -105647.2

bipush 1584.5 -972.9 putstatic -2445.8 3563.9

if icmplt 54304.1 67782.7 if icmpgt -53659.4 -54182.4

d2i -189346.5 -204650 dstore 62482.1 34601.2

invokestatic 19405.7 18572.2 iconst 0 346.5 -3666.5

invokevirtual 12984.7 10356.8 lshl -36751.9 -220305.1

lor 338583.7 591269.4 iconst 1 19775.3 15180.9

dup2 x1 -190002.7 -490280.5 iconst 2 2619.9 -2210.6

lookupswitch 45703.6 45841.6 getfield 1938.6 1568.4

d2l 2358637.9 2431321.2 fneg 882378.5 -368822.4

dup2 x2 294447 1130726.9 iconst 3 15512.1 1088

if acmpeq 52537.9 38329.1 lconst 0 93115.9 120557.2

i2b 138389.3 141136.5 iconst 4 -43640.9 -18709.6

freturn 72176.7 -6055.3 dup 22675.6 23060.4

i2c -3479.3 -13408 lconst 1 155313.5 131140.7

return 2428.7 -54.4 f2l -1014953 -1792131

Continued on next page

60 Experiment Results and Analysis

QV L1 QV L2 QV L3

QTL1 50 50 16.7
QTL2 83.3 66.7 0
QTL3 100 66.7 0

Table 5.4: FN of Detecting CT watermark of Experiment Set A

(See Table 4.2 for the meaning of QTLi and QV Lj , i, j ∈ {1, 2, 3}.)

QV L1 QV L2 QV L3

QTL1 35 35 35
QTL2 0 0 0
QTL3 0 0 0

Table 5.5: FP of Detecting CT watermark of Experiment Set A

(See Table 4.2 for the meaning of QTLi and QV Lj , i, j ∈ {1, 2, 3}.)

Table 5.3 – continued from previous page

1 − gram Function1 Function2 1 − gram Function1 Function2

i2d 9394 21903.2 aload 0 8400.6 7959.1

ret -210147.6 -196373.8 ireturn 3582.4 2316.3

i2f -35559.8 -68318.3 iinc -24575.8 -32774.7

sastore -73249 -70324.8 castore -5759.2 -3893

dload -21514.1 -39994.9 (Constant) -3330.8 -3687.8

lload -112180.5 -110057.3

Evaluation Results of Experiment set A

Table 5.4 and Table 5.5 present the false negative rate and false positive rate of attacker’s

detect function in each run of experiment set A. They are our main experiment outputs.

The QTLi and QV Lj in the two tables are the levels of watermark size ratios of Pr
w,t and

Pr
w,v respectively, where i, j ∈ {1, 2, 3}. The values of QTLi and QV Lj are presented in

Table 4.2 in Chapter 4.

Tables 5.4 and Table 5.5 show some interesting results:

First, we can judge the success of the detection attack based on the judgement rules dis-

cussed in Chapter 2. Table 5.6 shows the results of judgement.

5.2 Experiment Results 61

QTL1 QTL2 QTL3

(∀q ∈ Qr
w,t, (∀q ∈ Qr

w,t, (∀q ∈ Qr
w,t,

0 < q ≤ 0.2) 0.2 < q ≤ 2.0) 2.0 < q)
QV L1 (∀q ∈ Qr

w,v, total failure total failure weak success
0 < q ≤ 0.2)

QV L2 (∀q ∈ Qr
w,v, strong success strong success total success

0.2 < q ≤ 2.0)
QV L3 (∀q ∈ Qr

w,v, strong success strong success total success
2.0 < q)

Table 5.6: Judging the Success of Attackers

According to Table 5.6, the combinations of (QTL2, QV L3) and (QTL3, QV L3) cor-

respond to a high watermark size ratio level in both of Pw,t and Pw,v. The combinations

of (QTL1, QV L1) and (QTL1, QV L2) correspond to a low watermark size ratio level in

both of Pw,t and Pw,v. The first combinations cause total success of the attacker and the

second combinations cause total failure of the attacker. Or we can say the first combina-

tions have a low error rate (FN and FP) of the attacker’s detect function while the second

have a high error rate. Thus we can draw two conclusions: (1). high watermark size ratio

in both of Pw,t and Pw,v will have low error rate; (2). low watermark size ratio in both

of Pw,t and Pw,v will have a high error rate. Thereby we proving that Hypothesis One

stated in Chapter 4 is true.

5.2.2 Results of Experiment set B

Table 5.7 shows the pair of watermark size ratios by using m1 and by using m2. Table

4.9 has the procedure for preparing watermarked programs for experiment set B by using

the transform function (used for 13 ≤ r ≤ 14).

The mean value of using m1 in embedding is 1.582, and the mean value of using

m2 in embedding is 0.135. We use the paired-samples t-test to check whether there is a

significant difference between using m1 and m2. Paired-samples t-test is a test to measure

whether the mean of two sets of data indicates significant difference. The test result is

Sig.(2 − tails) = 0.008. According to Julie [29], when Sig. (2-tails) is less than 0.05,

62 Experiment Results and Analysis

Name m1 m2

TTT 2.794 0.233
web ActiveRegionExplorer 0.047 0.004

web aspectj-1.1.0 0.783 0.071
web AutoSim 0.269 0.019

web BBI 0.222 0.017
web ChronicleLite-bin-v1.2 0.142 0.012

web DigestCalc 2.247 0.196
web dss 10.022 0.872
web ff 3.078 0.250

web fuzzyide 0.267 0.023
web grades 0.089 0.007
web hqt 3.063 0.252

web HTMLEditorPro 0.054 0.005
web jar-util 0.646 0.056

web javapopt 2.058 0.165
web jpp 0.094 0.008

web Logisim 0.152 0.013
web ModEdit 0.429 0.039

web run 0.809 0.068
web SpidersRUs 0.073 0.006
web YMStrings 5.894 0.510

(See Table 4.1 for the meaning of m1 and m2)

Table 5.7: Watermark size ratios for two embedding parameter combinations

the two means are significantly different. So we can conclude that the mean values of

watermark size ratios by using m1 and by using m2 display significant difference. The

mean value of watermark size ratios by using m2 (using numeric watermark) is much

lower than by using m1 (using cycle graph). Thus we prove that our Hypothesis Two

stated in Section 4.6 is true.

5.2.3 Results of Experiment set C

Training Results of Experiment set C

Tables 5.8, 5.9 and 5.10 show the Fisher’s Linear Discriminant Function Coefficients for

run10, run11 and run12 respectively. We present them as the attacker’s trained detectr

functions for run10, run11 and run12.

5.2 Experiment Results 63

Table 5.8: Fisher’s Linear Discriminant Function Coefficients

for run10

1 − gram Function1 Function2

putfield 5.6 1110

astore 126 1754

invokevirtual 17.6 -236.3

new 267.9 1067.9

istore 193.8 -1685.7

isub 77.5 949.5

aload 0 76.9 -218.9

aload 2 88.9 -310.1

iadd 131.5 567.6

istore 1 549.3 3156.9

istore 2 754.6 3946.1

iload 44.1 537.3

(Constant) -15.8 -213.3

Table 5.9: Fisher’s Linear Discriminant Function Coefficients

for run11

(Note that A.B is a 2-gram where A is the first opcode and

B is the second opcode in the 2-gram)

2 − gram Function1 Function2

iconst 3.invokespecial 539.3 356642.1

istore 1.iconst 0 2655.2 557397.1

Continued on next page

64 Experiment Results and Analysis

Table 5.9 – continued from previous page

2 − gram Function1 Function2

goto.ldc 476.5 76744.5

iadd.iload 2 32.7 -155521

iadd.iload 3 833.5 -459167.4

istore 1.getstatic -766.2 -1164691

aload.bipush 179.5 116543

if icmple.iconst m1 -931 1832448.4

iconst 2.if icmpne -51.7 -179596.5

iconst 1.goto 225.2 168948.4

iload 1.invokestatic 223.5 -376313.9

getfield.astore 507.7 155456.8

getfield.getstatic -76.1 -142756.4

iconst 0.invokestatic 116.9 -78200.4

goto.iconst 2 3338 879442.4

ior.istore 1 287.5 333125.1

iload.iload 3 -228.9 -291383.1

ifne.iconst 1 -1423.5 -767040.1

putfield.new 1215.3 363627.1

ifeq.getstatic -112.5 -90528.3

iand.aload 0 -996.3 697134.2

aaload.ldc 29.4 95531.7

aastore.iinc -353.6 -269206.6

invokespecial.ior 53685.6 119603675.6

getfield.iload 221.8 42991.1

aload.putfield 313.8 198109.7

putstatic.goto 39.7 55448.2

astore.new -76 -37434.6

aload 1.astore 2 1214.9 -408697.1

Continued on next page

5.2 Experiment Results 65

Table 5.9 – continued from previous page

2 − gram Function1 Function2

ldc.aload 0 306.2 71835.8

iconst 0.istore 127.3 20986.5

dup.invokespecial 208 11070.7

ldc2 w.lcmp -437.3 -641268.2

(Constant) -4.6 -145287.1

Table 5.10: Fisher’s Linear Discriminant Function Coeffi-

cients for run12

(Note that A.B.C is a 3-gram where A is the first op-

code, B is the second opcode and C is the third opcode in

the 3-gram)

