
Department of Computer Science
The University of Auckland

New Zealand

Towards an Open Trusted
Computing Framework

Matthew Frederick Barrett
February 2005

Supervisor: Clark Thomborson

A THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OFMASTER OFSCIENCE

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that due

acknowledgement is made where appropriate and that the author’s permission is obtained before

any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply to the

collection of another prescribed library on request from that Library; and

1. I agree that this thesis may be photocopied for supply to any person in accordance with

the provisions of Section 56 of the Copyright Act 1994.

Or

2. This thesis may not be photocopied other than to supply a copy for the collection of

another prescribed library.

(Strike out 1 or 2)

Signed: .

Date: .

Created: 5 July 2001

Last updated: 9 August 2001

Abstract

A trusted computing framework attempts to provide high levels of assurance for general purpose

computation. Trusted computing, still a maturing research field, currently provides four security

primitives — attestation, sealed storage, curtained memory and secure I/O. To provide high

assurance levels amongst distributed, autonomous systems, trusted computing frameworks treat

a machine owner as a potential attacker.

Trusted computing frameworks are characterised by a need for their software to be closed-

source. Ken Thompson’s famous subverted-compiler shows that a user’s trust in software tools

may be considered lower when their source is not examinable.

This thesis proposes required characteristics of a community-developed trusted computing

framework that enables trust in the framework through examination of the source code, while

retaining assurances of security. The functionalities of a general purpose computing platform

are defined, and we propose that a trusted computing framework should not restrict the usability

or functionality of the general purpose platform to which it is added. Formal definitions of

trusted computing primitives are given, and open problems in trusted computing research are

outlined.

Trusted computing implementations are surveyed, and compared against the definitions pro-

posed earlier. Difficulties in establishing trusted measurements of software are outlined, as well

as enabling the use of shared libraries while making a meaningful statement about an applica-

tion’s functionality.

A security analysis of framework implementations of the Trusted Computing Group and

Microsoft are given. Vulnerabilities caused by the implementation of curtained memory outside

the Trusted Computing Base are discussed, and a novel attack is proposed.

We propose modifications to the Trusted Computing Group specification to enable curtained

execution through integration with an architecture intended to prevent unauthorised software ex-

ecution. This integration enables virtualisation of the Trusted Platform Module, and the benefits

this gives are discussed.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Clark Thomborson. I could not have

imagined having a better advisor and mentor for my thesis. I gratefully thank him for his time,

effort, expert help and guidance, and of course his friendship.

I would also like to thank Ellen Cram, from Microsoft, and David Safford, from IBM Re-

search. Their correspondence with me throughout the year has been of great benefit.

I am also grateful to Richard Clayton for supplying photos of the IBM 4758.

iv

Contents

1 Introduction 1

1.1 Background .2

1.2 Trusted Computing Threat Model .2

1.3 Motivation . 4

1.4 Organisation .5

2 Defining an Open, General Purpose, Trusted Computing Platform 6

2.1 Open . 7

2.2 General Purpose .20

2.3 Components of a Trusted Computing Framework23

3 Survey of Trusted Computing Frameworks 50

3.1 Introduction .51

3.2 Trusted Computing Group’s Trusted Platform Module51

3.3 Next-Generation Secure Computing Base .76

3.4 Trusted Computing in Software .82

3.5 Aegis .85

3.6 IBM 4758 .87

3.7 Execute Only Memory .92

4 Discussion 101

4.1 Introduction .102

4.2 Partial Framework Implementations .102

4.3 Generating Trusted Measurements of Applications106

4.4 Shared Libraries .108

4.5 Resistance to Software Attacks .119

5 Architectural Improvements 126

5.1 Introduction .127

5.2 Modifications .127

v

Contents vi

5.3 Motivation and Benefits .139

6 Conclusion and Future Work 142

6.1 Conclusion .143

6.2 Future Work .145

List of Figures

2.1 Hierarchical Structure of Relative Group Sizes in Open Source Communities .16

2.2 Components of the Access Control Model .26

2.3 A Layered Computing System Showing Hardware, Firmware, and Software . .27

2.4 Access Control Model Showing Attempt to Read a File30

2.5 Access Control Model Showing Netscape Requesting Some Arbitrary Data to

be Sealed .31

2.6 Operation of Seal Command .34

2.7 Access Control Model Showing Read or Write Request to Volatile Memory . .40

3.1 NGSCB Hardware Architecture Modifications76

3.2 Logical Software Layout of NGSCB .77

3.3 Hardware and Software Stack Identified in an NGSCB Attestation Vector . . .80

3.4 Photograph of the IBM 4758 Secure Coprocessor89

3.5 Overview of XOM Architecture .95

4.1 Filter Process Illustrating an Assured Pipeline as Implemented in the LOCK

System .103

4.2 Insertion Attack Forcing Incorrect Measurement of an Application121

4.3 Access Control Model Showing Nexus Computing Agent Unsealing a File . . .124

5.1 Contents and Design of TPM/XOM Key Tables130

5.2 Trusted Building Blocks and the Trusted Computing Base of the TPM and

TPM/XOM Architectures .132

vii

List of Tables

1.1 Classes of Attackers .3

2.1 Criteria of Open Source Licenses, as Specified by the Open Source Initiative . .9

2.2 Variable Characteristics of Open Source Software Development Models14

2.3 Categories of Open Source Software Project Contributors15

2.4 Capabilities of a General Purpose Trusted Computing Platform22

2.5 Proposed Attributes of Attestation Protocol and Vector46

3.1 Specified Capabilities of the Cryptographic Coprocessor in a Trusted Platform

Module .52

3.2 Selected Commands Present in the Trusted Computing Group’s Trusted Plat-

form Module v1.2 Specification .56

3.3 Defined Platform Configuration Register Usage for 32 bit PC Architecture . . .60

3.4 Key Types and Uses in the Trusted Computing Group’s Trusted Platform Spec-

ification v1.2 .62

3.5 Credentials Supplied with a Trusted Platform Module62

3.6 Vulnerabilities that Lead to Possible Subversions of the Integrity Measurement

Log .73

3.7 Integrity Challenge Protocol Implemented on a TPM74

3.8 Sample Domain Definition Table in the LOCK System84

3.9 Components of the IBM 4758 .88

3.10 Components of an IBM 4758 Attestation Vector90

3.11 Packaging and Distribution Protocol of an Application in the XOM Architecture94

3.12 Processor Operations Implemented in Hardware for the XOM Architecture . .97

4.1 Integrity Classes of Software .112

4.2 Issues with Enrolling and Managing Application Measurements114

4.3 Features of Attestation Implementations .118

5.1 Modified Load and Measure Procedure of TPM/XOM128

viii

LIST OF TABLES ix

5.2 Issues Arising from Attestation of Entire Platform139

5.3 Issues with Implementation of Curtained Memory in Software140

Abbreviations

AES Advanced Encryption Standard

AIK Attestation Identity Key

API Application Program Interface

AV Attestation Vector

BOBE Break-Once Break-Everywhere

CA Certificate Authority

CRTM Core Root of Trust for Measurement

DDT Domain Definition Table

DES Data Encryption Standard

DIT Domain Interaction Table

DRM Digital Rights Management

EK Endorsement Key

ESS Embedded Security Subsystem

F/OSS Free/Open Source Software

IPC Inter-Process Communication

LHS Left-Hand Side

LILO Linux Loader

LPC Low-Pin Count

LSM Linux Security Module

MAC Message Authentication Code

NCA Nexus Computing Agent

NGSCB Next Generation Secure Computing Base

OSI Open Source Initiative

x

Abbreviations xi

OSS Open Source Software

OTP One-Time Pad

PCR Platform Configuration Register

PKI Public Key Infrastructure

POST Power-On Self-Test

RHS Right-Hand Side

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SEM Secure Execution Mode

SK Storage Key

SML Stored Measurement Log

SRK Storage Root Key

SSC Security Support Component

TBB Trusted Building Blocks

TC Trusted Computing

TCB Trusted Computing Base

TCF Trusted Computing Framework

TCG Trusted Computing Group

TOCTOU Time of Check to Time of Use

TPM Trusted Platform Module

TPM/XOM Trusted Platform Module/Execute Only Memory

TSP Trusted Service Provider

TSS Trusted Software Stack

TTP Trusted Third Party

XOM Execute Only Memory

“Begin at the beginning,” the King said, gravely, “and go on till you

come to the end: then stop.”

