
 

 

WORKFLOW SIMULATION FOR  

INTERNATIONAL TRADE 

 

 

 

Qiang Dong 

Supervised by Professor Clark Thomborson 

 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements 
for the degree of Master of Science in Computer Science, 

The University of Auckland 
February 2002.  



 

 ii  

ABSTRACT 

Reengineering business processes is considered by many researchers to be 

indispensable in order to survive and prosper in today’s competitive world. 

International trade has received some academic attention as an application of Business 

Process Reengineering. A major issue in international trade is due to problems 

pertaining to mutual-trust between trading parties without a prior trading relationship. 

Professor Lee advocates a new concept called electronic trade scenario to bridge the 

disparity. He uses Documentary Petri Nets as a representation language for the 

electronic trade scenarios.  

This thesis, on one hand, experiences the Business Process Reengineering project 

through a solid example -- GT3, a simplified Documentary Credit Procedure in 

international trade. Some of the currently available techniques and technologies being 

used in Business Process Reengineering are explored, and are used to analyse our GT3 

model. Then GT3 is modelled by a graphical representation language called Linear 

Documentary Petri Net (LDPN). We obtain LDPN by modifying Professor Lee’s 

Documentary Petri Net. A simulator written in SIMSCRIPT II.5 is given to execute 

GT3 for the purpose of demonstrating workflows among the parties involved. 

On the other hand, a partially finished software tool which can be used to augment the 

process of Business Process Reengineering for international trade is presented. With 

this tool, users can design a new trade scenario and make modifications on existing 

scenarios. Then, the corresponding workflows within that particular scenario are 

simulated automatically. This software tool is written in SIMSCRIPT II.5 and GEMA. 

Evaluation of our implementation shows that it provides full environment support for 

running simulation, it is correct in implementation and it is feasible to ease the design 

and modification of trade scenarios for international trade.  



 

 iii  

ACKNOWLEDGEMENTS 

I would like to thank my supervisor, Professor Clark Thomborson for his remarkable 

guidance during my research and writing of this thesis. But for his words of inspiration, 

and encouragement, I could not have got this far. His rich experience and wealth of 

knowledge have greatly broadened my views on E-commerce and simulation. I have 

learnt much from him -- not only research techniques, but also programming and 

English language skills. This learning experience will go a long way in my 

professional/research career. 

I would like to thank the Computer Science Subject-Librarian, Mrs. Hester Mountifield 

for her excellent guidance on literature survey, thanks to her expertise in electronic data 

retrieval.       

I wish to thank my officemate Joshua Arulanandham for proofreading my document. I 

wish him all the best in his PhD research.  

I also wish to thank Lloyd Tran of World Trade Centre, New Zealand for his regular 

participation in our discussions. 

I wish to thank Ian Young, Rodney and Zoe Alderson for proofreading my thesis, and 

for offering me valuable advice. 

I would like to thank my family for their everlasting support during my academic 

endeavours. It is their sharing, laugh, and complaints that give me the energy and 

motivation to complete this thesis. 

 



 

 iv  

CONTENTS 

ABSTRACT                                                                                                                    II 

ACKNOWLEDGEMENTS                                                                                         III 

CONTENTS                                                                                                                  IV 

LIST OF FIGURES                                                                                                      VI             

LIST OF TABLES                                                                                                     VIII 

 

CHAPTER 1 INTRODUCTION...............................................................................1 

1.1 BACKGROUND..........................................................................................................1 
1.2 OBJECTIVES OF THE THESIS......................................................................................2 
1.3 RESEARCH METHODOLOGY .....................................................................................2 
1.4 ORGANIZATION OF THE THESIS ................................................................................3 

 

CHAPTER 2 INTRODUCTION TO INTERNATIONAL TRADE......................4 

2.1 INTERNATIONAL TRADE...........................................................................................4 
2.2 ELECTRONIC DATA INTERCHANGE...........................................................................6 
2.3 DOCUMENTARY CREDIT PROCEDURE.....................................................................10 
2.4 SUMMARY ..............................................................................................................12 

 

CHAPTER 3 BUSINESS PROCESS REENGINEERING ..................................14 

3.1 BUSINESS PROCESS ................................................................................................14 
3.2 MODELS FOR BUSINESS PROCESS IMPROVEMENT ..................................................15 
3.3 SUCCESS FACTORS FOR BUSINESS PROCESS REENGINEERING................................21 
3.4 TECHNIQUES FOR MODELLING BUSINESS PROCESS................................................22 
3.5 PETRI NETS ............................................................................................................36 
3.6 TECHNOLOGY FOR BUSINESS PROCESS REENGINEERING .......................................43 
3.7 SUMMARY ..............................................................................................................48 

 

CHAPTER 4 REENGINEERING OF INTERNATIONAL TRADE .................50 

4.1 REVIEW OF WORK DONE BY PROFESSOR LEE ........................................................51 
4.2 SIMPLIFIED TRADE SCENARIO GT3........................................................................70 



 

 v  

4.3 LINEAR DOCUMENTARY PETRI NETS .....................................................................73 
4.4 SUMMARY ..............................................................................................................82 

 

CHAPTER 5 SIMULATION OF GT3 ...................................................................83 

5.1 WHAT IS SIMULATION? ..........................................................................................83 
5.2 CHOICE OF MODELLING TECHNIQUES ....................................................................86 
5.3 PROGRAMMING LANGUAGE ISSUES........................................................................91 
5.4 GT3 IN SIMSCRIPT II.5.....................................................................................100 
5.5 SUMMARY ............................................................................................................123 

 

CHAPTER 6 SUMMARY AND FUTURE WORK............................................125 

6.1 SUMMARY ............................................................................................................125 
6.2 FUTURE WORK.....................................................................................................128 

 

APPENDICES: SOURCE CODES OF GT3 IMPLEMENTATIONS                   130 

REFERENCES                                                                                                            150 



 

 vi  

LIST OF FIGURES 

Figure 2.1 Simplified Workflow of the Documentary Credit Procedure........................12 
Figure 3.1 Continuous Process Improvement Model......................................................16 
Figure 3.2 Business Process Reengineering Model ........................................................18 
Figure 3.3 Process Management Model..........................................................................19 
Figure 3.4 Heavy-Duty Stapler Purchase Process in Flowchart .....................................26 
Figure 3.5 A Message Sequence Chart...........................................................................29 
Figure 3.6 An Enrolment Process Represented by a Swimlane Diagram.......................31 
Figure 3.7 Guidelines for Actors.....................................................................................32 
Figure 3.8 Places, Transitions, and Arcs Representation in Petri Nets ...........................37 
Figure 3.9 Petri Net PN1 .................................................................................................38 
Figure 3.10 An Illustration of a Firing Rule ...................................................................40 
Figure 3.11 PN2 With Initial Marking ............................................................................40 
Figure 3.12 The State of PN2 after One Firing ...............................................................41 
Figure 3.13 The State of PN2 after Two Firings..............................................................41 
Figure 3.14 The State of PN2 after Three Firings ...........................................................41 
Figure 3.15 A Simplified Petri Net Model for Communication Protocol.......................42 
Figure 3.16 Classifications of Workflow Management Systems ....................................46 
Figure 3.17 Classifications of Workflow Management Systems ....................................47 
Figure 4.1 Contracting Procedures from Professor Lee’s Point of View .......................52 
Figure 4.2 DPN Transition Syntax (Lee, 1999)..............................................................56 
Figure 4.3 DPN Timer Event Syntax (Lee, 1999) ..........................................................56 
Figure 4.4 Example DPN for Deadline (Lee, 1999) .......................................................57 
Figure 4.5 DPN Document Place Syntax (Lee, 1999) ....................................................57 
Figure 4.6 DPN Physical Goods Syntax (Lee, 1999) .....................................................58 
Figure 4.7 DPN Example: Deontic Status Labels on Control Places (Lee, 1999)..........59 
Figure 4.8 Lee’s Methodology for Trade Scenario Design (Lee, 1999).........................60 
Figure 4.9 Use Case Diagram Design Using InterProcs.................................................61 
Figure 4.10 Sequence Diagram Design Using InterProcs...............................................62 
Figure 4.11 Activity Diagram Design Using InterProcs.................................................62 
Figure 4.12 Joint Procedure Diagram Design Using InterProcs.....................................63 
Figure 4.13 XML Schema Diagram Design Using InterProcs .......................................63 
Figure 4.14 Role Procedure Diagram Design Using InterProcs.....................................64 
Figure 4.15 Screenshot of Joint_Activity_Graph in InterProcs Executer.......................65 
Figure 4.16 Screenshot of Role Procedures in InterProcs Executer ...............................66 
Figure 4.17 Sample Snapshot of EDI Document in Dutch.............................................66 
Figure 4.18 Current Development Phase of InterProcs ..................................................67 
Figure 4.19 Final Goal of InterProcs ..............................................................................68 
Figure 4.20 GT3 -- A Simplified Trade Scenario for International Trade......................71 
Figure 4.21 GT3 in Terms of a Message Sequence Chart ..............................................72 
Figure 4.22 GT3 in Terms of a Swimlane Diagram.......................................................72 
Figure 4.23 Illustration of Actions Combining...............................................................75 
Figure 4.24 Importer Procedure Represented in Linear Documentary Petri Net............76 



 

 vii  

Figure 4.25 Exporter Procedure Represented in Linear Documentary Petri Net............77 
Figure 4.26 Transporter Procedure Represented in Linear Documentary Petri Net .......78 
Figure 4.27 GT3 Execution Demonstration Step 1.........................................................78 
Figure 4.28 GT3 Execution Demonstration Step 2.........................................................79 
Figure 4.29 GT3 Execution Demonstration Step 3.........................................................79 
Figure 4.30 GT3 Execution Demonstration Step 4.........................................................80 
Figure 4.31 GT3 Execution Demonstration Step 5.........................................................81 
Figure 4.32 GT3 Execution Demonstration Step 6.........................................................81 
Figure 4.33 GT3 Execution Demonstration Step 7.........................................................82 
Figure 5.1 Ways to Study a System................................................................................84 
Figure 5.2 Pidd’s Three Phases for Simulation Work ....................................................86 
Figure 5.3 A Deterministic vs. a Stochastic System.......................................................88 
Figure 5.4 Examples of Mapping Each Action as a Process ........................................104 
Figure 5.5 Examples of Resources Associated with some State Places .......................105 
Figure 5.6 Mapping All Actions of Each Role as a Whole Process .............................106 
Figure 5.7 Part of the Preamble in Our GT3 Implementation ......................................108 
Figure 5.8 Program Main in GT3 Simulation...............................................................110 
Figure 5.9 Part of Begin Routine in Main.....................................................................111 
Figure 5.10 Basic SIMSCRIPT II.5 Timing Routine....................................................112 
Figure 5.11 ImporterP1: Process Routine Example in GT3 Simulation.......................113 
Figure 5.12 Activation of ImporterP1...........................................................................114 
Figure 5.13 Execution of ImporterP1 ...........................................................................115 
Figure 5.14 Snapshot of GT3 Execution.......................................................................116 
Figure 5.15 GEMA Command Line for Making Changes to GT3 ...............................118 
Figure 5.16 GEMA Used to Change the Role Names in GT3......................................119 
Figure 5.17 Simple Statement Written by the User ......................................................120 
Figure 5.18 Illustration of Predefined Statement Structure ..........................................120 
Figure 5.19 Statement Structure....................................................................................120 
 



 

 viii  

LIST OF TABLES 

Table 3.1 BPM Objectives, Goals and Requirements .....................................................25 
Table 3.2 BPM Techniques and their Corresponding BPM Goals .................................35 
Table 3.3 Some Typical Interpretations of Transitions and Places.................................39 
Table 3.4 Benefits from Workflow Management ...........................................................44 
Table 5.1 Environment Variables and their Corresponding Values .............................103 
Table 5.2 Summary of Evaluations ...............................................................................122 



Chapter 1 Introduction 

 1  

Chapter 1 Introduction 

In this chapter, we discuss the main objectives and goals of our research, which is to 

build a training tool to be used in Business Process Reengineering. This tool can help 

the users to design simple trade scenarios. Also, users can modify the model, already 

built, to see the change in workflows associated with the changes made within the 

system. The organization of the thesis is given at the end of the chapter. 

1.1 Background 

Over the past decade, globalisation and the rapid advance of Information Technology 

have meant that enterprises face unprecedented changes. Against this backdrop, the 

concept of Business Process Reengineering (BPR) quickly caught the imagination of 

enterprise leaders and business process researchers. Fuelled by the continuing demand 

for enterprise transformation, there have been a lot of techniques, technologies and 

tools for conducting Business Process Reengineering projects.  

Hammer (Hammer & Stanton, 1995) defined Business Process Reengineering as:  

The fundamental rethinking and radical redesign of business 
processes to bring dramatic improvements in performance. 

According to Hammer (Hammer & Champy, 1992), business process is a set of 

activities taken together to produce a result of value to a customer. Reengineering 

business process is considered by many researchers to be a must in order to survive and 

prosper in today’s competitive world. 

International trade has received some academic attention as an application of Business 

Process Reengineering. Professor Lee (Lee, 1999) advocates a new concept called 

electronic trade scenario to bridge the gap between trading partners without previous 

trading relationships. He uses Documentary Petri Nets as a representation language for 

the electronic trade scenarios. A production-level case tool called InterProcs is 



Chapter 1 Introduction 

 2  

developed by his research team for the purpose of designing and prototyping new 

electronic trade scenarios.  

1.2 Objectives of the Thesis 

Our main objective is to develop a software tool to augment the process of Business 

Process Reengineering for international trade. With this tool, users can design a new 

trade scenario and make modifications on existing scenarios. Then, the corresponding 

workflows within that particular scenario are simulated automatically. Managers can 

experiment with this tool to help planning, decision-making, and predicting; users can 

also play with it to improve the understanding of the way the system works.    

Our preliminary objective is to experiment with some of the currently available 

techniques and technologies to make us familiar with the Business Process 

Reengineering field and answer some of our questions such as: how to represent 

international trade with a model, how this model can be implemented in a simulation 

language, etc. Our contribution is a new model to simulate the workflows within a 

particular trade scenario in international trade.    

1.3 Research Methodology 

In order to achieve our objectives, we designed a trade scenario GT3 by simplifying the 

Documentary Credit Procedure in international trade, representing it with a graphical 

representation language. This representation language is obtained by modifying 

Professor Lee’s Documentary Petri Nets. We call the resulting representation language 

Linear Documentary Petri Net which is more structured and easier to manage for the 

purpose of demonstration. 

In our first implementation, we use a special purpose simulation language called 

SIMSCRIPT II.5 to program the simulator for our preliminary objective. We start from 

mapping our GT3 model to basic elements in SIMSCRIPT II.5 language, and finally 

produce an executable GT3 application for demonstrating our GT3 model.  

In our second implementation, we use SIMSCRIPT II.5 and GEMA to program to 

achieve our main objective. We write pattern files in GEMA, which is a macro 

processor based on pattern matching. These pattern files can accept predefined structure 

statements written by user in an input file, and translate this input file into executable 



Chapter 1 Introduction 

 3  

SIMSCRIPT II.5 source code as an output file automatically. After the second 

implementation, we identify the advantages of programming in SIMSCRIPT II.5 and 

GEMA together for better understanding and efficient construction of business process 

models for international trade.   

1.4 Organization of the Thesis 

The various chapters in the thesis are organized as follows: 

Chapter 2 presents a general overview of International trade, particularly Electronic 

Data Interchange and Documentary Credit Procedure.  

Chapter 3 explores some of the currently available techniques and technologies being 

used in Business Process Reengineering projects for international trade.   

Chapter 4 discusses the previous work done by Professor Lee: Documentary Petri Net 

and InterProcs. Then, the chapter describes our new graphical representation language 

called Linear Documentary Petri Nets, a modification of Professor Lee’s Documentary 

Petri Nets. Lastly, the chapter describes a simple trade scenario GT3, and then 

represents it with Linear Documentary Petri Nets for further study. 

Chapter 5 describes how simulation is done with GT3; we start with discussion on the 

choice of simulation model and implementation language and then evaluate the 

simulator. 

Chapter 6 presents a review of the thesis, the summary and several possible areas that 

have potential for further work. 



Chapter 2 Introduction to International Trade 

 4  

Chapter 2 Introduction to International Trade 

According to Soloman (Soloman, 2000), it is widely acknowledged that enterprises that 

successfully develop an international market for their products generally increase their 

growth rate and profitability more rapidly than comparable companies trading locally. 

He also summarizes some advantages from international trade for enterprises.  

The large markets that exist overseas offer a greater opportunity for the growth of a 

company. Overall product quality tends to be improved so as to satisfy the demands of 

the international marketplace. This also can have the effect of increasing domestic 

sales. Management abilities have improved with the need to understand and work 

within the international competition. 

The need to come to terms with other cultures, marketing techniques and negotiating 

strategies can lead to the development of new skills and the refinement of existing ones. 

Also the increase in sales volume generated by international orders creates employment 

and job opportunities. 

In this chapter, we first of all introduce the development of documentary process in 

international trade. Then we discuss the advantages of Electronic Document 

Interchange (EDI) over traditional or manual handling of paper business documents in 

international trade.  Proliferation of EDI, as a fundamental infrastructure greatly enables 

the development of information technology and international trade. After that we 

introduce Documentary Credit Procedure. Finally, we summarize the chapter. 

2.1 International Trade 

Two centuries ago, the international trade community preferred the bills of lading as the 

documentary process to conduct the carriage of goods by sea between the parties 

involved. According to Kindred (Kindred, 1988), great changes have taken place in 

ocean transportation in the past fifty years; the shipping industry today operates in a 



Chapter 2 Introduction to International Trade 

 5  

more reliable and efficient way due to the technological innovations. This greatly 

accelerates the cargo shipments.  

An example given by Kindred (Kindred, 1988) shows that a container of goods is likely 

to reach the discharging port before its airmailed bill of lading on the North Atlantic 

route between Canada and Europe. So the carrier and the cargo owner are put to extra 

cost and delay waiting for the bill of lading. New forms of shipping contracts are 

needed to replace the increasingly inconvenient bill of lading. 

In the 1970s, there were some documentary improvements; one of them is the 

documentary standardization. A big change in documentary design has been achieved 

by the creation of look-alike forms for common trade and shipping functions that are 

suitable for use anywhere in the world.  

The number of documents and forms associated with each sale and movement of goods 

has been reduced sharply, so the international trade procedure is simplified. For 

instance, if a shipment of goods required thirty different forms, this shipment could be 

moved and controlled with only eight revised documents. However, Kindred (Kindred, 

1988) thought that the most important documentary innovation for maritime 

transportation is the sea waybills.  

What Kindred (Kindred, 1988) identifies as one of the unique features of the bill of 

lading is that, since it is the document of title to goods, it must be surrendered against 

delivery. The sea waybills looks like a blank-back bill of lading and acts similarly as a 

receipt for the goods and as a contract for their carriage, but it can’t be negotiated as a 

document of title.  

There is no need to present a sea waybill at destination in order to receive the goods. 

The customer has only to identify himself to the satisfaction of the carrier as the party, 

or his agent, named in the waybill in order to have the cargo released to him. In this 

way, no document is required at destination at all. Hence the use of sea waybills in 

place of bills of lading can expedite the delivery of goods by sea to the benefit of carrier 

and cargo owner as well.  

From the 1980s, the new conditions of world trade have encouraged the shipping 

industry once more to develop novel shipping procedures, one of which is the 



Chapter 2 Introduction to International Trade 

 6  

application of electronic data processing. It moves its fundamental premises from 

paper-based concepts represented by the ocean bill of lading into the modern electronic 

format. Thus the same information that would be contained in a bill of lading may in 

principle be expressed in electronic information and may be accessed by any authorized 

user with a connected and compatible terminal.  

In this section, we introduced a bit of history on international trade, especially on the 

document improvement. Starting from 1980s, thanks to electronic data processing, 

international trade has evolved from paper-based format represented by the bill of 

lading to the modern electronic format. This leads the international trade into a new era. 

In the next section we will discuss Electronic Data Interchange.  

2.2 Electronic Data Interchange 

Although electronic commerce has been a subject of much media attention in recent 

years, the phenomenon is not new. Electronic Data Interchange (EDI) and Electronic 

Funds Transfer (EFT) associated with a monetary transaction has been around for a 

long time, like transferring salaries to employees’ bank accounts and regular business 

partners making electronic commerce a routine part of daily business (Hoffman & 

Novak, 1997).  

It is the transaction of business over the Internet that has attracted most attention, 

particular the e-tail version of e-commerce, because it opens up new channels for 

marketing and distribution. New business models have become possible with apparently 

low entry barriers (Delargy, 2001). 

According to Sokol (Sokol, 1995), Electronic Data Interchange (EDI) is a method 

involving the exchange of transaction data between business partners in a standardized 

electronic format. Before Electronic Data Interchange became widely accepted, 

transactional data among businesses were represented in a variety of ways.  

The EDI format evolved over time within the company, and became embedded within 

the old legacy systems and file processing techniques of the past. Alternatively, the 

company may have used any kind of software that provided its own internal methods of 

handling data. Regardless, there was little consistency in the way transactions between 



Chapter 2 Introduction to International Trade 

 7  

trading partners were represented; each partner had to input data and handle their side 

of the transaction processing procedure separately. 

This situation was considered by Sokol (Sokol, 1995) as a major bottleneck in 

maintaining trading relationships. Although data concerning the transaction was shared 

among the partners, re-entry and independent processing was required at each end. 

Electronic Data Interchange was created to eliminate such inefficiencies by establishing 

standards for the formatting of data concerning joint transactions. When such standards 

are employed by all trading partners, many shared processing activities can be 

facilitated.  

Standard EDI documents are transferred between trading partners, and then 

automatically fed into the transaction processing systems. In some instances, the entire 

transaction, from initiation through to the final delivery of the goods or services, can be 

totally automated. In other situations, some human intervention is required to invoke 

manual procedures required to complete the transaction, but the standardized data 

format greatly improves the overall efficiency and quality of the process.  

Among the most widely recognized advantage of Electronic Data Interchange is the 

speed in which transactions can be processed. This has furthered capabilities of 

organizations to adopt just-in-time logistics. Another value of Electronic Data 

Interchange is due to the ability to integrate the transaction handling processes with 

other computer based systems in the enterprise. This has reduced errors due to manual 

processing and provided better security. Finally, as a result of overall increase in 

efficiency, Electronic Data Interchange has provided cost savings. 

The most important development in Electronic Data Interchange to dates regarded by 

Sophim (Sophim, 2001) is the creation of EDIFACT. In the mid-1970’s, several 

Electronic Data Interchange standards began emerging in a number of countries led to 

the development of national standards. It became clear that if the Electronic Data 

Interchange standardization efforts were to meet the requirements of the international 

trade community, an Electronic Data Interchange standard for international trade was 

needed.  

By the mid-1980’s, the development of an international standard began taking shape 

within the United Nations. The standard is known today under the acronym 



Chapter 2 Introduction to International Trade 

 8  

UN/EDIFACT, in full: United Nations Electronic Data Interchange for Administration, 

Commerce and Transport. In 1987, the syntax of UN/EDIFACT was approved as ISO 

Standard 9735.  

The purpose is to develop recommendations and standards such as UN/EDIFACT to 

facilitate international trade. Over 50 countries and many international organizations, 

such as the European Commission, International Chamber of Commerce, and EAN 

International, are represented in UN/CEFACT. EDIFACT is now generally accepted as 

the international EDI standard that will be adopted by organizations that wish to trade 

on a global context.  

Electronic Data Interchange standards for documents, software and network interfaces 

have eliminated the need for multiple proprietary solutions to handle data exchange 

between international trade partners. The global EDI user community defines the public 

standard for electronic business transactions, and they also establish open systems 

communications recommendations to be used with those standards.  

An EDI system is based on three architectural elements as described by Sophim 

(Sophim, 2001):  

• EDI Provider  

• Application Software: in which the business information is created and used. 

Example is: order entry and accounts payable systems. For most of the 

companies, this application software is already in use. 

• Translation Software: this is required to convert internal representation of data 

to and from the standard formats used in Electronic Data Interchange. This is 

usually supplied by the EDI provider in a package when subscribed. Such 

packages can be based on many types of equipment, from PCs to mainframes.  

There is a great deal of flexibility in the way Electronic Data Interchange can be 

implemented. In the past, it has been relatively common for telecommunications 

companies to offer electronic mail facilities based on the OSI X.400 protocols. An 

X.400 email service had been used as a carrier for EDI messages for a long time.  



Chapter 2 Introduction to International Trade 

 9  

According to Sophim (Sophim, 2001), EDI users can establish a leased line or dial-in 

link to the provider. The provider implements a “mail box” where EDI messages are 

lodged to wait for delivery to the recipient. There is obviously a problem where trading 

partners are connected to a different EDI service. EDI users have to subscribe to more 

than one provider. 

Entrepreneurs are able to start new businesses more easily by accessing the World Wide 

Web. Engineers, product developers, and managers thousands of miles apart can 

collaborate to design and manufacture new products more efficiently; businesses can 

work more efficiently with their suppliers and customers. Consumers have greater 

choice and can shop in their homes for a wide variety of products from manufacturers 

and retailers all over the world, and they will be able to view these products, access 

information about the products, and order and pay for their choices, all from their home 

computers.  

On legal issues arising in the use of Electronic Data Interchange, Kindred (Kindred, 

1988) points out that it takes a great many years for the law to recognize the merits of 

new documentary systems and to give full endorsement to their use. The law had 

radically to revise how it treated dealings in goods in international trade. These 

electronic communications have made possible the transmission of trade and transport 

data without documents. It is to be hoped that the law can meet the challenge of the new 

shipping and trading environment. Particularly necessary is a legislative audit, country 

by country, with respect to the use of electronic documents. There are some positive 

signs that the law can be adapted, but greater and quicker reforms are necessary to 

complement the pace of change within the system of international trade.  

Professor Lee (Lee, 1999) points out that although Electronic Commerce provided us a 

great advantage, many businesses and consumers are still wary of conducting extensive 

business over the Internet because of the lack of a predictable legal environment 

governing transactions. This is particularly true for international commercial activity 

where concerns about intellectual property protection, privacy, security, and other 

matters have caused businesses and consumers to be cautious.  

Electronic Data Interchange is a way of business life, which is based on the principle of 

trust and contractual obligations. As Kindred (Kindred, 1988) points out, Electronic 



Chapter 2 Introduction to International Trade 

 10  

Data Interchange cannot be introduced in a significant way unless we have a complete 

overhaul of a working system, methods and procedures. Above all unless the Laws/Acts 

governing business are amended to recognize EDI transactions, full-fledged EDI is not 

possible.  

Once EDI transactions are recognized by Laws and Evidence act, and are provided for 

fast settlement of disputes, it should be possible to do away with requirements for paper 

documentations. That means there would be no necessity to submit invoices, packing 

list, etc in paper. Records need only be kept at the offices of Importers, Exporters for a 

minimum period of time for verification by concerned authorities in case needed.  

In this section, we discussed Electronic Data Interchange. EDI is an automated method 

of placing electronic transactions. It reduces and simplifies paper based trading, 

advances the use of information technology throughout the trading cycle and develops 

and promotes paperless trading. The transactions involve transmitting standardized 

messages among trading partners.  

Electronic Data Interchange has significant advantages over traditional or manual 

handling of paper business documents. EDI document processing occurs in seconds 

rather than the days or weeks it takes for manual processing. EDI is both faster and 

more accurate than manual processing, so the cost for administration and error 

correction drops significantly. Therefore, EDI users realize dramatic monetary and 

efficiency savings. In the next section we will discuss Documentary Credit Procedure. 

2.3 Documentary Credit Procedure 

Parties intending to conduct electronic commerce have to know about one another’s 

“way of doing business” before they can begin exchange data electronically. 

Knowledge about each partner’s preferred way of doing business must be conveyed to 

the other partner before the trade procedure. Otherwise, some misunderstanding will 

occur. An example of the battle of the forms is given by Professor Lee (Lee, 1999) 

below.  

Consider only a simple post payment contract for goods. The buyer assumes that an 

invoice will be sent after delivery to trigger the payment obligation. The seller, on the 

other hand, abides by the practice that payment becomes due at the time of delivery, 



Chapter 2 Introduction to International Trade 

 11  

and does not send an invoice. Thus, the goods arrive, but the buyer, waiting for an 

invoice, does not pay. The irked seller initiates collection proceedings.  

Each party uses standardized documents such as purchase order, delivery agreement, 

etc. This indicates, typically on the backside in small print, the terms and conditions 

that are their style of doing business. Unfortunately the fine print is often ignored by the 

receiving party. 

Documentary Credit Procedures were introduced to solve the problem we mentioned 

earlier: lack of trust and misunderstanding among trading partners in international trade. 

When partners don’t know whether they can trust one another or not, the risks for both 

buyer and seller are very high. For example, the buyer may pay for the goods without 

being sure of receiving them; the seller may deliver the goods without being sure of 

receiving the payment.  

For trade in a well-established industry area, standardized practice is generally accepted 

and there is usually no problem. These problems most probably happen in international 

trade, since a common legal and banking system exists only for trade conducted within 

the same country. In a Documentary Credit Procedure, the buyer and seller’s bank take 

over the risks for them, so the buyer and seller rely on a trusted relationship between 

their banks. 

Commonly, payments in international sales contracts are executed by Documentary 

Credits Procedure, subject to rules set forth in the Uniform Customs and Practice for 

Documentary Credits. In such transactions payment for the goods is made not on the 

delivery of the goods themselves but on the presentation of stipulated documents, which 

may include a commercial invoice, an insurance certificate, a certificate of origin and a 

transport document. The seller receives payment by presenting the stipulated documents 

to the bank that the buyer has instructed to make payment. 

Here we presented a schematic of workflow in Documentary Credit Procedure in 

international trade shown in Figure 2.1. We redraw this figure from (Sophim, 2001). 

The numbers in the boxes correspond to the following stages of data interchange; the 

terms within the bracket are corresponding EDIFACT standardized messages. 

 



Chapter 2 Introduction to International Trade 

 12  

 

Figure 2.1 Simplified Workflow of the Documentary Credit Procedure. 

1. Seller sends a price catalogue to buyer (PRICAT). 

2. Buyer sends an order to seller (ORDER). 

3. Seller sends an invoice to buyer (INVOIC). 

4. Buyer sends a letter of credit request to issuing bank (DOCAPP). 

5. Issuing bank sends a letter of credit to corresponding bank (DOCADV). 

6. Corresponding bank sends a letter of credit to seller (DOCADV). 

7. Carrier sends a bill of lading to seller (IFTMAN). 

8. Seller sends a bill of lading to corresponding bank (IFTMAN). 

9. Corresponding bank sends a credit advice to seller (CREADV). 

10. Corresponding bank sends a bill of lading to issuing bank (IFTMAN). 

11. Issuing bank does payment to corresponding bank (FINPAY). 

12. Issuing bank sends a bill of lading to buyer (IFTMAN). 

13. Buyer sends a payment order to issuing bank (PAYORD). 

14. Issuing bank sends debit advice to buyer (DEBADV).  

2.4 Summary 

From the paper-based bill of lading to the modern electronic-formatted standardized 

UN/EDIFACT message, international trade has changed greatly during the past several 

decades. Electronic Data Interchange is a means of paperless trading and was a natural 



Chapter 2 Introduction to International Trade 

 13  

evolution from paper documents as data carriers, to computer and telecommunication 

systems as automatic carriers and processors of data.  