3 − gram Function1 Function2

if acmpne.iconst 1.istore 1 8374.6 -125498914.1

aload 0.iconst 0.iconst 4 -10793.5 -246783472.7

invokevirtual.aload 0.ldc 31.5 -147381.6

getfield.invokevirtual.ldc 108.5 146225.1

getstatic.invokevirtual.invokespecial -31.2 -5132792.4

ldc.if acmpne.iconst 1 -12198.6 -135617638.5

iconst 2.iconst 4.bipush -69 -60351781.5

bipush.invokevirtual.checkcast 262.5 -3656266.3

iconst 2.iadd.invokespecial 3333.9 -15712319.8

astore 1.aload 1.astore 2 -132.4 6240592.2

iconst 1.istore 1.iinc 2629.4 -18275143.5

invokestatic.getstatic.iload 2 3006.9 64282763.2

Continued on next page

66 Experiment Results and Analysis

k 1 2 3
FN (%) 55 100 25
FP (%) 0 0 0

Table 5.11: The Effect of Length of k − gram (k) on FN and FP of attacker’s detect function

Table 5.10 – continued from previous page

3 − gram Function1 Function2

getfield.getstatic.invokevirtual 101.5 233769

ldc.aload 0.getfield 120.8 956688.5

aload.putfield.new 13892.9 249736278.4

getfield.ifne.ldc -2290.3 -28561715

iconst 2.putfield.aload 0 729.9 1035831.7

bipush.invokespecial.invokevirtual 96 164465

iadd.iload 3.iconst 2 6411.4 89065532.6

istore 2.iload 2.iflt 921.2 -2860894.6

aload 0.ldc.aload 0 -441.8 -3340396.5

aaload.iload 1.invokestatic 1816.4 168707706.8

dup.invokespecial.ldc 61 50312.8

nop.goto.nop -645.8 -20926818.6

invokevirtual.ifeq.getstatic 78.5 -269162.9

(Constant) -1.8 -9250570.8

Evaluation Results of Experiment set C

Table 5.11 shows how the selection of k for Gr will affect FN r and FP r of the attacker’s

detect function. For the same Pr
t and Pr

v , FN r changes when k changes. Thus we prove

our Hypothesis Three stated in Section 4.6. But the FN r is not always lower when k

is higher. e.g.when k = 2, FN = 100%. However, when k = 1, FN = 55%.

5.3 Results Analysis 67

Watermark Recognition behaviour
123 recognized

metalworks can not be recognized
metal123 can not be recognized
qsc123 recognized
m123 recognized

qsc12345 can not be recognized
qsc1234 recognized only in command line

Table 5.12: CT Watermark Recognition Results of a Certain Program (called “metalworks”)

5.2.4 Bug Report

In our experiment environment, we find bugs in the Sandmark in CT watermark extracting

process. The experiment environment is presented in Appendix A.1. The bug is that

Sandmark sometimes can not correctly recognize the watermark from CT watermarked

programs. A case illustrating the bug is as follows.: when embedding CT watermarks

into a program called “metalworks”, some embedded watermarks can be successfully

recognized while other watermarks can not be recognized. An interesting fact is that

watermark “qsc1234” can be recognized in the command line interface of Sandmark. But

the graph interface of Sandmark can not report the recognized watermark. The bug

information is given in Table 5.12. The key (user’s input sequence) is : file ⇒ new ⇒

close ⇒ quit

5.3 Results Analysis

5.3.1 Analyzing Results for Experiment Set A

The experiment results in Section 5.2.1 show that the success of detection watermark

attack relies on the watermark size ratios of CT watermarked programs. High watermark

size ratio in both of Pw,t and Pw,v will tend to give low FN and FP for attacker’s detect

function. So we should control the watermark size ratio of watermarked programs lower

than a certain criterion to defend against AUDW.

Our experiment results show that when every watermarked program in Pw,v and Pw,t

68 Experiment Results and Analysis

has a watermark size ratio higher than 2.0 (the combination of (QV L3, QTL3)), the

attackers detect function will have 0% FN and 0% FP . It will be the total success of the

attacker. So at least the criterion of watermark size ratio should be less than 2.0. More

experiments are needed to determine the exact criterion of the watermark size ratio which

is beyond the scope of our thesis.

To amend above problem, our suggestion is: from the equation to calculate the water-

mark size ratio q of a watermarked program pw, we can find two ways to restrict q under

a criterion β. β ∈ Q, 0 < β.

The ratio q can be calculated as follows.

ratio(pw) =
|pw| − |pu|

|pu|

where pw = embed(pu, w, key, m); w is the watermark to be embedded; key is the input

sequence used to embed watermark and m is the combinations of parameters used in

watermark embedding. |pw| and |pu| are the size of pw and pu.

So to make sure q < β means

q < β ⇒
|embed(pu, w, key, m)| − |pu|

|pu|
< β

⇒ |embed(pu, w, key, m)| − |pu| < β|pu|

⇒ |embed(pu, w, key, m)| < (β + 1)|pu|

⇒
|embed(pu, w, key, m)|

(β + 1)
< |pu| (5.1)

We can either fix |pu| and reduce |embed(pu,w,key,m)|
(β+1)

or make sure |pu| > |embed(pu,w,key,m)|
(β+1)

.

To reduce |embed(pu,w,key,m)|
(β+1)

, we should make our watermark embedding more efficient.

According to Collberg and Townsend [7], in Sandmark, when we embed a watermark

using the “numeric watermark” option, the watermark embedded will be more efficient.

We proved that by using the “numeric watermark” option in the embedding process then

the watermark size ratio of a watermarked program is far lower than by using the “cycle

graph” option. So using the “numeric watermark” option is one way to reduce watermark

5.4 Discussion 69

size ratio. The drawback of using “cycle graph” option is that once we opt for cycle graph,

we can only input pure digital numbers. We can not input characters such as “a”, “b”,

“c”, So it will reduce the number of watermarks we can use.

Another way is to make sure that |pu| > |embed(pu,w,key,m)|
(β+1)

. If there is a program pu,

we can not find a way to make sure |pu| > |embed(pu,w,key,m)|
(β+1)

, we can refuse to watermark

this program by claiming such a kind of programs are not suitable for our watermark

algorithm.

5.4 Discussion

As we discussed in Section 2.3.2, our experiment results only have limited meaning. Our

experiment results are only valid for our sample set and our experiment method.

In addition, we design our experiments in an exploring process, the experiment pa-

rameters did not keep consistent. For example, in experiment set XA, we did not use

watermarks consist of pure numeric numbers. However, when we tried to perform exper-

iment set XB, we find only pure numeric numbers can be accepted as watermarks when

we use numeric watermark option to embed watermarks. So the watermark set used in

XA and XB are not consistent.

5.5 Example of Using the Detect Function

An example of using Fisher’s linear discriminant function to classify a program is as

follows:

Suppose we have a program p and we retrieved the pattern vector −→p r by using Gr.

Suppose Gr = {dcmpg, dsub, aastore}, −→p r = {0.1, 0.2, 0.7}, where the first element of −→p r

is the relative frequency of the occurrence of dcmpg in p, the second element of −→p r is the

relative frequency of the occurrence of dsub in p, and so on.

From Fisher’s linear discriminant functions in Table 5.13, Function1 is for class1 (un-

watermarked program class) and Function2 is for class2 (watermarked program class).

70 Experiment Results and Analysis

1 − gram Function1 Function2
dcmpg 100 10
dsub 20 20

aastore 50 40
(Constant) -5 -2

Table 5.13: Example of Using Fisher’s Linear Function to Classify Case

Then we can classify p as follows.

by using Function 1,

y1 = 100 × 0.1 + 20 × 0.2 + 50 × 0.7 − 5 = 44

By using Function 2,

y2 = 10 × 0.1 + 20 × 0.2 + 40 × 0.7 − 2 = 31

Since y2 > y1, we classify p to class2, the watermarked program class.

6
Conclusion and Future Work

6.1 The Challenge for the CT Watermark Designer

and AUDW Attacker

For AUDW, the challenge for the attacker is that he/she should do his/her best to reduce

the error rate of the detect function. On the other hand, to defeat the assault from an

attacker, the CT watermark designer should find ways to increase the error rate of the

attacker’s detect function.