Lewis Carroll

1
Introduction

1

1.1 Background 2

1.1 Background

Trusted computing is a relatively new approach to computer security that allows secure appli-

cations to be built on standard hardware and operating system architectures. It is intended to

allow specific applications to be given increased security properties, without requiring signifi-

cant modifications to the underlying hardware and operating system currently in use. Trusted

computing adds some hardware-enforced immutable functionality and secure storage to im-

plement a number of security primitives. This additional functionality is enabled through the

addition of a chip to a standard PC motherboard.

Trusted computing aims to provideassuredoperation of applications both locally, and on

remote platforms, under the control of a possibly malicious administrator. A limited set of

functionality contained within aTrusted Computing Base(TCB) is assumed to operate correctly.

This functionality is used to assure the state of a computer to a remote party, enabling them to

trust arbitrary computation performed on that computer. It also enforces a number of security

features locally, to protect an application and its data from a wide range of software attacks.

We consider aTrusted Computing Framework(TCF) to be a collection of both software and

hardware that implements and enforces trusted computing primitives. It is assured by the as-

sumption in the correctness of the Trusted Computing Base, and trusted through the correctness

of software which has those restrictions and controls enforced upon it. The Trusted Computing

Base is the technicalroot of trustfrom which trust in the correct operation of the TCF flows.

1.2 Trusted Computing Threat Model

Before continuing further, this section outlines the threat model of trusted computing discussed

in this thesis.

The trusted computing primitives outlined in section 2.3 are not intended to protect against

any form of physical attack against the platform on which they run. Safford explains this when

discussing the Trusted Computing Group’s implementation (Section 3.2) [50]:

[The] chip sits on... [an] easily monitored [bus]. The chip is not defended against

1.2 Trusted Computing Threat Model 3

Class Layer Explanation

1. l2 A malicious application or normal user.

2. l1 A malicious operating system or administrative user.

3. l0 A malicious hardware device or hardware-modifying or
hardware-snooping user.

Table 1.1: Classes of attackers.

power analysis, RF analysis or timing analysis. The bottom line is that the physical

owner of the machine could easily recover any ... secrets from the chip.

...we simply are not concerned with threats based on the user attacking the chip...

Trusted computing is intended to secure consumer and corporate desktop PCs. The threat

model is not intended to guarantee any form of availability of data or service. This is because

the most naive attacker can easily succeed in preventing a PC from operating. Safford states

that physically owning the machine enables a user to “easily” recover any secrets from the chip.

Recovering secrets from the chip does require an attacker to physically read the secrets from

the bus on the motherboard. It is not clear how “easy” this form of attack is. Certainly it

would require a technically advanced user. Less advanced attacks, such as resetting the BIOS

by removing its backup battery, should not allow an attacker to cause the trusted computing

chip to leak any secrets.

The trusted computing threat model is primarily concerned with protecting against software

attacks from malicious users and malicious system administrators, as well as applications and

operating systems. There are three main classes of attackers. These are shown in Table 1.1. The

layer indicates the level that the software or user executes in the system model introduced in

Section 2.3.1 on page 25. Each class of attacker includes both a user and the associated software

attack they are able to perform. A normal user is one who can only install user-level applica-

tions such as Adobe Acrobat. An administrative user is one who is able to install arbitrary

kernel drivers or modify or affect the configuration of the operating system in critical ways. A

hardware-modifying attacker represents a technically advanced user that trusted computing is

not intended to protect against.

One of the contentious issues surrounding trusted computing is the inclusion of the system

1.3 Motivation 4

administrator, or owner, in the threat model. As will be discussed in Section 2.3 on page 23,

trusted computing primitives are intended to protect against attacks by a malicious system ad-

ministrator in order to ensure the confidentiality and integrity of certain data. Schoen of the

Electronic Frontier Foundation proposes a change in the threat model of trusted computing

[58]. His suggestion, known asowner-override, would allow the system administrator to force

the trusted computing framework to generate false statements when they are not prepared for a

truthful statement to be presented. These statements, known as attestations, are a critical part

of the security of a trusted computing framework. Attestation is introduced in Section 2.3.5,

and reasoning given there makes clear why Shoen’s owner-override feature is unworkable in

the context of trusted computing primitives.

As mentioned above, the trusted computing threat model is not concerned with guaranteeing

availability. It is required, however, to guarantee the confidentiality and integrity in the face of

attackers in class 1 and 2 in Table 1.1. The threat model can be considered to require trusted

computing frameworks tofail-safe. That is, when presented with a given attack, data protected

by a trusted computing primitive can fail to be available, but must never be released. The

threat model is this way primarily due to cost considerations. Availability is typically far more

expensive to secure than confidentiality and integrity, and trusted computing is intended to

operate on consumer and corporate desktops where availability may be impossible to guarantee.

1.3 Motivation

As outlined in Section 1.2, a user is forced to rely on a Trusted Computing Framework to control

access restrictions to her data and applications in a manner that she cannot influence. Given

the assumption of the immutability of the security primitives it provides, this thesis examines

various trusted computing frameworks for their ability to enable a user to properly consider the

framework as a root of trust, through enabling examination of the source code by herself or

another party she trusts, while still securely enforcing the assured primitives. In general, we

propose a definition ofopennessthat allows a trusted computing framework to be developed

and examined by an open community. It is this community that then forms the socialroot of

1.4 Organisation 5

trust which allows a user to trust the operation of the Trusted Computing Framework will be

correct.

Trusted computing frameworks have a technicalroot of trust that is implemented in hard-

ware for a number of reasons. Firstly, functionality that implemented in hardware is more

difficult to modify than the equivalent functionality implemented in software. Indeed, given the

architecture of a standard PC, there are difficulties in guaranteeing the immutability of some

piece of software without requiring substantial changes to that underlying hardware and soft-

ware design that motivated trusted computing initially.

Secondly is the difficultly, or impossibility [19], of hiding secrets in software. Trusted

computing frameworks have, at the heart, some cryptographic secret used to assure remote

parties of their validity, as well as to keep local data secure from modification.

This thesis also examines the ability of proposed trusted computing frameworks to properly

enforce their security primitives, yet still retain the usability and functionality of the operating

system and platform to which they are added. As trusted computing research is still a developing

field, we propose definitions of the security primitives that it aims to provide, and compare

existing implementations against these definitions.

Given the relative immaturity of trusted computing research, this thesis attempts to out-

line some of the open problems that must be solved before an open, general purpose, trusted

computing framework can be implemented.

1.4 Organisation

Chapter 2 proposes definitions of the termsopenandgeneral purpose, as well as giving tech-

nical definitions for the security primitives that trusted computing intends to provide. Chapter

3 surveys a number of trusted computing implementations, describing frameworks specified by

industry, as well as academic research. Chapter 4 discusses the frameworks outlined in Chap-

ter 3, and compares them against the definitions given in Chapter 2. Chapter 5 proposes some

architectural changes to improve the security and usability of the trusted computing framework

discussed in Chapter 3. Chapter 6 summarises our conclusions, and discusses future work.