In traditional business processes, such as ordering and invoicing, paper documents 

contain structured information in various boxes.  In Electronic Data Interchange, this 

information is mapped into a structured electronic message.  In operation, Electronic 

Data Interchange is the interchange of these agreed messages between trading partners 

to ensure speed and certainty and better business practice in the supply chain. 

Sophim (Sophim, 2001) states that standards are of the utmost importance to EDI.  

Without pre-defined agreed standards EDI is of little value. By using standard 

messages, organizations can exchange information between many different trading 

partners and be sure of common understanding. 

Documentary Credit Procedure has been developed as a compromise between the 

seller’s need for the security of ownership of the goods and speed of payment, and the 

buyer’s need for speed of transit but the longest period for payment. The international 

banking system and the Documentary Credit Procedure thus provide both with security 

that they need. 

Since the Documentary Credit Procedure affords buyer and seller equal protection it has 

evolved as the method preferred for first-time dealings when buyer and seller are 

unknown to each other. The seller is unsure of the buyer’s ability, or intention, to make 

payment while the buyer is unsure that the seller will deliver the correct goods in a 

timely fashion. 



Chapter 3 Business Process Reengineering 

 14  

Chapter 3 Business Process Reengineering 

Over the past decade, firms have faced unprecedented change: globalisation, political 

realignments, and the rapid advance of Information Technology. Against this backdrop, 

the concept of Business Process Improvement quickly caught the imagination of 

corporate leaders. Early success stories pushed Information System executives to take 

an active role in Business Process Improvement projects. In this chapter, we introduce 

the concept of Business Process Improvement, also techniques and technology being 

used in Business Process Reengineering. 

3.1 Business Process 

If you have ever waited in a queue in a grocery store for a long time, you can appreciate 

the need for process improvement. In this case, process refers to the checkout process, 

and the purpose of the process is to pay for and pack your groceries. The process begins 

with you stepping into line, and ends with you receiving your receipt and leaving the 

store. You are the customer, and the store is the supplier.  

In this example, what we have described is to be considered a business process. The 

steps involved in this process are the activities that you and the store personnel do to 

complete the transaction. We can imagine other business processes: ordering clothes 

from mail order companies, requesting new telephone service from Telecom, etc.  

There is no clear and agreed definition of a business process available in the literature. 

Business process is defined by Hammer (Hammer & Champy, 1992) as:  

A set of activities that, taken together, produces a result of value to a 
customer.  

According to Davenport (Davenport, 1993), business process is: 

An ordering of work activities across and place, with a beginning, and 
an end, and clearly identified inputs and outputs.  



Chapter 3 Business Process Reengineering 

 15  

Earl (Earl, 1994) defines business process as: 

A lateral or horizontal form, which encapsulates the interdependence 
of tasks, roles, people, departments and functions required to provide 
a customer with a product or service.   

On the other hand, Saxena’s (Saxena, 1996) definition of business process is:  

A set of inter-related work activities characterized by specific inputs 
and value added tasks that produce specific outputs.  

There is no consensus amongst the authors on defining the business process. From the 

above, we can identify some common elements in the majority of those definitions.  

As Hlupic (Hlupic & Robinson, 1998) states, these elements relate to the process itself, 

which is usually described as transformation of input, or a set of activities; process 

input; and process output which is usually related to creating value for a customer, or 

achieving a specific goal.  

To remain competitive in today's global economy, companies are being forced to re-

evaluate the way they do business with their customers and their vendors. At the same 

time, there is a growing emphasis on flexibility, in being able to respond quickly to 

changes in consumer preference and demand.  

Besides those two factors mentioned above, the necessity of delivering high quality 

products to gain and maintain customer loyalty and the necessity of rigidly controlling 

and reducing costs, define the challenge of business facing by enterprises in the future. 

In the next section we will introduce the models of Business Process Improvement to 

get an idea on how business process can be improved. 

3.2 Models for Business Process Improvement 

Over the last 10 to 15 years, companies have been forced to improve their business 

processes because customers are demanding better products and services. If the 

customers cannot receive what they want from one supplier, they have many other 

suppliers to choose from.  



Chapter 3 Business Process Reengineering 

 16  

3.2.1 Continuous Process Improvement (CPI) 

Many companies began Business Process Improvement with a continuous improvement 

model. Kaizen (Sharp & McDermott, 2001) is the concept of Continuous Process 

Improvement in Japan. Continuous improvement is also called total quality 

management (TQM) by Sharp et al (Sharp & McDermott, 2001). In this thesis, we will 

use Continuous Process Improvement instead of Kaizen or TQM to preserve 

consistency. The central principle of Continuous Process Improvement is that business 

processes need to be improved continuously to keep a quality product in production.  

Continuous Process Improvement (CPI) as shown in Figure 3.1, starts by understanding 

and measuring the current process, and then makes performance improvements 

accordingly. This model begins by documenting what the current process, measures the 

process based on what customers want, executes the process, measures the results, 

identifies improvement opportunities based on the data being collected, implements the 

process improvements, and measures the performance of the new process.  

This loop repeats over and over again, and is called Continuous Process Improvement. 

Figure3.1 illustrates the basic steps in Continuous Process Improvement. We adapt this 

figure from (Hiatt, 2001) and redraw it. 

 

Figure 3.1 Continuous Process Improvement Model. 

Continuous Process Improvement for improving business processes is effective to 

obtain gradual, incremental improvement. However, over the last decade several factors 

have accelerated the need to improve business processes. New technologies are rapidly 

bringing new capabilities to businesses. So business processes can be improved 

dramatically.  Another apparent trend is the opening of world markets and increased 

free trade. Such changes bring more companies into the marketplace, and competing 

becomes harder and harder.  



Chapter 3 Business Process Reengineering 

 17  

As a result, companies have required methods for faster Business Process Improvement. 

Moreover, companies want breakthrough performance changes, not just incremental 

changes. Because the rate of change has increased for everyone, few businesses can 

afford a slow change process. One approach for rapid change and dramatic 

improvement that has emerged is Business Process Reengineering (BPR). This will be 

introduced in the next part of this section.  

3.2.2 Business Process Reengineering 

According to Davenport (Davenport & Short, 1990), Business Process Reengineering 

is:  

The analysis and design of workflows and processes within and 
between organizations.  

Teng et al (Teng, Jeong, Kettinger, & Grover, 1995) define Business Process 

Reengineering as:  

The critical analysis and radical redesign of existing business 
processes to achieve breakthrough improvements in performance 
measures.  

Hammer  (Hammer & Stanton, 1995) defined Business Process Reengineering as:  

The fundamental rethinking and radical redesign of business 
processes to bring dramatic improvements in performance. 

Hammer also gave detailed explanations of the four key words in his definition: 

dramatic, radical, process and redesign. We summarize his explanations below. 

With the concept of “dramatic” improvement, Business Process Reengineering is not 

used to make marginal improvements, such as making the current process 5 percent or 

10 percent better. It is used to make “quantum leaps in performance, achieving 

breakthroughs.” Improvements, such as cost reduction or speed increases, can be 

measured on the intention of the organizations. 

The second key word is “radical” which means going to the root of things. Business 

Process Reengineering is not about improving what already exists; instead, it is about 

starting from the beginning and reinventing the business process.  



Chapter 3 Business Process Reengineering 

 18  

The third key word in the definition is “process”. Hammer regarded a process a group 

of related tasks that together create value for a customer. An example given by Hammer 

(Hammer & Champy, 1992) is shown as follows:   

Order fulfilment is a process, comprising a series of tasks: receiving 
the order, entering into a computer, checking the customer's credit, 
allocating inventory from stock, picking the inventory out of the 
warehouse, packing it into a box, loading the box into the truck and so 
on.  

For the customer, the only concern is the end result -- the delivered goods that is created 

by the sum of all these related activities, not each separate activity. So the processes are 

at the very heart of every enterprise. They are the means by which companies create 

value for their customers. 

The fourth key word in Hammer’s definition is “redesign”. Business Process 

Reengineering is about the design of how work is done. Usually when we think of 

design, it is applied to products. But here, when talking about reengineering, it is based 

on the premise that the design of processes is of essential importance. Maybe the 

employees are smart and capable, well trained, highly motivated, but if the work they 

are doing is poorly designed, it will not be well executed. The starting point for 

organizational success is well-designed processes. 

Business Process Reengineering assumes the current process is irrelevant and starts 

over. Such a perspective enables the designers to separate themselves from the current 

process, and focus on a brand new process. Business Process Reengineering is 

illustrated by Figure 3.2. We redraw this figure from (Hiatt, 2001). 

 

Figure 3.2 Business Process Reengineering Model. 

Figure 3.2 shows Business Process Reengineering begins with defining the scope and 

objectives of the reengineering project, then going through a learning process. We can 

learn from customers, employees, competitors, and make full use of new technology. 



Chapter 3 Business Process Reengineering 

 19  

Given this knowledge base, a vision for the future can be created and new business 

processes could be designed. It is then a matter of implementing the resulting solution. 

The difference between Continuous Process Improvement (CPI) and Business Process 

Reengineering (BPR) lies in where it starts, that is, whether it starts with current 

process or with a clean slate; and also with the magnitude and rate of resulting changes.  

When BPR first emerged, there was a certain tension between Business Process 

Reengineering and Continuous Process Improvement communities. Reengineers 

wondered why their CPI counterparts were improving processes that ought to have been 

thrown away. And those CPI engineers found the reengineers to be rushed and ruinous.  

3.2.3 Process Management 

Over the last few years, the concept of Business Process Reengineering and Continuous 

Process Improvement has emerged. Now Business Process Reengineering and 

Continuous Process Improvement have been combined under the milder term Process 

Management. Sharp et al (Sharp & McDermott, 2001) explain their Process 

Management model using Figure 3.3. We redraw this figure from (Sharp & McDermott, 

2001). 

This emerging effort attempts to address the difficulties of implementing major change 

in enterprises. It makes Business Process Reengineering a broader, yet more 

comprehensive process management concept (Davenport & Stoddard, 1994).  

 

Figure 3.3 Process Management Model. 

Process Management starts with identifying the processes understudy, then measures 

the process based on what customers want. According to the assessing results, decision 

can be made on whether to improve or redesign the process. Then implementation can 



Chapter 3 Business Process Reengineering 

 20  

be done after that. The most important character of this Process Management is that 

there is a loop in the Process Management. The performance of the business process 

can be improved by repeating those steps: assessing, improving or redesigning, and 

implementing. These steps are shown in Figure 3.3. 

Sharp et al (Sharp & McDermott, 2001) state that it is very difficult to find whether 

Business Process Reengineering or Continuous Process Improvement can exactly match 

the particular requirements of a company. The challenges are to know what method to 

use, when, and how to make it successful.  

In this section we introduced the concept of business process and Business Process 

Improvement. According to Hammer (Hammer & Champy, 1992), business process is a 

set of activities that produces a result of value to a customer. Due to the globalisation 

and rapid advance of information technology, Business Processes Improvement are 

demanded by many companies in order to provide better products and services for 

customers. 

There are three models in Business Processes Improvement, Continuous Process 

Improvement (CPI), Business Process Reengineering (BPR), and Process Management.  

Hammer defines (Hammer & Champy, 1992) Business Process Reengineering as the 

fundamental rethinking and radical redesign of business processes so as to improve the 

performance dramatically. Continuous Process Improvement improves business process 

performance by gradual, incremental improvement. Process Management is the 

combination of the previous two models.  

The radical redesign characteristics can make dramatically improvement and achieve 

breakthroughs in business process performance, so we concentrate on Business Process 

Reengineering in later discussion in the rest of the thesis.  

A lot of leading organizations have conducted Business Process Reengineering for 

improving productivity and gaining competitive advantage. But unfortunately, a survey 

by Hammer and Champy (Hammer & Champy, 1993) suggest that the failure rate can 

be as high as 70%. The figure is supported by a number of consulting studies both in 

North America and Europe.  



Chapter 3 Business Process Reengineering 

 21  

Due to the high failure rate in many real-life business change projects, Business Process 

Reengineering success factors have become an important area of study. In the next 

section we will briefly discuss some of the success factors with Business Process 

Reengineering.  

3.3 Success Factors for Business Process Reengineering  

A survey by Jackson (Jackson, 1996) in 1996 shows that during the past few years 180 

US and 100 European companies found that 75% of these companies had engaged in 

significant reengineering efforts. Over a 24-month period, a benchmarking study (Hiatt, 

2001) was made with more than 150 companies. The resulting success factors that can 

lead to successful outcomes for Business Process Reengineering projects from this 

benchmarking study are: Top Management Sponsorship, Strategic Alignment, 

Compelling Business Case for Change, Proven Methodology, Effective Change 

Management, Line Ownership, Reengineering Team Composition.  

After carefully examining these seven factors, we found that nearly all of them are 

related to human resources management; only Proven Methodology is related to 

technical side. When we say “technical side”, we mean the application of engineering 

principles in business process design and analysis.  

Hlupic (Hlupic & Robinson, 1998) states that some of the frequently mentioned 

problems related to Business Process Reengineering include the inability to accurately 

predict the outcome of radical change, difficulty in capturing existing processes in a 

structured way, shortage of creativity in process redesign, the level of costs incurred by 

implementing the new process, or inability to recognize the dynamic nature of the 

processes.   

Kettinger et al (Kettinger, Teng, & Guha, 1997) point out that the lack of a 

comprehensive, scientifically grounded design methodology to structure, guide, and 

improve organizational design efforts results in the high failure rate in Business Process 

Reengineering projects. 

Meel and Sol (Meel & Sol, 1996) advocate the development of computer-based models 

of business process as a crucial mechanism to support the process of experimentation 



Chapter 3 Business Process Reengineering 

 22  

with alternative business structure so as to decrease the failure rate in Business Process 

Reengineering projects. 

From the above discussion we can see that to make a Business Process Reengineering 

project successful, we need to put efforts on both human resource management side and 

technical side as well. In this thesis, we will focus on the technical side of Business 

Process Reengineering. 

As we have discussed before, there are three models for Business Process 

Improvement. They are Continuous Process Improvement, Business Process 

Reengineering, and Process Management. Although each model in Business Process 

Improvement differs in the scope and range of the anticipated changes in business 

process and the business context in which they can be used, however they all have in 

common that they require businesses to model the ways in which they currently 

operate, to identify opportunities for change, and to design and implement alternative 

ways of carrying out business processes. 

In the view of the above, Business Process Modelling (BPM) has recently received 

widespread attention and has been acknowledged as an integral part of any change 

management project according to Swami (Swami, 1995).   

Willcocks et al (Willcocks & Smith, 1995) and Galliers (Galliers, 1993) also state that 

businesses and business processes are sufficiently complex systems and therefore 

carefully developed models are necessary to understand their behaviour in order to be 

able to design new systems or improve the operation of existing ones. In the next 

section, we will discuss the techniques for Business Process Modelling.  

3.4 Techniques for Modelling Business Process 

3.4.1 Business Process Reengineering and Information System 

The role of Information Technology as an agent for organizational change has been 

heavily emphasized in the literature. Information System (IS) has usually become the 

major vehicle on which business change relies. Indeed, the idea of aligning the design 

of organizational processes with the associated Information Technology infrastructure 

has been one of the major driving forces for the development of change management 

paradigms like Business Process Reengineering (Davenport, 1993). 



Chapter 3 Business Process Reengineering 

 23  

Reengineering a business process is a very important and crucial task in order to step 

from the old-fashioned Information Systems to a new generation of Information 

Systems. Such new systems integrate large amount of information services, which are 

distributed over a wide computer network and support cooperation and collaboration 

among them. They are able to integrate legacy and new system components, and are 

customized, and reflect the high dynamics of today’s business process.  

Davenport and Short (Davenport & Short, 1990) argue that Business Process 

Reengineering requires taking a broader view of both Information Technology and 

business activity, and of the relationships between them. Information Technology 

should be viewed as more than an automating or mechanizing force: to fundamentally 

reshape the way business is done.  

Curtis et al (Curtis et al., 1992) indicate that the traditional modelling of Information 

Systems has focused on analysing data flows and transformations. This kind of 

modelling accounted only for the organization’s data and that portion of its processes 

that interacted with data.  

Newer uses of Information Technology extend computer use beyond transaction 

processing into communication and coordination. Successfully integrating these 

systems into the enterprise often requires modelling even the manual organizational 

processes into which these systems intervene.   

3.4.2 Business Process Modelling Objectives, Goals and Requirements 

Warren (Warren, 1996) states that the close attention being paid to business change 

management paradigms, such as Business Process Reengineering has created a market 

for process modelling techniques. Business Process Modelling has emerged as an 

important research and application area within organizational or inter-organizational 

design.  

Business process models can be used to serve a wide number of applications, for 

example, to drive a strategic organizational analysis, to drive requirements and 

specifications for Information Systems design, or to support automated execution of 

process. 



Chapter 3 Business Process Reengineering 

 24  

Business Process Reengineering is one of the applications that share a growing 

requirement to represent the processes through which work is accomplished. Process 

representation becomes a vital issue in redesigning work and allocating responsibilities 

between human and computers. 

Curtis et al (Curtis et al., 1992) identify some basic uses for process models among a 

wide arrange of process modelling objectives. They are ranging from understanding 

aids to automated execution support of process modelling. These objects are: Facilitate 

human understanding and communication, Support process improvement, Support 

process management, and Automate execution support. 

The goals and objectives of a particular study impact the use of the model, therefore 

influence the requirements posed on the process representation model. As a result, the 

context and objectives of a particular study make some Business Process Reengineering 

methods more suitable than others. The design or choice of a particular process 

modelling method needs to be chosen according to the intended use of the model.  

Curtis’ idea on the different Business Process Modelling goals and the typical Business 

Process Modelling requirements can be illustrated in Table 3.1. For example, in order to 

facilitate human understanding and communication on the business process under 

study, a model of the business process should be complete, that is, including all related 

parts of the interested process; the modelling should be comprehensive for better 

understanding of its users without much specific knowledge; and the model should be 

easy for the users to communicate with each other.  

To support process improvement, Business Process Modelling should provide the 

ability to measure the performance of the system and to compare the performance of 

current system with that of other similar systems to support decision-making, etc.    

3.4.3 Business Process Modelling Techniques 

To satisfy the requirements of all possible users, a process model should be able to 

integrate and represent many forms of information. Because of that many requirements 

talked above, to set up successful process models would be quite difficult and could be 

result in very complex models, which could be very hard to use due to the complexity.  



Chapter 3 Business Process Reengineering 

 25  

To deal with this complexity problem, a wide variety of process modelling techniques 

and approaches has been proposed. Almost all of these techniques are targeted to a 

limited subset of organizational modelling projects. They can provide constructs 

suitable for satisfying the requirements associated with only particular modelling goals 

as we discussed above. In this section we will give a brief overview of some of these 

techniques. 

Curtis et al (Curtis et al., 1992) give a definition on model and state the purpose of the 

model as follows: 

An abstract representation of reality that excludes much of the 
world’s infinite details. The purpose of a model is to reduce the 
complexity of understanding or interacting with a phenomenon by 
eliminating the detail that does not influence its relevant behaviour. 
Therefore, a model reveals what its creator believes is important in 
understanding or predicting the phenomena modelled… 

 

Process Modelling Objectives and Goals Business Process Modelling Requirements 

Facilitate Human Understanding and 
Communication 

Comprehensibility 

Communicability 

Completeness 

Support Process Improvement Measurability 

Comparability 

Decision Support 

Component Identification 

Support Process Management Forecasting Support 

Monitoring and Co-ordination Support 

Automated Execution Support Co-operative Work Support 

Automated Performance Measurement Support 

Process Integrity Check Support 

Table 3.1 BPM Objectives, Goals and Requirements. 

• Flowchart 

A Flowchart is a formalized graphic representation of a program logic sequence, work 

or manufacturing process, organization chart, or similar formalized structure (Whatis, 

2001).  



Chapter 3 Business Process Reengineering 

 26  

In computer programming, flowcharts were formerly used to describe 
each processing path in a program (the main program and various 
subroutines that could be branched to). Programmers were 
admonished to always flowchart their logic rather than carry it in their 
heads. With the advent of object-oriented programming and visual 
development tools, the traditional program flowchart is much less 
frequently seen. However, there are new flowcharts that can be used 
for the data or class modelling that is used in object-oriented 
programming.  

Traditional program flowcharting involves the use of simple geometric symbols to 

represent the beginning or end of a program, a process, a decision, or an I/O process. 

Here we use an example, to buy a heavy-duty stapler for the office in a University, to 

illustrate how a flowchart works as a process modelling techniques.  

First of all a requisition form must be filled out by the faculty member who wants to 

buy this stapler. Secondly, department head’s signature must be acquired to keep on 

with this process. Thirdly, the completed form must be sent to the Business Office. If 

funds are available for this purchase, the Business Office can make a purchase order to 

the vender. Finally the faculty member just needs to wait for the heavy-duty stapler to 

show up. This process model in Flowchart is illustrated in Figure 3.4. 

 

Figure 3.4 Heavy-Duty Stapler Purchase Process in Flowchart. 



Chapter 3 Business Process Reengineering 

 27  

Meanwhile the Business Office is engaged in other series of steps such as checking for 

funds available, preparing the purchase order and placing the order. The supplier, in 

shipping the stapler, and the transporter, in delivering it, also engage in processes. If the 

stapler does not show up, something goes wrong in one of the processes. To find the 

lost stapler, we need to go back and check each step of the processes to identify where 

the stapler got lost. 

Flowcharts provide a visual picture of a process. It is obvious and easy for people to 

understand the process being modelled. People can identify each step to be taken and 

each decision to be made. By working on a flowchart together, all the team members 

develop a shared understanding of the process and problems within the process.  

Flowchart sounds like a simple task; however constructing Flowcharts accurately may 

take much more time than anticipated. Processes usually end up being more 

complicated than at first suspected (Kettinger, Teng, & Guha, 1997).   

• Scenario Analysis 

Clemons (Clemons, 1995) advocates the use of Scenario Analysis to manage the 

strategic risks associated with Business Process Reengineering. Scenario Analysis 

acknowledges the fact that the future is uncertain. The future discontinuities mean that 

companies cannot base their future strategies on the existing situation.  

Instead, a range of potential futures should be identified and appropriate actions should 

be planned so that the company knows what operations to implement within each 

possible future.  

However this scenario analysis is more or less a conceptual approach to Business 

Process Modelling instead of a representational modelling technique. No specifying 

process models are given by the author. 

• System Dynamics 

System Dynamics (SDS, 2001) is a methodology for studying and managing complex 

feedback systems, such as one finds in business and other social systems. Feedback 

refers to the situation of X affecting Y and Y in turn affecting X perhaps through a 

chain of causes and effects. In a system with feedback, we cannot study the link 



Chapter 3 Business Process Reengineering 

 28  

between X and Y, and the link between Y and X independently to predict how the 

system will behave. Only the study of the whole system will lead to correct results.   

• Knowledge-based Techniques 

Compatangelo et al (Compatangelo & Rumolo, 1997) take a different approach and 

advocate the use of Knowledge-based techniques, with emphasis on automated 

reasoning, to address enterprise modelling at the conceptual level.  

The authors indicated that knowledge based representation of enterprise models may be 

a valid mechanism for representing knowledge and deductive argumentation about 

business systems. Disadvantages of this approach are also obvious.  

Knowledge-based techniques can represent only a partial view of an organizational 

system and existing tools do not possess the necessary depth and breadth of reasoning 

to be of practical value in reasoning about complex, real-life enterprise models.  

Furthermore, knowledge-based techniques can accomplish only symbolic 

representation of processes. Therefore, they cannot accommodate requirements for 

process measurement and comparison that are integral to process improvement 

applications. 

• Message Sequence Chart 

According to Mauw (Mauw & Reniers, 1994), the Message Sequence Chart is used for 

visualizing systems, which run within communication systems. Message Sequence 

Chart can be viewed as a special trace language, which mainly concentrates on sending 

and receiving of messages among communicating processes. A Message Sequence 

Chart is not a description of the complete behaviour of a system; it expresses one 

execution trace. A collection of Message Sequence Charts may be used to give a more 

detailed specification of a system. 

A basic Message Sequence Chart contains a description of the communication 

behaviour of a number of instances. An instance is an abstract entity of which one can 

observe the interaction with other instances or with the environment. 



Chapter 3 Business Process Reengineering 

 29  

The Message Sequence Chart in Figure 3.5 defines the communication behaviour 

between instances i1, i2, i3 and i4. We redraw this figure from (Mauw & Reniers, 1994). 

An instance is denoted by a vertical axis. The time along each axis runs from top to 

bottom. A communication between two instances is represented by an arrow, which 

starts at the sending instance and ends at the receiving instance. In the above figure we 

consider the messages m1, m2, m3 and m4.  

 

Figure 3.5 A Message Sequence Chart. 

Although the activities along one single instance axis are completely ordered, we will 

not assume a notion of global time. The only dependencies between the timing of the 

instances come from the restriction that a message must have been sent before it is 

received.  

In Figure 3.5 this implies for example that message m3 is received by i4 only after it has 

been sent by i3, and, consequently, after the reception of m2 by i3. Thus m1 and m3 are 

ordered in time, while for m4 and m3 no order is specified.  

A Message Sequence Chart contains the description of the communication between 

instances. For brevity, we restrict ourselves to the core language of Message Sequence 

Charts. So our Message Sequence Chart concentrates on communications only.  

• Multilevel Modified Petri Net  

Tsalgatidou et al (Tsalgatidou, Louridas, Fesakis, & Schizas, 1996) propose the use of 

Multilevel Modified Petri Nets (MPN) as an appropriate representation for the 

development of Business Process Models. They define a structure for MPNs, discuss 



Chapter 3 Business Process Reengineering 

 30  

why this approach is appropriate for representing Business Process Models, and 

demonstrate their feasibility and usefulness in a real life case study.  

They advocate that MPN enables modelling activities, resources, control, dataflow, and 

the organizational structure. The authors identify the following advantages of their 

method: firstly, model decomposition that allows for handling real-world complexity 

and facilitates better validation of the experimentation; secondly, ability to simulate and 

animate models that facilitates communication and decision-making. 

• Swimlane Diagrams 

A Swimlane diagram (Sharp & McDermott, 2001) can show an entire business process 

from the beginning to the end. Also it can be used both to understand the as-is 

workflow, and to design the to-be workflow. We explain the Swimlane technique in 

more detail than other techniques discussed in this section, because we will use this 

technique in Chapter 4 of this thesis. 

Swimlane is popular (Sharp & McDermott, 2001) because it can highlight the relevant 

variables -- what is done, by whom, and in what sequence -- in a simple notation that 

requires little or no training for users to understand the business process under study. It 

can show a process at any level, from a very high level down to one showing each 

individual task.  

The authors describe a workflow model as depicting the three Rs:  

• Roles: the actors or process performers who participate in the process. 

• Responsibilities: the individual tasks that each actor is responsible for.  

• Routes: the workflows and decision that connect the tasks together, and 

therefore define the path that an individual work item will take through the 

process.     

Here we use an example from Sharp et al (Sharp & McDermott, 2001) to illustrate the 

powerful visual effects provided by Swimlane Diagrams. This example models an 

enrolment process in a University shown in Figure 3.6. We redraw this figure from 

(Sharp & McDermott, 2001). 



Chapter 3 Business Process Reengineering 

 31  

The actors in the process are listed down the left side of the diagram; each is given a 

Swimlane that extends to the right across the page, and delineated by dotted lines. Each 

task is represented by a box placed in the Swimlane of the actor that executes it. Arrows 

indicate the sequence and flow of tasks. A flow from an actor to another, that is the one 

crosses the line between Swimlanes, is called a handoff. Example of handoff, step, 

actor, and flow are indicated by a shadowed box in Figure 3.6.  

 

Figure 3.6 An Enrolment Process Represented by a Swimlane Diagram. 

A Student submits a registration form to the University by mail; later when the mails 

are received in the Mailroom, they are sorted, and then delivered to the intending 

departments. At this stage the Department Secretary can open the mails. If the mail is 

misdirected, it will be sent back to the mailroom to be redirected.  

Correctly directed mail is sorted by advisor delivered to the Enrolment Assistant; the 

Enrolment Assistant will decide whether the registration form is complete or not, if no, 

other process will applied to inform the student to complete the registration form; 

otherwise the complete registration form will be sent to the Registrar’s Office ask for 

admission.  



Chapter 3 Business Process Reengineering 

 32  

At the final stage of this specific process, the Registrar’s Office will evaluate the 

application of this student and make a summary report; this report is handled by other 

process, such as sending mail back to the Student to inform the summary report.  

There is no practical difference between an “actor” and a “role” for our research 

purpose, so these two terms are used interchangeably in this thesis. Generally, an actor 

is any identifiable person or group that handles the work between the initial event and 

the achievement of the process’s result.  

Sometimes a single person can perform multiple roles in a process. In this case, each 

role should be given a separate Swimlane initially. If subsequent analysis shows that the 

handoffs from one role to another occur seamlessly without delay, then these two 

Swimlanes can be collapsed into one. However, if the handoffs proved to be a source of 

delay, error, or expense, then the Swimlanes should be kept as they were. Guidelines 

for actor are illustrated in Figure 3.7. We redraw this figure from (Sharp & McDermott, 

2001). 

 

Figure 3.7 Guidelines for Actors. 

While modelling a process using workflow, one difficulty maybe be encountered is 

deciding which steps to include in the workflow model. An actor may perform many 



Chapter 3 Business Process Reengineering 

 33  

activities, but some of them may not belong to the process being studied. Sharp et al 

(Sharp & McDermott, 2001) use an example for analysing to draw out the guideline on 

what steps should be included in the workflow model. 

In an insurance company, 5% of incoming claims were routed to an internal audit 

function and then returned to the normal claims flow. Whatever happened in the audit 

step never made any difference to the subsequent handling of the claims, so some 

analysts argued that it wasn’t part of the process. But the problem was subsequent steps 

in resolving the claim could not proceed until a claim returned from the audit step, even 

though the audit step didn’t actually do anything to the claim. So this step is a part of 

the process being studied and should be added in the workflow model. 

Sharp et al (Sharp & McDermott, 2001) summarize the guideline for which steps to 

include as: “Show every step that adds value; moves the work along; or introduces 

delay.”  

“Adds value,” means cause a state change in the direction of completion. The value 

could be subtracted as well; it will cause the state change in the opposite direction of 

completion.  

“Moves the work along,” indicates that some steps may not change the work item in 

any way, except to transport it between other steps in the workflow. Internal or external 

delivery services that handle work items belong to this category. These steps are 

important to the process behaviour, so they should be added in the workflow model. 

“Introduces delay,” reveals that a step may not change the state of the work item, or 

move it along, but some subsequent step cannot proceed until the delay-introducing step 

completes. The internal audit step in the claim-handling example is a good illustration 

of this category.    

3.4.4 Summary and Discussion 

In this section, we discussed some techniques currently being used in Business Process 

Modelling. They are Flowchart, Scenario Analysis, System Dynamics, Knowledge-

based Techniques, Message Sequence Chart, and Swimlane Diagram. These techniques 

can provide constructs suitable for satisfying the requirements associated with only 

particular modelling goals. 