For attackers using the pattern classification methods, decisions made in pattern clas-

sification procedures will affect the error rate of attackers’ detect function. So a good

attacker will try to reduce the error rate of his/her detect function by optimizing the

71

72 Conclusion and Future Work

pattern classification activities such as data collection, feature choice, model choice, etc..

To simplify our experiment, we only simulate an attacker implementing Fisher’s dis-

criminant function by using the statistical analyzing tool called SPSS. We focus on the

effects of two factors which will change the error rate of the attacker’s detect function:

the watermark size ratios of the watermarked programs collected by the attacker and the

length of k − grams used by the attacker to retrieve the pattern vectors. The results

show that the error rate of attacker’s detect function is low when both of the watermark

size ratio of the watermarked programs used to train the attacker’s detect function and to

evaluate the attacker’s detect function are high.

We suggest two ways to solve above problem: using numeric watermark option in

the CT watermark embedding procedure or restrict the size of the program to be water-

marked. Our experiment show that the watermark size ratio of watermark programs will

be dramatically reduced by using numeric watermark embedding option.

The length of k − grams used by the attacker to retrieve the pattern vectors will

also affect the error rate of attacker’s detect function. However, as discovered in our

experiment, increasing the length of k − grams does not always reduce the error rate of

attacker’s detect function.

6.2 Future Work

Our experiments are only in the early stage of research into attacks on the CT watermark.

We implemented all only one type of AUDW due to the limitations of this thesis. The

accuracy of the attacker’s detect functions by using other popular classification algorithms

is still unknown. More experiments should be done to verify whether those suggested

obfuscation methods can really defeat our attack.

On the theoretic level, we need to carefully define the formal attack model analogous

to what is suggested in media watermarking field by Mauro Barni et al [2]. WE did some

early stage developments on this topic but it is far away from accomplishment.

Our experiments reveal the information hiding problem in software watermarking. In

6.2 Future Work 73

media watermarking, a similar problem are researched by Cox [12] and [24]. However, their

results can not be used in our AUDW. They did not consider the detection of watermark

attacks in their research. So we should solve the problem ourself.

74 Conclusion and Future Work

A
Appendix

A.1 Experiment Environment

A.1.1 Software System

System files:

Microsoft Window XP Professional Version 2002 Service Pack 2

Linux:Version: Linux 2.4.27-2-686-smp

Java SDK: Java TM 2 Platform Standard Edition 5.0 Development Kit (JDK 5.0)

Tool for obtaining pattern frequencies (My programs) The tools for obtaining pattern

frequencies are some shell files and gawk files:.

75

76 Appendix

Gawk Version: 3.1.4

Bash version: 3.1.0(1)-release

Tool for statistical analysis (SPSS)

SPSS Version: 14.0 for windows Release 14.0.0 (5 Sep 2005)

Tool for producing C-T fingerprinted programs Tools for annotating programs (which

is from our group member Jasvir).

CTifier : Created On Thu Dec 8 13:24:27 2005

The Library files used by “CTifier“ are:

BCEL: Version 5.1

Sandmark:Version 3.4.0

Tool for embedding C-T watermark:.

Sandmark:Version 3.4.0

Tools for obtain pattern vectors :.

Programs developed by myself: “OPTfilepretest”,“OPTdatacollection” and “OPTrun-

transform”.

A.1.2 Hardware

CPU: Intel(R) Pentium(R) 4 CPU 2.80GHz Memory: 1.00GB of RAM

A.2 Experiment Procedure

A.2.1 Java opcode set

Table A.1: Java Virtual Machine Opcode Set

Elements Opcodes Elements Opcodes

op1 dcmpg op104 fconst 1

op2 l2i op105 ifgt

Continued on next page

A.2 Experiment Procedure 77

Table A.1 – continued from previous page

Elements Opcodes Elements Opcodes

op3 aastore op106 fconst 2

op4 dcmpl op107 ior

op5 dload 0 op108 goto w

op6 dload 1 op109 putstatic

op7 fload 0 op110 if icmpgt

op8 dload 2 op111 dstore

op9 fload 1 op112 iconst 0

op10 iand op113 lshl

op11 dload 3 op114 iconst 1

op12 fload 2 op115 iconst 2

op13 fload 3 op116 getfield

op14 lreturn op117 fneg

op15 impdep1 op118 iconst 3

op16 athrow op119 fload

op17 impdep2 op120 lconst 0

op18 dmul op121 iconst 4

op19 ifle op122 f2d

op20 lastore op123 dup

op21 aaload op124 lconst 1

op22 anewarray op125 iconst 5

op23 if icmple op126 getstatic

op24 irem op127 fdiv

op25 pop op128 lshr

op26 checkcast op129 iastore

op27 fsub op130 monitorexit

Continued on next page

78 Appendix

Table A.1 – continued from previous page

Elements Opcodes Elements Opcodes

op28 lmul op131 arraylength

op29 putfield op132 f2i

op30 ifne op133 nop

op31 ifnonnull op134 isub

op32 saload op135 f2l

op33 invokespecial op136 aload 0

op34 if icmpne op137 astore 0

op35 fcmpg op138 aload 1

op36 ineg op139 goto

op37 fstore op140 astore 1

op38 fadd op141 aload 2

op39 fcmpl op142 ldc w

op40 d2f op143 astore 2

op41 idiv op144 laload

op42 astore op145 aload 3

op43 instanceof op146 astore 3

op44 iflt op147 ireturn

op45 bipush op148 land

op46 if icmplt op149 dstore 0

op47 d2i op150 lcmp

op48 invokestatic op151 dstore 1

op49 invokevirtual op152 ixor

op50 lor op153 drem

op51 dup2 x1 op154 dup2

op52 lookupswitch op155 dstore 2

Continued on next page

A.2 Experiment Procedure 79

Table A.1 – continued from previous page

Elements Opcodes Elements Opcodes

op53 d2l op156 dstore 3

op54 dup2 x2 op157 iadd

op55 if acmpeq op158 baload

op56 i2b op159 iinc

op57 freturn op160 fstore 0

op58 i2c op161 lload 0

op59 return op162 multianewarray

op60 i2d op163 lrem

op61 ret op164 fstore 1

op62 i2f op165 lload 1

op63 sastore op166 aconst null

op64 dload op167 fstore 2

op65 lload op168 lload 2

op66 dsub op169 dneg

op67 fastore op170 fstore 3

op68 ldc op171 lload 3

op69 iaload op172 reserved

op70 iload 0 op173 lushr

op71 i2l op174 istore 0

op72 daload op175 lstore

op73 iload 1 op176 istore 1

op74 iload 2 op177 ddiv

op75 iload 3 op178 istore 2

op76 lsub op179 ifnull

op77 dreturn op180 wide

Continued on next page

80 Appendix

Table A.1 – continued from previous page

Elements Opcodes Elements Opcodes

op78 dadd op181 swap

op79 i2s op182 istore 3

op80 bastore op183 lstore 0

op81 lxor op184 lstore 1

op82 imul op185 xxxunusedxxx1

op83 dastore op186 lneg

op84 new op187 fmul

op85 ifge op188 castore

op86 ladd op189 lstore 2

op87 invokeinterface op190 lstore 3

op88 if icmpge op191 ldc2 w

op89 iushr op192 ldiv

op90 sipush op193 ishl

op91 monitorenter op194 iconst m1

op92 ifeq op195 jsr w

op93 dconst 0 op196 jsr

op94 dconst 1 op197 if acmpne

op95 if icmpeq op198 pop2

op96 tableswitch op199 faload

op97 frem op200 areturn

op98 dup x1 op201 l2d

op99 newarray op202 ishr

op100 dup x2 op203 aload

op101 caload op204 breakpoint

op102 fconst 0 op205 l2f

Continued on next page

A.2 Experiment Procedure 81

Table A.1 – continued from previous page

Elements Opcodes Elements Opcodes

op103 istore op206 iload

A.2.2 Collberg’s Sample Set Information

Table A.2: Collberg’s Sample Set

Serial Number Program Name size (in opcodes)