For secrets are edged tools,

And must be kept from children and from fools.

John Dryden

2
Defining an Open, General Purpose,

Trusted Computing Platform

6

2.1 Open 7

2.1 Open

Of the three attributes this thesis aims to describe,opennessis the most nebulous, and the most

contentious. To ascertain if a trusted computing framework is open, the term must first be

defined for our specific purpose. As discussed in Chapter 1, this thesis concerns itself with

the development of an open trusted computing platform. Current trusted computing platforms,

and why they do not meet the definition of open, described below, are discussed in Chapter 3.

The relative merits of an open or closed security primitive are beyond the scope of this thesis.

This thesis considers an open security framework to be worth investigating. Various properties

required for open, community-developed code to be able to engender trust are proposed. The

ability of naive users to rely on a closed proprietary entity, as opposed to an open community,

is considered.

Section 2.1.1 surveys a number of sources to find requirements for openness, especially

as it affects security. Section 2.1.2 surveys the processes through which open source software

is developed and examined, improving the security and correctness of the code. Section 2.1.3

surveys literature regarding the make-up and motivations of a community that is able to function

as a root of trust. Section 2.1.4 proposes some ways in which the community must operate to

facilitate trust in the framework. Section 2.1.5 compares the open framework that results from

our requirements to one developed in a closed, proprietary manner.

2.1.1 Requirements of Openness

In order to limit the scope of our definition of open, we concern ourselves primarily with those

attributes which influence the assertion made by Thompson in his 1983 Turing Award Lecture

[65]:

You can’t trust code that you did not totally create yourself... No amount of source-

level verification or scrutiny will protect you from using untrusted code.

Thompson’s assertion states that unless you had a hand in the writing of every part of your

software environment, you cannot trust any code you compile inside that environment. He

2.1 Open 8

proves his case by subverting the C compiler to insert a back door into every copy of the Unix

login program that it compiles. Examination of thelogin code itself will not reveal the back

door.

While Thompson’s assertion is demonstrably true, it is equally true that developing a useful

software environment yourself is entirely impractical, if not impossible, over the course of a

lifetime. An argument against such an enterprise could be that, for the majority of computing

tasks, the level of trust that would be obtained is not required. A relatively lower level of trust

can be obtained by examining the source code, in its entirety, of a given software environment.

Bruce Schneier, a noted computer security expert, is of the opinion that computer security

comes from transparency, allowing public examination of source code [57]:

Security in computer systems comes from transparency – open systems that pass

public scrutiny – and not secrecy.

He also asserts that those responsible for engineering security products, and who wish to de-

velop strong security products, should require transparency and availability of code [56]:

...the only way to tell a good security protocol from a broken one is to have experts

evaluate it...

The exact same reasoning leads any smart security engineer to demand open source

code for anything related to security.

The source and binary representations of software are legally protected through copyright.

Only the copyright owner is entitled to make further copies of a piece of software, and in order

to sell a program, the end user is typically granted alicense. The termsopen sourceandclosed

sourcetypically describe two opposing methods of software development. However, they are

also used to classify the license under which a piece of software can be distributed.

The Open Source Initiative (OSI) [5] was set up to vet and approve licenses which could

be referred to as ‘open source,’ or more specificallyOSI Certified Open Source Software. Cur-

rently, the OSI website lists over 50 licenses which are able to refer to themselves as open source

licenses. The ten criteria which a license must meet to be considered open source by the OSI

2.1 Open 9

Requirement Explanation

1. Free Redistribution The license shall not require a royalty or fee, not prevent the
software being given away for free or being sold, as part of
an aggregate software distribution.

2. Source Code The program must include source code, and must allow dis-
tribution in source code as well as compiled form. Where
some form of a product is not distributed with source code,
there must be a well-publicised means of obtaining the
source code for no more than a reasonable reproduction cost,
preferably downloading via the Internet without charge. The
source code must be the preferred form in which a program-
mer would modify the program. Deliberately obfuscated
source code is not allowed. Intermediate forms such as the
output of a preprocessor or translator are not allowed.

3. Derived Works The license must allow modifications and derived works.

4. Integrity of The Au-
thor’s Source Code

The license may restrict source-code from being distributed
in modified form only if the license allows the distribution of
“patch files” with the source code, for the purpose of modi-
fying the program at build time. The license must explicitly
permit distribution of software built from modified source
code. The license may require derived works to carry a dif-
ferent name or version number from the original software.

5. No Discrimination
Against Persons or
Groups

The license must not discriminate against any person or
group of persons.

6. No Discrimination
Against Fields of
Endeavour

The license must not restrict anyone from making use of the
program in a specific field of endeavour.

7. Distribution of Li-
cense

The rights attached to the program must apply to all users.

8. License Must Not Be
Specific to a Product

The rights attached to the program must not depend on the
program being part of a particular software distribution.

9. License Must Not Re-
strict Other Software

The license must not place restrictions on other software that
is distributed along with the licensed software.

10. License Must Be
Technology-Neutral

No provision of the license may be predicated on any indi-
vidual technology or style of interface.

Table 2.1: Criteria of open source licenses, as specified by the Open Source Initiative, reproduced from [5]. Re-
quirements in bold are proposed to be relevant to the security of the trusted computing framework, and
are adopted by our definition.

2.1 Open 10

are adapted and shown in Table 2.1. The OSI criteria require open source licenses to give all

possible users (requirements 5 and 6) a wide range of rights. Requirement 1 stipulates that open

source software can be sold, or given away for free. Requirement 3 stipulates that users of Open

Source Software (OSS) must be able to modify the software, and distribute their modifications.

These two requirements match the traditional concepts ofopennesswhen discussing software.

We are concerned with restricting a definition ofopento those criteria which are relevant

from the perspective of security, and especially a user’s ability to obtain and view the source

code. The majority of the ten criteria listed by the OSI do little to affect this goal.

To this end, we adopt requirement 2 in Table 2.1 as a requirement for anopentrusted com-

puting framework. Source-code of the framework must be available for inspection by all users.

Additionally, we adopt requirement 4 in Table 2.1 as a requirement. This means software dis-

tributed with the trusted computing framework comes with a ‘certificate of authenticity’ as be-

ing the work of the stated author. Requirements for identifying authors are discussed in Section

2.1.3.

Requirement 1 is not included in our definition of open as it does not affect the availability of

source code for viewing, nor its authenticity. Requirement 3 allows dilution of the appearance

of there being an official, trusted version of the framework. It is not adopted for this reason. We

discuss this issue at greater length in Section 2.1.4. Also, in Section 2.1.3 we discuss how trust

can be developed for a single, official, version of an open source operating system.

Requirements 5, 6, and 7 allow the equal distribution and use of the software by any and all

parties. These requirements are also adopted for our security-focused definition. They ensure

that all groups are able to use and examine the framework, without restriction imposed by an

authority who may be concerned with preventing the examination of the framework by some

groups.

Requirement 8 stipulates that an individual program cannot be required to only be dis-

tributed with a specific distribution. Our trusted computing framework should always be dis-

tributed wholly, never in part, as this may result in weakened security.

Requirement 9 states that use of the trusted computing framework should not preclude or

prevent the use of any other software. This prevents the security of the product from depending

2.1 Open 11

on the lack of certain software. For this reason, requirement 9 is adopted by our definition of

open.