Chapter 3 Business Process Reengineering 

 34  

Flowchart is specialized in graphic representation of a program logic sequence, work or 

manufacturing process. The disadvantage of Flowchart is that it is inadequate in 

modelling complex systems. System Dynamics is a methodology for studying and 

managing complex feedback systems only. We can only expect the right results when 

applying System Dynamics to a feedback system because System Dynamic lacks of 

ability to analysis and predict an independent participant. Scenario Analysis is a 

conceptual approach instead of a practical one to Business Process Modelling. 

Knowledge-based techniques can accomplish only symbolic representation of 

processes. They cannot accommodate requirements for process measurement and 

comparison that are integral to process improvement applications. Message Sequence 

Chart expresses only one execution trace each time. It helps us to concentrate on the 

order of communication among parties. To describe the complete behaviour of a 

system, we need a collection of Message Sequence Charts to represent a more detailed 

specification of a system. This may bring confusion in visualization. Swimlane 

Diagram aims at the automation of business process. It gives us an overview on how the 

whole system works at any level.    

Petri net has been proved to be useful in the context of logistics and production control 

by Van der Aalst (Van der Aalst, 1994). The author identifies that it is not restricted to 

logistics and manufacturing. Petri nets can also be used to support Business Process 

Reengineering efforts (Van der Aalst & Heea, 1996).  

We get high-level Petri nets by adding extensions to classic Petri nets. These extensions 

allow for the representation and study of complex business process. In section 3.5 we 

will introduce Petri nets in detail. 

Compared with Petri net, those techniques we mentioned above suffer from two 

important drawbacks: (1) the lack of formal semantics and (2) the absence of powerful 

analysis methods and tools. High-level Petri nets have formal semantics. A Petri net 

model of a business process is precise and unambiguous description of the behaviours 

of the system under study according to (Van der Aalst & Heea, 1996).  

Despite the formal background, Petri nets are easy to understand. The graphical nature 

can be used to visualize business process in a natural manner and supports the 

communication among people involved in a Business Process Reengineering project. 



Chapter 3 Business Process Reengineering 

 35  

Business Process 
Modelling Objectives 
and Goals 

What does it mean Business Process 
Modelling Techniques 

Facilitate Human 
Understanding and 
Communication 

1. Enable communication and 
agreement on the processes. 

2. Formalize the process so that people 
can work together more effectively. 

3. Represent process in form 
understandable by humans.  

Flowchart (Whatis, 2001) 

Scenario Analysis 
(Clemons, 1995) 

Knowledge-based 
Techniques 
(Compatangelo & 
Rumolo, 1997) 

Discrete Event Simulation 
(Pidd, 1988) 

Qualitative Simulation 
(Curtis et al., 1992) 

System Dynamics (Curtis 
et al., 1992) 

Swimlane Diagram (Sharp 
& McDermott, 2001) 

Support Process 
Improvement 

1. Identify all the necessary 
components of a process being 
modelled. 

2. Compare with alternative processes. 

3. Estimate the impacts of potential 
changes to a process before putting 
them into actual practice. 

Petri Nets (Curtis et al., 
1992) (Van der Aalst & 
Heea, 1996) 

Discrete Event Simulation 
(Pidd, 1988) 

System Dynamics (Curtis 
et al., 1992) 

Multilevel Modified Petri 
Nets (Tsalgatidou et al., 
1996) 

Swimlane Diagram (Sharp 
& McDermott, 2001) 

Support Process 
Management 

1. Support development of plans for 
the project. 

2. Monitor, manage, and coordinate the 
process. 

3. Provide a basis for process 
measurement, such as definition of 
measurement within the context of a 
specific process. 

Petri Nets (Curtis et al., 
1992) (Van der Aalst & 
Heea, 1996) 

Plan-based Models (Curtis 
et al., 1992)  

Multilevel Modified Petri 
Nets (Tsalgatidou et al., 
1996) 

Automated Execution 
Support 

1. Automate portions of the process. 

2. Automatically collect measurement 
data reflecting actual experience with a 
process. 

3. Enforce rules to ensure process 
integrity. 

Functional Models (Curtis 
et al., 1992) 

Swimlane Diagram (Sharp 
& McDermott, 2001) 

Table 3.2 BPM Techniques and their Corresponding BPM Goals. 



Chapter 3 Business Process Reengineering 

 36  

So before choose a specific process modelling technique, we need to identify our 

modelling goal first, and then select the modelling techniques accordingly. Some of the 

Business Processes Modelling techniques with their corresponding objectives and goals 

are summarized in Table 3.2.   

3.5 Petri Nets 

3.5.1 Introduction 

Petri net theory has emerged from the PhD dissertation of Carl Adam Petri entitled 

“Communication with automata” submitted in 1962 to the faculty of Mathematics and 

Physics at the Technical University of Darmstadt, Germany. 

Although there is an extensive literature on Petri nets, both on the theory and on 

applications, there is no major introductory textbook available that presents Petri net 

theory in a consistent manner. Introductory material about Petri nets may be found in 

Peterson (Peterson, 1981), Reisig. (Reisig, 1992) Additional material can be found in 

Jensen (Jensen, 1992), Baccelli et al. (Bacceli, Cohen, Olsder, & Quadrat, 1992) Zhou 

et al (Zhou & DiCesare, 1993).  

Petri nets are a modelling and analysis tool that is well suited for the study of Discrete 

Event Systems. The use of Petri nets leads to a mathematical description of the system 

structure that can then be investigated analytically.  

Since 1980, an International Conference on Application and Theory of Petri Nets has 

been held every year. Petri nets have been successfully used in the following 

application areas: Business Process Reengineering, Factory Automation, Performance 

Evaluation, Communication Protocol Verification, Distributed Software System 

Specification and Design and VLSI Circuits, etc. Currently, Petri nets are gaining a 

growing interest among people in Artificial Intelligence because of its adequacy to 

represent the inference process as a dynamic discrete event system.  

Petri net provides a graphical and mathematical modelling tool applicable to many 

systems (Suzuki, 1990) (Kleyn & Browne, 1993). As a graphic tool, Petri nets can be 

used as a visual communication aid similar to flow charts. In addition, tokens are used 

in Petri nets to simulate the dynamic and concurrent activities of the systems.  



Chapter 3 Business Process Reengineering 

 37  

3.5.2 Fundamentals 

A Petri net is a bipartite graph together with an initial state called the initial marking, 

M0. Bipartite means that there are two types of nodes. Different symbols are used to 

distinguish the two types of nodes. By convention, the first type of node is called a 

place and is denoted by a circle or ellipse. The second type is called a transition and is 

denoted by a solid bar, or a rectangle. The edges of a Petri net are called arcs and are 

always directed. The symbols are shown in Figure 3.8. We redraw this figure (Murata, 

1989).  

 

Figure 3.8 Places, Transitions, and Arcs Representation in Petri Nets. 

A bipartite graph has a special property: an edge can connect only two nodes that 

belong to different types. Therefore, there can be an arc from a place to a transition, 

from a transition to a place, but not from a place to a place or a transition to a transition. 

Arcs are labelled with their weight, where k-weighted arc can be interpreted as the set 

of k parallel arcs. Labels for unity weight are usually omitted.  

Definition of a Petri net given by Murata (Murata, 1989):  

A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where:  

P = {p1, p2, …pn} is a finite set of places,  

T = {t1, t2,…tm} is a finite set of transitions,  

)()( PTTPF ×∪×⊆  is a set of arcs (flow relation),  

W: F →  {1, 2, 3, …} is a weight function, 

M0: P → {0, 1, 2, …} is the initial marking, 



Chapter 3 Business Process Reengineering 

 38  

TP ∩  = φ  and φ≠∪TP . 

A Petri net structure N = (P, T, F, W) without any specific initial marking is donated by 

N. A Petri net with the given initial marking is denoted by (N, M0). 

An example of a Petri Net is shown in Figure 3.9. We adopt this figure from (Peterson, 

1978). We denoted it as PN1. Places are represented by circles and transitions by bars.  

 

 

Figure 3.9 Petri Net PN1. 

A marking assigns to each place a nonnegative integer. If a marking assigns to place p a 

nonnegative integer k, we say that p is marked with k tokens. This is represented by 

putting k black dots in place p. A marking is denoted by M, an m-vector, where m is the 

total number of places. The pth component of M, denoted by M(p), is kth number of 

tokens in place p. 

In modelling, using the concept of conditions and events, action or activities, places 

represent conditions, and transitions represent action, events or activities. A transition 

has a certain number of input and output places representing the pre-conditions and 

post-conditions of the events or activities, respectively.  

The presence of a token in a place is interpreted as holding the truth of the condition 

associated with the place. If k tokens are put in a place, it indicates that k data items or 

resources are available. Some typical representations of transitions and their input 

places and output places are shown in Table 3.3. We adopt this table from (Murata, 

1989).  



Chapter 3 Business Process Reengineering 

 39  

 

Input Places Transition Output Places 

Pre-conditions Event or Activity Post-conditions 

Input Data Computation Step  Output Data 

Input Signals Signal Processor Output Signals 

Resources Needed Task or Job Resources Released 

Conditions Clause in Logic Conclusion 

Buffers Processor Buffers 

Table 3.3 Some Typical Interpretations of Transitions and Places. 

3.5.3 Firing Rules 

According to Murata (Murata, 1989) the behaviour of many systems can be described 

in terms of system states and their changes. In order to simulate the dynamic behaviour 

of a system, a state or marking in a Petri net is changed according to the following 

firing rules: 

• A transition t is said to be enabled if each input place p of t is marked with at 

least w(p, t) tokens, where w(p, t) is the weight of the arc from p to t. 

• An enabled transition may or may not fire (depending on whether or not the 

event actually takes place).  

• A firing of an enabled transition t removes w(p, t) tokens from each input place 

p of t, and adds w(t, p) tokens to each output place p of t, where w(t, p) is the 

weight of the arc from t to p.  

A transition without any input place is called a source transition, and one without any 

output place is called a sink transition. A source transition is unconditionally enabled, 

and a firing of a sink transition consumes tokens. But sink transition does not produce 

any tokens. 

A pair of a place p and a transition t is called a self-loop if p is both an input and output 

place of t. A Petri net is said to be pure if it has no self-loop in it. A Petri net is said to 

be ordinary if all of its arcs weights are 1’s. 



Chapter 3 Business Process Reengineering 

 40  

These firing rules are illustrated in Figure 3.10, using a simple well-known chemical 

reaction formula: 2H2 + O2 →  2H2O. Two tokens in each input place in Figure 3.10 (a) 

show that two units of H2 and O2 are available, and the transition of t is enabled at this 

moment. After firing t, the marking will change to the one shown in Figure 3.10 (b), 

where the transition t is no longer enabled.  

Murata (Murata, 1989) gives an example shown with Petri net PN2 through Figure 3.11 

to Figure 3.14. In Figure 3.11, transition t1 is enabled, but t2 is not enabled since one of 

its input places, p2, does not contain a token. When t1 fires, the token is removed from 

p1 and a new token is produced in p2 shown in Figure 3.12. Now, t2 is enabled, since 

there is a token in each of its input places, p2 and p3. When t2 fires, the tokens in p2 and 

p3 are removed and new tokens are generated in p3 and p4, as shown in Figure 3.13. 

Note that the marking of the place p3 does not change after the firing of transition t2. 

Transition t3 is now enabled and it fires. The token is removed from p4 and a token is 

generated in p5 shown in Figure 3.14. No more transitions are enabled and execution of 

the net is terminated. We redraw Figure 3.10 to Figure 3.14 from (Murata, 1989). 

 

Figure 3.10 An Illustration of a Firing Rule.  

 

Figure 3.11 PN2 With Initial Marking. 



Chapter 3 Business Process Reengineering 

 41  

 

Figure 3.12 The State of PN2 after One Firing. 

 

Figure 3.13 The State of PN2 after Two Firings. 

 

Figure 3.14 The State of PN2 after Three Firings. 

3.5.4 Modelling Example 

Communication protocols are one of the areas that Petri nets can be used to represent 

and specify essential features of a system. The Petri net shown in Figure 3.15 is a very 

simple model of a communication protocol between two processes.  

Process 1 sends a message to Process 2, this message is firstly buffered. At this time, 

Process 1 waits for the Ack from Process 2. Transition “Receive Message” fires after 



Chapter 3 Business Process Reengineering 

 42  

Process 2 receives the message from Process 1 then it sends an Ack back to Process 1. 

When Process 1 receives the Ack, one round of communication finished. System is 

ready for the next round of communication. 

 

Figure 3.15 A Simplified Petri Net Model for Communication Protocol. 

3.5.5 Summary 

Petri net is an abstract, formal model of workflows. The properties, concepts, and 

techniques of Petri nets are being developed in a search for natural, simple, and 

powerful methods for describing and analysing the workflows and control in real world 

systems.  

The Petri net graph models the static properties of a system, much as a flowchart 

represents the static properties of a computer program. In addition to the static 

properties represented by the graph, a Petri net has dynamic properties that result from 

its execution (Peterson, 1978). Since a finite state machine can be modelled by a Petri 

net, a regular language is a Petri net language. It has been shown that all Petri nets 

languages are context-sensitive languages (Murata, 1992). 

Petri nets have been proposed for a very wide variety of applications. This is due to the 

generality and permissiveness inherent in Petri nets. They can be applied informally to 

any area or system that can be described graphically like flow charts and that need some 

means of representing parallel or concurrent activities. However, careful attention must 

be paid to a trade-off between modelling generality and analysis capability according to 



Chapter 3 Business Process Reengineering 

 43  

(Murata, 1992). That is, the more general the model, the less amenable it is to analysis. 

In applying Petri nets, it is often necessary to add special modifications suited to the 

particular application.   

3.6 Technology for Business Process Reengineering 

For Business Process Reengineering, new technologies for the execution of business 

process are needed to support system dynamics, customisation, and integration.  

Workflow Management promised to provide a suitable infrastructure for the business 

process in a distributed environment. Workflow Management System aims at the 

automation of business process.  

3.6.1 Workflow Management System 

Workflow Management Systems (WFMS) (Allen, 2001) are used to automate business 

processes. They control the flow of work through a company, thus providing the right 

person with the right task at the right point of time. This helps in streamlining the 

business processes of a company and has the potential to improve the productivity of 

recurring tasks by a significant amount.  

Workflow Management Systems results in a gain in efficiency, productivity, enhanced 

reactivity, clear progress reports as well as quality and cost control benefits. Table 3.4 

summarizes some of the benefits we can get from Workflow Management System. 

3.6.2 Workflow Management Coalition 

The WFMC (WFMC, 2001) is an international organization whose mission is to 

promote workflow and establish standards for Workflow Management Systems. The 

WFMC was founded in 1993. In January 1995, the WFMC released a glossary, which 

provides a common set of terms for workflow vendors, end-users, developers, and 

researchers. 

In this glossary, workflow is defined as:  

The automation of a business process, in whole or part, during which 
documents, information or tasks are passed from one participant to 
another for action, according to a set of procedural rules. 

  



Chapter 3 Business Process Reengineering 

 44  

Roles Benefits From Workflow Management  

Company Cost and Performance Measurement 

Quality control 

Confidentiality and Access Control 

Adherence to Procedures 

Agent Clear Picture of Tasks 

Automatic Access to tools 

Information on Context of Tasks 

Client Response Time 

Services Quality 

Agent Accessibility 

Information on Case Status 

Manager Just in Time Display of Tasks 

Just Enough Information 

Warning System 

Measurement and Tracking of Quality 

Table 3.4 Benefits from Workflow Management. 

Workflow Management System is defined as:  

A workflow management system defines, creates and manages the 
execution of workflows, through the use of software, running on one 
or more workflow engines, which is able to interpret the process 
definition, interact with workflow participants, and, where required, 
invoke the use of information technology (IT) tools and applications. 

A workflow engine provides the run-time execution of business processes. Engines can 

be embedded within other applications or they can be deployed as independent 

applications inter-operating with other applications.  

From these definitions we can see that the main purpose of a Workflow Management 

System is to support of the definition, execution, registration and control of processes. 

The ultimate goal of Workflow Management System is to make sure that the activities 

are executed by the intended role in the right order. 

3.6.3 Type of Workflows 

Four categories of workflows are identified by Alonso et al (Alonso, Agrawal, Abbadi, 

& Mohan, 1997) and Van der Aalast (Van der Aalst, 1998). The parameters used for 



Chapter 3 Business Process Reengineering 

 45  

this classification are the similarities among the business processes involved and their 

value to the associated enterprises. These four categories are: administrative, ad hoc, 

collaborative, and production workflows.  

Administrative workflows refer to bureaucratic processes where the steps to follow are 

well established and there is a set of rules known by the participants. Course 

Registration in a University is a typical administrative workflow. The most important 

feature of an administrative workflow system is the ease to define the process. 

Ad hoc workflow systems allow users to create and amend process definitions very 

quickly and easily to meet circumstances as they arise. It is quite similar to 

administrative workflow except that ad hoc workflows are created to deal with 

exceptions and unique situations. From a university’s point of view, the process of 

applying for a degree is an administrative procedure, for a student it is something that 

happens only once and is therefore ad hoc.  

Collaborative workflow focuses on teams working together towards common goals. 

Groups can vary from small, project-oriented teams, to widely dispersed people with 

interests in common. A collaborative workflow may involve several iterations over the 

same step until some form of agreement has been reached, or it may even involved 

going back to an earlier stage. A good example is writing a paper by several authors. 

Production workflow can be characterized as the implementation of critical business 

processes. The key goal of production workflow is to manage large numbers of similar 

tasks, and to optimise productivity. This is achieved by automating as many activities as 

practical. Human input is required only to manage exceptions in case those work items 

fall outside pre-determined process tolerances.  

Production Workflow can manage hugely complex processes, and can be tightly 

integrated with existing systems. Production workflow is optimised to attain high levels 

of quality and accuracy by executing highly repetitious tasks, usually in a non-stop 

manner.  Credit and loan applications are a typical production workflow process.  

Alonso et al (Alonso et al., 1997) also discuss the difference between administrative 

and production workflows. The authors emphasize that the main points to consider are 

the large scale, the complexity and heterogeneity of the environment, the variety of 



Chapter 3 Business Process Reengineering 

 46  

people and organizations that involved, and the natural of the tasks. Production 

workflows tend to be executed over heterogeneous systems, frequently legacy 

applications, and monitoring tools should be provided to do statistical analysis the 

execution of these processes.  

In our thesis, we are interested in production workflows, because the workflows we are 

going to study in international trade belong to this category. Figure 3.16 and Figure 

3.17 illustrate the classification of workflow management systems and the relationship 

between them through different perspectives. We adopt Figure 3.16 and Figure 3.17 

from (Alonso et al., 1997).   

. 

Figure 3.16 Classification of Workflow Management Systems. 

3.6.4 Jablonski’s Methodology 

 Jablonski (Jablonski, 1995) discusses the interrelationship between Business Process 

Modelling and Workflow Management and presents a methodology for integrating 

business process models and workflows. 

The main benefit of this approach by Jablonski is to maintain a direct relationship 

between business processes and workflows. This helps to directly pass on modifications 

of a real world business process to the corresponding workflow. This feature is very 

important to sustain consistency between business processes and workflows. So we can 

instantaneously react to changes in the business processes and could adjust the 

corresponding workflows.  



Chapter 3 Business Process Reengineering 

 47  

 

Figure 3.17 Classifications of Workflow Management Systems. 

Another advantage of this approach is: matured capabilities of Business Process 

Modelling tools and the powerful execution capabilities of Workflow Management 

System can be used in an integrated manner. This mutual benefit exactly fulfils the 

requirement of modern Business Process Reengineering efforts: to maintain a very tight 

connection between real world modelling and model execution in order to react fast to 

changes in the business environment. 

The methodology is based on the notion of meta-models that are used to provide a 

generic mechanism for translating between business models and workflow 

specification. The mapping of business process to workflow would be a necessary step 

towards holistic approach to business process management in organizations. Here the 

meta modelling by Jablonski (Jablonski, 1995) is defined as: 

The process of specifying the requirements to be met by the 
modelling process or establishing the specifications, which the 
modelling process must fulfil. 

Workflow Management technology is claimed to be the one of the innovative 

applications in 1990s (Schal, 1996). It is a broad term, used in a number of different 

contexts and environments. It has the ability to reflect the business process rather than 

to support or automate just discrete tasks. This will result in an improved productivity 

and flexibility needed for business competitiveness. 



Chapter 3 Business Process Reengineering 

 48  

The need for reorganization and improvement of business process and the advances in 

information technology creates a huge market request for workflow systems. Modern 

Workflow Management Systems enable the design, enactment, and monitoring of 

workflows in different sorts of environment, such as heterogeneous and distributed, 

allowing efficient process execution and management. (Casati, Ceri, Pernici, & Pozzi, 

1998) 

3.7 Summary  

During the last several decades, the market structure has changed tremendously. The 

market is driven by customers instead of suppliers. Classical business structures are no 

longer suitable in a world where competition, customers and change demand flexibility 

and quick response. In order to survive and prosper in today's global economy, 

companies are being forced to re-evaluate the way they do business with their 

customers and their vendors. It is necessary to deliver high quality products and 

services to gain and maintain customer loyalty and reduce costs. This makes Business 

Process Improvement a very hot topic. 

To improve a business process, we have three models: Continuous Process 

Improvement, Business Process Reengineering and their combination Process 

Management. Successful Business Process Reengineering work on business process 

may bring about rapid change and dramatic improvement to the current business 

process, so we focus on this model in this thesis. But in many real-life business change 

projects, we saw a high failure rate.  

Some of the researchers pointed out that the shortage of a comprehensive, scientifically 

grounded design methodology to guide Business Process Reengineering efforts, 

difficulty in capturing existing processes in a structured way, and inability to recognize 

the dynamic nature of the processes are the main reasons result in high failure rate in 

Business Process Reengineering projects. 

In this chapter, we introduced some techniques currently being used in Business 

Process Reengineering projects such as Flowchart, Scenario Analysis, System 

Dynamics, Knowledge-based Techniques, Message Sequence Chart, Petri net and 

Swimlane Diagram. Each technique has its characteristics and is suitable for a special 

kind of application.  



Chapter 3 Business Process Reengineering 

 49  

Compared with other techniques, Petri net has formal semantics and powerful analysis 

methods; it is easy to understand, and can represent business process in a precise and 

unambiguous way. The graphical representation of Petri nets is suitable for visualizing 

business process in a comprehensive way, and supporting the communication among 

the Business Process Reengineers. 

Workflow Management technology can be used in a number of different contexts and 

environments. It has the ability to reflect the whole business process rather than to 

support just discrete tasks. This results in an improved productivity and flexibility 

needed for Business Process Reengineering. 

Matured capabilities of Business Process Modelling techniques and the powerful 

execution capabilities of workflow Management System can be used in an integrated 

manner. These mutual benefits have the potential to maintain a very tight connection 

between real world modelling and model execution in order to react fast to changes in 

the business environment. 

In the next two chapters, we will first examine the previous work done by Professor Lee 

on international trade. We then set up a simple business process model and use the 

techniques and technologies we introduced in this chapter to model and execute our 

business process model.  

    



Chapter 4 Reengineering of International Trade 

 50  

Chapter 4 Reengineering of International Trade 

In the previous chapter, we discussed why business processes need to be improved.   

Also we reviewed some techniques and technology in Business Process Reengineering. 

In this chapter we discuss how Business Process Reengineering can be applied to 

international trade as an example to show how a business process can be reengineered.  

In our survey of the literature on reengineering of international trade, we found just one 

active group. This group is headed by Professor Lee of Erasmus University, in 

Rotterdam, the Netherlands. 

Professor Lee (Lee, 1999) identifies a common problem in international trade: each 

party may find it difficult to know whether the other party is trustworthy or not as they 

have no prior trading relationship. These trading parties who don’t know each other, 

may come from different countries and cultures. In order to facilitate the international 

trade, trading parties’ interests should be protected in the event of accident, negligence, 

or international fraud.  We call this set of issues the trustworthiness problem. 

In order to assure the interests of the trading parties involved in international trade 

procedure, Professor Lee introduced a new concept called an electronic trade scenario. 

Trade scenarios govern the activities of all the parties involved in a set of related 

business transactions. It is believed that electronic trade scenario is a potential solution 

to the trustworthiness problem we mentioned above. An electronic trade scenario is 

specified by a graphical representation language called Documentary Petri Nets. A 

case-tool called InterProcs is also made available by Professor Lee to assist in designing 

and prototyping trade scenarios. 

Unfortunately, Professor Lee did not discuss much in detail on how a business process 

can be mapped using the Business Process Modelling techniques we introduced in 

Chapter 3. So in the rest of this chapter, we set up a very simple trade scenario called 

GT3 by simplifying the Documentary Credit Procedure we discussed in Chapter 2. We 



Chapter 4 Reengineering of International Trade 

 51  

named “GT3” our scenario because it is for Global Trading, or international trade, with 

three roles defined in the scenario. Three roles are: Importer, Exporter, and Transporter. 

An Importer buys products or services from an Exporter; a Transporter is responsible 

for the delivering of products. 

For better understanding of our GT3 model, we use several Business Process 

Reengineering techniques to analyse it from a different point of view. Also, we modify 

Professor Lee’s Documentary Petri Nets by subtracting some constraints and obtain a 

simplified representation language called Linear Documentary Petri Net. Then we use 

Linear Documentary Petri Net to represent our GT3 model for further study. 

4.1 Review of Work Done by Professor Lee 

Professor Lee (Lee, 1999) introduced the concept of electronic trade scenario as a 

potential solution to the trustworthiness problem we mentioned above in the open 

electronic commerce environment. Parties intending to conduct electronic commerce 

have to know about one another’s way of doing business before they can exchange 

electronic data.  

According to Professor Lee, a trade scenario is the mutually agreed-upon set of 

procedures, documents and rules that governs the activities of all the parties involved in 

a set of related business transactions. This trade scenario controls all the interactions 

among the trading partners. The scenarios specify which action is to be performed by 

which party, and the order in which these actions are to be undertaken.     

In Professor Lee’s point of view, the contracting process in a trading procedure is 

divided into three main phases: shopping, negotiation, and performance as illustrated in 

Figure 4.1. We redraw this figure from (Lee, 1999). The shopping phase involves 

navigating among the products offered by various vendors, after that the customer 

identifies a prospective vendor and specifies the product characteristics to be purchased.  

In negotiation phase, the trading parties need to exchange required documents, transfer 

payment, and deliver products between them. The output of this negotiation phase will 

be the specific trade scenario that involving parties will undertake for this particular 

contract. The documents passing among the parties will be standardized EDI 

documents. In some contract domains, additional controls are needed, for example, 



Chapter 4 Reengineering of International Trade 

 52  

secured loan, such as home mortgages. Additional control documents such as pertaining 

to the borrower’s credit-worthiness and inspection of the asset are needed. 

 

Figure 4.1 Contracting Procedures from Professor Lee’s Point of View. 

In this section we introduced the common problem identified by Professor Lee (Lee, 

1999) in international trade: lack of trust among trading parties because they have no 

prior trading relationship in open electronic commerce environment. Professor Lee 

invents electronic trade scenario as a potential solution to this problem. These trade 

scenarios are mutually agreed-upon procedures, documents and rules that govern the 

activities of the trading partners. Trade scenarios can be downloaded by trading partners 

as needed from a publicly accessible global repository for a particular trade procedure 

so as to assure the interests of the trading partners involved in this particular 

transaction.  

 In order to represent this electronic trade scenario, Professor Lee advocated 

Documentary Petri Nets (DPN) to specify the procedural aspects of a trade scenario. 

The use of Documentary Petri Nets will be studied in the next section.   



Chapter 4 Reengineering of International Trade 

 53  

4.1.1 Professor Lee’s Techniques: Documentary Petri Nets 

According to Professor Lee (Lee, 1999), one basic issue is how the trade scenario 

should be represented. In Professor Lee’s point of view, there should be three kinds of 

preliminary requirements on the representation of electronic trade scenario. They are 

formal requirements, notational requirements, and verification requirements. In the 

following several paragraphs, we will discuss these three requirements in detail. 

Formal requirements: according to Bons et al (Bons, Lee, Wagenaar, & Wrigley, 1995), 

formal requirements on representation of a trade scenario include the possibility to 

express concurrency, choice and contingency, and deontic relationships.  

• Concurrency: In a trading procedure, the multiple involved parties may perform 

their actions in a parallel way, so the ability of dealing with concurrency is 

essential for this representation language. 

• Decision points: The execution of a trade scenario often depends on some 

internal or external decisions, so the modelling constructs for such decision 

points should be included in the representation language.   

• Deontics: According to (Hilpinen, 1971), deontic logic is a branch of logic that 

formalizes reasoning about normative vs. non-normative behaviours by means 

of primitives such as obligations, prohibitions and permissions. Bons et al (Bons 

et al., 1995) state that the representation of deontic in a trade scenario is 

essential because involved parties should be able to derive their obligations, 

rights, and duties at each point during the execution of the trade scenario. For 

example, sending a purchase order to a seller will in most cases bring about an 

obligation for the buyers to buy products from the seller.  

• Time: Bons et al (Bons et al., 1995) think that the modelling of absolute time is 

necessary in a trade scenario, because the parties involved in the trading 

procedures may want to indicate an absolute deadline for a specific trade. For 

example in just-in-time logistics, time is one of the most critical factors to be 

investigated.  



Chapter 4 Reengineering of International Trade 

 54  

Notational requirements include the possibility to represent trade scenario design in a 

graphical way. And also a hierarchical way is essential to decompose the trade scenario 

into a number of levels.   

• A graphic representation: as Streng (Streng, 1993) points out, several intangible 

properties of EDI linkages cannot be validated using quantitative techniques. He 

argued that some properties can only be evaluated using graphical/animated 

dynamic modelling techniques such as management information, project 

uncertainty, etc. A graphical representation of trade scenario is essential because 

it enables business specialists to reason about the proposed trade scenarios 

without the need to become experts in formal representation languages. 

• A hierarchical (de)composition: This hierarchical decomposition of trade 

scenario is necessary for us to reduce the complexity of the specifications. 

Another advantage is that some parts of the specification can be reused by other 

trade scenarios.  

Verification requirements include the possibility of automated verification according to 

Bons et al (Bons et al., 1995). Techniques that can be used to perform verifications 

include formal algorithms, pattern recognition, gaming theory, etc. Formal algorithms 

can be used to prove the absence or presence of deadlock states, never-ending loops. 

Pattern recognition can be used to reason about control issues. Gaming can be used to 

verify dynamic properties. 

With these requirements in mind, Professor Lee and his research team examine many 

possible representations, included state-transition diagrams, marked graphs, event nets, 

event grammars, the event calculus, process algebras, and temporal and dynamic logics. 

They eventually found Petri nets to be an acceptable candidate that captures the 

temporal/dynamic aspects of electronic trade procedures (Lee, 1999). It offers both a 

graphic representation and a formal basis for verification of various computational 

properties. 

Professor Lee (Lee, 1999) and Van der Alast (Van der Aalst, 1998) both state that Petri 

nets are suitable for representation purpose in a great variety of problem domains, such 

as workflow systems, where sequence, contingency, and concurrency of activities need 

to be modelled. 