1 TTT 1208

2 web a2cat11 18199

3 web acme 8941

4 web activation 5340

5 web ActiveRegionExplorer 71723

6 web aglight-pac 757

7 web Agna 2 kit 1084

8 web allkara-en 101474

9 web allkara-x-en 101474

10 web aocode-public.src 38768

11 web aoserv-examples.src 871

12 web Arachnophilia 79929

13 web archery 3673

14 web ArraySort2D1 275

15 web aspectj-1.1.0 3807

16 web AutoSim 13261

17 web BattleShip 2100

Continued on next page

82 Appendix

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

18 web BBI 14305

19 web BBIagent 49527

20 web bigal 1388

21 web biojava-1.00 45637

22 web bluej-121 1840

23 web bluej-122 1840

24 web bluej-130beta2 1843

25 web btools-1.1 5101

26 web bytecode-0.90 4393

27 web candy 2194

28 web ccmb 210318

29 web chimera 45390

30 web ChronicleLite-bin-v1.2 25055

31 web ClassMapper 85081

32 web CodeProcessor 3474

33 web commons-collections 22102

34 web commons-pool 3805

35 web connect 39

36 web Conzilla 63154

37 web Conzilla1.1Beta2 74153

38 web cparser 4217

39 web crimson 22625

40 web crimson mod 22759

41 web CryptoHeaven 51064

42 web CurveSimulator 33301

Continued on next page

A.2 Experiment Procedure 83

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

43 web customizer 15168

44 web Cvt2Mae 40250

45 web DecodeHtml 3731

46 web desktop indicator 257

47 web devpgjdbc1 20157

48 web devpgjdbc2 24767

49 web devpgjdbc3 27137

50 web DigestCalc 1439

51 web DMLObjectModeler 29023

52 web DocWiz0.68 58869

53 web dom 21

54 web dss 320

55 web Dylan 12108

56 web ecp1 0beta 7359

57 web Edgeis 73561

58 web EditFiles 1038

59 web FetchFiles 2254

60 web ff 1042

61 web ffgui 1007

62 web ffthis 3083

63 web figue 35081

64 web FileEdit 4709

65 web FindFiles 358

66 web flat 22003

67 web form 6157

Continued on next page

84 Appendix

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

68 web foxhunt-0.4 2209

69 web fuzzyide 12078

70 web geometria 85312

71 web geotransform 5594

72 web gif 1201

73 web grades 36659

74 web graphpanel 2986

75 web GrsFinder 954

76 web HotEqn 10124

77 web hqt 1040

78 web HTMLEditorPro 59425

79 web i503emulator 11309

80 web ifxjdbc 133525

81 web ij 131758

82 web ImageWarper 1891

83 web interface 11286

84 web ITower 9925

85 web jabadex 15472

86 web JarCreator 806

87 web jar-util 5118

88 web jasminclasses-sable-1.2 27686

89 web jasmin-sable-1.2 23867

90 web java2html.vj0.2 3338

91 web java-getopt-1.0.9 1654

92 web javapopt 1624

Continued on next page

A.2 Experiment Procedure 85

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

93 web jaxp 1790

94 web jaxp-api 1541

95 web jblitz 395595

96 web jcalc dist 12226

97 web jcchart401K 172732

98 web jce1 2 1 21695

99 web jcm1.0-config 44854

100 web jconnect45 35753

101 web jconnect55 40800

102 web jdbc2 0-stdext 22

103 web jdbc6.5-1.2 12653

104 web jdbc7.0-1.1 12190

105 web jdeps 22270

106 web jdictionary 22989

107 web jDvi 9375

108 web JevaESUI2001-03-03 46948

109 web Jexa1999-10-11 8961

110 web jexn0.1.1 5583

111 web jext-install 16583

112 web jfinger-v0.05b 10264

113 web jh 42521

114 web jhbasic 25358

115 web JJukeboxSetup 25438

116 web JKeyboard 17051

117 web jmix dist 293

Continued on next page

86 Appendix

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

118 web jndi 7829

119 web jode-1.0.93-1.2 71030

120 web jode-1.1.1-JDK1.1 88489

121 web jp0211jt 439

122 web jpe 7707

123 web jpp 33573

124 web jraceman-0 3 8 1629

125 web js 85545

126 web js2 87954

127 web jstyle 4813

128 web junit 5079

129 web Jupiter 2615

130 web jV 14386

131 web jV src 14618

132 web jxtasecurity 8363

133 web ladder 8133

134 web lava 41093

135 web ldap 20406

136 web LINK 536

137 web linx 8274

138 web linxbuilder 6505

139 web live 23471

140 web logan-games 13680

141 web Logisim 21689

142 web Lucifers 318

Continued on next page

A.2 Experiment Procedure 87

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

143 web Lunar 826

144 web LunarHeights 1983

145 web LV154 24734

146 web m date entry 13229

147 web m2mpapi20010504 3855

148 web m2mpapi20011221 3952

149 web mad 13108

150 web MAExplorer 158474

151 web Marquee 974

152 web Mars 2010

153 web mindterm 72109

154 web MMLViewerApplet 137634

155 web ModEdit 7346

156 web moses 361496

157 web moses100install 44119

158 web mysql 41101

159 web mysql-connector-java-2.0.14-bin 12852

160 web myxml-1.3 685

161 web nanoxml-2.2.3 5355

162 web nanoxml-lite-2.2.3 1812

163 web Navigation 527

164 web networkbk client 22224

165 web networkbk server 22224

166 web netx 12191

167 web nis 12282

Continued on next page

88 Appendix

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

168 web or124 72965

169 web oracle 221320

170 web oro 13967

171 web pac3d 161503

172 web parser 3094

173 web ParTasks-0.1.0 871

174 web patbinfree153 32378

175 web pg72jdbc1 15154

176 web pg73jdbc2ee 26921

177 web pg73jdbc3 27366

178 web photoindex dist 3689

179 web photoindex3 dist 5372

180 web ping icmp 196

181 web pircbot 3568

182 web PlanetFinder 897

183 web PopsEdit 30378

184 web Posse 41899

185 web postgresql 27385

186 web powerforms 38072

187 web ProblemParser 1805

188 web profiler 16327

189 web providerutil 11377

190 web proxy 7882

191 web PSOL 58945

192 web ptah 1540

Continued on next page

A.2 Experiment Procedure 89

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

193 web qoca-1.0beta2-mod 76393

194 web Rangavalli-1.2 53022

195 web rockz 41483

196 web RollOver 962

197 web run 4223

198 web sax 2995

199 web scoreboard 3614

200 web Scramble 1768

201 web SeqSpace 96682

202 web shared 18255

203 web skinlf 44270

204 web smpp 16012

205 web SpidersRUs 40340

206 web splat 1728

207 web stockClient 590

208 web stockServer 780

209 web sunjce provider 33518

210 web suntimes 834

211 web sxp 28779

212 web Tank 13114

213 web template 1328

214 web TextScroller 1313

215 web toy 1.4 60418

216 web ttt2 3364

217 web turtletracks 22307

Continued on next page

90 Appendix

Table A.2 – continued from previous page

Serial Number Program Name size (in opcodes)

218 web TZTester 514

219 web unit-util 1953

220 web UofAC114 104

221 web utils 28891

222 web vienna 15474

223 web virbotchi 17444

224 web WiynRo 63000

225 web WP 4307

226 web xalan 127515

227 web xlink 653

228 web xml 10409

229 web xmlbench 4277

230 web xmlser-rc5 6152

231 web XmlWriter 4666

232 web xpointer 9811

233 web XsltEditor 4331

234 web YMStrings 539

A.2.3 Collberg’s Sample Set Clearance

In experiment C, we assume that the attacker is lazy and will not clean his sample set.

In experiment set A, we assume that the attacker is very skeptical. He/she will check

programs which are suspiciously to be related to each other. For each group of programs

suspiciously to be related, he/she will randomly select one program and abandon all

other programs in that group. Thus he/she can increase the accuracy of his classifier.

A.2 Experiment Procedure 91

The removal is based on the observations of the attacker. The serial number of programs

to be removed from the Collberg’s Sample set are {19, 37, 9, 22, 24, 33, 40, 47, 48, 88,

94, 100, 103, 114, 119, 125, 138, 147, 157, 159, 162, 164, 175, 176, 177, 178, 207, 229, 230,

129, 152, 144, 75, 143, 182 }. So totally thirty-five programs are removed.

It is possible that the attacker will remove some programs actually unrelated. However,

such removal will affect only the total number of samples. While no restriction on the

number of unwatermarked programs the attacker can obtain, such removal will not be a

problem for the attacker.

A.2.4 Watermark Embedding Procedure

The watermark embedding is done by using Sandmark. To embed a C-T watermark into

a program by Sandmark, three steps are necessary : annotating, tracing, and embedding.

In the annotating step, we execute the following command to annotate the class file

of the program to be watermarked. (That class file must contain a main() function) :

java -cp bcel.jar;sandmark.jar; CTifier 〈 class to be annotated 〉

To run the above command, we should keep the four files (CTifier, the class file to be

annotated, bcel.jar and sandmark.jar) in the same folder.

Then we can use the annotated class to replace its original version and pack the

program into a jar file as follows:

jar cvfm 〈 target jar file name 〉 man.txt *.*

In the tracing step, we select the Dynamic Watermark tab in Sandmark interface.

Next in Dynamic Watermark panel, we select Collberg/Thomborson in the algorithm

option box. Then we select the Trace tab. Next we select the program to be watermarked

from the Input File text field. In the Main Class text field, the name of the mainclass

(the class with the main() function) of the program to be watermarked must be entered.