Requirement 10 prevents the software from being dependent on a specific technology or in-

terface. For a trusted computing framework to give satisfactory security assurances, it may need

to be implemented or run on specific implementations of hardware, as discussed in Section 1.3.

For this reason, we specifically do not include requirement 10 in our definition — the security

of the framework will depend on its use with specific hardware devices and technologies.

2.1.2 Examination of Source

Criteria 3 (Table 2.1), allowing derivations and modifications to be distributed, encourages the

traditional development model of OSS. This model of development, in part, contributes to the

contention about the security of OSS. The OSS development model is thoughtfully explained

and justified by Eric Steven Raymond in his bookThe Cathedral and the Bazaar[49]. The

cathedral and bazaar models of software development are discussed below, as well as the impli-

cations for security and trust in the code they generate.

Many of the central tenets of, and justifications for, the OSS development model are ex-

plained by Raymond in his book. One of them he dubsLinus’ Law. Linus Torvalds is the

creator of the Linux operating system, one of the most well-known and successful open source

software projects. Linus’ Law is defined asGiven enough eyeballs, all bugs are shallow. More

formally Raymond says that:

Given a large enough beta-tester and co-developer base, almost every problem will

be characterized quickly and the fix obvious to someone.

Linus’ Law is not immediately concerned with the security of a given piece of code. Instead,

it refers to the overall number of bugs, and the speed with which they are found and resolved.

The open source community does argue, however, that themany-eyesprinciple means security

holes are found more quickly in an open source product than in a closed source product. Closed

source advocates argue in return that open source code givesblack hatsthe ability to study the

source of a program to find vulnerabilities and exploit them, beforewhite hatscan find and

2.1 Open 12

fix them. The strength of these arguments is outside the scope of this thesis, and will not be

discussed in depth here.

Linus’ Law is given here to show where some of the perceived value of an open source

product is derived from. The argument described here is best applied to a popular product, with

relatively ‘many-eyes’. For the purposes of discussion, the Linux kernel will be used as a case

in point.

Just as it is impractical to develop an entire software environment on your own, it is also

impractical to study and understand the source code of one developed by others. For a naive

user, the Linux kernel is perceived to be secure, correct, and not contain malicious code based

on the consensus of the community that develops and examines it.

A naive user may not have either the time or expertise to fully understand the source code

in the Linux kernel. She instead relies on the combined technical expertise of the development

community, and trusts them to be actively looking for, reporting, and fixing bugs.

2.1.3 Community as Root of Trust

Linus’ Law shows why open source software gains value and quality. For an open trusted

computing framework, it is envisioned thattrust, as Thompson intended it to mean [65], would

flow from the community that develops, examines, and vets the source code. This leverages the

many-eyes principal discussed above, but also gives another significant advantage to the closed

frameworks discussed in Chapter 3. If a user so chooses, they are able to move from relying on

many-eyes to relying on their eyes. A naive user however, requires a successfulopencommunity

to show that its interests are similarly aligned with their own. Such interests include developing

and assuring a trusted computing framework that operates without malice or deception towards

a user. Our inclusion of requirements 5—7 from Table 2.1 allows all groups and individuals

with an interest, to examine the framework. Examination by a group whose motivations a naive

user considers similar to her own allow her to avoid the infeasibility of examining the source

code herself. This is an examination by proxy.

The title of Raymond’s book,The Cathedral and the Bazaar[49], refers to two different

2.1 Open 13

models of open source development. Although it is common to attribute the cathedral to the

closed, proprietary development model and the bazaar to the open source model, both Ray-

mond’s analogies refer to open source development. In the cathedral model, source code is

available to the public only with official releases. Between releases, development goes on be-

hind closed doors with only an exclusive, and approved, set of developers being involved.

The bazaar model differs in that the project is developed in full view of the public. Anyone

is able to view and use the latest version of the source code, typically obtained over the Internet.

Motivated by Thompson [65], we aim to maximise the possibility of source code scrutiny, and

so require an open trusted computing framework to operate under the bazaar model of software

development.

Additionally we require that the development community be composed of many groups,

with diverse interests. They should also be security-conscious. Such a community is capable

of serving as trustworthy ‘other-eyes’ for examination by proxy for a wide range of groups and

users with differing security requirements.

For the naive user described above to be able to consider the open source development

community as a suitableroot of trust(see Section 1.3), that community, and the way in which it

interacts with the project’s code, must be defined. From the variables given in Table 2.2 on the

following page, and their effect on the development community and processes, we will derive

further requirements for our definitions of open.

There is no one open source development model. Each community comes with its own

variations. The exact development model used by an open source project varies along a number

of axes. A number of these are described by Gacek [27], and shown in an abbreviated form

in Table 2.2 on the next page. As discussed above, the development model and administration

processes can affect the security of the derived code in a number of subtle ways.

The starting point of the project is of concern to security if the community begins by adopt-

ing a code base used for another purpose. The security design of the adopted code must be

examined carefully. The motivations and interests of the community members directly affects

the security of the code. Lakhani and Wolf [33] say the following in regard to ascertaining the

motivations of OSS developers:

2.1 Open 14

Variable Characteristics

• Project starting points

• Motivation

• Size of community and code base

• Community

◦ Balance of centralisation and decentralisation

◦ How their meritocratic culture is implemented

◦ Whether contributers are co-located or geographically
distributed, and if so, to what degree

• Software development support

◦ Modularity of the code

◦ Visibility of the software architecture

◦ Documentation and testing

◦ Tool and operational support

• Process of accepting submissions

◦ Choice of work area

◦ Decision making process

◦ Information submission and dissemination process

• Licensing

Table 2.2: Variable characteristics of open source software development models, adapted from [27].

Another central issue in F/OSS [Free and Open Source Software] research has been

the motivations of developers to participate and contribute to the creation of a pub-

lic good. The effort expended is substantial. ... But there is no single dominant

explanation for an individual software developer’s decision to participate and con-

tribute in a F/OSS project. Instead we have observed an interplay between extrinsic

and intrinsic motivations: neither dominates or destroys the efficacy of the other.

It may be that the autonomy afforded project participants in the choice of projects

and roles one might play has “internalized” extrinsic motivations.

An associated requirement for a successful open trusted computing frame is that the com-

munity be of a sufficient size, and populated with a sufficient number of experts in the field.

Quantifying these numbers is non-trivial and depends highly on the project field in question. It

is currently an open problem in the field of open source software research.

Variable characteristics, pertaining to the community associated with an OSS project match-

2.1 Open 15

Role Title Explanation

Project Leader Person who initiated the project, and responsible for
vision and overall direction.

Core Member Responsible for guiding and coordinating develop-
ment. Involved for a relatively long time.

Active Developer Regularly contribute new features and fix bugs.

Peripheral Devel-
oper

Occasionally contribute new functionality or fea-
tures to the existing system.

Bug Fixer Fix bugs discovered either by themselves or reported
by other members.

Bug Reporter Discover and report bugs, but do not fix them them-
selves.

Readers Active users of the system, who invest time to un-
derstand its operation by reading source code.

Passive User Use the system in the same way they use closed
source systems.

Table 2.3: Categories of open source software project contributors, adapted from [74].

ing our definition of open, involving centralisation and geographical distribution (Table 2.2) do

not affect the security or trust in the derived code. The operation of the meritocratic culture

however, is important. An open community relies on the contributions of its members, and an

open trusted computing framework requires those members who are experts in the field to have

more control over the project than others. Ye and Kishida [74] place contributors to an open

source project into eight different categories, shown in Table 2.3. Not all eight types exist in all

open source communities, and there are differing percentages of each type in each community.

For example, they cite the Apache [1] community as consisting of 99% of passive users.