Chapter 4 Reengineering of International Trade 

 55  

Van der Alast (Van der Aalst, 1992) states that Petri nets are especially suitable for 

modelling discrete dynamic systems. Because it offers various kinds of both formal and 

informal analysis methods in addition to its capability to graphically model both 

concurrency and choice.  

A classic Petri net as we introduced in the previous chapter, is a bi-partite, directed 

graph. It has two disjunctive sets of nodes: places and transitions. Arcs connect the 

places and transitions or vice versa. The dynamic behaviour of the modelled system is 

represented by tokens flowing through the nets. A transition is enabled if all its input 

places contain at least one token. If so, the transition removes one token from each 

input place and instantaneously produces one in each output places. This is called the 

firing of the transition.  

However, classic Petri nets by themselves offer only a temporal framework for 

procedural representation. So Professor Lee (Lee, 1999) thinks it is necessary to add 

extensions to the classic Petri nets representation to make it more appropriate for the 

modelling of trade scenario. The extended Petri net is termed as Documentary Petri 

Nets (DPN). 

Documentary Petri Nets (DPN) interpret transitions in usual Petri nets as the actions of 

contracting parties in international trade which are indicated by an associated label of 

the form shown in Figure 4.2. We redraw this figure from (Lee, 1999). In usual Petri 

nets, system state changes via the firing of a transition; in Documentary Petri Nets, 

when a role performs an action, documents or goods or payment will be sent out to 

other roles, the system is getting closer to the ending of this particular trading 

procedure.   

Classic Petri nets model time only in relative terms. In Documentary Petri Nets, 

absolute time notations for deadline are added. A special kind of transition called a 

timer event, with the associated label shown in Figure 4.3. The “>>” operator is used to 

compare date/time terms. Usually, the built-in parameter, @current_date, is compared 

with another date/time terms such as a delivery_deadline. A sample structure is shown 

in Figure 4.4.  



Chapter 4 Reengineering of International Trade 

 56  

 

Figure 4.2 DPN Transition Syntax (Lee, 1999). 

In Figure 4.4, the black token will be taken from the input place at the top of the figure 

by the first transition to occur. Thus, if the Delivery_Goods occurs after the 

delivery_deadline, then the state of breach will be reached.  

An important extension added to classic Petri net is the representation of documents. 

Professor Lee (Lee, 1999) adds another kind of place node, called a document place, 

drawn as a rectangle. In each role procedure, each document place has an associated 

label to identify the name, sender, and receiver of the document. This is shown in 

Figure 4.5.  

 

Figure 4.3 DPN Timer Event Syntax (Lee, 1999). 

Usually the document list will be only a single document type, but Professor Lee’s 

syntax also allows multiple documents to be sent in a single documentary 

communication. 



Chapter 4 Reengineering of International Trade 

 57  

 

Figure 4.4 Example DPN for Deadline (Lee, 1999). 

 

 

Figure 4.5 DPN Document Place Syntax (Lee, 1999). 

Professor Lee (Lee, 1999) indicates that in the trade scenario, a frequent type of 

documentary exchange is the transfer of funds. This special kind of document will be 

sent to a bank, such as a payment instruction. For international trade, although it is 

fairly rare to exchange cash in business-to-business transactions, the same notation of a 

“document” places is applied to the cash payment. The amount and currency of the fund 

transfer is specified in the structure of these documents.  

Another variation of document places that is occasionally used is a goods place, 

indicating the exchange of physical goods. The notation for the physical goods is a 

cube, and it’s labelling is similar to that for a document place, as shown in Figure 4.6. 



Chapter 4 Reengineering of International Trade 

 58  

In addition to the above-described labels, any of the control places, document places, or 

goods places may have an additional kind of label known as a state predicate. Professor 

Lee (Lee, 1999) points out that the same predicate notation as in Prolog is used in these 

additional labels to indicate additional properties and relations that become true when 

the place is marked. They are commonly used to indicate changes in deontic status, for 

instance, obligation (X: A, Date), which means that party X has an obligation to 

perform action A before the deadline Date. This is illustrated in Figure 4.7.  

Until so far, we can see that in Documentary Petri Nets, a state transition is enabled by 

receiving a document, goods, or funds, or the expiration of an internal timer. Firing a 

transition can lead to sending documents, goods, funds, or setting an internal timer. 

Professor Lee indicates that one important aspect of modelling trade scenario by 

Documentary Petri Nets is the ability to model the procedure of each role as a separate 

DPN. This allows the decomposition of a trade procedure into a number of logically 

separate sub-nets. This modelling style results in a clear, visual separation of the 

various roles that also enables their geographical separation.  

 

Figure 4.6 DPN Physical Goods Syntax (Lee, 1999). 

Professor Lee emphasizes that it is just this separation characteristic of the 

Documentary Petri Nets that allows legally autonomous parties to execute automated 

trade scenario in a distributed fashion. The only coordination between the various role 

scenarios is by the passing of electronic documents they exchange. 



Chapter 4 Reengineering of International Trade 

 59  

 

Figure 4.7 DPN Example: Deontic Status Labels on Control Places (Lee, 1999). 

In this section we have a close look at Professor Lee’s Documentary Petri Nets. Just as 

Professor Lee indicates (Lee, 1999) that this Documentary Petri Nets are quite suitable 

to be used as a representation language for modelling electronic trade scenario.  

In order to validate the concepts and representation for electronic trade scenario, 

Professor Lee et al (Lee, 1999) developed InterProcs to demonstrate the feasibility of 

Documentary Petri Nets through realistic prototype transaction models with actual EDI 

documents. In the next section we will discuss the characteristics of InterProcs.  

4.1.2 Professor Lee’s Technology: InterProcs 

According to Professor Lee (Lee, 1998), the motivation behind the development of 

InterProcs is to validate the concepts and representations for electronic trade 

procedures, demonstrating their feasibility through realistic prototype transaction 

models with actual EDI documents.   

InterProcs system divides into two separate systems: InterProcs Executor and 

InterPorcs Designer. InterProcs Executor is used to execute an existing trade scenario, 

while InterProcs Designer is used to design trade scenarios. 

• InterProcs Designer 

The general design methodology of a trade scenario given by Professor Lee is 

illustrated in Figure 4.8. Design a trade scenario, we start executing InterProcs in 

Designer mode, and then follow the steps Professor Lee recommended. UseCase 

Diagram is used to define roles involved in the particular scenario. Unified Modelling 



Chapter 4 Reengineering of International Trade 

 60  

Language (UML) is a standard notation for the modelling of real-world objects as a first 

step in developing an object-oriented design methodology. Sequence Diagram is used 

to define the order of the documents among roles.  

Activities Diagram is used to define the actions each role need to perform in the 

scenario. Joint Procedure Diagram is to get an overview of the resulting trade scenario 

with all roles in it. XML Schema is used to design the content of the documents. 

Extensible Mark-up Language (XML) is a flexible way to create common information 

formats and share both the format and the data on the web. For the present, Professor 

Lee uses the Schema for Object-oriented XML (SOX) approach for documents. Role 

Procedure is used to illustrate each role to be represented as a separate Documentary 

Petri Net. 

 

Figure 4.8 Lee’s Methodology for Trade Scenario Design (Lee, 1999). 

Figure 4.9 to Figure 4.14 illustrate the steps we go through while designing a simple 

trade scenario by top-down approach as described in Figure 4.8. In this trade scenario 

we have two roles, buyer and seller. Buyer order goods from a seller, first buyer send a 

request for quote to seller; when seller receive the request, it will send a quote to the 

buyer after processing the request; then buyer receive the quote and make its final 

decision on purchase. The resulting automated trade scenario is shown in Figure 4.14. 

In Use Case Diagram designing phase shown in Figure 4.9, we define that there are two 

roles involved in this trade scenario called order_goods. The two roles are buyer and 

seller. In Sequence Diagram shown 4.10, we define the names and order of the 

documents between these two roles. RFQ is first sent to seller, and then at a later time 



Chapter 4 Reengineering of International Trade 

 61  

Quote is sent back to Buyer. We can easily identify this Sequence Diagram is the same 

as the Message Sequence Chart (Mauw & Reniers, 1994) we introduced in Chapter 3. 

They both describe the communication behaviours among parties and focus on the 

order of the message. 

    

 

Figure 4.9 Use Case Diagram Design Using InterProcs. 

In Activity Diagram shown in 4.11, we define the actions each role need to perform in 

this trade scenario. For example, Buyer needs to perform two actions in this case. One 

is send_request_quote, the other is receive_quotation.  This Activity Diagram is quite 

similar to Swimlane Diagram we introduced in Chapter 3. They both focus on the 

actions or activities of each role and the relations between these actions or activities. 

They both have the ability to depict the system at any level of abstraction.  At this stage, 

a Joint Procedure diagram shown in Figure 4.12 can be generated by InterProcs 

Designer. 

XML Schema is mainly used to describe the content of a document. Figure 4.13 

illustrate all the contents should be included in the purchase_order for this specific trade 

scenario. To generate Role Procedures from Joint Procedure automatically is a built-in 

function in InterProcs Designer. 



Chapter 4 Reengineering of International Trade 

 62  

 

 

Figure 4.10 Sequence Diagram Design Using InterProcs. 

 

Figure 4.11 Activity Diagram Design Using InterProcs. 

 



Chapter 4 Reengineering of International Trade 

 63  

 

 

Figure 4.12 Joint Procedure Diagram Design Using InterProcs. 

 

 

Figure 4.13 XML Schema Diagram Design Using InterProcs. 

 



Chapter 4 Reengineering of International Trade 

 64  

 

Figure 4.14 Role Procedure Diagram Design Using InterProcs. 

• InterProcs Executer 

In InterProcs Executor, a trade scenario can be viewed and executed in three modes. 

They are Viewer Mode, Gaming Mode, and Network Mode.  

Viewer mode provides a simulation of the total scenario on a single machine. All roles 

in this scenario are displayed together in a single screen. Documents are transmitted 

among the roles internally within the executing program. This viewer mode is very 

useful for design and demonstration purpose. The designers can put a new version of 

the scenario as an applet on the web to show their client on a remote location and get 

feedback easily.  

In Gaming mode, the roles of a trade scenario can be downloaded and executed by 

multiple machines in a LAN. This mode is intended for interactive gaming and testing. 

For instance, in a group collaboration setting, manager can play different roles and 

evaluate the scenario from the different role perspectives. 

The purpose of Network mode is for prototype testing of the trade scenario in 

geographically separate locations. Roles of the trade scenario can be downloaded and 

executed using InterProcs Executor as a stand-alone application. Only one role can be 



Chapter 4 Reengineering of International Trade 

 65  

viewed to any single user. Documents are transmitted among the roles via normal E-

mail. Different parties can participate in the testing of the scenario from their local sites. 

Professor Lee gives an example of a simple trade scenario being executed in InterProcs 

Executor. The screenshot of joint_activity_graph of this simple scenario is given in 

Figure 4.15. A screenshot of role procedures for this simple scenario is illustrated in 

Figure 4.16. We adopt these two figures from (Lee, 1999). In this simple scenario, there 

are two roles involved, buyer and seller. And two documents between the two roles. 

One is purchase order, another is a corresponding acknowledgement.      

 

Figure 4.15 Screenshot of Joint_Activity_Graph in InterProcs Executer. 

In international trade, documentary credit procedures usually involve numerous agents 

who often must interact in different languages, as we mentioned before. InterProcs can 

provide multiple versions of documents in various languages. Figure 4.17 illustrates a 

sample snapshot of EDI document in Dutch.  

The embedding of the concept of audit daemons into InterProcs is in progress by Lee 

and his research team. Audit daemon was originally developed by Professor Lee in 

1990 (Lee, 1992). Basically, the purpose of an audit daemon is to inspect a procedure 



Chapter 4 Reengineering of International Trade 

 66  

and identify possible control weakness and potentials for fraud. Audit daemons consist 

of deductive rules, and special pattern-matching predicates for Documentary Petri Nets.    

 

Figure 4.16 Screenshot of Role Procedures in InterProcs Executer. 

 

 

Figure 4.17 Sample Snapshot of EDI Document in Dutch.  

At this stage, Professor Lee points out that the scenario produced are fixed, that means 

the trade scenarios can’t be adapted or adjusted to meet the additional needs of a given 

situation. To address this problem, another concept called Procedure Constraint 

Grammar (PCG) was introduced by Professor Lee (Lee, 1999).  



Chapter 4 Reengineering of International Trade 

 67  

The objective of the PCG representation is to describe procedures by their temporal 

ordering constraints, rather than by the absolute sequence of steps. By this expert 

system approach, scenario components can be broken down into reusable component 

parts that can be flexibly reassembled to meet the needs of a wide variety of situations.   

Professor Lee (Lee, 1999) suggests that the Procedure Constraint Grammar can be used 

in the following way: the user interacts with the system, specifies constraints and 

objectives of trade procedure. Based on these specifications, the system generates a 

trade scenario represented in a graphical form. This trade scenario then can be compiled 

and simulated. Work on Procedure Constraint Grammar is now in progress by Professor 

Lee and his research team. 

 

Figure 4.18 Current Development Phase of InterProcs. 

The current development phase on InterProcs is given by Professor Lee, which is 

illustrated in Figure 4.18. We adopt this figure from (Lee, 1998). A principal feature of 

InterProcs is its graphical user interface for designing trade scenarios. It also offers the 

possibility of simulating these scenarios, including graphical animation of the 

transaction flow.  

InterProcs is written in Java, the main value of the InterProcs is that it can help in the 

areas of designing and prototyping trade scenarios. Professor Lee points out (Lee, 1999) 

that the InterProcs has been developed in such a way as to be able to preserve the 

resulting trade scenario as object-oriented components. These components could be 

stored in a publicly accessible repository; trading partners involved in an international 



Chapter 4 Reengineering of International Trade 

 68  

trade procedure can download and executed the trade scenarios.  According to Professor 

Lee, these components may be combined with other business system components like 

security, database access, and application interfaces to provide a production-level 

implementation. In this way, the mutual trust-related problem in the open electronic 

commerce environment can be solved effectively. 

The final goal of InterProcs is illustrated in Figure 4.19. We redraw this figure from 

(Lee, 1999). The optimal vision involves scenarios designed with InterProcs to be made 

freely accessible as libraries from independent agencies via the Internet. These libraries, 

along with XML schemas, would be integrated with reusable component architecture 

such as Enterprise JavaBeans. Further more, this architecture would combine 

functionality from off-the-shelf and customer developed business applications. 

 

Figure 4.19 Final Goal of InterProcs. 

Great efforts have been put on InterProcs by Professor Lee and his research team. The 

first version of InterProcs was released in June 2000. We experimented with their 

thirteenth public release InterProcs.22feb2001 in April 2001. We successfully created a 

simplified international trade scenario called GT3 using InterProcs.22ffb2001. There 

are 3 roles and 5 documents in GT3. This simple trade scenario will be discussed in 

detail later in this chapter and our implementation in the next chapter also will base on 

this simplified scenario.  



Chapter 4 Reengineering of International Trade 

 69  

Unfortunately, the InterProcs.22feb2001 was not very stable at that time. In May 2001, 

we wanted to make some changes to the GT3 model, such as adding a passing 

document to a role. At this stage InterProcs.22feb2001 usually gave some error 

messages and refused to carry on. Also when using the InterProcs built-in function to 

make a Role Procedure Graph from a Joint Procedure Graph or vice versa, we need to 

manually readjust the positions of documents and arcs to make them identifiable, 

otherwise they will mixed up together.  

In Professor Lee’s Documentary Petri Nets, the only way to communicate among 

trading parties is through documents, so the research team pays more attention to 

documents, such as the structure of the document, document content, different 

representation of document in multi-language. These efforts make InterProcs very 

powerful at dealing documents in design phase. But in InterProcs we can’t find many 

simulation features such as collecting data, managing simulation time, etc. These 

simulation features in fact can be used to support the analyses of trade scenario in 

execution phase.  

In our point of view, the lack of simulation features in InterProcs is due to two reasons. 

Firstly, Professor Lee intended to develop InterProcs as an application in product-level, 

not especially for experiment and analysis purpose. Secondly, InterProcs is 

programmed in Java, Java is a general purpose programming language, it does not 

provide support on those simulation features itself, and we were unable to find a full-

featured Java library of simulation routines. Our web search revealed that dozens of 

programming teams have implemented special purpose simulation systems in Java, 

apparently in the attempt to construct a general-purpose simulation library. (This gap in 

Java support will undoubtedly be filled someday). Also in InterProcs, other parts in 

progress, such as audit daemons, and procedure constrain grammar, are important on 

production level.  

In this section, we introduce Professor Lee’s electronic trade scenario. The 

Documentary Petri Nets representation was presented as a candidate representation for 

such trade scenarios. The InterProcs system was presented as a prototyping 

environment to support the design and execution of such trade scenarios. It offers a 

graphical user interface for designing trade scenarios.  



Chapter 4 Reengineering of International Trade 

 70  

Professor Lee (Lee, 1992) did not give much detail on how to model and analyse 

business process for Documentary Credit Procedure in international trade. By 

simplifying Documentary Credit Procedure illustrated by Figure 2.1 in Chapter 2, we 

design a simple trade scenario called GT3. Then we will use the Business Process 

Reengineering techniques discussed in Chapter 3 to analysis and model GT3 to improve 

understanding of Business Process Reengineering in international trade. In section 4.2, 

we will design and analysis GT3.        

4.2 Simplified Trade Scenario GT3 

In this simple trade scenario, we have three parties involved. They are Importer, 

Exporter, and Transporter. Through this simple trade scenario, the way of doing 

business among all the participants is well known by the three parties. As defined in 

Figure 4.1, the GT3 scenario only deals with the negotiation phase, which is after the 

Importer has identified the prospective Exporter for the products or services to be 

purchased. Communication between these three parties is via the documents. 

The trading procedure is initiated by Importer sending a Purchase_order to the 

Exporter, that is the first step in this trade procedure. In the second step, after 

processing this Purchase_order, Exporter sends Goods delivery instruction to 

Transporter. In the third step, when Goods are ready, Transporter sends Goods to 

Importer. In the fourth step, after Importer receives the Goods, it arranges to send 

Payment to Exporter. In the fifth step, when Exporter receives the Payment, it sends a 

Payment_acknowledgement to Importer. Figure 4.20 illustrates the whole trade 

scenario. Labelling numbers indicate the ordered steps in this trade procedure, and the 

list at the bottom identifies the names of the documents in each step. 

Here we start analysis of the workflow in GT3 with the specification of the 

communication structure. In GT3 the involving parties interact with each other via 

documents only, each party has its own private workflow; there is no need to agree 

upon one common process for the internal workflow. But for interaction purpose, they 

must agree upon a protocol, in our case this is the trade scenario, such as the structure 

of the document, encryption technology, etc. Here we are interested in the interface of 

the local workflow instead of the internal behaviour. It is very convenient for us to use 

Message Sequence Chart to get an overview of the message sequence in the system.   



Chapter 4 Reengineering of International Trade 

 71  

 

Figure 4.20 GT3 -- A Simplified Trade Scenario for International Trade. 

Figure 4.21 describes the interactions among the three parties involved in terms of a 

Message Sequence Chart. This Message Sequence Chart specifies the documents that 

are exchanged and the ordering of events associated with sending and receiving 

documents. The representation of Message Sequence Charts is intuitive and it focuses 

on the messages between communication parties. In GT3, we have five documents. 

Each document has a sender and a receiver. For example, the instance Importer is the 

sender of Purchase_order and the instance Exporter is the receiver of Purchase_Order. 

According to Mauw (Mauw & Reniers, 1994), an instance is an abstract entity of which 

one can observe the interaction with other instances in a Message Sequence Chart 

representation. 

An instance is denoted by a vertical axis. The time along each axis runs from top to 

bottom. So we can clearly represent the document order. In Figure 4.21, the instance 

Transporter sends Goods only after the receipt of Goods_Delivery order from instance 

Exporter.  

Our Message Sequence Chart of GT3 is the same as the second step of Processor Lee’s 

methodology shown in Figure 4.8. Professor Lee calls it Sequence Diagram. We think it 

is necessary to follow this specific step in Professor Lee’s methodology to depict the 

communication protocol using Message Sequence Chart, because all roles in GT3 

communicate with each other via ordered document only.  



Chapter 4 Reengineering of International Trade 

 72  

After getting an overlook of the communication structure in GT3, we need now to deal 

with more detail to get a better understanding of this trade scenario, and obtain more 

details on each party. At this stage we follow the third step in Processor Lee’s 

methodology. Professor Lee calls it Activities Diagram shown in Figure 4.8. We 

analysis this scenario using a Swimlane Diagram. The Swimlane Diagram is a specific 

modelling technique in workflow management designed to support the definition and 

control of processes. It can illustrate an entire business process from the beginning to 

the end (Sharp & McDermott, 2001) shown in Figure 4.22.  

 

Figure 4.21 GT3 in Terms of a Message Sequence Chart. 

 

   

Figure 4.22 GT3 in Terms of a Swimlane Diagram. 



Chapter 4 Reengineering of International Trade 

 73  

In this section we design a trade scenario called GT3 by simplifying Documentary 

Credit Procedure for international trade. Also we identify two necessary steps in 

Professor Lee’s methodology to analysis our GT3 model. In the next section we use 

Linear Documentary Petri Nets to represent our GT3 model. 

4.3 Linear Documentary Petri Nets 

In Professor Lee’s Documentary Petri Nets, transitions are labelled to interpret the 

actions it performs; a new kind of place node called document place is added to 

represent the documents, each document place has an associated label to identify the 

name, sender, and receiver of the document; goods and currency can be treated as a 

special kind of document with the same representation form.  

After making these additions, Professor Lee (Lee, 1999) indicates that the resulting 

Documentary Petri Nets are quite suitable to be used as a representation language for 

modelling electronic trade scenario.   

Here we make three modifications on Professor Lee’s Documentary Petri Nets to suit 

our needs. The resulting Documentary Petri Net is called Linear Documentary Petri 

Net. 

• First Modification: Eliminating branches in Documentary Petri Net to 

concentrate on the most important case. 

In our study of GT3, we emphasis our interest in analysing the most important case 

only. It means, for example, when Exporter receives the Purchase_Order, it will send 

Goods_Delivery instruction to Transporter. We do not consider the choices that a role 

can make and exceptions that may occur in the delivering of documents. Each 

document goes to the right recipient in the right order. For our purpose of 

demonstration, we think the time sequence is important in our trade scenario. Payment 

should be sent to Exporter after Importer receives Goods from Transporter. Sending 

Payment to Exporter on a specific time point is meaningless. After this modification, 

we obtain Documentary Petri Nets without branches. 

• Second Modification: The maximum number of document that can be sent is 

one in a single documentary communication.       



Chapter 4 Reengineering of International Trade 

 74  

In Professor Lee’s Documentary Petri Nets, sending bundles of documents in a single 

documentary communication is allowed. In order to make the Documentary Petri Nets 

more structural, more suitable for prototyping, we limited the number of document that 

can be sent in a single documentary communication to one. That means each transition 

can have at most one input document place, and at most one output document place as 

well. 

This also greatly simplifies analysis. A node that receives, say, 4 documents has 24 

possible input triggers (each of the 4 document maybe either present or absent). We will 

insist, when capturing scenarios from experts, that they identify a single “most 

important” case for analyses. 

• Third Modification: Document labelling. 

In Documentary Petri Nets, each document place has an associated label besides it. The 

label includes name, sender, and receiver of the document. This is only suitable for 

trade scenario without many documents. We change the labelling style as: “label the 

document place with the abbreviation of document name and move all other document 

attributes to the bottom of each role procedure”. When we refer to document attributes, 

we mean the sender, receiver of the document. This makes the graph clean and tidy and 

also manageable for prototyping.    

We name the modified Documentary Petri Nets as Linear Documentary Petri Nets 

(LPDN). Linear Documentary Petri Net does not have a branch; it limits the number of 

documents that can be sent to one in a single documentary communication; document 

places are labelled with the abbreviation of the documentary only, the other attributes of 

the documents are moved to the bottom of each role procedure. This resulting Linear 

Documentary Petri Nets preserve all the characteristics of Professor Lee’s Documentary 

Petri Nets. It is more structural and easy to manage for demonstration purpose.  

We use Importer procedure as an example to illustrate how to represent it into a Linear 

Documentary Petri Net. We can easily identify the actions performed by the Importer 

from Figure 4.22. It performs the first action to send a Purchase_order to Exporter to 

initiate the whole trade procedure; after receiving Goods, it performs the second action 

to send Payment to Exporter; finally when the Exporter sends Payment_Ack back, 

Importer will perform the third action to receive it. 



Chapter 4 Reengineering of International Trade 

 75  

Actually Importer has performed two actions in the second step, first it receives Goods, 

then sends Payment to Exporter. This is illustrated in Figure 4.23. The point here is in 

studying this trade scenario, our emphasize is on the communications between parties. 

The workflow within a particular party is of less interest.  

Our assumption is each party involved in this trade scenario is well behaved. A well-

behaved Importer will send Payment after it receives Goods delivered by Transporter. 

As described in Figure 4.23 (b), there is no document output for transition “Receive 

Goods”, no document input for transition “Send Payment”. State S1 can be reached if 

both state S0 and document place G are marked; if state S1 is marked then document 

place P will be marked and S2 can be reached automatically. So state S1 can be 

bypassed and these two actions can be combined together. Therefore, Figure 4.23 (a) 

has the same effect as Figure 4.23 (b) for our research purpose. 

 

Figure 4.23 Illustration of Actions Combining. 

Also for a particular party, we think sending action is more active than receiving action. 

That is the reason why we use label “Send Payment” instead of “Receive Goods and 

Send Payment”. An advantage of this labelling style lies in the simplification of action 

labelling and this makes the graph clean and tidy. 

This combination of actions can also be illustrated with our previous Swimlane diagram 

representation shown in Figure 4.22. In Importer Swimlane, the two shadowed boxes, 

Receive Goods and Send Payment, are all performed by the same role -- Importer. 



Chapter 4 Reengineering of International Trade 

 76  

Because our research focus is on interactions between parties instead of within a 

particular party, so handoffs -- special kind of flow that cross the Swimlane from one 

role to another, are our focus. Therefore we can combine these two actions in the 

Swimlane to abstract our representation to a higher level. These simplifications make 

the model understandable to the most people with the least effort. In Figure 4.22, we 

also identify other actions that can be combined together which are all shown in the 

dash line boxes.  

Linear Documentary Petri Net representations of each role involved in our simple trade 

scenario are illustrated through Figure 4.24 to Figure 4.26. In Importer Linear 

Documentary Petri Net shown in Figure 4.24, whenever an Importer instance is 

generated by the system, Importer is initiated at state S0. It firstly performs the action 

Send Purchase_Order, this newly produced Purchase_Order is represented as a 

document place called PO as the output of this action, and then it stops to wait for the 

Goods to be delivered by Transporter. At this stage, state S1 is reached.  

 

Figure 4.24 Importer Procedure Represented in Linear Documentary Petri Net. 

When Importer receives Goods, it performs the second action Send Payment to 

Exporter. So the receiving Goods is represented as an input document place labelled as 



Chapter 4 Reengineering of International Trade 

 77  

GO, and the sending Payment is represented as an output document place called P of 

this action. After this transition, state S2 is reached. When the Payment_Ack from 

Exporter arrives, Importer performs its last action Receiving Payment_Ack, and reaches 

its final state S3. This receiving of Payment_Ack is represented as an input document 

place called PA of this action. 

 

Figure 4.25 Exporter Procedure Represented in Linear Documentary Petri Net. 

In the same way we can get Linear Documentary Petri Net representation of the other 

two roles shown in Figure 4.25 and Figure 4.26. Note that in Importer workflow, we 

have an input state S0 and an output place S3 for our trade scenario GT3, but for 

Exporter and Transporter, there is no need for these state places. Because workflow in 

Exporter is initialised by the passing document PO from Importer only, therefore source 

place SA in Figure 4.25 can be omitted, so is SC shown in Figure 4.26. However, for 

semantically reasons we assume that there is one source place and one sink place for 

Exporter and Transporter procedure. These source and sink places are represented as 

dashed circles called SA, SB, SC, and SD respectively, which are shown in Figure 4.25 

and Figure 4.26.              



Chapter 4 Reengineering of International Trade 

 78  

 

Figure 4.26 Transporter Procedure Represented in Linear Documentary Petri Net. 

 

Figure 4.27 GT3 Execution Demonstration Step 1. 

Finally, we will demonstrate how GT3 can be executed in terms of Petri Nets to obtain 

an overview of the whole procedure in a particular trading case. These are illustrated 

through Figure 4.27 to Figure 4.33. 

In Figure 4.27, when there is a black token in state place S0, transition Send 

Purchase_Order is fired, this black token is consumed and two black tokens are 

produced and put in state place S1 and document place PO. This is illustrated in Figure 

4.28. At this stage, transition Send Payment is enabled, but it needs to wait for a black 



Chapter 4 Reengineering of International Trade 

 79  

token in its input place G to be fired. While transition Send Goods Delivery is fired, 

because it has only one input place PO and there is a black token in it. 

 

Figure 4.28 GT3 Execution Demonstration Step 2. 

 

Figure 4.29 GT3 Execution Demonstration Step 3. 

Figure 4.29 illustrates the firing of transition Send Goods Delivery. Black token in 

document place PO is consumed; two black tokens are produced and put in state place 

S4 and document place GD. At this moment, transition Send Payment_Ack is enabled, 

but it needs to wait for another black token in document place P to be fired. Transition 



Chapter 4 Reengineering of International Trade 

 80  

Send Goods is fired because there is a black token in its only input place GD. This 

process is shown in Figure 4.30. 

In Figure 4.30, transition Send Goods consumes the black token in document place GD 

and produces a black token in G. At this time, transition Send Payment is fired because 

there are tokens in both its input places G and S1. These two tokens are consumed and 

two new black tokens are produced and put in state place S2 and document place P. At 

this stage, transition Receive Payment_Ack is enabled, but it needs to wait for a black 

token in another input place PA. Transition Send Payment_Ack is fired by the black 

token in document place P and the previous generated black token in state place S4. 

This procedure is illustrated in Figure 4.31. 

 

Figure 4.30 GT3 Execution Demonstration Step 4. 

In Figure 4.31, transition Send Payment_Ack consumes black tokens in document place 

P and state place S4, a new black token is produced in document place PA. This black 

token with the previously generated black token in state place S2 fires transition 

Receive Payment_Ack shown in Figure 4.32. Black token in S2 and PA are consumed 

by Receive Payment_Ack, a new black token is generated in state place S3 shown in 

Figure 4.33. This state place S3 is the sink state of the trade scenario represented by 

Linear Documentary Petri nets.          

 



Chapter 4 Reengineering of International Trade 

 81  

 

Figure 4.31 GT3 Execution Demonstration Step 5. 

 

Figure 4.32 GT3 Execution Demonstration Step 6.  

In this section we modified Professor Lee’s Documentary Petri Nets by getting rid of 

branches; limiting the number of documents that can be sent to one in a single 

documentary communication; rearranging the way that document places are labelled. 