Then we click on Start. At this point, the program will be running. We make some inputs

(e.g.input by clicking buttons with mouse) as key, and then close the program. Lastly,

we click Done.

92 Appendix

In the embedding step, we select the embed tab in the Dynamic Watermark panel of

Sandmark. Then we input our watermark w in the Watermark text field. In watermark

embedding, there are many parameters can be selected in the Embed panel. we will change

two check boxes (Numeric Watermark, use Cycle Graph) for each watermark embedding

procedure while keep all other parameters as their default value.

The default values of parameters fixed in our experiment are as follows:� Storage Policy: ‘root’� Storage Method: ‘array:vector:hash’� Storage Location: ‘formal’� Protection Method: ’if:safe:try’� Graph Type: ‘*’� Subgraph Count: ‘2’� dump Intermediate Code: ‘not select’� Inline Code: our choice: ‘not select’� Replace Watermark Class: ‘not select’� Dump Intermediate Code: ‘not select’

The key set used in our experiment is keyE . Table A.3 lists the elements of keyE.

The watermark set used in our experiment is WE . Table A.4 lists the elements of WE .

Table A.4: Watermark Set for Experiment

Elements Watermarks Elements Watermarks

w1 102708082 w1001 ko234asx

w5 386872058 w1005 rusem

Continued on next page

A.2 Experiment Procedure 93

Table A.4 – continued from previous page

Elements Watermarks Elements Watermarks

w15 911393057 w1015 45gtr

w16 123564098 w1016 jpsrty

w18 14565167 w1018 jitih

w30 474080610 w1030 gi990lu

w50 673096763 w1050 dtghjg

w54 111042854 w1054 dss

w60 184208742 w1060 erserwerty

w69 468498932 w1069 681

w73 605378825 w1073 ojko

w77 949414928 w1077 euio

w78 986551407 w1078 v45

w87 858354009 w1087 awe763

w92 122682574 w1092 xssdf

w123 710435026 w1123 uilj

w141 983396868 w1141 484m8h

w155 542323271 w1155 4er0spo

w197 308208724 w1197 co8p

w205 4056306 w1205 trtrh

w234 941246940 w1234 vb5bk8

A.2.5 Pattern Retrieve Procedure

The pattern retrieve procedure is shown in Figure 4.1. Details are as follows:

Firstly, under Unix, we use the “sh OPTfilepretest” command to disassemble Java class

files and retrieve the k − gram sequence from a Java program.

94 Appendix

Table A.3: Elements of keys used in our experiment

“OPTfilepretest” is a shell program that we developed. “OPTfilepretest” uses a tool

provided by JDK called “javap” to disassemble Java class files. The command used by

“OPTfilepretest” is “disassemble javap -c -l -private < classfile >”

Secondly, we use “sh OPTdatacollection” followed by the “sh OPTruntransform” com-

mand to retrieve the pattern vectors. The pattern vectors are saved in a .csv file which

can be read by SPSS.

A.2.6 SPSS Analysis Procedure

In Experiment set A, the syntax of discriminant analysis used by runi, (1 ≤ i ≤ 9) is as

follows:

DISCRIMINANT /GROUPS=category(1 2) /VARIABLES=dcmpg l2i aastore dcmpl dload 0 dload 1 fload 0 dload 2 fload 1

iand dload 3 fload 2 fload 3 lreturn impdep1 athrow impdep2 dmul ifle lastore aaload anewarray if icmple irem pop checkcast

fsub lmul putfield ifne ifnonnull saload invokespecial if icmpne fcmpg ineg fstore fadd fcmpl d2f idiv astore instanceof iflt

bipush if icmplt d2i invokestatic invokevirtual lor dup2 x1 lookupswitch d2l dup2 x2 if acmpeq i2b freturn i2c return i2d

A.2 Experiment Procedure 95

ret i2f sastore dload lload dsub fastore ldc iaload iload 0 i2l daload iload 1 iload 2 iload 3 lsub dreturn dadd i2s bastore lxor

imul dastore new ifge ladd invokeinterface if icmpge iushr sipush monitorenter ifeq dconst 0 dconst 1 if icmpeq tableswitch

frem dup x1 newarray dup x2 caload fconst 0 istore fconst 1 ifgt fconst 2 ior goto w putstatic if icmpgt dstore iconst 0 lshl

iconst 1 iconst 2 getfield fneg iconst 3 fload lconst 0 iconst 4 f2d dup lconst 1 iconst 5 getstatic fdiv lshr iastore monitorexit

arraylength f2i nop isub f2l aload 0 astore 0 aload 1 goto astore 1 aload 2 ldc w astore 2 laload aload 3 astore 3 ireturn land

dstore 0 lcmp dstore 1 ixor drem dup2 dstore 2 dstore 3 iadd baload iinc fstore 0 lload 0 multianewarray lrem fstore 1 lload 1

aconst null fstore 2 lload 2 dneg fstore 3 lload 3 reserved lushr istore 0 lstore istore 1 ddiv istore 2 ifnull wide swap istore 3

lstore 0 lstore 1 xxxunusedxxx1 lneg fmul castore lstore 2 lstore 3 ldc2 w ldiv ishl iconst m1 jsr w jsr if acmpne pop2 faload

areturn l2d ishr aload breakpoint l2f iload /ANALYSIS ALL /PRIORS EQUAL /STATISTICS=MEAN STDDEV UNIVF

BOXM COEFF RAW CORR COV GCOV TCOV TABLE /PLOT=CASES /CLASSIFY=NONMISSING SEPARATE .

In Experiment C, the syntaxes of discriminant analysis are as follows:

1. run10 of Experiment C

DISCRIMINANT /GROUPS=Category(1 2) /VARIABLES=aastore iand aaload anewarray pop if icmple checkcast

putfield ifne invokespecial if icmpne astore bipush iflt if icmplt invokestatic invokevirtual if acmpeq return lload ldc

i2l iload 1 iload 2 iload 3 new sipush ifeq istore ior iconst 0 putstatic iconst 1 iconst 2 getfield iconst 3 iconst 4

dup getstatic nop isub aload 0 aload 1 astore 0 aload 2 astore 1 goto astore 2 aload 3 astore 3 ireturn lcmp dup2

iadd iinc lstore istore 1 istore 2 istore 3 ldc2 w iconst m1 if acmpne pop2 areturn aload iload /ANALYSIS ALL

/METHOD=MAHAL /PIN= .05 /POUT= .10 /PRIORS EQUAL /HISTORY /STATISTICS=MEAN STDDEV

UNIVF BOXM COEFF RAW CORR COV GCOV TCOV /PLOT=CASES /CLASSIFY=NONMISSING SEPARATE

.

2. run11 of Experiment C

(Notice: A.B is a 2-gram where A is the first opcode and B is the second opcode in

the 2-gram)

DISCRIMINANT /GROUPS=Category(1 2) /VARIABLES=bipush.invokespecial if icmplt.iconst 0 iconst 1.istore 1

iconst 3.invokespecial iload 1.aaload aload 1.invokevirtual astore 0.iconst m1 if icmplt.nop goto.aload 0 istore 1.iconst 0

aload 0.invokespecial lstore.pop2 if icmpne.iconst 1 if acmpne.iconst 1 iload 1.iconst 1 aload 2.invokevirtual iload 1.iconst 2

lload.ldc2 w nop.goto goto.ldc iload 3.aaload invokevirtual.ifne ldc.invokevirtual iconst 3.iadd getfield.iconst 1 iconst 2.iconst 4

96 Appendix

iand.istore 1 aload 3.goto getfield.iconst 2 astore.nop astore 1.aload 1 if icmplt.iload 1 getfield.getfield iload 2.aaload

istore 2.iload 2 invokevirtual.istore 2 iadd.iload 2 iadd.iload 3 istore 1.getstatic aload 0.new sipush.aload aload 0.invokevirtual

ldc.invokespecial invokestatic.goto invokevirtual.ireturn iload 1.bipush astore 3.aload 3 iadd.aaload getstatic.invokevirtual

istore 1.iinc astore 2.aload 0 invokevirtual.if acmpne aload.invokevirtual aaload.iload 1 aaload.invokevirtual aload.bipush

iload 3.bipush getstatic.invokespecial goto.new if icmple.iconst m1 pop.iinc bipush.aload invokevirtual.aload 0 in-

vokevirtual.aload 1 invokestatic.return iload 2.bipush dup.getstatic getfield.aload 0 getfield.ifne invokevirtual.nop

getfield.ireturn iflt.iload 2 invokespecial.astore 1 iconst 2.if icmpne ldc.areturn invokespecial.aload 0 iconst 2.iadd

getstatic.iload 2 iconst 2.istore 1 invokespecial.aload 2 iconst 1.goto iload 1.invokestatic getfield.astore iconst 1.putfield

ldc.iconst 1 getfield.getstatic iconst 0.invokestatic aload 1.putfield ireturn.new ldc.if acmpne astore 2.iconst 0 iconst 3.iconst 3