Figure 2.1, adapted from Ye and Kishida [74], shows the onion-like hierarchy of member

types, and their influences. According to Ye and Kishida, the ability for an individual to effect

change on the project decreases in relation to their distance from the centre.

...[a] role closer to the centre has a larger radius of influence... the activity of a

Project Leader affects more members than that of a Core Member, who in turn has a

larger influence than an Active Developer... Passive Users have the least influence...

Figure 2.1(a) shows the relationship diagram of a normalised open source community, where

2.1 Open 16

(a) Normalised group sizes.

(b) Adjusted group sizes for open trusted computing framework.

Figure 2.1: Hierarchical structure of relative group sizes in open source communities, adapted from [74].

ability to effect change in the project decreases proportionally from the middle. There may be

no open source project that actually fits this model of relative group sizes and influences, and it

is shown here only to contrast with Figure 2.1(b).

Figure 2.1(b) show relationships for an open trusted computing framework community. Mo-

tivated by the many-eyes factor resulting in increased trust in the source code (see above), an

increase is required in the roles and influences of bug reporters and readers. An individual

reader, with a prior reputation as an expert in the field she is commenting on, is of dispro-

2.1 Open 17

portionate importance to the project. Such comments and bug reports from experts with little

history inside the community should be given a disproportionate weighting in the project. This

structure increases the ability of the passive user group to rely on the community as the root of

trust described above.

Apart from the less formal description of a preferred community structure, there are also

more formal criteria for an open trusted computing framework, related specifically to charac-

teristics described by Gacek [27] (see Table 2.2 on page 14) as software development support

and the processes of accepting submissions.

Requirement 4 in Table 2.1, included in our definition of open, is also intended to indicate

the author of each piece of code in the framework. Anonymous check-ins of code are not

allowed. While readers and bug reporters may need to be anonymous, depending on their

circumstances, code must first be vetted, approved, and included in the code tree by identified

and traceable individuals. Code must not be modified without clear indication of the author of

the modification.

2.1.4 Operation of the Community

The project leaders and core members should be responsible for deciding when and how to

issue official releases of the code base. Requirement 3 of Table 2.1 specifically requires OSS

licenses to allow modification and distribution of software. Modification and distribution of

the trusted framework by individuals outside of the community may result in vulnerabilities or

bugs being introduced into the code. Additionally, use of such code may result in code with

known vulnerabilities and exploits remaining in use, weakening the assurances given by the

primitives described in Sections 2.3. An open framework that also specifies requirement 3 of

Table 2.1 allows for the possibility of a fork, or unofficial versions of the framework created, to

be distributed and used. To ensure the security and correctness of the framework, this should not

be allowed. The attestation primitive, discussed in Section 2.3.5, allows a challenger to verify

the state of a remote platform. Such verification could assure the challenger that the platform is

running a correct, official version of the framework. However, other security primitives operate

2.1 Open 18

only locally, and are not subject to external verification. The use of a modified framework could

result in those primitives being subverted by the user themselves, or by a third-party attacker.

These requirements result in the operation of our open framework community being dif-

ferent from traditional open source projects in a number of ways. The OSS philosophy that

motivates the ten licensing criteria of the OSI (see Table 2.1) is given on their web page [5].

When programmers can read, redistribute, and modify the source code for a piece of

software, the software evolves. People improve it, people adapt it, people fix bugs.

And this can happen at a speed that, if one is used to the slow pace of conventional

software development, seems astonishing.

This philosophy encourages the modification, derivation, and distribution of open source soft-

ware. The requirements for a root of trust to be formed from the community are in contrast to

this philosophy. Once the trusted computing framework features (see Section 2.3) have been

developed, the code base should remain static and resistant to change. Necessary changes to

fix bugs and vulnerabilities must, of course, be done. But, to borrow a phrase from software

engineering, afeature freezemust occur.

This allows naive or passive users to treat the static code base, and associated community,

as the root of trust. It is difficult to imagine passive users being willing to trust an always

moving code base. Additionally, from a purely technical standpoint, administering a constantly

changing code base, while still giving the required security assurances, would be non-trivial.

The number of different official versions in use must be kept minimal, as attestation useswhite-

lists of known code signatures. Attestation is discussed in Section 2.3.5 on page 42.

2.1.5 Comparison with Closed Development

The requirements of an open framework given here, are intended to satisfy the need for source

to be available, be developed by an open community with many interests and motivations, and

yet still act as the root of trust in a similar manner to closed, proprietary systems. A significant

criticism of OSS is that there is no one to apportion blame or liability for faults in the code.

One argument for proprietary, closed software is that the cost of the closed software includes

2.1 Open 19

the ability to acquire either support or financial recompense in case something goes wrong with

it. It is this corporate entity which acts as the root of trust for the product. For example, IBM’s

secure coprocessor, discussed in Section 3.6, was developed primarily for the banking industry.

IBM provides guarantees of the correctness of the manufacture and design of the device. But it

is IBM’s reputation, and its fiscal and legal responsibilities to its shareholders, that enable other

corporate entities (banks) to have IBM as the root of trust for the device.

A corporate entity has no avenue for recompense against an open source community follow-

ing some software failure. To date, however, little recompense has been obtained from major

software vendors for failures in their products. The license of one major software vendor ex-

plicitly states they are not liable for any costs incurred due to failings in their software. A legal

analysis of Microsoft’s End-User License Agreement (EULA) is outside the scope of this thesis.

It is interesting, however, to quote a relevant portion of their EULA for their Windows Server

2003, Enterprise Edition [41]:

15. DISCLAIMER OF WARRANTIES. ... Except for the Limited Warranty and to

the maximum extent permitted by applicable law, Microsoft and its suppliers pro-

vide the Software and support services (if any) AS IS AND WITH ALL FAULTS,

and hereby disclaim all other warranties and conditions, whether express, implied

or statutory, including, but not limited to, any (if any) implied warranties, duties

or conditions of merchantability, of fitness for a particular purpose, of reliability or

availability, of accuracy or completeness of responses, of results, of workmanlike

effort, of lack of viruses, and of lack of negligence, all with regard to the Software,

and the provision of or failure to provide support or other services, information,

software, and related content through the Software or otherwise arising out of the

use of the Software.

Landwehr [36] elaborates on the arguments about software:

It has a significant cost of design and implementation, yet very low cost of repli-

cation. Very minor changes in its physical realisation can cause major changes in

system behavior. Though a great deal of money is spent on it, it is rarely sold. Usu-

2.2 General Purpose 20

ally it is licensed, customarily under terms that relieve the producer from nearly all

responsibility for its correct functioning.

Depending on their situation, the fiscal and legal avenues for recompense provided by

closed, proprietary systems may not be of any use to the user. Users in different countries,

or with little financial resources, may be of little importance to a major software vendor unless

there is some other contractual obligation between the two parties.

The value of an open community-developed framework for a passive, or naive, user is de-

pendent on the similarity between their security requirements and those of the project leaders,

core members, and developers. They may find their requirements are closer to those involved

with an open framework than an alternative developed by a corporate entity. The security re-

quirements of those in charge of the closed framework for their framework, may not dominate

the development direction of that framework. Other considerations, such as a return on invest-

ment or possible liabilities, may be the motivating interests.

2.2 General Purpose

This section establishes some measures of functionality and usability that lead to a general

purpose computing platform.

A general purpose computer is formally understood to be one which is Turing-complete.

That is, it matches the definition of a universal Turing machine. This section discusses a less

formal, higher-level, interpretation of the phrase. When declaring a given trusted computing

framework to be general purpose, we are not making reference to its ability, or otherwise, to be

used as a universal Turing machine. All the trusted computing frameworks discussed in Chapter

3 are implemented on hardware machines, and in software languages, that are Turing-complete.