For representing electronic trade scenario, the resulting Linear Documentary Petri Nets 

are more structural and easy to manage besides preserving all the characteristics that 

Documentary Petri Net has. 



Chapter 4 Reengineering of International Trade 

 82  

 

Figure 4.33 GT3 Execution Demonstration Step 7. 

4.4 Summary 

In this chapter, we discuss Professor Lee’s work on reengineering international trade in 

detail. It is believed by Professor Lee that electronic trade scenario can be a solution to 

deal with the mutual trust-related problems in international trade within open electronic 

commerce environment. These trade scenarios are the mutually agreed-upon set of 

procedures, documents, and rules that control the activities among all the parties 

involved. Electronic trade scenario is represented by Documentary Petri Nets. A 

production-level case tool called InterProcs is also made available by Professor Lee to 

assist in designing and prototyping trade scenarios. 

We design a simple trade scenario called GT3 by simplifying the Documentary Credit 

Procedure for international trade. We also identify two necessary steps in Professor 

Lee’s methodology and use several techniques in Business Process Reengineering to 

analyse GT3 for better understanding of it. Using these techniques together help us to 

obtain useful knowledge from different angle and level of abstraction. Later in this 

chapter, we use a modify Documentary Petri Nets called Linear Documentary Petri 

Nets to represent our GT3 model for further study.     



Chapter 5 Simulation of GT3 

 83  

Chapter 5 Simulation of GT3 

In the previous chapter, we discussed the simple trade scenario GT3 and represented it 

with Linear Documentary Petri Nets. In this chapter, we intend to describe the simulator 

we wrote to simulate the workflows in GT3 to demonstrate how the system works. 

Then we try to reach a more ambitious goal, that is, to produce a tool with which non-

technical users can design a new trade scenario or modify the existing model easily for 

training purpose. In this way, users can get better understanding of the system under 

study without much special knowledge on programming.  

We start by identifying that simulation is a powerful tool to help people obtain better 

understanding of the system under study. Then we discuss the choice of simulation 

model and programming language. After that we describe our implementation of GT3. 

At last we make attempt to produce a tool for helping users to generate a new trade 

scenario automatically based on the simple specifications that users provide. This newly 

generated trade scenario can be executed automatically or manually. 

5.1 What is Simulation? 

According to Davies and O'Keefe (Davies & O'Keefe, 1989), when the word 

“simulation” is used by computer scientists, statisticians, and management scientists, 

they normally refer to the construction of an abstract model representing some system 

in the real world.  

The simulation describes the pertinent aspects of the system as a 
series of equations and relationships, normally embedded in a 
computer program. 

Johnston (Johnston, 1987) describes a computer simulation as: 

...A computer program that defines the variables of a system, the 
range of values those variables may take on, and their interrelations in 
enough detail for the system to be set in motion to generate some 
output. The main function of a computer simulation is to explore the 



Chapter 5 Simulation of GT3 

 84  

properties and implications of a system that is too complex for logical 
or mathematical analysis... A computer simulation generally has an ad 
hoc or ‘home-made’ quality that makes it less rigorous than a 
mathematical model 

These descriptions might be adequate for many purposes. The basic idea behind 

simulations is simple. When we want to get knowledge or make decision on a real 

world system, usually the system is not easy to study directly due to its complexity; we 

then proceed indirectly through creating and studying another system (simulation 

model), which is sufficiently similar to the real world system. And we are confident that 

what we learn about the model is also true of the real world system. 

 

Figure 5.1 Ways to Study a System. 

Figure 5.1 illustrates different ways that a system can be studied. We redraw this figure 

from (Law & Kelton, 1991). The authors give detailed explanations on their methods of 

studying a system. 

• Experiment with the actual system vs. Experiment with a model of the system.  

If it is possible to make changes to the actual system, and let it operate in the new 

conditions, then it is desirable to do so. However, in real world, it is rarely feasible to 

do so. Law and Kelton (Law & Kelton, 1991) give the simulation of a non-existing 

system (a system not being built yet) as an example, to study the proposed alternative 



Chapter 5 Simulation of GT3 

 85  

configurations to see how it should be built. Another example they give is to study the 

simulation of an existing bank system; it is deduced that reducing the tellers in actual 

system in order to decrease the cost, could lead to a long service delay to customers. So 

it is necessary to build a model to represent the system being studied, because the 

experiments with the real system are too costly or too disruptive. 

• Physical model vs. Mathematical model.  

According to Law and Kelton (Law & Kelton, 1991), physical models are suitable for 

engineering or management systems. For example, tabletop scale models of material-

handling system. For representing a system in terms of logic and quantitative 

relationships, to see how the system reacts due to manipulation and changes being made 

to the system, mathematical model is more appropriate.  

• Analytical solution vs. Simulation.  

After setting up a mathematical model, it must be examined to see how it can be used to 

study the system being represented. For a simple model, the authors think that it may be 

possible to work with its relations and quantities to get an exact, analytical solution. If 

an analytical solution to a mathematical model is available and is computationally 

efficient, then analytical solution is the desirable way to study the system. But the real 

world systems are usually very complex, even the mathematical models of them are 

complex too. Simulation, at this stage, is regarded as a better way for studying them.  

Through the above discussion, we give the definition of simulation, and talk about some 

different ways of studying a system. The purpose of systems study is for better 

understanding of the relationship among various components and for predicting 

performance when changes are made to the systems. Compared with other methods, 

simulation is more cost-effective, timesaving, and safer. Law et al (Law & Kelton, 

1991) list some application areas in which simulation has been regarded as useful and 

powerful tool. Some of these areas are: 

• Designing and analysing manufacturing systems. 

• Designing communications systems and message protocol for them. 

• Analysing financial or economic systems. 



Chapter 5 Simulation of GT3 

 86  

• Designing and operating transportation facilities such as freeways, airports, 

subways, or ports. 

In real world, no two simulation projects will be identical, but some generalization can 

be made in the simulation projects. Pidd (Pidd, 1988) indicates that simulation work can 

be viewed as having three phases as shown in Figure 5.2. 

 

Figure 5.2 Pidd’s Three Phases for Simulation Work. 

Pidd (Pidd, 1988) also states that the three phases are very difficult to separate precisely 

in practice. Because it is very difficult or impossible to program properly without an 

adequate model, so some overlaps will occur among these three phases in the whole 

simulation process.     

In this section we discussed the concept of simulation and its advantages over other 

methods on studying a real world system. Also we identified the three phases defined 

by Pidd (Pidd, 1988) for typical simulation work. In the next two sections, we will 

discuss the first two of these three phases in detail, they are: Modelling and 

Programming.  

5.2 Choice of Modelling Techniques 

For a simulation model, the most important issue is the principal elements. So the 

simulation analyst must decide what his principal element is for his specific case. For 

this purpose, Pidd (Pidd, 1988) states that two aspects should be taken into 

consideration. One is the “nature of the system being simulated”, because some 

modelling approaches are more suited to certain problems than to others. Another is the 

“nature of the study being carried out”, which refers to what the object of the study is. 

When both of these two aspects are taken into consideration, the analyst will get a clear 

idea on his simulation project, so that he can decide what kind of level of accuracy and 

detail are appropriate for the simulation being proceeded.  



Chapter 5 Simulation of GT3 

 87  

Pidd (Pidd, 1988) categorizes simulation models into three groups: time-slicing or next 

event; deterministic or stochastic simulation models; and continuous or discrete 

simulation models. In Law et al’s (Law & Kelton, 1991) categorization, the first 

category: time-slicing or next event, is replaced by static or dynamic simulation models. 

The other two categories are the same as Pidd’s. Graybeal and Pooch (Graybeal & 

Pooch, 1980) also have the similar categorization of simulation models. We will give a 

brief overview on these simulation models. 

• Time slicing vs. Next event models. 

In this simulation model, Pidd (Pidd, 1988) indicates that state changes of the system 

are modelled through time. To consider how time flow can be handled within 

simulation is important.  

Time slicing approach involves updating and examining the model at regular time 

intervals. So for a time slice of length dt, the model is updated at time (t + dt) for 

changes in the time interval (t to (t + dt)). The obvious problem for this approach is that 

whether there are any events to carry out or not, the model must be advanced by a time 

slice. If the time slice is too large, then it is impossible to simulate some of the state 

changes that occur.  

Instead of regular time interval, the next event technique uses variable time increment. 

Model is only examined and updated when it is known that a state change is due or the 

next event to be executed, regardless of the time interval. This method is more efficient 

than time slicing, especially where events are infrequent.  

• Static vs. Dynamic simulation models.  

Law et al (Law & Kelton, 1991) state that a static simulation model is a representation 

of a system at a particular time; examples of static simulations are Monte Carlo models. 

In Monte Carlo models, random values are selected to simulate a model. It's the same 

with the variables that have a known range of values but an uncertain value for any 

particular time or event. On the other hand, a dynamic simulation model represents a 

system as it evolves over time, such as a conveyor system in a factory.     

• Deterministic vs. Stochastic simulation models. 



Chapter 5 Simulation of GT3 

 88  

From Graybeal and Pooch’s point of view (Graybeal & Pooch, 1980), a deterministic 

system is a system whose behaviour is entirely predictable. In a deterministic system, 

the new state of the system is completely determined by the previous state and by the 

activity. That means the system is well understood, and it is possible to predict 

precisely what will happen. A cycle of operations on an automatic machine is a good 

example. The authors give two figures to illustrate these two systems corresponding to 

deterministic and stochastic simulation modes. 

A stochastic system is one whose behaviour cannot be entirely predicted, the system 

contains a certain amount of randomness in the state transitions. In some case it might 

not be possible to assign a probability to the state that the system will assume after a 

given state and activity.  

In Figure 5.3 (a), a deterministic system is depicted. S0 refers to the state of the system 

before activity A. Sn refers to the state of the system after the activity A. In Figure 5.3 

(b), S1 and S2 are two possible states that the system can enter after the state S0 in 

response to activity A. So a stochastic system is nondeterministic because the next state 

cannot be unambiguously predicted if the present state and the activity are known. We 

redraw this figure from (Graybeal & Pooch, 1980).  

 

Figure 5.3 A Deterministic vs. a Stochastic System. 

Pidd (Pidd, 1988) also gives an example to show that the difference between a 

deterministic and stochastic system. A lecturer may give the same lectures to several 

sets of students, but the duration may vary. Although we can say that the lecture is 

normally distributed with a mean of 50 minutes and a standard deviation of 3 minutes 

by statistic statements, but it is impossible to state precisely how long a particular 

delivery of the lecture will last unless the lecturer’s behaviour can be completely 

controlled, and that of the class as well. So Pidd thinks that the distinction between 



Chapter 5 Simulation of GT3 

 89  

deterministic and stochastic systems is artificial. The distinction is highly based on the 

amount of knowledge about a system and the amount of control over that system 

studied by an observer. 

• Continuous vs. Discrete simulation models. 

The terms continuous and discrete applied to a system refer to the nature or behaviour 

of changes with respect to time in the system state. Systems whose changes in state 

occur continuously over time are continuous systems; systems whose changes occur in 

finite quanta or jumps, are discrete systems.  

Consider a train moving from station to station, picking up and depositing passengers at 

each stop. In Pidd’s (Pidd, 1988) point of view, there are some obvious system events 

are discrete change, such as ‘train stop’, ‘door open’, ‘door close’, etc. Thus, to 

simulate this system using a discrete model is desirable.  

On the other hand, when the electronically powered locomotive moves from station to 

station, its speed will increase smoothly from the rest until it reaches an appropriate 

cruising rate. The speed doesn’t change by discrete amount. Thus if the results of the 

simulation are to include the state of the system in relation to the continuous variable 

‘speed’, then a continuous model is more suitable than a discrete model.  

Sommerville (Sommerville, 1992) states that there are a large number of potential areas 

for discrete event simulation. One of the main areas currently being explored is in 

designing new manufacturing areas, especially where high capital investment is 

involved. For example, if a company wishes to build a new production line, then the 

line can be first simulated to assess feasibility and efficiency. 

In the rest of this section, we will spend some time on discrete event simulation. 

Discrete event simulation describes a system in terms of logical relationships that cause 

changes of state at discrete points in time rather than continuously over time. Pidd 

(Pidd, 1988) indicates that quite a variety of systems can be regarded as having a 

queuing structure and as such they lend themselves well to discrete event simulation. 

Typical problems in this area are: Objects (customers in a gas station, aircraft on a 

runway, and jobs in a computer) arrive and change the state of the system 

instantaneously.   



Chapter 5 Simulation of GT3 

 90  

A discrete event simulation employs a next event technique to control the behaviours of 

the system, as its name indicates. Discrete event simulation concerns the modelling of a 

system as it evolves over time by a representation in which the state variables change 

instantaneously at separate points in time. Law et al (Law & Kelton, 1991) point out 

that due to discrete event simulation’s characteristics, it is suitable for most of the real 

world system simulations. 

Discrete event simulation is quite desirable to model our trade scenario for the 

following reasons. In our trade scenario GT3, system state evolves along the way from 

the start of a business case to the end of this particular case, changes at discrete point of 

time. For example, when the Importer sends out a Purchase_order to the Exporter, state 

of the system changes, so does with other events like the Transporter sends Goods to 

the Importer, the Exporter sends Payment_Ack to the Importer, etc. 

Graybeal et al (Graybeal & Pooch, 1980) introduce some basic terminology in discrete 

event simulation. The objects of the simulation model are called entities, which are 

characterized by a fixed collection of parameters called attributes. Sets are collections 

of individual entities having common properties. The state of the system at any given 

time is completed described by the current list of individual entities, their attributes and 

the set memberships.  

An event is an instant of time at which a significant state change occurs in the system. 

Such as an entity enters or leaves a state. Entities move from set to set because of the 

operations in which they involved. The operations and procedures, which are initiated 

at each event, are known as activities.  

Temporary entities are created and destroyed during the course of the simulation, while 

permanent entities remain through the simulation. Sometime it is useful to group 

together a sequence of events in the chronological order in which they will occur. Such 

a sequence is known as process and is often used to represent all or part of the life of 

temporary entities.  

In this section, we gave an overview on the issues of modelling – Pidd’s first phase to 

simulate a real world system, see Figure 5.2. We also introduced some terminology for 

discrete event simulation. We argued that discrete event simulation is quite suitable for 



Chapter 5 Simulation of GT3 

 91  

modelling our trade scenario because the state of the system changes at discrete point of 

time while events occur.  

In the next two sections, we will discuss the second phase of our simulation of GT3: 

Programming. We discuss the Programming phase in two steps. First we choose a 

implementation language in section 5.3, then in section 5.4, we discuss the 

implementation of GT3 in our chosen language.  

5.3 Programming Language Issues 

Techniques involved in this phase are program design and the choice of appropriate 

programming languages. Pidd (Pidd, 1988) states that whatever the choice of 

programming language, there is a growing tendency for a highly disciplined and 

structured approach to be taken to the programming. This is particularly important in 

large or complex programs. 

Once the modelling approach has been decided, next thing to do is to translate the 

model into a form suitable for computer. That is, the model must be coded using some 

language.  

The programming phase seems one of the best understanding steps in mode building, 

but it is very difficult sometimes to choose a suitable programming language. The range 

of programming languages that have been used for discrete event simulation covers the 

entire spectrum, from low-level machine-oriented assembly language to the specialized 

simulation-oriented language.  

5.3.1 Common Factors in Language for Simulation 

Graybeal et al (Graybeal & Pooch, 1980) discuss the languages issues. They identify 

seven factors that can influence the choice of a language for simulation. The seven 

factors are: Generating random varieties, Managing simulation time, Handling routines 

to simulate event executions, Managing queues, Collecting data, Summarizing and 

analysing data, and Formulating and printing output. Below are quotes from their 

prescription of these factors.  

(Generating random varieties)…to simulate probabilistic event 
usually requires the use of sampling techniques…then any language 
to be used in implementing a simulation model should either provide 



Chapter 5 Simulation of GT3 

 92  

or allow easy development of a facility to generate and transform 
standard uniform random varieties. 

(Managing simulation time)…some means of representing time is 
required. This is important not only for controlling the simulator but 
also for collecting, summarizing, and analysing the data. A simulation 
programming language must allow for easy representation and 
manipulation of simulation time. 

(Handling routines to simulate event executions) When a scheduled 
event is to be executed, the simulation program normally effects the 
required changes in system state by invoking a program module 
designed specifically for that purpose. Depending on the complexity 
of the required changes, the execution could be simulated with one or 
two statement routines inserted at the appropriate points in the model 
or with more complex, long routines implemented as sub-programs. 

(Managing queues)…A convenient way of representing a queue is by 
list because the primary operations in queue management are addition 
and deletion of members. These two operations are easily performed 
using the list representation and the manipulation of pointers. Thus a 
language with efficient list-processing capability offers a significant 
advantage in simulation. 

(Collecting data) Many simulation models are implemented to assess 
the effect on the system of varying certain conditions or parameters. 
This requirement and comparison requires some facility for the 
collection of data…Nearly all languages that have gained any degree 
of recognition have this capability. 

(Summarizing and analysing data) In most cases the simple collection 
of raw data are not enough… Other simulation projects may require a 
more extensive analysis of the data; perhaps regression analysis, 
analysis of variance, time series analysis, or other sophisticated tools 
of statistical analysis. A language that provides this level of analysis 
as part of its normal operation offers an advantage in simulation. The 
programmer can spend much time designing and coding the statistical 
analysis modules if they are not automatically provided in the 
programming language. 

(Formulating and printing output) Some simple simulation models 
may require only simple output. Others may require extensive report 
writing…A language that allows flexibility in formatting and 
representing the data offers a significant advantage, particularly if the 
model is complex and if the results are to be presented to 
management personnel. 

In addition to these seven common factors, Law et al (Law & Kelton, 1991) also 

identify an extra factor in selecting a language for simulation -- the assistance provided 

during the debugging phase of program development. The authors identify that the 



Chapter 5 Simulation of GT3 

 93  

special-purpose simulation languages usually provide extensive debugging assistance. 

As we can see that Graybeal et al discuss only the essential features of the programming 

language, whereas, Law et al (Law & Kelton, 1991) take into consideration issues 

germane to the implementation of the programming language too. 

Implementation feature in a programming language such as debugging is very 

important. Emshoff and Sisson (Emshoff & Sisson, 1971) report that it is not 

uncommon to reduce the time spent on coding and debugging a simulation model by a 

factor of ten through the use of a language with facilities which enhance the debugging 

process. 

Besides the above factors, we can also identify other factors such as: whether the 

language is well documented; whether the language is flexible so that the analysts can 

use it for more than one model; if two languages are both suitable for a simulation 

projects, then the language with which the programmers are familiar is preferred, 

because it is impossible for the programmers to write an efficient program with the 

language they don’t know well in a short time.  

Graybeal and Pooch (Graybeal & Pooch, 1980) indicate that the relative weights given 

to these factors depend on the specific problem, and the aim in all cases, is to minimize 

the time spent in coding and debugging phase.  

Taking all these factors into consideration, we have got two choices: to use a general-

purpose programming language or a special-purpose simulation language.  

5.3.2 General-Purpose Programming Languages  

It is quite understandable to choose a general-purpose programming language for 

implementing a simulation model. One of the main reasons is the availability of the 

languages, such as FORTRAN, C, and Java. Many computers used in business probably 

have a compiler or interpreter for these general-purpose languages.  

• Java 

Java is a high-level, third generation programming language like C, Fortran and many 

others. We can use Java to write computer applications that crunch numbers, process 



Chapter 5 Simulation of GT3 

 94  

words, play games, store data or do any of the thousands of other things computer 

software can do.  

What is most special about Java compared with other general-purpose programming 

languages is that it lets you write special programs called applets that can be 

downloaded from the Internet and run within a web browser.  

There is a problem with distributing executable programs from web pages. As we know 

computer programs are very closely tied to the specific hardware and operating system 

they run. A Windows program will not run on a computer that only runs DOS. 

Therefore major commercial applications like Microsoft Word or Netscape have to be 

written almost independently for all the different platforms they run on. Java solves the 

problem of platform-independence by using byte code. The Java compiler does not 

produce native executable code for a particular machine  

In InterProcs, Java is used as the programming language. The main reason we think is 

on account of Professor Lee’s intention in making the trade scenario as objected-

oriented components. Professor Lee wants these components to be combined with other 

business system components to provide a production level implementation. Then these 

trade scenarios can be stored in a publicly accessible repository to be downloaded for 

plug-and-play installation of complex trade transition models, providing companies 

with easier entry into the global market. For this purpose, Java is a good choice due to 

its object-oriented characteristics.  

• Enterprise JavaBeans (EJB) 

In essence, Enterprise JavaBeans (EJB) is a server component model for Java and is a 

specification for creating server-side, scalable, transactional, and secured enterprise-

level applications. Most important, EJBs can be deployed on top of existing transaction 

processing systems including traditional transaction processing monitors, Web servers, 

database servers, application servers, and so forth. The EJBs containing the business 

logic are platform-independent and can be moved to a different, more scalable platform 

in case of need.  

EJB takes a high-level approach for building distributed systems. It helps the enterprise 

developer concentrate on programming the business logic only. For example, the 



Chapter 5 Simulation of GT3 

 95  

developer no longer needs to write code that handles transactional behaviour, security, 

or threading because the architecture delegates this task to the server vendor. 

EJB provides distributed transaction support -- EJB provides transparency for 

distributed transactions. This means a client can begin a transaction and then invoke 

methods on EJBs present within two different servers, running on different machines, 

platforms, or Java virtual machines. Methods in one EJB can call methods in the other 

EJB with the assurance they will execute in the same transaction context. EJB helps 

create portable and scalable solutions -- EJBs conforming to the EJB API will install 

and run in a portable fashion on any EJB server. 

As shown in Figure 4.19 in the previous chapter, the trade scenarios designed with 

InterProcs can be made accessible as libraries on the web. These libraries, along with 

XML schemas, would be integrated with reusable component architecture such as 

Enterprise JavaBeans. Further more, this architecture would combine functionality from 

off-the-shelf and customer developed business applications. 

• Prolog 

Prolog is a logic language that is particularly suited to programs that involve symbolic 

or non-numeric computation. For this reason it is a frequently used language in 

Artificial Intelligence where manipulation of symbols and inference about them is a 

common task.  

Prolog consists of a series of rules and facts. A program is run by presenting some 

query and seeing if this can be proved against these known rules and facts.  

In Prolog we can make some statements by using facts. Facts either consist of a 

particular item or a relation between items. For example we can represent the fact that it 

is sunny by writing the program:  

Sunny. 

We can now ask a query of Prolog by asking: 

?- Sunny. 



Chapter 5 Simulation of GT3 

 96  

?- is the Prolog prompt. To this query, Prolog will answer yes. Sunny is true because 

(from above) Prolog matches it in its database of facts. 

Prolog is used in the previous version of InterProcs because the audit daemon that is an 

automated auditing technique contained within InterProcs. The idea is developed by 

Professor Lee in 1990. The purpose of audit daemon is to inspect a procedure and 

identify possible control weaknesses and potentials for fraud. According to Professor 

Lee, these audit daemons have diagnostic function only. How to devise appropriate 

controls to repair any control weakness is left to the designer of the trade scenario. 

Audit daemons consist of deductive rules, which are in logic programming style, plus 

certain special pattern matching predicts for Documentary Petri Nets. Prolog is chosen 

for its characteristics on logic programming and symbol manipulating to represent those 

deductive rules and pattern matching predicts. 

So we can identify the advantages of using the general-purpose programming 

languages. They are: most of the programmers have at least been exposed to these 

general-purpose programming languages like Java, so the user familiarity is not a 

problem; models developed in general-purpose programming languages are highly 

portable because almost all of the high level general-purpose programming languages 

are platform-independent. A model developed at one place can probably be run at 

another location without changes or with only minor changes.  

Another advantage, which is very hard to quantify for a particular project, is that 

programmers using one of the general-purpose programming languages to develop a 

simulation model are likely to be more aware with the details of the model than if the 

model was coded in one of the special-purpose simulation languages. Since the 

programmers are required to address all aspects of the model, the programmers will be 

obviously familiar with the design details. 

The main drawback of general purpose programming languages is that the entire model 

must be coded by the programmers. General-purpose programming languages provide 

few simulation-oriented functions and little debugging assistance other than pointing 

out syntactic errors.         



Chapter 5 Simulation of GT3 

 97  

5.3.3 Special-Purpose Simulation Language 

Graybeal and Pooch (Graybeal & Pooch, 1980) state that the special-purpose simulation 

languages were developed because many simulation projects need similar functions 

across various applications. Law and Kelton (Law & Kelton, 1991) also think that it is 

the commonality of those factors we mentioned above that led to the development of 

special purpose simulation languages. The authors stated:  

The improvement, standardization, and greater availability of these 
simulation languages has been one of the major factors in the 
increased popularity of simulation after 1950s in which the special-
purpose simulation languages were started to be developed. 

GPSS (General-Purpose Simulation Language) (Gordon, 1975) was originally 

developed by Geoffrey Gordon at the IBM in 1961. It is well suited for queuing 

systems. In the 1960s and 1970s, GPSS was a very popular simulation language, this is 

because the queuing nature of many simulation models at that time, IBM’s strong 

influence on the industry, and GPSS’s being taught in many University simulation 

course. 

SIMAN (SIMulation ANalysis) (Pegden, Sadowski, & Shannon, 1990) was developed 

by Dennis Pegden in 1982. SIMAN gained acceptance quickly because it was the first 

major simulation language to be available for microcomputers and also because of its 

special features for manufacturing, including work stations, transporters, conveyors, 

and automated guided vehicles.  

SIMSCRIPT (Law & Larmey, 1984) was developed by Harry Markowitz et al in 1962. 

It evolved through a number of versions, with the latest one, SIMSCRIPT II.5, being 

marketed by CACI Products Company. SIMSCRIPT II.5 is a general programming 

language containing the capabilities for building discrete event, continuous, or 

combined simulation models.  

Each special-purposes simulation language has its own characteristics, and is suitable 

for a special category of simulation models. For SIMSCRIPT II.5, its English-like and 

free form syntax make SIMSCRIPT II.5 simulation programs easy to read and almost 

self-documenting. Because of its sophisticated data structures, and its powerful control 

statements, SIMSCRIPT II.5 is more suitable for large, complex simulation model than 

another other special-purpose simulation language.  



Chapter 5 Simulation of GT3 

 98  

Using of special-purpose simulation languages has some advantages over the general-

purpose programming languages. Simulation languages automatically provide most of 

the features needed in programming a simulation model, such as advancing simulation 

time and collecting data, etc. resulting in significant decrease in programming time.  

Law and Kelton (Law & Kelton, 1991) state that simulation models are generally easier 

to change when written in a simulation language; also most of the simulation languages 

provide dynamic storage allocation during execution. Simulation languages provide a 

natural framework for simulation modelling; their basic building blocks are more 

closely similar to simulations than those in a language like Java.  

Simulation languages provide better error detection because many potential types of 

errors have been identified and are checked for automatically. Since fewer lines of code 

have to be written, the chance of making an error will probably be smaller. 

The drawback of special-purpose simulation languages is quite obvious. These 

simulation languages are not familiar by many people as to general-purpose languages, 

so the user familiarity is a problem. Training should be given to the programmers 

before the modelling project. Usually these software packages are costly.    

The choice of a suitable programming language is an important consideration in the 

development of a simulation model. The choice must be made based on the 

characteristics of the individual project. Considerations such as the languages supported 

at the installation, the programmer’s level of proficiency, and the complexity of the 

model being developed all have an impact on this decision. 

Simulation languages can substantially reduce both programming and project time. By 

design, they offer language, program, and data structures that make models much easier 

to develop and modify than that with the general-purpose programming language. That 

is the reason why we prefer special-purpose simulation language to general-purpose 

programming language.  

Further, our view is that this simulation language should be English-like, self-

documenting, and readable by the user for our demonstration purpose. The users, in our 

case, maybe a manager who uses the model for decision making or someone who is 

primarily interested in the system under study, but not computer programming.  



Chapter 5 Simulation of GT3 

 99  

Users may want to play around with the model for better understanding, such as adding 

extra documents to see what the system behave, or add more roles such as banks or 

insurance companies to see what will be interested in the system, etc. That is another 

reason why we prefer the SIMSCRIPT II.5 that is English-like, self-documenting, and 

readable programming, to other special-purpose simulation languages. 

An aspect of simulation languages is the world-view of the model through this specific 

language. With a general-purpose language, such as Java, this means to look at the data 

structures of the language; but with a simulation programming language like 

SIMSCRIPT II.5, it involves much more.  

The world-view of a simulation language, in a sense, defines the class of problems for 

which the language is suitable. Another way of characterizing the world-view of the 

language is: how one views the world with the language. For example, in 

SIMSCRIPTII.5, one begins to describe the modelled system in terms of entities. These 

entities are characterized by their attributes. If there are logical associations or 

groupings of entities, they are described as sets. The actions in the modelled system are 

described as events or processes.  

Logical consistency tests are performed, some during compilation of the model and 

some during execution of the model, which are related to the correct application of the 

world-view, not just to programming details. 

The world-view of the language, together with the support of the constructs by the 

compiler, and debugger, are the most important reasons for us to choose SIMSCRIPT 

II.5 as a simulation language for our GT3 model.  

In this section, we discussed some common factors for program language being used in 

simulation; also we gave some advantages of using special-purpose simulation 

language over the using of general-purpose programming language. Lastly, we chose 

SIMSCRIPT II.5 as our programming language in GT3 implementation. That is 

because SIMSCRIPT II.5 automatically provides most of the features needed in 

programming a simulation model. Also it is English-like, readable by users, etc. In the 

next section we will discuss the implementation of GT3 in SIMSCRIPT II.5.  



Chapter 5 Simulation of GT3 

 100  

5.4 GT3 in SIMSCRIPT II.5 

In this section we are going to implement GT3 model in SIMSCRIPT II.5. Before we 

start, we set up three goals in order to evaluate our implementations. With these goals, 

we will do evaluation on InterProcs and our implementations of GT3.  

5.4.1 Implementation Goals 

In the model development phase, for the convenience of the high participation of non-

technical people in Business Process Reengineering team, ease of design and 

modification is very important. It is highly desired that the implementation should be 

user-friendly so that the Business Process Reengineering specialists can design the 

model freely without thinking about any constraints in terms of computer programming 

to avoid time-consuming trail and error. Also a visual display and animation of the 

behaviour of the model is preferred and the ability to experiment with the model by 

changing any part of it is highly demanded. So we set up our first goal here as: ease of 

design and modification. 

We set up our second goal as: the correctness of implementation. To study a system 

through simulation can be efficient and much safer than to experiment directly with the 

real system. This is based on the assumption that the simulator should reflect the real 

system in a satisfactory level, that is, what we simulate is quite close to what happens in 

the real system. In our case we need to determine whether the results obtain from 

simulation are sufficiently accurate by comparing them with the real world result. This 

comparison method can be applied to our implementation because our model is a 

simplified one that can be simulated by hand. 

The third goal we set up is: full environment support for running simulation. The 

implementation should have the ability to collect a variety of statistics to measure the 

performance of the simulated system. It should also have the ability to generate 

randomness easily to simulate the variability. Furthermore, users should have full 

control on the simulation, which means simulation can be run faster, slower or step by 

step for analysis purpose. 