invokevirtual.checkcast sipush.invokevirtual goto.iconst 0 if icmplt.return aload.getfield goto.iconst 2 dup.ldc ifeq.aload 0

dup2.lstore pop2.aload 0 iconst 0.iconst 4 sipush.invokespecial if icmpne.ldc iconst 1.isub ior.istore 1 pop2.lload in-

vokevirtual.ifeq pop.return goto.nop ldc.astore 1 if icmplt.aload 0 istore 2.aload 0 iload.iload 3 iload 1.i2l if icmpne.aload 0

iload 2.iconst 1 iload 2.iconst 2 iload 1.invokevirtual invokevirtual.areturn iload 2.iconst 3 goto.astore 0 getstatic.getstatic

pop.aload iconst 1.iadd ifne.iconst 1 aload 0.iconst 0 ifeq.goto aload 0.iconst 1 iload 2.invokevirtual invokevirtual.goto

putfield.iconst 0 aload 0.iconst 2 iinc.iload 1 invokespecial.ldc dup.new aload 0.getfield if acmpeq.aload 0 iinc.iload 2

iinc.iload 3 checkcast.astore nop.new invokevirtual.if icmpne istore 3.goto invokestatic.iconst 1 iinc.iload putfield.aload

anewarray.putfield iconst 1.bipush putfield.new iload 1.new invokevirtual.aload ifeq.getstatic istore.goto iand.ireturn

iload 2.iflt putfield.return iconst 4.bipush aload 0.getstatic nop.aload aload.sipush aload 0.bipush invokevirtual.invokespecial

iload 3.iload 3 iconst 0.istore 1 iconst 2.putfield iconst 0.istore 2 invokevirtual.return iconst 0.istore 3 getfield.ldc

dup.iconst 3 pop.nop iload 2.iload 2 ifne.aload 0 invokespecial.invokevirtual invokestatic.invokevirtual iand.aload 0

ifne.aload 2 sipush.sipush aload 2.nop getfield.i2l ifeq.iconst 0 bipush.if icmple bipush.anewarray putstatic.getstatic

aaload.ldc bipush.iadd getstatic.ireturn iconst 3.if icmplt invokevirtual.invokevirtual getfield.invokevirtual dup.sipush

iadd.invokespecial ldc.goto ldc.if acmpeq invokespecial.invokespecial goto.iload 1 aastore.iinc invokevirtual.pop get-

static.ldc iconst 0.aload 0 invokespecial.aastore invokespecial.putfield invokespecial.return invokevirtual.iinc aload 0.iload 1

isub.istore 2 aload 0.iload 2 nop.return new.dup aload.nop putfield.goto aload 0.iload 3 putfield.aload 0 pop.aload 0

getfield.new invokespecial.putstatic istore 2.goto iconst 0.ireturn iload 3.iconst 1 nop.nop lcmp.ifne invokespecial.astore

iload 3.iconst 2 if acmpne.aload 0 iload 3.iconst 3 nop.astore putfield.nop invokespecial.ior bipush.if icmplt getfield.iload

putstatic.return aload.putfield aaload.new i2l.dup2 if icmplt.new astore.aload invokestatic.getstatic iconst 1.if icmpne

getstatic.new invokevirtual.putstatic goto.getstatic dup.aload 0 dup.aload 1 invokevirtual.iconst 0 aload 0.sipush goto.pop

A.2 Experiment Procedure 97

putstatic.goto aastore.aload 0 astore.new if icmpne.getstatic invokevirtual.getstatic invokevirtual.iload 1 iload 1.aload 0

getfield.iload 1 aload 1.astore 2 iload 1.aload 2 getfield.iload 2 ldc.aload 0 iconst 0.putfield iconst m1.invokestatic

getfield.iload 3 invokevirtual.ldc iload 3.iadd astore 2.iinc iload 1.ireturn aload 0.aload 0 iconst 0.istore nop.lload

aload 0.aload 1 iload.iconst 3 ifne.ldc bipush.invokevirtual iconst 1.invokespecial dup.invokespecial istore 1.goto in-

vokevirtual.invokestatic nop.aload 0 aload.aload nop.astore 2 ldc2 w.lcmp nop.astore 3 iconst 0.iand invokevirtual.astore 2

aload 0.ldc i2l.pop2 /ANALYSIS ALL /METHOD=MAHAL /PIN= .05 /POUT= .10 /PRIORS EQUAL /HISTORY

/STATISTICS=MEAN STDDEV UNIVF BOXM COEFF RAW CORR COV GCOV TCOV /PLOT=CASES /CLAS-

SIFY=NONMISSING SEPARATE .

3. run12 of Experiment C

(Notice: A.B.C is a 3-gram where A is the first opcode, B is the second opcode and

C is the third opcode in the 3-gram)

DISCRIMINANT /GROUPS=Category(1 2) /VARIABLES=iand.istore 1.iinc dup.iconst 3.iconst 3 ldc.invokevirtual.iconst 0

istore 3.goto.iload 1 iconst 3.iadd.iload 2 iconst 3.iadd.iload 3 if icmple.iconst m1.invokestatic istore 1.iinc.iload 2 is-

tore 1.iinc.iload 3 iand.aload 0.getfield sipush.sipush.invokevirtual goto.aload 0.invokevirtual ldc.invokespecial.putfield

if acmpne.iconst 1.istore 1 istore 2.goto.iload 1 bipush.invokespecial.ior aload.putfield.nop if acmpne.iconst 1.goto i2l.dup2.lstore

anewarray.putfield.iconst 0 invokevirtual.invokevirtual.getstatic

getstatic.iload 2.invokevirtual ifne.aload 2.nop goto.nop.nop nop.aload 0.getfield invokevirtual.invokevirtual.aload 0

aastore.aload 0.getfield aload 0.iconst 2.putfield astore 2.iinc.iload goto.getstatic.ldc iload 2.aaload.invokevirtual aload 0.invokevirtual.ifeq

iinc.iload 2.iconst 3 putfield.goto.pop ldc.if acmpne.aload 0 iconst 0.iand.istore 1 if acmpne.aload 0.getfield invoke-

virtual.ifeq.aload 0 iconst 0.iconst 4.bipush iload 2.bipush.iadd lload.ldc2 w.lcmp invokevirtual.ifne.iconst 1 invoke-

virtual.pop.aload putstatic.goto.astore 0 aload 0.iload 2.invokevirtual dup.ldc.invokespecial putstatic.getstatic.ldc aload 0.getfield.getstatic

invokevirtual.invokevirtual.iconst 0 getfield.iload 3.aaload aaload.invokevirtual.ldc istore.goto.new iconst 3.if icmplt.iload 1

getstatic.getstatic.invokevirtual dup.getstatic.invokespecial iconst 2.if icmpne.iconst 1 invokevirtual.putstatic.getstatic

invokevirtual.aload 1.invokevirtual ldc.invokevirtual.aload 0 aload 0.iconst 0.iconst 4 astore 2.iconst 0.istore 3 astore.aload.getfield

invokevirtual.aload 0.ldc dup.invokespecial.aload 2 aload.sipush.aload getstatic.invokevirtual.iconst 0 iconst 1.iadd.iload 2

iconst 1.iadd.iload 3 aload 0.aload 0.getfield pop2.aload 0.iload 1 invokevirtual.aload 0.getfield invokevirtual.invokevirtual.ldc

ifne.aload 0.invokevirtual goto.aload 0.getstatic new.dup.new invokespecial.invokevirtual.nop invokevirtual.ifeq.iconst 0

iconst 0.istore 2.goto invokespecial.astore.aload invokevirtual.if acmpne.aload 0 iload 3.iconst 2.iadd nop.new.dup get-