A trusted computing framework is itself considered to begeneral purposeif it does not re-

strict the general purpose usability and functionality of the computing platform and operating

system upon which it builds. As discussed in Section 1.3, trusted computing extends general

purpose hardware and software architectures to provide assured computation for chosen appli-

cations. General purpose computer architectures in use today give the user a considerable range

2.2 General Purpose 21

of functions and abilities with regards to administering their system, writing, compiling and dis-

tributing applications, and obtaining and executing arbitrary applications. It is measurements

of usability and functionality like this that a trusted computing framework, when added to a

platform that already enables such use, should not restrict in order to implement the security

primitives discussed in Section 2.3.

Garfinkel et al [28] give examples of general purpose computing platforms such as “work-

stations, mainframes, PDAs and PCs.” In contrast to this, they list “automated tellers, game

consoles, and satellite receivers” as examples ofsingle, or special purposecomputing devices.

Their simple taxonomy defines single purpose computing devices as platforms that are restricted

in their usage through a limited hardware or software interface. The internal architecture and

components of a single-purpose and general-purpose computing platform may not differ greatly.

It is the interface, and functionality, that each presents to a user that separates them.

One of the functionalities of a general-purpose computing platform is the ability of users

to write, compile, and run their own programs, listed in Table 2.3 as characteristic 1. Spinellis

[61] cites the Xbox console [15] as an example of a special-purpose computing device:

The Xbox... can be considered an instance of a special-purpose TC [Trusted Com-

puting] platform. Although based on commodity hardware, the Xbox is designed

in a way that allows only certified applications (games) to run...

The Xbox is not intended to allow a user to execute arbitrary code on it. Code must be inspected

and approved by Microsoft before it can be sold to end users, and there is no avenue for the free

distribution of programs to run legally on an Xbox. The inspection procedure can guarantee

a certain standard in the final product, but it means the code that executes on an Xbox is not

arbitrary. This restriction of arbitrary code is listed in Table 2.4, as required characteristic 2 of

a general purpose computing platform.

Characteristic 3 in Table 2.4 is best understood by considering the measures taken to con-

trol a corporate computing environment. The installation of software on desktops and servers

is under the control of an IT department. Users make specific requests to have software in-

stalled on their desktop. Additionally, versioning of a software application is tightly controlled.

2.2 General Purpose 22

Characteristics

1. Write, compile, and run own programs.

2. Execute arbitrary programs.

3. Control over software versioning.

Table 2.4: Capabilities of a general purpose computing platform.

Versioningis the process through which patches and updates are installed, over time incre-

mentally keeping a software application up to date. Strict control over the software installed

on a computing platform, and the ability to prevent the installation of malicious programs, or

programs considered insecure, allows the corporate desktop to be made considerably secure

without trusted computing primitives.

Software applications are typically upgraded through the release of patches and updates. A

general purpose computing platform allows the user to manage the installation of these releases.

A release denoted as apatchtypically implies it is concerned with fixing a security vulnerability

or bug. A release denoted as anupdatetypically implies the addition or upgrading of features

in the application. A general purpose computing platform allows the owner to apply patches

and updates at their discretion. Most patches and updates are in the user’s interests — they do

not remove some aspect of the application the user previously found useful, but supply instead

either improved security or usability.

The distinction between theownerand theuserof the platform is important. A corporate

desktop is owned by a different entity to its every day user. The interests of the user are only

considered in relation to the ability of the user to do what the owner of the platform requires.

For a home computer, the owner and the user are the same.

The requirements listed in Table 2.4 for a general purpose computing platform, enable wide

and varied usage of the platform by many different groups of users. Applications that were not

considered when the software and hardware platform was released can be developed, deployed,

and tested. Hardware peripherals can be added to extend functionality. Upgrades can be per-

formed to improve the performance, functionality, and usability of both software and hardware.

The security features provided by a trusted computing framework, discussed in Section 2.3,

are intended to be used to secure specific applications in a manner not possible without the

2.3 Components of a Trusted Computing Framework 23

framework. As discussed in Section 1.3, trusted computing primitives are intended to secure

certain applications where and when it is considered necessary, not improve the security of the

platform as a whole.

One measure we propose of the usefulness, or general purposefulness, of a trusted com-

puting framework is its ability to improve the security and assurance of specific applications

without reducing the general purpose platform upon which it runs to a special or single-purpose

one. A reduction in the general usability and functionality of a platform as a whole, to a level

that would allow applications to be secured and assured to comparable levels through that re-

duction alone, is not especially useful.

It should be noted that trusted computing primitives do preclude the functions of a general

purpose computing platform in order to provide assurances of confidentiality and integrity. For

example, the sealed storage primitive (Section 2.3.5 on page 42) is intended to enforce strict

limitations on programs that can be used to access specific data, and the attestation primitive

may be used by a remote challenger to prevent a user from accessing a service with an arbitrary

application. Reductions in functionality and usability required to assure confidentiality and

integrity, are not considered reductions of the general purposefulness or usability of a platform.

2.3 Components of a Trusted Computing Framework

As discussed in Section 1.3, trusted computing uses a hardware-based component to assure a

limited set of immutable functionality and a limited set of cryptographic secrets. These two

functions are used as leverage to provide a considerably larger set of security functions. The

four security primitives considered to make up a trusted computing framework are known as

attestation, curtained memory, sealed storage, andsecure I/O.

Attestation provides remote assurance of the state of the hardware and software stack run-

ning on a computer. Curtained memory provides memory separation of processes. Sealed stor-

age provides access controls to data based on the executing software stack. Secure I/O provides

assured input and output from the CPU to peripherals such as the keyboard or display.

Using a hardware device, embedded in the motherboard, to provide assurance is a relatively

2.3 Components of a Trusted Computing Framework 24

new approach to securing the personal computer. The motivation and reasoning for trusted com-

puting was discussed in Chapter 1, and will not be repeated here. The four trusted computing

primitives are not implementations of new concepts in computer security. They are generally

evolutions of previous security features found in previous operating systems.

The termtrusted computingused in this thesis is distinct to the termsecure computing

commonly used to describe development processes, standards, and verifications that must be

applied to arrive at a ‘secure’ system. The United States Government Department of Defence’s

Orange Book [16] specifies four different levels (D–A) of what it refers to as ‘trusted computer

systems.’ Common Criteria (CC) was introduced in 1999 to replace the ageing Orange Book

specification. It specifies seven different Evaluation Assurance Levels (EAL1–7) against which

products and systems can be tested.

The trusted computing primitives described in this section are not intended to meet any

of the CC or Orange Book standards for secure computing. Their use by an application or

system does not guarantee anything about the security of that application or system as a whole.

However, trusted computing primitives can be used as part of systems or applications intending

to be evaluated against CC.

For example, the attestation primitive of trusted computing allows a remote party to trust

some statement made by a platform about itself. This statement is limited in its nature —

“program A is (or programs A–D are) executing, under operating system X, and I am a device

Y with capabilities Z, here are my credentials W to prove what I say is true.”

The security of the entities named in the attestation statement is not assured in any way.

The development processes, methods, and verifications applied to those programs, operating

systems, and devices affect the security of those products, not the validity of the attestation

statement itself.

In computer security, the method of guaranteeing the security of a software component,

either through secure engineering practises using specific development methodologies through-

out the software life cycle or through formal verification of the final state, is an open problem.

Proving the correctness of code is non-trivial. Trusted computing does not attempt to assure the

securityof arbitrary code or a system. It only assures the correctness of certain functionality,

2.3 Components of a Trusted Computing Framework 25

and the validity of the contents of a limited statement made about a platform.