In this section, we set up three goals to evaluate our implementations. The three goals 

are: ease of design and modification; the correctness of implementation; full 



Chapter 5 Simulation of GT3 

 101  

environment support for running simulation. According to these three goals, we first 

evaluate our baseline implementation -- Professor Lee’s InterProcs. 

5.4.2 Evaluation of Baseline Implementation -- InterProcs 

As mentioned in Chapter 4, we experimented with InterProcs.22feb2001 which is the 

thirteenth version released in Feb. 2001, on GT3 for several times. But this version is 

not very stable, so it gives us some difficulties on evaluation. But our thoughts are that 

with new versions of InterProcs released, maybe this problem can be fixed. So we 

intend to give a fair evaluation on Professor Lee’s work. 

We have introduced how to design a new trade scenario step by step in Chapter 4. 

InterProcs provides a graphic user interface; it is easy for a non-technical people to use 

it to design a new trade scenario if several hours of training are given. For modification 

side, we have no way to evaluate it now. When I modified the model, 

InterProcs.22feb2001 stopped working. At this stage we can only say that 

InterProcs.22feb2001 achieved our first goal partially, that is, ease of design. But we 

don’t know how it reacts with modification on the model.  

For our second goal: the correctness of implementation, we use examples provided by 

Professor Lee along with the InterProcs.22feb2001 release to hand simulate the system 

and compare the results with the corresponding simulations running in InterProcs for 

several times. As we note in trade scenario, interactions among roles are through 

documents only, transitions are triggered by tokens in state and document places. 

Results from hand simulation show that all the documents are processed exactly as the 

same order they should be processed in the real world application. So we think 

InterProcs.22feb2001 correctly simulates the real world system’s behaviours. In this 

point of view, we can say that InterProcs.22feb2001 achieves our second goal.    

InterProcs.22feb2001 does not provide the ability to collect data for statistic purpose to 

measure the performance of the simulated system. Also users do not have full control 

on the execution of the simulation. Because when simulating trade scenarios using 

InterProcs.22feb2001, human interactions are needed to check whether the documents 

content is right or not. Users must follow the simulation step by step, how fast the 

simulation can be executed depends on how quick the user can handle the documents. 



Chapter 5 Simulation of GT3 

 102  

So InterProcs.22feb2001 does not achieve our third goal. It does not provide full 

environment support for running simulations.   

In this section, we evaluate Professor Lee’s implementation – InterProcs. Conclusions 

are listed below. InterProcs.22feb2001 partially achieves our first goal; ease of 

designing new trade scenario, but it is not clear for modification of existing trade 

scenarios. InterProcs.22feb2001 achieves our second goal by correctly describing how 

the real world system works through simulation. InterProcs.22feb2001 does not achieve 

our third goal, because it does not provide full environment support for running 

simulation.   

In the next section we briefly introduce the installation of SIMSCRIPT II.5, from then 

on we will start our SIMSCRIPT II.5 implementation on GT3. 

5.4.3 SIMSCRIPT II.5 Release 2.0 for Windows Installation 

In order to run SIMSCRIPT II.5 (CACI, 1997b), an 80386 or later processor is needed. 

Operating System requires Windows 95 or Microsoft Windows NT Version 4.0 or later. 

A minimum of 100 MB available on hard disk is also recommended to install 

SIMSCRIPT II.5, a C compiler, sample programs and online documentations. The 

machine used during these evaluations is a Pentium II with Windows 2000 Professional 

installed.  

To run SIMSCRIPT II.5, the professional version of Microsoft Visual C/C++ Version 

5.0 or later is also required. SIMSCRIPT II.5 for Windows Release 2.0 requires the 

typical configuration of the C compiler. In my machine, Microsoft Visual Studio 6.0 is 

installed.   

Before installing SIMSCRIPT II.5 Release 2.0, remove any older version of 

SIMSCRIPT II.5 which has been installed previously to avoid conflicts. 

SIMSCRIPTII.5 will be installed automatically into \SIMSCRIPT. 

In the process of installation, we choose typical installation, so all the online 

documentation, example programs, and tutorial program demonstration programs are all 

installed. SIMSCRIPT II.5 is available for PC and mainframes. This Release 2.0 for 

Windows version is embedded in the SimLab package, which is an interactive, 



Chapter 5 Simulation of GT3 

 103  

multitasking-programming environment for facilitating the use of SIMSCRIPT II.5. It 

contains an editor, the SIMSCRIPT II.5 compiler, a debugger, and online help.     

When the install is complete, all the SIMSCRIPT II.5 integrated tools including the 

compiler, the SIMGRAPHICS graphical editor SimDraw, the SIMGRAPHICS 

graphical editor SimEdit, and Datagraph can be activated through SimLab. 

After installation we must modify the environment to add SIMSCRIPT\BIN to the 

PATH environment variable, SIMSCRIPT\LIB to the LIB variable and 

SIMSCRIPT\INCLUDE to the INCLUDE environment variable. The PATH, LIB and 

INCLUDE environment variables also need to be modified to include entries which 

point to the C++ compiler. 

On the machine in use these environment variables are as follows: 

 

Variables Value 

INCLUDE …;c:\Program Files\Microsoft Visual studio\VC98\include; 
c:\SIMSCRIPT\include;… 

PATH 
…;c:\Program Files\Microsoft Visual  tudio\VC98\bin; 

c:\SIMSCRIPT\bin;… 

LIB 
…;c:\Program Files\Microsoft Visual Studio\VC98\lib; 

c:\SIMSCRIPT\lib;… 

Table 5.1 Environment Variables and their Corresponding Values. 

After Installation of SIMSCRIPT II.5 and License Management, we can test the new 

installation by executing the SimLab package. Also we can run some sample programs 

shipped with SIMSCRIPT II.5 for Windows release 2.0 to test the new installation.  

5.4.4 First Implementation of GT3 in SIMSCRIPT II.5 

In SIMSCRIPT II.5 the notion of a process is used as the primary dynamic object. A 

process represents an object and the sequence of actions it experienced in the model. A 

process object enters a model at an explicit simulation time when it is created. It 

becomes active either immediately or at a prescribed activation time.  



Chapter 5 Simulation of GT3 

 104  

Processes interact either implicitly or explicitly. When we say implicitly, we mean they 

interact through resource competition. When we say explicitly, we mean they interact 

through executing statements to activate, interrupt, or resume one another. 

In our model, we map each action of a role as a separate process. That means, in 

Importer role, we have got three processes called ImporterP1, ImporterP2, and 

ImporterP3 corresponding to actions Send Purchase_Order, Send Payment, and Receive 

Payment_Ack respectively. Examples of mapping are illustrated in Figure 5.4. With 

Exporter, we have two processes call ExporterP1 and ExporterP2 corresponding to 

Send Goods Delivery and Send Payment_Ack. In Transporter we have only one process 

called TransporterP1 related to action Send Goods. Also in this GT3 model, we need a 

generator process to generate new Importer instances automatically. 

In this mapping style, ImporterP1 is activated whenever there is a new Importer 

instance is generated by the Generator process; ExporterP1 process is activated when a 

purchase order is produced by ImporterP1 process and so forth. These are shown in 

Figure 5.5. 

 

Figure 5.4 Examples of Mapping Each Action as a Process. 



Chapter 5 Simulation of GT3 

 105  

At the very beginning, it is quite natural to map all the actions of a role to a big process 

because these actions are all performed by the same role. So we may map all actions 

performed by Importer into a single process called ImporterP shown as a vertical 

dashed circle in Figure 5.6. Therefore we get the other two processes ExporterP and 

TransporterP. We will show this mapping style results in a very complicated structure 

in each process. 

 

Figure 5.5 Examples of Resources Associated with some State Places. 

We walk through a few steps in this model, as an example to get an idea what will 

happen if we map all the actions Importer performs to a big process. As illustrated in 

Figure 5.6, when the ImporterP process is activated, it sends the purchase order out. 

Then it needs to activate ExporterP process and suspend itself waiting for Goods 

delivered by the TransporterP. As soon as ExporterP process is activated, it will 

produce a goods delivery instruction and send it to TransporterP process. After that 

ExporterP process will activate TransporterP process and suspend itself to wait for the 

payment from ImporterP process. When the TransporterP process is being activated, it 

sends Goods to ImporterP. Also TransporterP process suspends itself and reactivates 

ImporterP process, at this stage, the ImporterP process is resumed.  



Chapter 5 Simulation of GT3 

 106  

Along this way walking through the whole trade procedure, we can find that there are 

two suspends and resumes in Importer process and one suspend and resume each in the 

Exporter process even in our very simple model. When models involving many roles 

and each role interacts frequently with other roles, this mapping style will result in a 

very big process routine. This resulting process is error-prone and very hard to debug 

due to its fairly complicated structure.   

One of the advantages we can get from mapping each action of a role as a separate 

process is that this mapping makes each process simple and easy to be managed. For 

example, process ImporterP1 only deals with only one activity -- sending a purchase 

order and then wait for the next Importer instance to come. This also reduces the 

interaction times between processes. Each process only needs to interact with two 

processes -- its predecessor process and successor process once each. 

 

Figure 5.6 Mapping All Actions of Each Role as a Whole Process. 

Secondly, mapping each action of a role as a separate process makes each process 

routine more structural and self-contained. So the simulation program is easy to be 

debugged and modified. Users can add an action to a role by just copying and doing 

some modifications on the existing code. 



Chapter 5 Simulation of GT3 

 107  

Finally, breaking the whole process into several small processes facilitates parallel 

computing and makes the model execution more efficient. So mapping each action of a 

role to a separate process can results in a simple and more structural process routine, 

and makes it easy to debug and modify the simulation program to suit the user’s need. 

Resources are the passive elements of a model. A resource is used to model an object, 

which is required by the processes. Because in our model we map each action of a role 

as a separate process, communications between these processes are via documents only, 

so it is quite appropriate for us to describe the interactions between these processes are 

through resource competition instead of through executing statements to activate, 

interrupt, or resume one another directly.  

If the resource is not available when required, the process object is made to wait until 

the resource becomes available. A resource becomes available when the process 

holding it relinquishes it. The process object waiting for the resource is then given the 

resource and reactivated. If a resource is relinquished when no process object is waiting 

for it, it is merely made available to be allocated when requested.  

Here we give an example to illustrate what kinds of resources are needed in our 

implementation. In Figure 5.5, the dashed line circles represent some of the processes in 

our SIMSCRIPT II.5 implementation of GT3. They are: process Generator for 

generating new Importer instances, process ImporterP1 for producing a purchase order 

in document place PO and a token in state S1, process ImporterP2 for producing a 

payment to Exporter in document place P and a token in state place S2.  

As an example, we have a close look at process ImporterP1. When Generator process is 

activated, it produces a new Importer instance represented as a black token and sends 

out the token in state place S0. In our implementation, this is represented as a black 

token being placed in the state place S0. Whenever an Importer instance has been 

generated, it means that there is a black token being put in state S0, at this time, if 

ImporterP1 process is activated, the black token in state S0 is consumed by ImporterP1, 

then ImporterP1 can perform its predefined tasks. Here the predefined tasks are to 

produce a purchase order in document place PO and a black token in state place S2. 

Here we can see Generator interacts with ImporterP1 via S0. Without a black token in 

S0, even if ImporterP1 has been activated, it must be suspended and wait for that black 



Chapter 5 Simulation of GT3 

 108  

token be put there by Generator. Interaction between ImporterP1 and ExporterP1 via 

document place PO is similar. So it is quite natural to map these places as resources.  

In Figure 5.5, shadowed cylinders represent some of the resources associated with 

corresponding state places. statetoken(1) is the name of the resource associated with 

state place S0, statetoken(2) is the name of the resource associated with state place S1, 

doctoken(1) is the name of the resource associated with document place labelled as PO. 

 

Figure 5.7 Part of the Preamble in Our GT3 Implementation. 

When the simulation starts, process Generator is executed. Generator will first request 

this resource -- statetoken(1).  At this time, statetoken(1) is free, so process Generator 

holds it for a predefined time to generate an Importer instance. Then Generator will 

then release the resource – statetoken(1), at the same time it hands over the Importer 

instance to process ImporterP1 for further processing. What we can see from the 

simulation now is a black token is placed in the state place S0.        

At this stage, process ImporterP1 can grab the resource associated with the state place 

S0 -- statetoken(1), take over the Importer instance. Process ImporterP1 can only take 

over the Importer instance after Generator has generated this instance, this means, until 



Chapter 5 Simulation of GT3 

 109  

there is a black token in state place S0 and resource statetoken(1) is available, process 

ImporterP1 will be delayed indefinitely. 

Until so far, we have made our decisions on basic modelling elements: mapping each 

action of a role as a separate process; mapping each document place and state place as a 

resource. Now we will have a look at a part of our simulation code for GT3.  

SIMSCRIPT II.5 program consists of three primary elements, a preamble that gives a 

static description of each modelling element; a main program with which the simulation 

starts; and process routines for which have been declared in the preamble. Figure 5.7 

illustrates part of the preamble of our GT3 implementation in SIMSCRIPT II.5.   

The first section of this SIMSCRIPT II.5 program is the preamble. It is purely 

declarative and includes no executable statements. All the modelling elements including 

processes, and resources being used in our model are declared in this preamble.  

We define six processes and two types of resources being used in our SIMSCRIPT II.5 

program. Process TransporterP1 maps the “Send Goods” action in Transporter; process 

ExporterP1 and ExporterP2 map the “Send Goods Delivery” and “Send Payment_Ack” 

actions in Exporter respectively.  

We also define the types of resources in the preamble, doctoken is used to represent the 

resources associated with document places, and statetoken is used to represent the 

resources associated with state places. The number of unit of each type will be 

initialised in main section before the simulation start.  

In order to improve readability of programs, SIMSCRIPT II.5 allows us to substitute a 

character string or a number for a single word. In our preamble, the define to mean 

statement indicates that one .TIME.UNIT equals to ten units of simulation clock time. 

We can control the simulation speed through increasing or decreasing the number. It is 

only a convention to have every define to mean symbol begin with a period. 

The accumulate statement provides us with a simple means of specifying which 

measurements are desired without requiring detailed specification of the method of 

measurement. An accumulate statement is placed in the preamble. Here the accumulate 

statement is used to get the statistics on the queue (average, variance, maximum, etc.) 

and the utilization of doctoken type of resources.  



Chapter 5 Simulation of GT3 

 110  

A temporary entity is used to model an object which is short-lived in the model. In our 

case, documents passing among roles belong to this category. For example, a purchase 

order is unique for a specific trade procedure. When a purchase order is received by the 

Exporter correctly, this document becomes meaningless. Display entities defined in our 

preamble are for animation purpose. 

The second part of a SIMSCRIPT II.5 program is main. Our main program is illustrated 

in Figure 5.8. Execution of a SIMSCIPT II.5 program begins with the first statement in 

the main program. In INIT routine, we have mainly routines for drawing background, 

roles, actions, and initialising variables.  

In begin routine shown in Figure 5.9, we create and initialise all resources need to be 

used by processes. Also we give the number of unit of each type of the resources as one 

by statement: let U.doctoken(I) = 1. Here doctoken type of resource is created and 

initialised as an example, statetoken type of resource can be done in the same way.  

 

Figure 5.8 Program Main in GT3 Simulation. 

SIMSCRIPT II.5 requires that something be awaiting execution before a simulation 

commences. This is done by activating processes in routine begin shown in Figure 5.9. 

The activate statements create six process objects and place them on the pending list 

with an immediate time of activation using SIMSCRIPT II.5 statement: activate a 

process name now.  

A simulation begins when control passes to a system-supplied timing routine. This is 

done by executing the start simulation statement in main program shown in Figure 5.8. 



Chapter 5 Simulation of GT3 

 111  

Any statements following the start simulation statement will not be executed until the 

simulation has terminated. 

The timing routine is at the heart of discrete event simulation. From a programming 

prospective, it is this timing routine that ties the entire collection of processes together 

to perform this simulation procedure.  

 

Figure 5.9 Part of the Begin Routine in Main. 

The timing routine is transparent to the programmer. Figure 5.10 illustrates this timing 

routine. We redraw this figure from (CACI, 1997a). As can be seen from the figure, 

processes must be on the pending list before entering into the simulation procedure. 

Termination will occur either because there is no process on the pending list or because 

some process executes a stop statement. 

The third section of our SIMSCRIPT II.5 program is process routines. Each process 

declared in the program preamble must be further described by a process routine. Each 

process is described as a separate routine, which begins with a process statement 

naming the process.  Here we use process ImporterP1 shown in Figure 5.11 to illustrate 

what a process routine looks like in our implementation of GT3.  



Chapter 5 Simulation of GT3 

 112  

It is essential that the description of its activities be contained in the process routine. A 

process routine may be thought of as a sequence of interrelated events separated by 

lapses of time, either predetermined or indefinite.  

Predetermined lapses of time are used to model such phenomena as the service time. 

Those two wait statements in our example belong to this category; whereas indefinite 

delays arise because of competition between processes for limited resources. All 

request statements in our example are potential sources of indefinite delay. In this case 

processes will automatically be delayed and send back to the pending list until the 

resource is made available to them. 

 

Figure 5.10 Basic SIMSCRIPT II.5 Timing Routine. 

The process ImporterP1 describes everything that happens from the time of taking over 

an Importer instance (consuming the black token in state S0) to the time of producing a 

purchase order (putting one black token in state place S1, another black token in 

document place PO). This process routine is very simple in this example because we 

map each action in a role as a separate process.  



Chapter 5 Simulation of GT3 

 113  

Figure 5.12 and Figure 5.13 illustrates the activation and execution of process 

ImporterP1. When process ImporterP1 is activated, it will firstly requests a 

statetoken(2) resource. Whenever process ImporterP1 gets the resource it wants, the 

statement next to this request is executed. If the resource is free, then process 

ImporterP1 holds it and paints a white token in state place S1, this indicates that this 

resource now is held by ImporterP1 and not available for process ImporterP2.   

 

Figure 5.11 ImporterP1: Process Routine Example in GT3 Simulation. 

If statetoken(2) is not available, the ImporterP1 process object is automatically placed 

on a list of objects waiting for statetoken(2) resource. By default this list is ordered as 

first-come-first-served manner. The process is then suspended until resource 

statetoken(2) is relinquished by process ImporterP2. 

For requesting resource doctoken(1), ImporterP1 works the same way as for 

statetoken(1). When finally ImporterP1 gets hold of resource statetoken(1), it first 

suspends itself for one .TIME.UNIT unit to simulate its working time, then it produces 



Chapter 5 Simulation of GT3 

 114  

a purchase order representing as putting a black token in document place PO, and 

relinquishes doctoken(1) to activate process ExporterP1. Process ImporterP1 also 

produces a black token, puts it in place S1 and relinquish statetoken(2) for ImporterP2. 

Lastly ImporterP1 relinquishes statetoken(1) to activate Generator. 

SIMSCRIPT II.5 also has an interactive symbolic debugger that provides all basic 

debugging features. We can set break points; use step-by-step execution; and trace, etc. 

In Figure 5.14 we give the snapshot of GT3 simulation. 

 

Figure 5.12 Activation of ImporterP1. 

Now we will give an evaluation on our first implementation. We start from the first 

goal: the ease of design and modification. In our first implementation of GT3 in 

SIMSCRIPT II.5 we can see that, although SIMSCRIPT II.5 is an English-like, self-

documenting, and user readable programming language, users still need a lot of training 

to become familiar with the basic concepts of simulation and the world view of 

SIMSCRIPTII.5 in order to map the trade scenarios into the basic building blocks of 

SIMSCRIPT II.5, and program the model into an executable application. SIMSCRIPT 

II.5 is quite a powerful language for writing a simulator, but the data structure is too 

complicated for the non-technical users to grasp within a very short time. In this point 

of view, we evaluate our first implementation in SIMSCRIPT II.5 as not achieved. 



Chapter 5 Simulation of GT3 

 115  

For our second goal: the correctness of implementation, we still use the same method as 

we used to evaluate Professor Lee’s work on the second goal. That is, we use the results 

from the simulator to compare with the results we got from hand simulating of GT3. 

These hand simulation processes can be illustrated through Figure 4.27 to Figure 4.33 

in Chapter 4.   

 

Figure 5.13 Execution of ImporterP1. 

When executing simulator in SimLab, which is an integrated developing environment 

for SIMSCRIPT II.5, a ‘Step in’ command is provided. This command can help the 

developer to set up break points for debugging the program. We can use this feature to 

execute the simulator step by step, then to compare it with the hand simulation results. 

After several repetition, we found that our first implementation correctly reflect the 

behaviours of GT3, all documents involved in GT3 are processed exactly as the same 

order they should be processed in the real world application. So we conclude that our 

first implementation correctly simulates the real world system’s behaviour, our first 

implementation of GT3 in SIMSCRIPT II.5 achieved our second goal. 

For the third goal: full environment support for running simulation. In our first 

implementation, users have full control over the simulation. Simulation can be run 

faster, or slower by adjusting a timescale parameter in SIMCRIPT II.5; in our begin 

routine shown in Figure 5.8, statement: “Let TIMESCALE.V = 10” is for this purpose. 



Chapter 5 Simulation of GT3 

 116  

Increase or decrease this integer can make the simulation faster or slower. User can also 

run the simulation step by step using the ‘Step in’ command we mentioned above to 

observe the workflow change at each state through the black tokens flowing around. 

 

Figure 5.14 Snapshot of GT3 Execution. 

Also in our first implementation, we use a uniform time unit “wait .TIME.UNIT unit” 

shown in Figure 5.11 to simulate the working time for each single process. This 

working time starts from ImporterP1 being activated, ends at producing a 

Purchase_Order. In the real world, it is more realistic to postulate that each process has 

different working times. For example, activity Send_Goods preformed by Transporter 

may take more time than activity Send Purchase_Order performed by Importer, because 



Chapter 5 Simulation of GT3 

 117  

Sends_goods may involve moving, packing and unpacking goods. In this sense, we can 

use a more suitable way, to generate random working time for each activity. 

This can be done easily in our implementation by replacing the statement “wait 

.TIME.UNIT unit” with random number generating mechanism, such as “wait 

uniform.f (2.0,8.0,1) minutes”. In SIMSCRIPT II.5 “uniform.f” generates a random 

number. This function has three parameters: the lower bound, the upper bound, and a 

random number stream. Each time the function is executed, a new sample from the 

interval is computed. Random numbers can be used to model the viability in the system. 

Users can experiment by giving each activity in every process a random working time 

to see how the workflow changes so as to get better under understanding of the system.     

Furthermore, our first implementation also has the ability to collect a variety of 

statistics to measure the performance of the simulated system. For example, user maybe 

interested in average or maximum number of Purchase_Orders queuing at resource 

doctoken(1) for being processed by ExporterP1, this can be done by the “accumulate” 

statement in preamble shown in Figure 5.7. More statistics measurements can be added 

according to the user’s interest. At this stage we, evaluate our first implementation 

achieved the third goal.  

In this section, we show our first implementation of GT3 in SIMSCRIPT II.5 through 

part of our code; also we introduce how to map our scenario to the basic building 

blocks of SIMSCRIPT II.5 simulation language. Then we evaluate our first 

implementation as: first goal, not achieved, because it is not easy for users to design and 

modify the trade scenario; second goal, achieved, the implementation is correct; the 

third goal, achieved, our implementation provides full environment for supporting 

running simulator. 

Although SIMSCRIPT II.5 is an English-like, and user readable programming language 

which automatically provides most of the features needed in programming a simulation 

model, we find it still very hard for general users to use it freely without training. At 

this stage, we introduce a general-purpose text processing utility -- GEMA, to help 

general users to experiment with their new ideas on the model and achieve our first goal 

as well.  



Chapter 5 Simulation of GT3 

 118  

In the next section we will discuss our second implementation of GT3. Our second 

implementation is done with SIMSCRIPT II.5 and GEMA. 

5.4.5 Second Implementation of GT3 in SIMSCRIPT II.5 and GEMA  

The GEneral purpose MAcro processor (GEMA) is a general-purpose text processing 

utility based on the concept of pattern matching according to the author of GEMA -- 

Gray (Gray, 1995). It reads an input file, performs various specified transformations to 

the data, and copies it to an output file.  

Mundie (Mundie, 1996) states that GEMA is a rule-based, non-procedural language. As 

a macro processor GEMA is more general than other widely used macro processors 

such as cpp or m4. Because GEMA doesn't impose any particular syntax for what a 

macro call looks like. It can deal with patterns that span multiple lines and with nested 

constructs. It can also use multiple sets of rules to be used in different contexts.  

For example, we can change a name of the roles involved in GT3, such as change 

“Importer” to ”Customer”, “Exporter” to “Merchant”. This can be done by the 

command line shown in Figure 5.15. Here, we assume that GEMA has been installed in 

c:\gema directory and our source code in the first implementation is saved in the file 

called GT3old.txt. After executing this command line, a new text file called 

GT3new.txt is generated.  

 

Figure 5.15 GEMA Command Line for Making Changes to GT3. 

This “-i” option indicates case insensitive mode. All letters in templates will be 

matched without regard to distinctions of upper case or lower case. This copies file 

“GT3old.text” to “GT3new.text”, replacing each occurrence of the string “Importer” 

with the string “Customer” and replacing “Exporter” with “Merchant”. This command 

line argument consists of two transformation rules separated by “;”.  

When this “GT3new.text” is compiled and executed, role names Exporter and Importer 

shown in Figure 5.14 are replaced by Merchant and Customer. The newly generated 

snapshot is illustrated in Figure 5.16.    



Chapter 5 Simulation of GT3 

 119  

Each rule consists of a template followed by “=” and an action. Here the action is just a 

literal replacement string, but it is called an action instead of a replacement because 

GEMA can do much more powerful things. 

 

Figure 5.16 GEMA Used to Change the Role Names in GT3. 

Command line string replacement is good enough for users to make small changes to 

the existing models. Our intention here is to allow users to write simple statements 

according to the predefined structures when they want to design a new trade scenario or 

to modify an existing trade scenario, then we use GEMA to translate those statements 

into an executable SIMSCRIPT II.5 program. 



Chapter 5 Simulation of GT3 

 120  

In GEMA, patterns can also be defined in one or more files loaded with some kind of 

option. So we wrote a pattern file for user to translate their structured statements into 

SIMSCRIPT II.5 program. Because we map each action of a role as a separate process, 

this makes the process routines in our first implementation very structural. So our 

second implementation starts from translating these process routines. 

Here we use ImporterP1 as an example to show how the translation can be done. The 

statement shown in Figure 5.17 can be a part of the input file written by user; this 

simple statement then can be translated into the process routine ImporterP1 in our first 

implementation, which is shown in Figure 5.11. In the Appendix, we will give the 

pattern file, but we will not involve too much detail at this stage. 

 

Figure 5.17 Simple Statement Written by the User. 

 

Figure 5.18 Illustration of Predefined Statement Structure. 

 

Figure 5.19 Statement Structure. 

In our second implementation, the emphasis is on achieving the first goal: ease of 

design and modification. Our intention is to write pattern files in GEMA to translate 

simple statements, which are written by users for the purpose of designing a new trade 



Chapter 5 Simulation of GT3 

 121  

scenario or modifying an existing trade scenario, into executable SIMSCRIPT II.5 

program. 

We start our work from the translation of process routines. If the user wants to design a 

new trade scenario, the user firstly needs to depict his trade scenario into a Linear 

Documentary Petri Net representation. Then user needs to map each action of every 

role into a separate process. Then each process will look like Figure 5.18.  

At this stage, user can write a simple structured statement looking like the one shown in 

Figure 5.19 to start designing the intended trade scenario. This simple sentence starts 

with pstep. In the bracket, the parameters are in this order: the first parameter is the 

name of the process; the second parameter is the sequence number of the outgoing state 

place. In our case shown in Figure 5.18, the out going state place is S2, the sequence 

number is 2. The third parameter is the sequence number of the incoming state place. In 

our case shown in Figure 5.18, the incoming state place is S1, the sequence number is 

1. Because we use one type of resource to map the state places, these resources are 

differentiated by their sequence numbers. The same mechanism is used to differentiate 

the resources associated with document places.   

The fourth parameter is the sequence number of the outgoing document. Usually when 

a new trade scenario is designed, all the documents in this trade scenario should be 

assigned a sequence number start with 1. In our GT3 model, PO is the first document to 

be generated in our scenario, so it is given the sequence number 1. GD is the second 

document in GT3, so it is given the sequence number 2 accordingly. The fifth 

parameter is the sequence number of the incoming document. When there is not a 

document in incoming or outgoing document place, we use a negative number –1 to 

represent it. 

The sixth and seventh parameters are the coordination of the incoming state place, and 

the eight and ninth parameters are the coordination of the outgoing document. When 

these are done, this structured statement can be used as part of input file to our pattern 

file. The output file then is the SIMSCRIPT II.5 source code for this process. We try to 

compile all the automatically generated process routines, and they work well without 

problems. 

  



Chapter 5 Simulation of GT3 

 122  

                              
                Implementation 
 
          Goal 

InterProcs 

(Java) 

Our First 
Implementation 

(SIMSCRIPT 
II.5) 

Our Second 
Implementation 

(SIMSCRIPT II.5 + 
GEMA) 

First goal: 

Ease of design and 
modification 

Partially 
Achieved 

Not 

Achieved 

Feasible to 

Achieve 

Second Goal: 

Correctness of 
implementation 

Achieved Achieved Achieved 

Third Goal: 

Full environment support  

for running simulation 

Not Achieved Achieved Achieved 

Table 5.2 Summary of the Evaluations. 

In our second implementation, we finished developing the pattern file for process 

routine. Yet, we leave pattern files for preamble and other routines for future work 

because the structure of GEMA is very complicated and we have run out of time. The 

most important thing here is that we have done some practical work to realize our 

objectives and have got satisfactory results. Through our work on second 

implementation, we have identified the advantages of combining the two languages: 

SIMSCRIPT II.5 and GEMA together to get our work more efficient and 

understandable. It is quite possible that we can develop a powerful tool in assisting 

process modelling through model construction for demonstration purpose with a little 

more effort using SIMSCRIPT II.5 and GEMA. With the second implementation, we 

think it is feasible to achieve our first goal: ease of design and modification. In our 

second implementation, we have focused only on the first goal as the second and third 

goals have already been met with in our first implementation itself. The overall 

evaluation of InterProcs and our two implementations are given in Table 5.2. 

In this section, we do our second implementation by programming in SIMSCRIPT II.5 

and GEMA. We write pattern files in GEMA to translate the user written structured 

simple statements into executable SIMSCRIPT II.5 source code automatically. 

Experiments with our finished part pattern file, we find that it is quite feasible for our 

second implementation to achieve our first goal: ease of design and modification. 



Chapter 5 Simulation of GT3 

 123  

5.5 Summary 

In this chapter, based on GT3 model we set up in Chapter 4 and represented it in Linear 

Documentary Petri Nets, we walk through the designing procedure of GT3 simulation 

in SIMSCRIPT II.5 and GEMA. We first set up three goals for the evaluation purpose. 

They are: ease of design and modification, correctness of implementation, and full 

environment support for running simulation.  

We first evaluated Professor Lee’s InterProcs, and get a conclusion that InterProcs 

partially achieves our first goal, achieve our second and not achieve our third goal  

In our first implementation of GT3, we start from mapping the model to basic elements 

in SIMSCRIPT II.5 language, and end at producing an executable GT3 application for 

demonstrating our GT3 model.  