98 Appendix

field.invokevirtual.ldc aaload.invokevirtual.aload 0 aaload.invokevirtual.pop bipush.if icmplt.new aload 1.invokevirtual.invokespecial

aload 2.nop.astore getstatic.invokevirtual.invokespecial iload 1.new.dup iconst 1.isub.istore 2 invokespecial.invokespecial.putstatic

aaload.ldc.invokevirtual iadd.iload 3.bipush aload 0.iconst 1.putfield iload 2.invokevirtual.ifne ldc.astore 1.aload 1 dup.invokespecial.astore 1

iconst 3.iconst 3.invokespecial invokevirtual.iload 1.i2l

iload 2.iconst 2.iadd aload 0.getfield.invokevirtual ldc.if acmpne.iconst 1 astore.aload.aload pop.iinc.iload 1 iconst 2.iconst 4.bipush

aload 0.iload 1.invokevirtual invokevirtual.aload 0.sipush aload.getfield.astore iload 1.aaload.ldc istore 1.getstatic.new

bipush.invokevirtual.checkcast aload 2.invokevirtual.aload 0 aload 2.invokevirtual.aload 1 dup.new.dup aaload.new.dup

invokespecial.invokevirtual.istore 2 iconst 1.istore 1.iconst 0 iinc.iload 3.bipush ldc.invokespecial.aastore invokevir-

tual.ldc.invokevirtual aload.bipush.aload invokevirtual.checkcast.astore iconst 2.iadd.invokespecial invokevirtual.goto.aload 0

invokevirtual.aload 0.invokevirtual aload 0.iload 1.aload 2 aload.aload.putfield getfield.invokevirtual.pop if icmpne.getstatic.iload 2

putfield.aload 0.iconst 2 iconst 1.invokespecial.putfield goto.iconst 2.putfield aload.sipush.invokevirtual getfield.ldc.invokevirtual

aload.bipush.invokevirtual invokevirtual.pop.aload 0 aload 0.invokevirtual.ifne aload 0.bipush.anewarray ifne.ldc.goto

i2l.pop2.aload 0 invokevirtual.aload 0.getstatic astore 2.aload 0.invokevirtual astore.aload.sipush invokevirtual.iload 1.invokevirtual

iload 2.iconst 3.if icmplt getfield.iload 2.invokevirtual aload 0.getfield.i2l astore 1.aload 1.astore 2 getfield.iconst 2.if icmpne

ldc.invokevirtual.invokevirtual invokespecial.aload 0.new ldc.invokevirtual.iinc iconst 3.invokespecial.invokevirtual in-

vokespecial.ldc.invokevirtual getfield.iload 2.aaload invokespecial.astore.new aload 0.getstatic.invokevirtual invoke-

virtual.ifeq.goto goto.iconst 0.aload 0 goto.iconst 2.istore 1 ifeq.iconst 0.ireturn iconst 1.istore 1.goto iload 1.invokevirtual.aload 0

goto.iload 1.aload 0 invokespecial.ior.istore 1 aload 0.invokespecial.aload 0 invokevirtual.astore 2.iconst 0 new.dup.aload 0

if icmpne.iconst 1.istore 1 new.dup.aload 1 aload 0.getfield.iload iload 3.bipush.if icmplt aload 0.sipush.sipush ldc.invokevirtual.goto

ldc.if acmpeq.aload 0 iload 1.aload 2.invokevirtual invokevirtual.putstatic.goto iload 3.iload 3.iconst 1 invokevirtual.nop.aload 0

ior.istore 1.iconst 0 iload 3.iload 3.iconst 3 iconst 0.istore 1.goto iload 2.invokevirtual.getstatic invokevirtual.istore 2.aload 0

if icmplt.nop.aload 0 iconst 1.istore 1.iinc iload 3.iconst 1.iadd getfield.getfield.ldc if icmpne.iconst 1.goto nop.lload.ldc2 w

sipush.invokevirtual.aload invokevirtual.invokespecial.invokevirtual iconst 0.aload 0.getfield invokespecial.aastore.aload 0

lcmp.ifne.aload 2 lstore.pop2.lload invokespecial.invokevirtual.putstatic getfield.iload 1.new new.dup.sipush getstatic.invokevirtual.getstatic

bipush.iadd.invokespecial aload 0.getfield.ifne invokevirtual.iinc.iload 1 astore.nop.aload invokevirtual.iinc.iload 2 if icmplt.iconst 0.istore 3

dup.invokespecial.invokevirtual getstatic.invokevirtual.goto iload 2.iconst 1.iadd iload.iconst 3.if icmplt astore.new.dup

invokevirtual.pop.iinc ldc.invokevirtual.ifeq invokestatic.getstatic.iload 2 iload 3.aaload.invokevirtual astore 1.aload 1.invokevirtual

iload 2.bipush.if icmple if icmplt.aload 0.getfield dup.getstatic.invokevirtual aload 0.getfield.iconst 1 aload 0.getfield.iconst 2

aload 0.iconst 0.putfield pop.aload 0.ldc aload 1.astore 2.iconst 0 iload 2.bipush.if icmplt getfield.iload.iload 3 invoke-

A.2 Experiment Procedure 99

virtual.goto.getstatic getfield.getstatic.invokevirtual putfield.aload.aload bipush.if icmplt.aload 0 invokevirtual.ldc.if acmpeq

iinc.iload 2.bipush aaload.invokevirtual.invokevirtual iconst 0.iand.aload 0 iflt.iload 2.bipush goto.getstatic.iload 2

putfield.nop.goto ldc.aload 0.getfield invokevirtual.if acmpne.iconst 1 iload 1.invokestatic.invokevirtual ifeq.getstatic.ldc

goto.iload 1.iconst 1 aload 0.getfield.aload 0 goto.iload 1.iconst 2 getstatic.invokevirtual.ifeq dup2.lstore.pop2 nop.nop.goto

iload 3.iconst 3.if icmplt pop.nop.nop aload.putfield.new ldc.invokevirtual.iload 1 nop.astore.new getfield.ifne.ldc bi-

push.aload.invokevirtual aload 0.getfield.ldc aload 1.invokevirtual.invokevirtual getstatic.invokevirtual.invokevirtual

aload 1.invokevirtual.aload 1 iadd.iload 2.bipush goto.new.dup nop.nop.lload aload.invokevirtual.pop invokevirtual.aload 0.new

putfield.iconst 0.istore 1 aload 0.iload 2.iload 2 checkcast.astore.nop invokevirtual.goto.iload 1 dup.aload 0.invokespecial

iload 1.bipush.if icmplt invokevirtual.getstatic.getstatic bipush.anewarray.putfield goto.pop.nop iload 3.bipush.iadd

iload 1.iconst 1.if icmpne invokevirtual.getstatic.invokevirtual iload 1.aload 0.iload 2 iload 1.aload 0.iload 3 getfield.invokevirtual.iconst 0

getstatic.invokevirtual.putstatic astore.aload.bipush iconst 1.goto.iconst 0 iconst 1.goto.iconst 2 iconst 2.putfield.aload 0

iconst 1.if icmpne.getstatic getstatic.ldc.invokevirtual pop.aload.aload iload 2.iflt.iload 2 aload.putfield.aload put-

field.aload 0.iload 1 invokevirtual.aload.nop nop.aload 0.getstatic iconst 0.ireturn.new bipush.invokespecial.aload 0

bipush.invokespecial.invokevirtual ldc2 w.lcmp.ifne iload 1.aaload.new iconst 0.istore 1.iconst 0 iadd.iload 3.iconst 2

aload 0.iload 3.iload 3 bipush.if icmplt.nop ldc.goto.ldc istore 2.iload 2.iflt new.dup.invokespecial anewarray.putfield.aload 0

invokevirtual.invokevirtual.goto aload.putfield.goto pop.aload 0.getfield iadd.invokespecial.ior getfield.iload 1.aaload

ior.istore 1.iinc astore 2.iinc.iload 3 invokestatic.iconst 1.isub getstatic.invokevirtual.aload 0 aload 0.iconst 2.iconst 4

new.dup.iconst 3 goto.aload 0.getfield istore 2.goto.aload 0 iconst 4.bipush.invokespecial getfield.i2l.pop2 istore 1.goto.aload 0

new.dup.ldc dup.invokespecial.putstatic nop.astore 3.aload 3 aload 2.invokevirtual.ldc iconst 2.if icmpne.ldc nop.astore 2.aload 0

invokevirtual.ldc.if acmpne dup.invokespecial.putfield ifne.iconst 1.goto pop2.lload.ldc2 w ifeq.goto.getstatic putfield.aload 0.getfield

aload 0.new.dup ldc.goto.aload 0 aload.nop.astore 3 getfield.getfield.iload 2 iload 1.aaload.invokevirtual aload 0.aload 1.putfield

if icmpne.ldc.goto dup.invokespecial.aastore invokespecial.putfield.aload 0 iload 2.iload 2.iconst 1 iload 2.iload 2.iconst 3

aload 3.goto.nop nop.aload.getfield sipush.invokespecial.astore astore 3.aload 3.goto invokestatic.getstatic.invokevirtual

goto.iconst 0.iand iconst 1.if icmpne.ldc ldc.iconst 1.bipush dup.aload 1.invokevirtual iinc.iload 3.iconst 3 invokespe-

cial.invokevirtual.aload 0 iconst 0.invokestatic.getstatic invokevirtual.invokestatic.iconst 1 astore 2.iconst 0.istore si-

push.invokevirtual.aload 0 iconst 1.bipush.invokespecial bipush.if icmplt.iload 1 aastore.iinc.iload 1 invokespecial.aastore.iinc

istore 2.aload 0.getfield iconst 3.if icmplt.new ifeq.aload 0.getstatic getstatic.invokespecial.invokespecial iconst 2.istore 1.iconst 0

aload 0.getfield.iload 1 aload 0.getfield.iload 2 aload 0.getfield.iload 3 invokevirtual.ifne.aload 0 aload 0.ldc.aload 0

getfield.astore.aload aaload.invokevirtual.if icmpne iload 1.i2l.dup2 iinc.iload 1.bipush putfield.aload.bipush astore 0.iconst m1.invokestatic