To the best of our knowledge, the primitives provided by a trusted computing framework

have not been comprehensively formalised to date. This thesis makes the first steps toward an

adequate formalisation of trusted computing. A fully developed and fully-argued formalisation

is beyond the scope of this thesis. The definitions given here should be considered first drafts

of further formalisations.

Section 2.3.1 will briefly introduce the system model used in this thesis. Section 2.3.2

introduces the concept of code identity. Sections 2.3.3, 2.3.4, 2.3.5, and 2.3.6 each introduce a

trusted computing primitive, and place it in a historical context. Motivations for the primitive

will be given, as well as some examples of the types of application-layer features that could

be built with it. Classes of attacks possible against each primitive will also be discussed. Each

primitive will be formally defined, and these formal definitions will be used to validate trusted

computing frameworks discussed in Chapters 3 and 5.

2.3.1 Machine Model

A common model used for the discussion and development of computer security is theaccess

control model[34]. Figure 2.2 shows the components of the access control model. Explanations

for each of the components is given by Lampson et al [35], and reproduced below.

• Principals— sources for requests.

• Request— attempt to perform an operation with or on a resource.

• Reference Monitor— a guard for each object that examines each request for the object

and decides whether to grant it.

• Objects— resources such as files, devices, or processes.

In a trusted computing framework, objects typically take the form of cryptographic keys

to which the principal is requesting some form of access. This access could either require the

disclosure of the key, or the decryption of some cipher text by the monitor on its behalf. The

specific entities in the model will be described on a case by case basis throughout this thesis.

2.3 Components of a Trusted Computing Framework 26

Principal -&%
'$

-Request Guard - Resource

Figure 2.2: Components of the access control model, adapted from [35, 34].

A trusted computing framework operates both on the level of a single machine, and in a

distributed environment. The threat model a trusted computing framework is designed to resist

is discussed in Section 1.2. Trusted computing functions occur either on a single machine, or

between two machines across some network. England and Peinado [26] give a usable definition

of acomputing device:

...the computing device is a programmable, state-based computer with a central

processing unit (CPU) and memory. The memory is used to store state information

(data) and transition rules (programs). The CPU executes instructions stored at a

memory location, which is identified by an internal register (instruction pointer IP).

In addition to this definition, our computer device has a network interface through which it

is able to communicate with other computing devices. The network channel itself is untrusted.

Data that is not otherwise protected before it is transmitted, is able to be viewed or modified by

attackers.

As discussed in Section 1.3, trusted computing builds its trust from the immutability prop-

erty of some hardware-based device. This formation of trust leads us to consider the layers

which make up a computing device, and build a model to introduce trusted computing with.

England and Peinado [26] outline their model, and an adapted version is reproduced in Figure

2.3. The immutable hardware device is shown at layerl0, the operating system kernel at layer

l1, and applications at layerl2. Layer l0 acts as a guard to some resource — a cryptographic

function or secret. Layerl1 acts as a principal to layerl0, and as a guard to layerl2. Layer l2

acts as a principal to layerl1. As in the access control model outlined above, a principal at layer

l i initiates requests to a guard at layerl i−1. This guard/principal relation continues until layer

l0, where the resource resides, and the request is serviced.

2.3 Components of a Trusted Computing Framework 27

Principal Guard

isolation

request

response

service
interface

Principal Guard Resource

Layer 2

Applications

Layer 1
Operating
System

Layer 0

Hardware

Figure 2.3: A layered computing system showing hardware, firmware, and software, adapted from [26]

The interaction between principals in differing layers is not restricted to the request and

response access control model, discussed above. The relative layers in which two principals

are executing also indicate their relative privileges. A principalP executing in a layerl i has

the ability to affect a principalQ in a layerl j , wherei < j, without requiringQ to initiate a

request. Specifically, our system model requires an operating systemP, executing in layerl1 to

have specific functions it can perform on a principalQ executing in layerl2. An OSP must be

able tocreate Q, by loading code from the file system into memory, marking it executable, and

initiating its execution on the CPU. Once started, an OSP canview the state ofQ throughout

its execution, to ensure it operates correctly. It is also tomodify that state arbitrarily, perhaps

halting the execution ofQ if it behaves maliciously or in a manner contrary to some system

policy. An applicationQ is also capable of beingsignalled, in a well-defined manner, byP.

This can informQ of some important state-change in the system, or pass a message toQ from

the user, or another application.

In our system model, such actions may occur from the point of view ofQ, arbitrarily — that

is withoutQ initiating a request. Additionally, two principalsP andQ, both executing in layer

l i , are able to communicate through some mechanism set up or managed by a principalR in a

layer l j , where j = i−1. This can be viewed, in our access control model, as a request fromP

in l2 to access a resource provided byQ, also in layerl2. The guard in this case isR in layer l1.

2.3 Components of a Trusted Computing Framework 28

2.3.2 Code Identity

Code identity is a pivotal concept in distributed computer systems. This is especially true from

trusted computing frameworks. It is introduced here, before discussion of any specific trusted

computing primitive, because it is relevant to all of them.

England et al [25] give a brief introduction to code identity when discussing Microsoft’s

Next-Generation Secure Computing Base. However, their introduction is not only relevant to

Microsoft’s product. Informally, they state that a code identity (code ID) is a “cryptographic

digest or “hash” of the program executable code” [25, p 56]. England et al succinctly outline

the motivation for a securely derived identity for program code [26]:

If the operating system can guarantee file-system integrity, it can simply assume

that the program “is who it says it is.” However, in distributed systems or platforms

that let mutually distrustful operating systems run, establishing a cryptographic

identity for programs is necessary.

It is obvious that when used in a distributed system to make access control decisions, the

code ID must be derived in exactly the same manner on all computing devices in the system.

Additionally, there must be some way to prove to the remote platform that this is occurring.

This leads us to definition 2.1 of code identity.

Definition 2.1. A trusted computing frameworkτ has a correctcode identitymechanism if it

derives identical cryptographic digestsID(P) for a programP on all computing platformsρ

running the frameworkτ, and no other distinct programQ hasID(Q) = ID(P) on any otherρ′.

Under definition 2.1, the use ofID(P) to identify the functionality ofP is only reasonable

if P is not dependent on functionality provided by code not measured inID(P). This functional

dependence is precisely the case whenP makes use of shared, or dynamically-linked, libraries.

Shared libraries are not distributed withP, and are usually managed and updated by an entity

other than the author ofP. If the shared libraries called by an application are included in its code

identity, updates to one shared library will change the code identities of all the applications that

call it.

2.3 Components of a Trusted Computing Framework 29

If the code identity ofP does not include all the libraries thatP calls, then the code IDID(P)

is not a meaningful statement about the functionality ofP. A third party cannot use this code

identity to make decisions that depend on the identity and functionality ofP. An identity ID(P)

fixed only toP does not indicate changes in functionality caused by updated shared libraries.

Generating a meaningful statementID(P) about the functionality ofP, whenP has a func-

tional dependence on shared libraries or other code outside the code base ofP, is an open

problem in trusted computing frameworks. Various trusted computing frameworks attempt to

solve the problem in different ways. These solutions are discussed in Sections 3.2.4, 3.3.3, and

3.7.3.

2.3.3 Sealed Storage

Sealed storageallows applications to persist data securely between executions, making use of

traditional untrusted long term storage medium like hard drives, flash memory, or optical disks.