When evaluating our first implementation, we think that it achieves our second and 

third goals. Our first implementation is correct and it provides full environment support 

for running simulation. But it does not achieve the first goal, it is not easy to design and 

modify a trade scenario without knowing SIMSCRIPT II.5 well. That is because of the 

complicated data structure in SIMSCRIPT II.5. 

In order to make it easier to design and modify a trade scenario, we did a second 

implementation on GT3. This time our intention was to develop an assistance tool to 

help users in designing and modifying trade scenarios. We intended to write pattern 

files in GEMA, which is a macro processor based on pattern matching. These pattern 

files can accept predefined structure statements written by user in an input file, and 

translate this input file into executable SIMSCRIPT II.5 source code as an output file 

automatically.  

In our second implementation, due to the time limitation and complex data structure of 

GEMA, we only finished part of the pattern files, that is, the process routine part. We 

leave the other two parts: preamble and other routines as our future work. Experiment 

with our finished pattern file shows that it can correctly translate the user written 

structured simple statements into executable SIMSCRIPT II.5 process routines. Also 

we identify the advantages of programming in SIMSCRIPT II.5 and GEMA together 

for better understanding and efficient construction of business process models for 



Chapter 5 Simulation of GT3 

 124  

international trade. We evaluate our second implementation as: it provides full 

environment support for running simulation, it is correct in implementation and it is 

feasible to ease the design and modification of trade scenarios. In the next chapter we 

will summarize the thesis and discuss the future work.    

  



Chapter 6 Summary and Future Work 

 125  

Chapter 6 Summary and Future Work 

6.1 Summary 

During the last several decades, the market structure for international trade has changed 

greatly. With trade barriers falling, competition intensifies from overseas competitors. It 

is necessary to deliver high quality products and services to gain and maintain customer 

loyalty and reduce costs so as to remain competitive. Reengineering business process is 

considered by a lot of researchers to be a must in order to survive and prosper in today’s 

competitive world. 

To improve a business process, we have three models. One of them is called Business 

Process Reengineering. It brings about rapid change and dramatic improvement to the 

current business process. Unfortunately, in practice, researchers found that there is a 

high failure rate in many Business Process Reengineering projects; techniques and 

technology for modelling business processes have become very important subjects of 

study to reduce the high failure rate in Business Process Reengineering projects.  

We discussed some techniques currently being used in modelling business processes. 

Each technique has its own characteristics and is suitable for a particular kind of 

application. Petri nets model of a business process can describe the modelled system 

precisely and unambiguously due to its formal semantics and powerful analysis 

methods. The graphical nature can be used to visualize static and dynamic aspects of 

business process in a natural manner; Petri nets’ graphical nature also supports the 

communication between people involved in a Business Process Reengineering project. 

Workflow management technology is used in a number of different contexts and 

environments because of its ability to reflect the business process rather than to support 

or automate just discrete tasks. This results in an improved productivity and flexibility 

needed for Business Process Reengineering. Matured capabilities of Business Process 

Modelling techniques and the powerful execution capabilities of workflow 



Chapter 6 Summary and Future Work 

 126  

Management System can be used in an integrated manner. This mutual benefit exactly 

fulfils the requirement of modern Business Process Reengineering efforts: to maintain a 

very tight connection between real world modelling and model execution in order to 

react fast to changes in the business environment. 

International trade has received some academic attention as an application of Business 

Process Reengineering. Professor Lee (Lee, 1999) identifies mutual-trust related 

problems in the open electronic commerce environment while conducting business 

among parties that have no prior trading relationship in international trade. So there is a 

high probability that international fraud will occur.  

In order to assure the interests of the trading parties involved in international trade 

procedure, Professor Lee introduced a new concept called electronic trade scenario, 

which is used to govern the activities of the involved parties in international trade. 

These electronic trade scenarios are specified by a graphical representation language 

called Documentary Petri Nets. A case tool called InterProcs is also made available by 

Professor Lee to assist in designing and prototyping trade scenarios.  

In Professor Lee’s work, he did not give much detail on how to model and analysis a 

real world business process via the using of Business Process Reengineering 

techniques. Also we noticed some problems in InterProcs such as instability and lacking 

of simulation supported features. So we design a simple trade scenario for international 

trade, and use this solid example to answer the questions not being discussed and 

supplement the simulation features mot implemented in Professor Lee’s work.  

We obtain out GT3 model by simplifying the Documentary Credit Procedure in 

international trade. There are three actors in it, Importer, Exporter, and Transporter. 

Interactions among these three roles are by means of documents only. In our GT3 

model we have five documents. They are: Purchase_order, Goods_Delivery, Goods, 

Payment, Payment_Ack.   

Our preliminary objective of this thesis is to experiment with some of the currently 

available techniques and technology to make us familiar with the Business Process 

Reengineering field and answer some of our questions such as: how to represent 

international trade with a model, how this model can be implemented in a simulation 

language, etc.  



Chapter 6 Summary and Future Work 

 127  

The trading procedure is initiated by Importer sending a Purchase_Order to Exporter.  

After receiving and processing this Purchase_Order, Exporter sends Goods_Delivery 

instruction to Transporter. When goods are ready, Transporter sends Goods to Importer. 

After Importer receives the Goods, it sends Payment to Exporter. Then Exporter sends a 

Payment_Ack to Importer after it receives Payment.  

For better understanding of GT3, we use several Business Process Reengineering 

techniques to analyse this model from a different point of view. We also modified 

Professor Lee’s Documentary Petri Net by eliminating some constraints and obtaining a 

simplified representation language called Linear Documentary Petri Nets.  

Linear Documentary Petri Nets are used to represent our GT3 model. Linear 

Documentary Petri Nets inherit all the nice features of classical Petri nets, such as 

formal semantics, graphic representation, and powerful analysis methods and tools. 

Besides, Linear Documentary Petri Nets are more structured and easier to manage. For 

our purpose of demonstration, Linear Documentary Petri Nets are suitable as a 

representation language for modelling our GT3 model. 

Before we started our first implementation, we set up three goals for the purpose of 

evaluation. They are: ease of design and modification, correctness of implementation, 

and full environment support for running simulation. We first used these three goals to 

evaluate Professor Lee’s InterProcs, and got a conclusion that InterProcs partially 

achieved the first two goals but did not achieve the third one.  

In our first implementation, while programming GT3 in SIMSCRIPT II.5, we started by 

mapping our GT3 model, which is represented by our Linear Documentary Petri Nets to 

basic building blocks in SIMSCRIPT II.5 language, and then produced an executable 

GT3 application to simulate the workflows in our GT3 model for the purpose of 

demonstration. Our evaluation on the first implementation shows that our second and 

third goals are achieved, our first implementation is correct and it provides full 

environment support for running simulation. Our first goal was not achieved due to the 

complicated data structure in SIMSCRIPT II.5. 

The main objective of the thesis is to develop a software tool to assist in the efforts of 

Business Process Reengineering for international trade. With the help of this tool, users 

can design a new trade scenario and make modifications on existing scenarios. In our 



Chapter 6 Summary and Future Work 

 128  

second implementation on GT3, we write pattern files in GEMA, a macro processor 

based on pattern matching. These pattern files can accept predefined structure 

statements written by user as input, and translate this input file into SIMSCRIPT II.5 

source code as an output file automatically. This output file then can be compiled and 

executed automatically in SimLab, which is the integrated development environment 

for SIMSCRIPT II.5. In this way, the corresponding workflows within this particular 

scenario are simulated automatically.   

Due to the time limitation and complex structure of GEMA, only part of the pattern 

files in our second implementation is complicated, that is, the process routine part. 

Experiments with our finished pattern file show that it can correctly translate the user 

written structured simple statements into executable SIMSCRIPT II.5 process routines. 

Also we identified the advantages of programming in SIMSCRIPT II.5 and GEMA 

together for better understanding and efficient construction of business process models 

for international trading.  

Our evaluation of the second implementation suggests that it achieved our second and 

third goals and partially achieved the first goal. That is, it provides full environment 

support for running simulation, it is correct in implementation and it is feasible to ease 

the design and modification of trade scenarios.  

6.2 Future Work  

In our second implementation, we only finished process routine part of the pattern file 

due to the time limitation and the complex structure of GEMA. For a short-term 

improvement, the pattern files for the other two unfinished parts: preamble and other 

routines can be written step by step. It is time consuming to write an efficient pattern 

file for preamble and other routines because of the complicated data structure in 

GEMA.  

For a long-term improvement, validation of business process model is a necessary 

capability in a training tool for users to understand the Business Process Reengineering 

projects better, especially when the business process being modelled is complicated. 

Validation is the process of ensuring that the model is sufficiently accurate for the 

purpose of study at hand. In Chapter 4 and 5, we did not deal with validating the model. 

That is because the process of validation is not to be considered as a stage within a 



Chapter 6 Summary and Future Work 

 129  

simulation study, but as a process that continues throughout the Business Process 

Reengineering project according to Lewis et al (Lewis, Brooks, & Robinson, 2001).  

Two kinds of validation can be done to a business process model. According to Pidd 

(Pidd, 1988), White-box validation is to determine whether the constituent parts of the 

model represent the corresponding real world elements with sufficient accuracy. This is 

a detailed check of the model. Black-box validation is used to determine whether the 

overall model represents the real world process with sufficient accuracy, this is an 

overall check of the model’s operation. Black-box validation is often performed by 

comparing the output from the model with that of the real system to determine whether 

they are sufficiently similar.  



Appendices: Source Codes of GT3 Implementations 

 

Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

Appendix B Second Implementation of GT3 in GEMA 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 131  

Appendix A 

First Implementation of GT3 in SIMSCRIPT II.5 
 
'' Model: First Implementation of GT3 in SIMSCRIPTII.5       
'' Author: Dong Qiang 
'' Supervisor: Professor Clark Thomborson 
'' The University of Auckland, Auckland New Zealand 
'' Date: Jan 2002 
'' ========================================================== 
 
preamble 
Normally mode is undefined 
Processes include  generator, ImporterP1, ImporterP2, ImporterP3,  
                   ExporterP1, ExporterP2, TransporterP1  
resources include doctoken, statetoken 
accumulate AVG.QUEUE.LENGTH as the average  
and MAX.QUEUE.LENGTH as the maximum of N.Q.doctoken 
temporary entities        
                   every Document.entity has a status, a name, a receiver, a sender 
                   define status as an integer variable  
                   define name, receiver and sender as text variables 
Display entities include Document.entity, IMAGE1, IMAGE2, IMAGE3, IMAGE4,           
                    IMAGE5, IMAGE6, IMAGE7, IMAGE8, IMAGE9, IMAGE10,         
                    Doc3in, Doc4out, Doc2out, Doc3out, Doc1in, Doc1out, Doc2in, Doc4in,  
                    Doc5in, Doc5out, Doc6in, Doc6out  
Define MINUTES to mean units 
Define Doc as 1-dim pointer array 
Define .TIME.UNIT to mean 10 
define POINT as a 2-dim real array 
define cp1state.x, cp1state.y, cp1doc.x, cp1doc.y, cp2state.x, cp2state.y, cp2doc.x,    
                  cp2doc.y, cp3state.x, cp3state.y, gstate.x, gstate.y, mp1state.x, mp1state.y,    
                  mp1doc.x, mp1doc.y, mp2state.x, mp2state.y, mp2doc.x, mp2doc.y,     
                  tp1state.x, tp1state.y, tp1doc.x, tp1doc.y, cs.x, ms.x, ts.x, cs0.y, cs1.y, cs2.y,  
                  cs3.y, ms0.y, ms1.y, ms2.y, ts0.y, ts1.y, gdin.x, gdin.y, gout.x, gout.y, poin.x,   
                  poin.y, oaout.x, oaout.y, gdout.x, gdout.y, poout.x, poout.y, gin.x, gin.y,  
                  pain.x, pain.y, paout.x, paout.y, pacin.x, pacin.y, pacout.x, pacout.y  
                 as integer variables 
define V.XLO, V.XHI, V.YLO, V.YHI, cstart.x, cstart.y, cdocstart.x, cdocstart.y,   
                 mdocstart.x, mdocstart.y, tdocstart.x, tdocstart.y, docum.w, docum.h, mstart.x,  
                 mstart.y, tstart.x, tstart.y, action.h, action.w, solid.line, width.line,   
                 width.line.link, state.h, type, color, size, DELTA as integer variables 
define XLO, XHI, YLO, YHI as double variables 
end ''preamble  
'' =========================================================== 
 
main 
''---- since there is no quit button: show ctrl-C message on screen 
write as "***********************************",/ 
write as "** Close window to end simulation ",/ 
write as "***********************************",/ 
call INIT 
call begin 
start simulation 
end 
''============================================================= 
 
routine begin 
Define I, J as an integer variable  
Reserve Doc(*) as 6 
Create each doctoken(6) 
for I = 1 to 6 do 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 132  

let U.doctoken(I) = 1 
loop 
Create each statetoken(9) 
for I = 1 to 9 do 
let U.statetoken(I) = 1 
loop 
For J = 1 to 6 do 
Create a Document.entity called Doc(J) 
loop 
Let TIMESCALE.V = 10 
 
activate a generator now 
activate a ImporterP1 now             
activate a ExporterP1 now      
activate a TransporterP1 now      
activate a ImporterP2 now            
activate a ExporterP2 now       
activate a ImporterP3 now         
 
print 4 lines with AVG.QUEUE.LENGTH(1), MAX.QUEUE.LENGTH(1), 
and UTILIZATION(1) * 100. / 2 thus 
GT3 MODEL WITH 5 DOCTOKEN RESOURCES 
AVERAGE DOCTOKEN RESOURCE QUEUE LENGTH IS *.*** 
MAXIMUM DOCTOKEN RESOURCE QUEUE LENGTH IS * 
THE DOCTOKEN(1) RESOURCE WAS BUSY **.** PER CENT OF THE TIME. 
   
end ''begin 
'' ============================================================== 
 
process generator 
'loop' 
 
''make nextstate white 
request 1 statetoken(1) 
display IMAGE1 with "state1white.icn" at (gstate.x, gstate.y)     
wait .TIME.UNIT unit 
''make currentstate black 
relinquish 1 statetoken(1) 
display IMAGE1 with "state1black.icn" at (gstate.x, gstate.y)     
 
go to 'loop'  
end ''generator 
'' ============================================================== 
 
process ImporterP1 
'loop' 
 
''make outgoingdoc white 
request 1 doctoken(1) 
display Doc(1) with "whitedoc1.icn" at (cp1doc.x, cp1doc.y)    
''make nextstate white 
request 1 statetoken(2) 
display IMAGE2 with "state2white.icn" at (cp1state.x, cp1state.y)     
wait .TIME.UNIT unit 
''ask for currentstate 
request 1 statetoken(1) 
wait .TIME.UNIT unit 
''make outgoingdocblack 
relinquish 1 doctoken(1) 
display Doc(1) with "blackdoc1.icn" at (cp1doc.x, cp1doc.y)   
''make nextstate black 
relinquish 1 statetoken(2)  
display IMAGE2 with "state2black.icn" at (cp1state.x, cp1state.y)    
''release currentstate 
relinquish 1 statetoken(1) 
 
go to 'loop' 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 133  

end ''ImporterP1 
'' ========================================================== 
 
 
 
process ImporterP2 
'loop' 
 
''make outgoingdoc white 
request 1 doctoken(5) 
display Doc(5) with "whitedoc5.icn" at (cp2doc.x, cp2doc.y)   
''make nextstate white 
request 1 statetoken(3) 
display IMAGE3 with "state3white.icn" at (cp2state.x, cp2state.y)      
wait .TIME.UNIT unit 
''ask for incomingdoc  
request 1 doctoken(4) 
''ask for currentstate 
request 1 statetoken(2) 
wait .TIME.UNIT unit  
''make outgoingdoc black 
relinquish 1 doctoken(5) 
display Doc(5) with "blackdoc5.icn" at (cp2doc.x, cp2doc.y)  
''make make nextstate black 
relinquish 1 statetoken(3) 
display IMAGE3 with "state3black.icn" at (cp2state.x, cp2state.y)    
''release incomingdoc 
relinquish 1 doctoken(4) 
''release currentstate 
relinquish 1 statetoken(2) 
 
go to 'loop' 
end  ''ImporterP2 
 
'' ========================================================== 
 
 
process ImporterP3 
'loop' 
 
''make nextstate white 
request 1 statetoken(4) 
display IMAGE4 with "state4white.icn" at (cp3state.x, cp3state.y)   
wait .TIME.UNIT unit 
''ask for incomingdoc 
request 1 doctoken(6) 
''ask for currentstate 
request 1 statetoken(3) 
wait .TIME.UNIT unit 
''make nextstate black 
relinquish 1 statetoken(4) 
display IMAGE4 with "state4black.icn" at (cp3state.x, cp3state.y)     
''release incomingdoc 
relinquish 1 doctoken(6) 
''release currentstate 
relinquish 1 statetoken(3) 
 
go to 'loop' 
end ''ImporterP3 
 
'' ========================================================== 
 
 
process ExporterP1 
'loop' 
 
''make nextstate white 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 134  

request 1 statetoken(6) 
display IMAGE6 with "state6white.icn" at (mp1state.x, mp1state.y)     
''make outgoingdoc white 
request 1 doctoken(3) 
display Doc(3) with "whitedoc3.icn" at (mp1doc.x, mp1doc.y)    
wait .TIME.UNIT unit 
''ask for incomingdoc 
request 1 doctoken(1) 
''ask for currentstate 
request 1 statetoken(5) 
wait .TIME.UNIT unit 
''make nextstate black  
relinquish 1 statetoken(6) 
display IMAGE6 with "state6black.icn" at (mp1state.x, mp1state.y)   
''make outgoingdoc black 
relinquish 1 doctoken(3) 
display Doc(3) with "blackdoc3.icn" at (mp1doc.x, mp1doc.y)      
''release incomingdoc 
relinquish 1 doctoken(1) 
''release currentstate 
relinquish 1 statetoken(5) 
 
go to 'loop' 
end ''ExporterP1 
 
'' ========================================================== 
 
process ExporterP2 
'loop' 
 
''make nextstate white 
request 1 statetoken(7) 
display IMAGE7 with "state7white.icn" at (mp2state.x, mp2state.y)   
''make outgoingdoc white 
request 1 doctoken(6) 
display Doc(6) with "whitedoc6.icn" at (mp2doc.x, mp2doc.y)   
wait .TIME.UNIT unit 
''ask for incomingdoc 
request 1 doctoken(5) 
''ask for currentstate 
request 1 statetoken(6) 
wait .TIME.UNIT unit 
''make outgoingdoc black 
relinquish 1 doctoken(6) 
display Doc(6) with "blackdoc6.icn" at (mp2doc.x, mp2doc.y)   
''make nextstate black 
relinquish 1 statetoken(7) 
display IMAGE7 with "state7black.icn" at (mp2state.x, mp2state.y)   
''release for incomingdoc  
relinquish 1 doctoken(5) 
''release for currentstate 
relinquish 1 statetoken(6) 
 
go to 'loop' 
end ''ExporterP2 
 
'' ========================================================== 
 
 
process TransporterP1 
'loop' 
 
''make nextstate white 
request 1 statetoken(9) 
display IMAGE9 with "state9white.icn" at (tp1state.x, tp1state.y)   
''make outgoingdoc white 
request 1 doctoken(4) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 135  

display Doc(4) with "whitedoc4.icn" at (tp1doc.x, tp1doc.y)     
wait .TIME.UNIT unit 
''ask for incomingdoc 
request 1 doctoken(3) 
''ask for currentstate 
request 1 statetoken(8) 
wait .TIME.UNIT unit 
''make nextstate black 
relinquish 1 statetoken(9) 
display IMAGE9 with "state9black.icn" at (tp1state.x, tp1state.y)    
''make outgoingdoc black 
relinquish 1 doctoken(4) 
display Doc(4) with "blackdoc4.icn" at (tp1doc.x, tp1doc.y)        
''release incomingdoc 
relinquish 1 doctoken(3) 
''release currentstate  
relinquish 1 statetoken(8) 
 
go to 'loop' 
end ''TransporterP1 
 
'' ========================================================== 
 
 
routine DRAW.BORDER 
define BORDER as an integer variable  
let BORDER = 50 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = V.XLO - BORDER     
let POINT(2, 1) = V.YLO - BORDER 
let POINT(1, 2) = V.XLO - BORDER     
let POINT(2, 2) = V.YHI + BORDER 
let POINT(1, 3) = V.XLO              
let POINT(2, 3) = V.YHI + BORDER 
let POINT(1, 4) = V.XLO              
let POINT(2, 4) = V.YLO - BORDER 
call FILLCOLOR.R(1) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = V.XLO - BORDER     
let POINT(2, 1) = V.YHI          
let POINT(1, 2) = V.XLO - BORDER     
let POINT(2, 2) = V.YHI + BORDER 
let POINT(1, 3) = V.XHI + BORDER     
let POINT(2, 3) = V.YHI + BORDER 
let POINT(1, 4) = V.XHI + BORDER     
let POINT(2, 4) = V.YHI           
call FILLCOLOR.R(1) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = V.XHI              
let POINT(2, 1) = V.YHI + BORDER 
let POINT(1, 2) = V.XHI + BORDER     
let POINT(2, 2) = V.YHI + BORDER 
let POINT(1, 3) = V.XHI + BORDER     
let POINT(2, 3) = V.YLO - BORDER 
let POINT(1, 4) = V.XHI              
let POINT(2, 4) = V.YLO - BORDER 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 136  

call FILLCOLOR.R(1) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = V.XLO - BORDER     
let POINT(2, 1) = V.YLO - BORDER 
let POINT(1, 2) = V.XLO - BORDER     
let POINT(2, 2) = V.YLO          
let POINT(1, 3) = V.XHI + BORDER    
let POINT(2, 3) = V.YLO          
let POINT(1, 4) = V.XHI + BORDER     
let POINT(2, 4) = V.YLO - BORDER 
call FILLCOLOR.R(1) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
 
end ''DRAW.BORDER 
 
'' ========================================================== 
 
routine DRAW.LABELS 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(1) 
call TEXTSIZE.R(1500) 
call WGTEXT.R("DOCUMENTARY PETRI NET SIMULATION", 16384,31000) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(1) 
call TEXTSIZE.R(1000) 
CALL TEXTFONT.R(1) 
call WGTEXT.R("Importer", 7500, 10200) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(1) 
call TEXTSIZE.R(1000) 
CALL TEXTFONT.R(1) 
call WGTEXT.R("Exporter", 15500, 10200) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(1) 
call TEXTSIZE.R(1000) 
CALL TEXTFONT.R(1) 
call WGTEXT.R("Transporter", 24200,10200) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTFONT.R(1) 
call TEXTCOLOR.R(10) 
call TEXTSIZE.R(1000) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 137  

 
call WGTEXT.R("DOC", 6000,8000) 
call WGTEXT.R("Name", 12000,8000) 
call WGTEXT.R("Sender", 18000,8000) 
call WGTEXT.R("Receiver", 24000,8000) 
call CLOSE.SEG.R 
 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTFONT.R(1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(10) 
call TEXTSIZE.R(700) 
 
call WGTEXT.R("PO", 6000,5600) 
call WGTEXT.R("Purchase Order", 12000,5600) 
call WGTEXT.R("Importer", 18000,5600) 
call WGTEXT.R("Exporter", 24000,5600) 
 
call WGTEXT.R("GD", 6000,4800) 
call WGTEXT.R("Good Delivery", 12000,4800) 
call WGTEXT.R("Exporter", 18000,4800) 
call WGTEXT.R("Transporter", 24000,4800) 
 
call WGTEXT.R("G", 6000,4000) 
call WGTEXT.R("Goods", 12000,4000) 
call WGTEXT.R("Transporter", 18000,4000) 
call WGTEXT.R("Importer", 24000,4000) 
 
call WGTEXT.R("P", 6000,3200) 
call WGTEXT.R("Payment", 12000,3200) 
call WGTEXT.R("Importer", 18000,3200) 
call WGTEXT.R("Exporter", 24000,3200) 
 
call WGTEXT.R("PA", 6000,2400) 
call WGTEXT.R("Payment Ack", 12000,2400) 
call WGTEXT.R("Exporter", 18000,2400) 
call WGTEXT.R("Importer", 24000,2400) 
 
call CLOSE.SEG.R 
end '' DRAW.LABELS 
 
'' ========================================================== 
 
 
routine DRAW.IMPORTER 
define I as an integer variable  
 
''Draw the Vertical Line 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 0) 
let POINT(1, 1) = cstart.x      
let POINT(2, 1) = cstart.y - state.h 
let POINT(1, 2) = cstart.x      
let POINT(2, 2) = cstart.y - 3 * 4600 ''+ action.h          
call LINECOLOR.R (2) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the Action Boxes 
for I = 0 to 2 do  
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 138  

let POINT(1, 1) = cstart.x - action.w     
let POINT(2, 1) = cstart.y - 2300 - I * 4600 + action.h 
let POINT(1, 2) = cstart.x + action.w     
let POINT(2, 2) = cstart.y - 2300 - I * 4600 + action.h          
let POINT(1, 3) = cstart.x + action.w     
let POINT(2, 3) = cstart.y - 2300 - I * 4600 - action.h          
let POINT(1, 4) = cstart.x - action.w     
let POINT(2, 4) = cstart.y - 2300 - I * 4600 - action.h 
call FILLCOLOR.R(4) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
loop 
 
''Draw all the Labels 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 
call TEXTSIZE.R(550) 
call WGTEXT.R("Tx Pur_Order", cstart.x, cstart.y - 2300 - 4600 * 0) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 
call TEXTSIZE.R(550) 
call WGTEXT.R("Tx Payment", cstart.x, cstart.y - 2300 - 4600 * 1) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 
call TEXTSIZE.R(550) 
call WGTEXT.R("Rx Pay_Ack", cstart.x, cstart.y - 2300 - 4600 * 2) 
call CLOSE.SEG.R 
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cstart.x + action.w * 0.5     
let POINT(2, 1) = cstart.y - 2300 - action.h 
let POINT(1, 2) = cdocstart.x + action.w        
let POINT(2, 2) = cdocstart.y + docum.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cdocstart.x + action.w           
let POINT(2, 1) = cdocstart.y + docum.h 
let POINT(1, 2) = cdocstart.x + action.w - size    
let POINT(2, 2) = cdocstart.y + docum.h 
let POINT(1, 3) = cdocstart.x + action.w           
let POINT(2, 3) = cdocstart.y + docum.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of right up document (purchase)  
 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 139  

''draw the arrowed link between the documment and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cdocstart.x - action.w          
let POINT(2, 1) = cdocstart.y - docum.h 
let POINT(1, 2) = cstart.x - action.w * 0.2       
let POINT(2, 2) = cstart.y - 4600 - 2300 + action.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cstart.x - action.w * 0.2           
let POINT(2, 1) = cstart.y - 4600 - 2300 + action.h  
let POINT(1, 2) = cstart.x - action.w * 0.2 - size    
let POINT(2, 2) = cstart.y - 4600 - 2300 + action.h  
let POINT(1, 3) = cstart.x - action.w * 0.2           
let POINT(2, 3) = cstart.y - 4600 - 2300 + action.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of left middle (purchase order ack)  
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cstart.x + action.w * 0.5     
let POINT(2, 1) = cstart.y - 2300 - 4600 - action.h 
let POINT(1, 2) = cdocstart.x + action.w        
let POINT(2, 2) = cdocstart.y - 4600 + docum.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cdocstart.x + action.w           
let POINT(2, 1) = cdocstart.y - 4600 + docum.h 
let POINT(1, 2) = cdocstart.x + action.w - size    
let POINT(2, 2) = cdocstart.y - 4600 + docum.h 
let POINT(1, 3) = cdocstart.x + action.w           
let POINT(2, 3) = cdocstart.y - 4600 + docum.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of right bottom (Payment)  
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cdocstart.x - action.w          
let POINT(2, 1) = cdocstart.y - 4600 - docum.h 
let POINT(1, 2) = cstart.x - action.w * 0.5       
let POINT(2, 2) = cstart.y - 4600 * 2 - 2300 + action.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 140  

call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = cstart.x - action.w * 0.5           
let POINT(2, 1) = cstart.y - 4600 * 2 - 2300 + action.h  
let POINT(1, 2) = cstart.x - action.w * 0.5 - size    
let POINT(2, 2) = cstart.y - 4600 * 2 - 2300 + action.h  
let POINT(1, 3) = cstart.x - action.w * 0.5           
let POINT(2, 3) = cstart.y - 4600 * 2 - 2300 + action.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of left bottom (payment ack)  
 
end ''DRAW.IMPORTER 
 
'' ============================================================== 
 
 
routine DRAW.EXPORTER 
define I as an integer variable  
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 0) 
let POINT(1, 1) = mstart.x      
let POINT(2, 1) = mstart.y  
let POINT(1, 2) = mstart.x      
let POINT(2, 2) = mstart.y - 2 * 4600 ''+ action.h          
call LINECOLOR.R (2) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
for I = 0 to 1 do  
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mstart.x - action.w     
let POINT(2, 1) = mstart.y - 2300 - I * 4600 + action.h 
let POINT(1, 2) = mstart.x + action.w     
let POINT(2, 2) = mstart.y - 2300 - I * 4600 + action.h          
let POINT(1, 3) = mstart.x + action.w     
let POINT(2, 3) = mstart.y - 2300 - I * 4600 - action.h          
let POINT(1, 4) = mstart.x - action.w     
let POINT(2, 4) = mstart.y - 2300 - I * 4600 - action.h 
call FILLCOLOR.R(4) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
loop 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 
call TEXTSIZE.R(550) 
call WGTEXT.R("Rx Pur_Order", mstart.x, mstart.y - 2300 - 4600 * 0) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 141  

call TEXTSIZE.R(550) 
call WGTEXT.R("Rx Payment", mstart.x, mstart.y - 2300 - 4600 * 1) 
call CLOSE.SEG.R 
 
''Draw documents 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mdocstart.x - action.w          
let POINT(2, 1) = mdocstart.y - docum.h 
let POINT(1, 2) = mstart.x - action.w * 0.5       
let POINT(2, 2) = mstart.y - 2300 + action.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mstart.x - action.w * 0.5           
let POINT(2, 1) = mstart.y - 2300 + action.h  
let POINT(1, 2) = mstart.x - action.w * 0.5 - size    
let POINT(2, 2) = mstart.y - 2300 + action.h  
let POINT(1, 3) = mstart.x - action.w * 0.5           
let POINT(2, 3) = mstart.y - 2300 + action.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of left up (purchase order)  
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mdocstart.x - action.w          
let POINT(2, 1) = mdocstart.y - 4600 - docum.h 
let POINT(1, 2) = mstart.x - action.w * 0.4       
let POINT(2, 2) = mstart.y - 2300 - 4600 + action.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mstart.x - action.w * 0.4           
let POINT(2, 1) = mstart.y - 2300 - 4600 + action.h  
let POINT(1, 2) = mstart.x - action.w * 0.4 - size    
let POINT(2, 2) = mstart.y - 2300 - 4600 + action.h  
let POINT(1, 3) = mstart.x - action.w * 0.4          
let POINT(2, 3) = mstart.y - 2300 - 4600 + action.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of left bottom (payment)  
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mstart.x + action.w * 0.8          
let POINT(2, 1) = mstart.y - 2300 - action.h 
let POINT(1, 2) = mdocstart.x + action.w + 1200       