100 Appendix

iload.iload 3.iadd goto.nop.astore 2 iadd.aaload.invokevirtual ldc.iconst 1.invokespecial putfield.aload 0.bipush aaload.iload 1.invokestatic

if acmpeq.aload 0.getfield aaload.invokevirtual.if acmpne iconst 2.istore 1.getstatic iconst m1.invokestatic.getstatic

putfield.aload 0.new iload 1.invokevirtual.ifne invokevirtual.invokevirtual.invokevirtual ldc.invokevirtual.invokestatic

if icmplt.new.dup iload 1.aaload.iload 1 dup.invokespecial.ldc ireturn.new.dup invokespecial.aload 0.iconst 2 iload 2.invokevirtual.goto

invokevirtual.iconst 0.invokestatic iload 3.iadd.aaload istore 1.iconst 0.istore 2 invokevirtual.invokevirtual.astore 2 nop.goto.nop

iconst 0.istore.goto iconst 0.istore 3.goto dup.ldc.iconst 1 invokevirtual.iconst 0.istore 1 iload 1.invokevirtual.ldc in-

vokevirtual.iconst 0.istore 2 invokespecial.aload 2.invokevirtual iload 3.iconst 3.iadd getstatic.new.dup invokevirtual.ifeq.getstatic

iadd.iload 2.iconst 2 iload 2.aaload.ldc bipush.if icmple.iconst m1 getfield.iconst 1.if icmpne iconst 1.if icmpne.aload 0

new.dup.getstatic iinc.iload.iconst 3 aload 0.getfield.getfield bipush.if icmplt.iconst 0 getfield.aload 0.getfield invokestatic.invokevirtual.aload 0

if icmpne.aload 0.getfield ifeq.getstatic.new aload 0.invokespecial.invokevirtual getfield.new.dup invokespecial.aload 0.bipush

putfield.new.dup istore 3.goto.new sipush.aload.invokevirtual invokevirtual.if icmpne.iconst 1 invokevirtual.astore 2.iinc

invokespecial.astore 1.aload 1 istore 1.goto.iconst 2 iload 2.invokevirtual.ifeq invokespecial.aload 0.aload 1 iload 2.iconst 3.iadd

iload 1.iconst 2.if icmpne aload 0.getfield.new putfield.aload.getfield dup.sipush.invokespecial isub.istore 2.iload 2 dup.invokespecial.astore

iconst 3.if icmplt.iconst 0 goto.astore 0.iconst m1 ifeq.aload 0.aload 0 /ANALYSIS ALL /METHOD=MAHAL /PIN=

.05 /POUT= .10 /PRIORS EQUAL /HISTORY /STATISTICS=MEAN STDDEV UNIVF BOXM COEFF RAW

CORR COV GCOV TCOV /PLOT=CASES /CLASSIFY=NONMISSING SEPARATE .

This is the end!

Bibliography

[1] R. J. Anderson and Peticolas. On the limits of steganography. IEEE Journal of

Selected Areas in Communications, 1998.

[2] Mauro Barni, Franco Bartolini, and Teddy Furon. A general framework for robust

watermarking security. Signal Processing, 83(10):2069–2084, 2003.

[3] B.D.Ripley. Pattern recognition and networks. Cambridge university press, 1996.

[4] A.Z. Broder. On the resemblance and containment of documents. Compression and

Complexity of Sequences, pages 21 – 29, June 1997.

[5] R. Chandramouli and N. Memon. How many pixels to watermark, 2000.

[6] Gu Y. Johnson H. Chow, S. and V Zakharov. An approach to the obfuscation

of control-flow of sequential computer programs. In Information Security: Fourth

International Conference (ISC 2001), 2001.

[7] Collberg and Townsend. Sandmark 3.4.0 help file.

[8] C. Collberg and C. Thomborson. the limits of software watermarking, 1998.

[9] Christian Collberg and Clark Thomborson. Software watermarking: Models and

dynamic embeddings. In Principles of Programming Languages 1999, POPL’99,

pages 311–324, 1999.

101

102 BIBLIOGRAPHY

[10] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and

obfuscation - tools for software protection. In IEEE Transactions on Software Engi-

neering, volume 28, pages 735–746, August 2002.

[11] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic graph-

based software fingerprinting. Submitted to TOPLAS in 15 April 2006, 62 pages.

[12] Ingemar J. Cox, Matthew L. Miller, and Jeffrey A. Bloom. Digital watermarking.

Morgan Kaufmann, 2002.

[13] Memon N. Yeo B.-L. Craver, S. and M. M. Yeung. Resolving rightful ownerships

with invisible watermarking techniques: limitations, attacks, and implications. IEEE

Journal on Selected Areas in Communications, 1998.

[14] SPSS Inc. Training Department. Advanced Statistical Analysis Using SPSS. SPSS

Inc., 2000.

[15] Stephen Drape and Clark Thomborson. Notations, 2006. Available from

URL(http://www.cs.auckland.ac.nz/ stephendrape/papers/waternotation.pdf).

[16] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. John

Wiley & Sons, 2nd edition, 2001.

[17] T. Furon and P Duhamel. An asymmetric watermarking method. Signal Processing,

2003.

[18] Roedy Green. How to write unmaintainable code. Java Developers’ Journal, 2006.

[19] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley and

Sons, Inc, 1991.

[20] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkon-

jak, P. Tucker, H. Wang, and G. Wolfe. Watermarking techniques for intellectual

property protection. In DAC ’98: Proceedings of the 35th annual conference on

Design automation, pages 776–781, New York, NY, USA, 1998. ACM Press.

BIBLIOGRAPHY 103

[21] T Kalker. Considerations on watermarking security. In Multimedia Signal Processing,

2001.

[22] D. Kirovski and F. Petitcolas. Blind pattern matching attack on watermarking sys-

tems, 2003.

[23] Matias Madou, Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. Hy-

brid static-dynamic attacks against software protection mechanisms. In DRM ’05:

Proceedings of the 5th ACM workshop on Digital rights management, pages 75–82,

New York, NY, USA, 2005. ACM Press.

[24] Pierre Moulin and Joseph A. O’Sullivan. Information-theoretic analysis of informa-

tion hiding. IEEE Transactions on Information Theory, 49(3):563–593, 2003.

[25] Ginger Myles and Christian Collberg. K-gram based software birthmarks. In SAC

’05: Proceedings of the 2005 ACM symposium on Applied computing, pages 314–318,

New York, NY, USA, 2005. ACM Press.

[26] Jasvir Nagra, Clark Thomborson, and Christian Collberg. Software watermarking:

Protective terminology. In Proceedings of the ACSC 2002, 2002.

[27] Shari Lawrence Pfleeger Norman E. Fenton. Software Metrics, A Rigorious & Prac-

tical Approach. PWS Publishing Company, 2nd edition, 1997.

[28] M. J Norušis. SPSS 12.0 statistical procedures companion. Princeton Hall, 2003.

[29] Julie Pallant. SPSS survival manual. Allen and Unwin, 2nd edition, 2005.

[30] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, Q. Shao, and Y. Zhang. Experi-

ence with software watermarking, 2000.

[31] N. Provos and P. Honeyman. Hide and seek: An introduction to steganography.

IEEE Security & Privacy, 2003.

[32] A.K Raudys, S.J.; Jain. Small sample size effects in statistical pattern recognition:

recommendations for practitioners. Pattern Analysis and Machine Intelligence, 1991.

104 BIBLIOGRAPHY

[33] S. Raudys and V. Pikelis. On dimensionality, sample size, classification error, and

complexity of classification algorithm in pattern recognition. Pattern Analysis and

Machine Intelligence, 1980.

[34] Peter Sz̈or and Peter Ferrie. Hunting for metamorphic. Symantec Security Response.

White Paper., June 2003.

[35] Diomidis Spinellis. Reading, writing, and code. ACM Queue vol. 1, no. 7, 2003.

[36] Clark Thomborson. Information-theoretic models of attacks on watermarks, July

2006. email communication.

[37] S. Voloshynovskiy, S. Pereira, and J.J.and Su J.K Pun, T.and Eggers. Attacks on

digital watermarks: classification, estimation based attacks, and benchmarks. Com-

munications Magazine, 2001.

[38] N. Morimoto W. Bender, D. Gruhl and A. Lu. Techniques for data hiding. IBM

Systems Journal, 35, 1996.

[39] C Wang. A security architecture for survivability mechanisms. PhD thesis, University

of Virginia, 2000.

[40] Andrew Webb. Statistical pattern recognition. John Wiley & Sons, 2nd edition, 2002.