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 142  

let POINT(2, 2) = mdocstart.y - 4600 + docum.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mdocstart.x + 1200 + action.w          
let POINT(2, 1) = mdocstart.y - 4600 + docum.h 
let POINT(1, 2) = mdocstart.x + 1200 + action.w - size    
let POINT(2, 2) = mdocstart.y - 4600 + docum.h 
let POINT(1, 3) = mdocstart.x + 1200 +action.w            
let POINT(2, 3) = mdocstart.y - 4600 + docum.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of right up (Good delivery)    
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mstart.x + action.w * 0.5     
let POINT(2, 1) = mstart.y - 2300 - 4600 - action.h 
let POINT(1, 2) = mdocstart.x + action.w        
let POINT(2, 2) = mdocstart.y - 4600 * 2 + docum.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = mdocstart.x + action.w          
let POINT(2, 1) = mdocstart.y - 4600 * 2 + docum.h 
let POINT(1, 2) = mdocstart.x + action.w - size    
let POINT(2, 2) = mdocstart.y - 4600 * 2 + docum.h 
let POINT(1, 3) = mdocstart.x + action.w           
let POINT(2, 3) = mdocstart.y - 4600 * 2 + docum.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of right bottom(payment_ack)   
 
end '' DRAW.EXPORTER 
 
'' ============================================================== 
 
 
 
routine DRAW.TRANSPORTER 
 
'' Draw line 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 0) 
let POINT(1, 1) = tstart.x      
let POINT(2, 1) = tstart.y  
let POINT(1, 2) = tstart.x      
let POINT(2, 2) = tstart.y - 4600     
call LINECOLOR.R (2) 
call LINESTYLE.R(solid.line) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 143  

CALL LINEWIDTH.R (width.line) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
'' Draw action boxes 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = tstart.x - action.w     
let POINT(2, 1) = tstart.y -  2300 + action.h 
let POINT(1, 2) = tstart.x + action.w     
let POINT(2, 2) = tstart.y -  2300 + action.h          
let POINT(1, 3) = tstart.x + action.w     
let POINT(2, 3) = tstart.y -  2300 - action.h          
let POINT(1, 4) = tstart.x - action.w     
let POINT(2, 4) = tstart.y -  2300 - action.h 
call FILLCOLOR.R(4) 
call FILLSTYLE.R(1) 
call FILLAREA.R(4, POINT(*, *)) 
call CLOSE.SEG.R 
 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
call TEXTALIGN.R(1, 1) 
call TEXTCOLOR.R(14) 
call TEXTSIZE.R(550) 
call WGTEXT.R("Tx Goods", tstart.x, tstart.y - 2300 - 4600 * 0) 
call CLOSE.SEG.R 
 
''Draw documents 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = tdocstart.x - action.w          
let POINT(2, 1) = tdocstart.y - docum.h 
let POINT(1, 2) = tstart.x - action.w * 0.5       
let POINT(2, 2) = tstart.y - 2300 + action.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 
call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = tstart.x - action.w * 0.5           
let POINT(2, 1) = tstart.y - 2300 + action.h  
let POINT(1, 2) = tstart.x - action.w * 0.5 - size    
let POINT(2, 2) = tstart.y - 2300 + action.h  
let POINT(1, 3) = tstart.x - action.w * 0.5           
let POINT(2, 3) = tstart.y - 2300 + action.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
''end of left up (Goods_delivery)  
 
''draw the arrowed link between the document and the action 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = tstart.x + action.w * 0.5     
let POINT(2, 1) = tstart.y - 2300 - action.h 
let POINT(1, 2) = tdocstart.x + action.w        
let POINT(2, 2) = tdocstart.y - 4600 + docum.h          
call LINECOLOR.R (color) 
call LINESTYLE.R(solid.line) 
CALL LINEWIDTH.R (width.line.link) 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 144  

call POLYLINE.R (2, POINT(*, *)) 
call CLOSE.SEG.R 
 
''Draw the arrow 
call OPEN.SEG.R 
call GPRIORITY.R(SEGID.V, 1) 
let POINT(1, 1) = tdocstart.x + action.w           
let POINT(2, 1) = tdocstart.y - 4600 + docum.h 
let POINT(1, 2) = tdocstart.x + action.w - size    
let POINT(2, 2) = tdocstart.y - 4600 + docum.h 
let POINT(1, 3) = tdocstart.x + action.w           
let POINT(2, 3) = tdocstart.y - 4600 + docum.h + size 
CALL FILLCOLOR.R(color) 
CALL FILLSTYLE.R(1) 
CALL FILLAREA.R (3, point(*, *)) 
call CLOSE.SEG.R 
'' end of right bottom (Good)  
 
end ''DRAW.TRANSPORTER 
 
''  ============================================================== 
 
 
routine INIT 
reserve POINT(*, *) as 2 by 4 
 
''set world coordination 
let XLO = -200       let V.XLO =  2500 
let XHI = +200       let V.XHI = 30000 
let YLO = -200       let V.YLO = 9200 
let YHI = +200       let V.YHI = 29000 
 
''set docu, action box, state ini coordination 
let cstart.x = 7500         let cstart.y = 27000 
let cdocstart.x = cstart.x + action.w 
let cdocstart.y = cstart.y - 4600 
let mstart.x = 15500      let mstart.y =  cstart.y -2300   
let mdocstart.x = mstart.x - action.w 
let mdocstart.y = mstart.y 
let tstart.x = 24200         let tstart.y =  mstart.y - 2300 
let tdocstart.x = tstart.x - action.w 
let tdocstart.y = tstart.y 
 
''constant values 
let action.h = 800            let action.w = 2000 
let docum.w = 500          let docum.h = 600  
let solid.line = 1              let width.line = 100 
let state.h = 400              let width.line.link = 20 
let color = 2                    let size = 300 
 
''define the display doc and states positions 
let gstate.x = -127             let gstate.y = 152 
let cp1state.x = -128         let cp1state.y = 62 
let cp1doc.x = -48             let cp1doc.y = 57 
let cp2state.x = -128         let cp2state.y = -32 
let cp2doc.x = -49             let cp2doc.y = -32 
let cp3state.x = -127          let cp3state.y = -123 
let mp1state.x = -12          let mp1state.y = 20   
let mp1doc.x = 89             let mp1doc.y = 5  
let mp2state.x = -12           let mp2state.y = -71   
let mp2doc.x = 68              let mp2doc.y = -75  
let tp1state.x = 115            let tp1state.y = -26   
let tp1doc.x = 189              let tp1doc.y = -42  
 
''define the transition and arrows  
let cs.x = -127                     let cs0.y = 152 
let cs1.y = 62                     let cs2.y = -32 



Appendix A First Implementation of GT3 in SIMSCRIPT II.5 

 145  

let cs3.y = -123                  let ts1.y = -26 
let ms.x = -12                     let ms0.y = 118 
let ms1.y = 20                    let ms2.y = -71 
let ts.x = 115                      let ts0.y = 70 
    
''define the dosuments positions 
let gdin.x = 76                  let gdin.y = 80 
let gout.x = 135                let gout.y = -27 
let poin.x = -55                 let poin.y = 122 
let gdout.x = 35                let gdout.y = 19 
let poout.x = -102             let poout.y = 65 
let gin.x = -170                 let gin.y = 75 
let pain.x = -55                 let pain.y = 32 
let paout.x = -102             let paout.y = -20 
let pacin.x = -170             let pacin.y = -15 
let pacout.x = 15               let pacout.y = -60  
 
call DRAW.BORDER 
call DRAW.LABELS 
Call DRAW.IMPORTER 
call DRAW.EXPORTER 
call DRAW.TRANSPORTER 
 
let VXFORM.V = 1 
call SETWORLD.R given XLO, XHI, YLO, YHI 
call SETVIEW.R given V.XLO, V.XHI, V.YLO, V.YHI 
 
''Display all state circles 
display cs0 with "cstate0.icn" at (cs.x, cs0.y)       
display cs1 with "cstate1.icn" at (cs.x, cs1.y)     
display cs2 with "cstate2.icn" at (cs.x, cs2.y)     
display cs3 with "cstate3.icn" at (cs.x, cs3.y)     
display ms0 with "mstate0.icn" at (ms.x, ms0.y)     
display ms1 with "mstate1.icn" at (ms.x, ms1.y)     
display ms2 with "mstate2.icn" at (ms.x, ms2.y)     
display ts0 with "tstate0.icn" at (ts.x, ts0.y)     
display ts1 with "tstate1.icn" at (ts.x, ts1.y)     
 
''Display Documents 
display Doc3in with "gdin.icn" at (gdin.x, gdin.y)   
display Doc4out with "gout.icn" at (gout.x, gout.y) 
display Doc1in with "poin.icn" at (poin.x, poin.y)   
display Doc3out with "gdout.icn" at (gdout.x, gdout.y)      
display Doc1out with "poout.icn" at (poout.x, poout.y)    
display Doc4in with "gin.icn" at (gin.x, gin.y)        
display Doc5in with "pain.icn" at (pain.x, pain.y)      
display Doc5out with "paout.icn" at (paout.x, paout.y)  
display Doc6in with "pacin.icn" at (pacin.x, pacin.y)    
display Doc6out with "pacout.icn" at (pacout.x, pacout.y)   
 
end ''INIT 
 
''  =========================================================== 



Appendix B Second Implementation of GT3 in GEMA 

 146  

Appendix B 

Second Implementation of GT3 in GEMA 

Below is the pattern file in GEMA for process routines. This pattern file can translates 

user written structured statements into executable SIMSCRIPT II.5 source code 

automatically.   

 
\Ipstep\W\(\W*\W,\W*\W,\W*\W,\W*\W,\W*\W,\W*\W,\W*\W,\W*\W,\W*\W\)= 
\''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco,  
NextstateYco, OutgoingdocXco, OutgoingdocYco) 
\n''($1, $2, $3, $4, $5, $6, $7, $8, $9)\n 
\''These arguments are needed by this specific process\n 
\n\IProcess $1\n\n\'loop\'\n 
\n\I@cmpn{$2;0;;;request 1 statetoken($2) 
\ndisplay IMAGE$2 with "state$2white.icn" at ($6,$7)\n} 
\n\I@cmpn{$3;0;;;request 1 doctoken($3) 
\ndisplay Doc($3) with "whitedoc$3" at ($8, $9)\n} 
\n\Iwait .TIME.UNIT unit\n\n 
\I@cmpn{$5;0;;;request 1 doctoken($5)\n} 
\n\I@cmpn{$4;0;;;request 1 statetoken($4) 
\nwait .TIME.UNIT unit\n} 
\n\I@cmpn{$2;0;;;relinquish 1 statetoken($2) 
\ndisplay IMAGE$2 with "state$2black.icn" at ($6, $7)\n} 
\n\I@cmpn{$3;0;;;relinquish 1 doctoken($3) 
\ndisplay Doc($3) with "blackDoc$3" at ($8, $9)\n} 
\n\I@cmpn{$5;0;;;relinquish 1 doctoken($5)\n} 
\n\I@cmpn{$4;0;;;relinquish 1 statetoken($4)\n} 
\n\Igo to \'loop\'\n 
\nend\''$1\n\n  
--------------------------------------------------------------------------------------------------------------------------------------------- 

Users can write the following structured statements as an input file for all process 

routines. We have introduced the parameters in detail in Chapter 5.   

 
pstep (Generator, 1,-1, -1, -1, gstate.x, gstate.y, gdoc.x, gdoc.y) 
''---------------------------------------------------------------------------------------- 
pstep (CustomerP1, 2, 1, 1, -1, cp1state.x, cp1state.y,cp1doc.x, cp1doc.y) 
''---------------------------------------------------------------------------------------- 
pstep (CustomerP2, 3, 5, 2, 4, cp2state.x, cp2state.y,cp2doc.x, cp2doc.y) 
''---------------------------------------------------------------------------------------- 
pstep (CustomerP3, 4, -1, 3, 6, cp3state.x, cp3state.y,cp3doc.x, cp3doc.y) 
''------------------------------------------------------------------------------------------- 
pstep (MerchantP1, 6, 3, 5, 1, mp1state.x, mp1state.y, mp1doc.x, mp1doc.y) 
''------------------------------------------------------------------------------------------- 
pstep (MerchantP2, 7, 6, 6, 5, mp2state.x, mp2state.y,mp2doc.x, mp2doc.y) 
''------------------------------------------------------------------------------------------- 
pstep (TransporterP1, 9, 4, 8, 3, tp1state.x, tp1state.y,tp1doc.x, tp1doc.y) 
''------------------------------------------------------------------------------------------- 
 

The input file is translated by our pattern file into an output file automatically shown 

below. This output file can be compiled and executed in SimLab. 



Appendix B Second Implementation of GT3 in GEMA 

 147  

 

''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(Generator, 1, -1, -1, -1, gstate.x, gstate.y, gdoc.x, gdoc.y) 
''These arguments are needed by this specific process 
 
Process Generator 
'loop' 
request 1 statetoken(1) 
display IMAGE1 with "state1white.icn" at (gstate.x,gstate.y) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(1) 
display IMAGE1 with "state1black.icn" at (gstate.x, gstate.y) 
go to 'loop' 
end''Generator 
''------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(CustomerP1, 2, 1, 1, -1, cp1state.x, cp1state.y, cp1doc.x, cp1doc.y) 
''These arguments are needed by this specific process 
Process CustomerP1 
'loop' 
request 1 statetoken(2) 
display IMAGE2 with "state2white.icn" at (cp1state.x,cp1state.y) 
request 1 doctoken(1) 
display Doc(1) with "whitedoc1" at (cp1doc.x, cp1doc.y) 
wait .TIME.UNIT unit 
request 1 statetoken(1) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(2) 
display IMAGE2 with "state2black.icn" at (cp1state.x, cp1state.y) 
relinquish 1 doctoken(1) 
display Doc(1) with "blackDoc1" at (cp1doc.x, cp1doc.y) 
relinquish 1 statetoken(1) 
go to 'loop' 
end''CustomerP1 
''-------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(CustomerP2, 3, 5, 2, 4, cp2state.x, cp2state.y, cp2doc.x, cp2doc.y) 
''These arguments are needed by this specific process 
Process CustomerP2 
'loop' 
request 1 statetoken(3) 
display IMAGE3 with "state3white.icn" at (cp2state.x,cp2state.y) 
request 1 doctoken(5) 
display Doc(5) with "whitedoc5" at (cp2doc.x, cp2doc.y) 
wait .TIME.UNIT unit 
request 1 doctoken(4) 
request 1 statetoken(2) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(3) 
display IMAGE3 with "state3black.icn" at (cp2state.x, cp2state.y) 
relinquish 1 doctoken(5) 
display Doc(5) with "blackDoc5" at (cp2doc.x, cp2doc.y) 
relinquish 1 doctoken(4) 
relinquish 1 statetoken(2) 
go to 'loop' 
end''CustomerP2 
''--------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(CustomerP3, 4, -1, 3, 6, cp3state.x, cp3state.y, cp3doc.x, cp3doc.y) 



Appendix B Second Implementation of GT3 in GEMA 

 148  

''These arguments are needed by this specific process 
Process CustomerP3 
'loop' 
request 1 statetoken(4) 
display IMAGE4 with "state4white.icn" at (cp3state.x,cp3state.y) 
wait .TIME.UNIT unit 
request 1 doctoken(6) 
request 1 statetoken(3) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(4) 
display IMAGE4 with "state4black.icn" at (cp3state.x, cp3state.y) 
relinquish 1 doctoken(6) 
relinquish 1 statetoken(3) 
go to 'loop' 
end''CustomerP3 
''---------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(MerchantP1, 6, 3, 5, 1, mp1state.x, mp1state.y, mp1doc.x, mp1doc.y) 
''These arguments are needed by this specific process 
Process MerchantP1 
'loop' 
request 1 statetoken(6) 
display IMAGE6 with "state6white.icn" at (mp1state.x,mp1state.y) 
request 1 doctoken(3) 
display Doc(3) with "whitedoc3" at (mp1doc.x, mp1doc.y) 
wait .TIME.UNIT unit 
request 1 doctoken(1) 
request 1 statetoken(5) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(6) 
display IMAGE6 with "state6black.icn" at (mp1state.x, mp1state.y) 
relinquish 1 doctoken(3) 
display Doc(3) with "blackDoc3" at (mp1doc.x, mp1doc.y) 
relinquish 1 doctoken(1) 
relinquish 1 statetoken(5) 
go to 'loop' 
end''MerchantP1 
''----------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 
''(MerchantP2, 7, 6, 6, 5, mp2state.x, mp2state.y, mp2doc.x, mp2doc.y) 
''These arguments are needed by this specific process 
Process MerchantP2 
'loop' 
request 1 statetoken(7) 
display IMAGE7 with "state7white.icn" at (mp2state.x,mp2state.y) 
request 1 doctoken(6) 
display Doc(6) with "whitedoc6" at (mp2doc.x, mp2doc.y) 
wait .TIME.UNIT unit 
request 1 doctoken(5) 
request 1 statetoken(6) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(7) 
display IMAGE7 with "state7black.icn" at (mp2state.x, mp2state.y) 
relinquish 1 doctoken(6) 
display Doc(6) with "blackDoc6" at (mp2doc.x, mp2doc.y) 
relinquish 1 doctoken(5) 
relinquish 1 statetoken(6) 
go to 'loop' 
end''MerchantP2 
''----------------------------------------------------------------------- 
 
''(Processname, Nextstate, Outgoingdoc, Currentstate, Incomingdoc, NextstateXco, NextstateYco, OutgoingdocXco, 
OutgoingdocYco) 



Appendix B Second Implementation of GT3 in GEMA 

 149  

''(TransporterP1, 9, 4, 8, 3, tp1state.x, tp1state.y, tp1doc.x, tp1doc.y) 
''These arguments are needed by this specific process 
Process TransporterP1 
'loop' 
request 1 statetoken(9) 
display IMAGE9 with "state9white.icn" at (tp1state.x,tp1state.y) 
request 1 doctoken(4) 
display Doc(4) with "whitedoc4" at (tp1doc.x, tp1doc.y) 
wait .TIME.UNIT unit 
request 1 doctoken(3) 
request 1 statetoken(8) 
wait .TIME.UNIT unit 
relinquish 1 statetoken(9) 
display IMAGE9 with "state9black.icn" at (tp1state.x, tp1state.y) 
relinquish 1 doctoken(4) 
display Doc(4) with "blackDoc4" at (tp1doc.x, tp1doc.y) 
relinquish 1 doctoken(3) 
relinquish 1 statetoken(8) 
go to 'loop' 
end''TransporterP1 
''------------------------------------------------------------------------ 

 



References 

 150  

References 

Allen, R. (2001). Workflow: An Introduction. Workflow Management Coalition. 
Available: http://www.wfmc.org/standards/docs.htm [2001, 07 Dec.]. 

Alonso, G., Agrawal, D., Abbadi, A. E., & Mohan, C. (1997). Functionality and 
Limitations of Current Workflow Management Systems. IEEE Expert, 12(5), 
pp. 68-74. 

Bacceli, F., Cohen, G., Olsder, G. J., & Quadrat, J. P. (1992). Synchronization and 
Linearity: An Algebra for Discrete Event Systems. Chichester, England. Wiley. 

Bons, R. W. H., Lee, R. M., Wagenaar, R. W., & Wrigley, C. D. (1995). Modelling 
inter-organizational trade using Documentary Petri Nets. Proceedings of the 
Twenty-Eighth Hawaii International Conference on System Sciences. IEEE, 
pp.189-198. 

CACI. (1997a). Building Simulation Models with SIMSCRIPT II.5. CACI Products 
Company. Available: 
http://www.caciasl.com/simscript/simscript/simscript_docs.cfm [2001, 10 Jun.]. 

CACI. (1997b). Getting Started with SIMSCRIPT II.5. CACI Products Company. 
Available: http://www.caciasl.com/simscript/simscript/simscript_docs.cfm 
[2001, 10 Jun.]. 

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workflow Evolution. Data & 
Knowledge Engineering, 24(3), pp. 211-238. 

Clemons, E. K. (1995). Using Scenario Analysis to Manage the Strategic Risks of 
Reengineering. Sloan Management Review, 36(4), pp. 61-71. 

Compatangelo, E., & Rumolo, G. (1997). Automated Reasoning about Enterprise 
Concepts. ACM SIGGROUP Bulletin, 18(2), pp. 56-58. 

Curtis, B., Kellner, M. I., & Over, J. (1992). Process Modelling. Communications of the 
ACM, 35(9), pp. 75-90. 

Davenport, T. H. (1993). Process Innovation: Reengineering Work Through 
Information Technology. Boston, USA. Harvard Business School Press. 

Davenport, T. H., & Short, J. E. (1990). The New Industrial Engineering: Information 
Technology and Business Process Redesign. Sloan Management Review, 31(4), 
pp. 11-27.  



References 

 151  

Davenport, T. H., & Stoddard, D. B. (1994). Reengineering: Business Change of 
Mythic Proportions? MIS Quarterly, 18(2), pp. 121-127. 

Davies, R., & O'Keefe, R. M. (1989). Simulation Modelling with Pascal. London, UK. 
Prentice Hall, Inc. 

Delargy, K. M. (2001). The New Business Landscape. Manufacturing Engineer, 80(4), 
pp. 169-174. 

Earl, M. J. (1994). The New and the Old of Business Process Redesign. Strategic 
Information Systems, 3(1), pp. 5-22. 

Emshoff, J. R., & Sisson, R. L. (1971). Design and Use of Computer Simulation 
Models. New York, USA. Macmillan. 

Galliers, R. D. (1993). Towards a Flexible Information Architecture: Integrating 
Business Strategies, Information Systems Strategies and Business Process 
Redesign. Information Systems, 3(3), pp.199-213. 

Gordon, G. (1975). The Application of GPSS V to Discrete System Simulation. N.J., 
USA. Prentice-Hall. 

Gray, D. N. (1995). Gema -- A General Purpose Macro Processor. Available: 
ftp://ftp.ugcs.caltech.edu/pub/gema/html/gema.html [2001, 20 Nov.]. 

Graybeal, W. J., & Pooch, U. W. (1980). Simulation, Principles and Methods. 
Cambridge, UK. Winthrop Publishers. 

Hammer, M., & Champy, J. (1992). What is Reengineering? Information week, 372(5), 
pp. 10,14, 18, 20, 24. 

Hammer, M., & Champy, J. (1993). Reengineering the Corporation. New York, USA. 
Harper Business. 

Hammer, M., & Stanton, S. A. (1995). The Reengineering Revolution. Government 
Executive, 27(9), pp. 2A-7A. 

Hiatt, J. (2001). Business Process Reengineering Tutorial Series. BPR Online Learning 
Centre. Available: http://www.prosci.com/mod1.htm [2001, 27 Nov.]. 

Hilpinen, R. (1971). Deontic Logic: Introductory and Systematic Readings. Miami, 
USA. Reidel Publishing Company. 

Hlupic, V., & Robinson, S. (1998). Business Process Modelling and Analysis Using 
Discrete-Event Simulation. Proceedings of the 1998 Winter Simulation 
Conference. ACM Press, pp. 1363-1369. 

Hoffman, D. L., & Novak, T. P. (1997). A New Marketing Paradigm for Electronic 
Commerce. Information Society, 13(1), pp. 43-45. 

Jablonski, S. (1995). On the Complementarity of Workflow Management and Business 
Process Modelling. ACM SIGOIS Bulletin, 16(1), pp. 33-38. 



References 

 152  

Jackson, B. (1996). Reengineering the Sense of Self: The Manager and the 
Management Guru. Journal of Management Studies, 33, pp. 571-590. 

Jensen, K. (1992). Coloured Petri Nets. New York, USA. Springer-Verlag. 

Johnston, R. (1987). Complex Interactive Computer-Based Simulations Without 
Mathematical Modelling: A UK Experience. Simulation and Games, 18(4),    
pp. 501-516. 

Kettinger, W. J., Teng, J. T. C., & Guha, S. (1997). Business Process Change: A Study 
of Methodologies, Techniques, and Tools. MIS Quarterly, 21(1), pp. 55-80. 

Kindred, H. M. (1988). Modern Methods of Processing Overseas Trade. Journal of 
World Trade, 22(6), pp. 5-17. 

Kleyn, M. F., & Browne, J. C. (1993). A High Level Language for Specifying Graph 
Based Languages and their Programming Environments. Proceedings of the 
Fifteenth International Conference on Software Engineering. ACM ICSE,      
pp. 324-335.  

Law, A. M., & Kelton, W. D. (1991). Simulation Modelling and Analysis (2nd ed.) 
New York, USA. McGraw-Hill, Inc. 

Law, A. M., & Larmey, C. S. (1984). Introduction to Simulation Using Simscript II.5. 
Calif., USA. CACI Products Company. 

Lee, R. M. (1992). CASE/EDI: EDI Modelling -- User Documentation. 
Available:http://www.vwl.uni-freiburg.de/fakultaet/wi/docs/edipots.ps.gz [2001, 
15 Feb.]. 

Lee, R. M. (1992). Dynamic Modelling of Documentary Procedures: A Case for EDI. 
Proceedings of the Third International Conference on Dynamic Modelling of 
Information Systems. IEEE, pp. 126-134.  

Lee, R. M. (1998). INTERPROCS: A Java-Based Prototyping Environment for 
Distributed Electronic Trade Procedures. Proceedings of the Thirty-First Hawaii 
International Conference on System Sciences. IEEE, pp.202-209. 

Lee, R. M. (1999). Distributed Electronic Trade Scenarios: Representation, Design, and 
Prototyping. Electronic Commerce, 3(Special Issue on Formal Aspects of 
Digital Commerce), pp. 105-136. 

Lewis, C., Brooks, R. J., & Robinson, S. (2001). Simulation (1st ed.). New York, USA. 
Palgrave Publishers Ltd. 

Mauw, S., & Reniers, M. A. (1994). An Algebraic Semantics of Basic Message 
Sequence Charts. The Computer, 37(4), pp. 269-277. 

Meel, J. W. v., & Sol, H. G. (1996). Business Engineering: Dynamic Modelling 
Instruments for a Dynamic World. Simulation and Gaming, 27(4), pp. 40-61. 



References 

 153  

Mundie, D. A. (1996). Why I Love Gema. Available: 
http://www.anthus.com/Gema/WhyILoveGema.html [2002, 06 Jan.]. 

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of 
the IEEE. IEEE, 77(4), pp. 541-580. 

Murata, T. (1992). Petri Nets Modelling and Analysis of Concurrent Systems. 
Computer and Systems Science, 44(3), pp. 28-39. 

Pegden, C. D., Sadowski, R. P., & Shannon, R. E. (1990). Introduction to Simulation 
using SIMAN. Sewickley, Pa. USA. Systems Modelling Corporation. 

Peterson, J. L. (1978). An Introduction to Petri Nets. Proceedings of the National 
Electronics Conference. National Engineering Consortium, Inc., pp. 144-158. 

Peterson, J. L. (1981). Petri Net Theory and the Modelling of Systems. N.J., USA. 
Prentice-Hall. 

Pidd, M. (1988). Computer Simulation in Management Science (2nd ed.). New York, 
USA. John Wiley & Sons. 

Reisig, W. (1992). A Primer in Petri Net Design. New York, USA. Springer-Verlag. 

Saxena, K. B. C. (1996). Reengineering Public Administration in Developing 
Countries. Long Rang Planning, 29(5), pp. 703-711. 

Schal, T. (1996). Workflow Management Systems for Process Organizations. New 
York, USA. Springer-Verlag. 

SDS. (2001, 13/08/2001). What is the Relationship of System Thinking to System 
Dynamics? System Dynamic Society. Available: http://www.albany.edu/cpr/sds 
[2001, 15 Dec.]. 

Sharp, A., & McDermott, P. (2001). Workflow Modelling: Tools for Process 
Improvement and Application Development. London, England. Artech House. 

Sokol, P. K. (1995). From EDI to Electronic Commerce: a Business Initiative. New 
York, USA. McGraw-Hill, Inc. 

Soloman, K. (2000). Risk Management for Documentary Credits. Australian Institute of 
Export (SA) Ltd. Available: http://www.aiex.com.au/soloman02.htm [2002,    
29 Jan.]. 

Sommerville, I. (1992). Software Engineering (4th ed.). Workingham, England. 
Addison-Wesley Pub. Co. 

Sophim. (2001). Introduction to Electronic Data Interchange. SOPHIM, Inc.  
Available: http://www.unedifact.com/edi.htm [2001, 25 Nov.]. 

Streng, R. J. (1993). Dynamic Modelling to Assess the Value of Electronic Data 
Interchange. PhD thesis, University of Delft, the Netherlands. 



References 

 154  

Suzuki, I. (1990). Formal Analysis of the Alternating Bit Protocol by Temporal Petri 
Nets. IEEE Transactions Software Engineering, 16(11), pp. 1273-1281. 

Swami, A. (1995). Building the Business Using Process Simulation. Proceedings of the 
1995 Winter Simulation Conference. ACM Press, pp. 1081-1086  

Teng, J. T. C., Jeong, S. R., Kettinger, W. J., & Grover, V. (1995). The Implementation 
of Business Process Reengineering. Management Information Systems, 12(1), 
pp. 9-33. 

Tsalgatidou, A., Louridas, P., Fesakis, G., & Schizas, T. (1996). Multilevel Petri Nets 
for Modelling and Simulating Organizational Dynamic Behaviour. Simulation & 
Gaming, 27(4), pp. 484-506. 

Van der Aalst, W. M. P. (1992). Timed Coloured Petri Nets and Their Application to 
Logistics. PhD Thesis, Eindhoven University of Technology, the Netherlands. 

Van der Aalst, W. M. P. (1994). Putting Petri Nets to Work in Industry. Computer in 
Industry, 25(1), pp. 45-54. 

Van der Aalst, W. M. P. (1998). The Application of Petri Nets to Workflow 
Management. Journal of Circuits, Systems and Computers, 8(1), pp. 21-66. 

Van der Aalst, W. M. P., & Heea, K. M. v. (1996). Business Process Redesign: A Petri-
Net-Based Approach. Computers in Industry, 29(1-2), pp. 15-26. 

Warren, J. R. (1996). Guest Editorial: Simulation of Information Systems. Simulation 
and Gaming, 27(4), pp. 438-439. 

WFMC. (2001). Workflow Management Coalition White Papers. Workflow 
Management Coalition. Available: http://www.wfmc.org [2001, 15 Dec.]. 

Whatis. (2001, 30 Jul. 2001). Whatis. TechTarget. Available: 
http://whatis.techtarget.com [2001, 15 Dec.]. 

Willcocks, L., & Smith, G. (1995). IT-enabled Business Process Reengineering: From 
Theory to Practice. Oxford, England. Oxford Institute of Information 
Management, Templeton College. 

Zhou, M., & DiCesare, F. (1993). Petri Net Synthesis for Discrete Event Control of 
Manufacturing Systems. Boston, USA. Kluwer Academic Publishers. 