Data is encrypted with some symmetric encryption algorithm before storing. The particular

encryption scheme used depends on the implementation. Strong cryptography assures the con-

fidentiality and integrity of data when stored on an insecure medium. The symmetric key used

to encrypt and decrypt the plain and cipher text is derived from the code ID of the application

requesting the cryptographic operation.

Sealed storage, also known assecure storage, is an evolution of traditional file system access

control mechanisms. When implemented in a trusted computing framework, sealed storage

allows an application to encrypt some secret of arbitrary size, and be assured only it will be

able to decrypt it. To provide this assurance, the key that is used to encrypt the data cannot be

specified or obtained by the application.

Early access control mechanism, such as those found in Unix-style operating systems, based

decisions for allowing or restricting access to files solely on ownership and identity parameters.

Which accountowneda file was stored in a data structure associated with the file. Additional

access control information specified the possible access permissions (read, write, or execute)

pertaining to the owner of the file, users in the same group as the file, as well as all other users

2.3 Components of a Trusted Computing Framework 30

Principal -&%
'$

-Request Guard - Resource

Netscape (Joe) read OS /home/joe/bookmark.html

Figure 2.4: Access control model showing attempt to read a file from the file system with Unix-style access control
mechanisms.

in the system. If an account was named as the owner of a file, that was given full control over

the file. Full control includes the ability to specify another user account as the owner of the file,

as well as change the specific access permissions associated with the file.

Each running process in the operating system runs with theidentity of a user account on

the system. User accounts are maintained by the system administrator, and most programs take

the identity of the user that started the application. The system requires a user to authenticate

herself to the system, establishing their user account name in the process.

When a user, or program running with that user’s identity, attempts to read, write, or execute

a specific file, the operating system makes an access decision based on the permissions stored

with the file. This process is shown in terms of the access control model in Figure 2.4. Here, the

web browser Netscape, running with Joe’s privileges, is attempting to read thebookmark.html

file from his home directory. This is a typical access request. Although not shown here, the

access permissions set would be examined by the operating system. If Joe, as the owner of

the file, had given himselfread permission, the operating system would allow the request to

continue.

This model shows the identity of the logged-in user, Joe, and the set of permissions on

the relevant file being used as parameters to the access control decision. Programs that are

intended to run without user interaction, or be accessed remotely over a network, can be run

under their own user account. These programs, often network daemons, are started by the root

(superuser) account, and set to execute under their own specific user account. This user account

is deliberately configured to adhere to the principle of least privilege. In practise, this means

that the user account is configured to allow the minimum access for the program to function as

required.

2.3 Components of a Trusted Computing Framework 31

Principal -&%
'$

-Request Guard - Resource

Netscape seal OS kernel hardware device

Figure 2.5: Access control model showing Netscape requesting some arbitrary data to be sealed.

An example of this configuration involves running the Unix e-mail daemon Sendmail [10]

under asendmail user account. This program has had a long history of security exploits which

give a remote user shell-access to the server with the privileges of the user account Sendmail

was running under. When run under its own user account, a successful attack against Sendmail

by a remote attacker gives only a minimum privilege account. If thesendmail user account

is configured correctly, the attacker is severely restricted in their ability to further compromise

the system. If Sendmail had been run under the account it was started by (typically root), the

attacker would have complete access to, and control over, the compromised system.

This technique conflates the two parameters of the traditional access control decision, ac-

count identity and file permission, into one logical parameter — the identity of the program

itself. The sealed store primitive continues this trend, by binding access control decisions to the

code ID of the application in question, without checking the identity of the user.

In the majority of trusted computing implementations, the sealed store function is carried

out by some trusted entity at a lower layer in the system hierarchy. As explained in Section 1.3,

trusted computing relies on the immutability property of some hardware device to be implicitly

trusted by higher layers. From an application’s perspective at layerl2, the sealed store function

is carried out by some lower layer,l i<2. This layer simply passes on the request until it reaches

layerl0. In practise, the hardware device does not often contain all the required functionality for

the primitive to be usable, and so all layers below the application work in conjunction to provide

the required functionality. An equivalent effect can be also be shown to be obtained through

different methods, as discussed in Sections 3.7 on page 92 and 3.4.1 on page 82. These methods

do not directly map to the access control model, and operate without requiring a request to be

issued to a lower layer.

An application makes use of the sealed storage primitive by making aseal call, passing

2.3 Components of a Trusted Computing Framework 32

one or two parameters. If the calling principal ofseal, Ps, specifies only one parameter, the

data to be sealedd; the lower layer generates the code identity ofPs, ID(Ps), and uses it as the

second parameter, referred to as the intended unsealing principal,Pu. The first case is a special

subset of the second. It is equivalent toPs calling seal and passingd, generatingID(Ps), and

including it as the second parameter. The second parameter is used to authenticate the caller of

theunseal operation.

Theseal function returns the datad symmetrically encrypted, denoted asc. An example

is seen in Figure 2.5. Here Netscape, at layerl2, initiates a request to some lower layerl i<2,

passing in password data,p (plain text), as a parameter to be sealed securely. Some lower layer

l i , depending on implementation, generates the code ID of Netscape and uses it asPu. It should

be noted that the guard in the model does not authenticate or authorise the requesting principal.

Any principalP is able to call theseal function and logically the code ID,ID(Pu), is used to

generate the encryption key, ensuring that onlyP is able to decrypt the resulting cipher textc.

Layer l0 usesID(Pu) of the intended unsealing application, to generate the symmetric key

it will encrypt the passed datad with. Sealed storage assures the decryption ofc will only

occur on the same platform it was encrypted. The sealing platform is denoted asρs and the

unsealing platform denoted asρu . To this end, a device-unique property is used to generate the

symmetric key used to encryptd. As discussed in Section 1.3, the hardware device at layerl0

of the specific trusted computing framework contains a number of keys. These keys are never

allowed to leave layerl0. One of these is a device-unique symmetric keyKs. The keyKs and

ID(P) are concatenated together (‖) to form a key of the form{Ks‖ID(P)}, denoted asKs‖ID(P).

This key is constructed to be unique to both the specific platform and application. It is used to

encryptd. This encryption,EKs‖ID(P)(d), results in a cipher textc. This cipher textc is returned

in response to the initial request from the principal, Netscape, at layerl2. Netscape then stores

c using the traditional insecure file system provided by the operating system.

In the example above, Netscape does not specify an intended unsealing application, and so

its own code ID is used asID(Pu). Netscape could equally have specified another intended

unsealing application, by passing its code ID asID(Pu). Netscape obtains this code ID through

some traditional means of inter-process communication (IPC) — either a shared directory, or

2.3 Components of a Trusted Computing Framework 33

through a socket. It should be noted that there needs to be no pre-existing trust relationship

between Netscape and any application it intends to be able to unseald.

Theunseal function takes only one parameter — the datac to be unsealed. A principalP at

layerl2 initiates a request, passingc to some lower layerl i<2, depending on the implementation.

Layer l0 generatesID(P) and uses it asID(Pu), along with the platforms symmetric keyKs, as

when sealing data. The generated key, of the form{Ks‖ID(Pu)}, denoted asKs‖ID(P), is used to

decryptc. DKs‖ID(P)(c) givesd, which is returned to the calling principalP.

We have identified six cases for the operation ofunseal.

1. The datad is returned; or

2. the decryptionD(c) fails, becausec has been modified; or

3. the decryptionD(c) fails, because the calling principal ofunseal, Pu identified byID(Pu),

is not the same as the identified unsealing application specified by the calling principal of

seal; or

4. the decryptionD(c) fails, because the device-unique property used to derive the symmet-

ric key is different; or

5. datad′ is returned, because the underlying cryptographic algorithms failed to operate as

expected; or

6. if c has been deleted.

The occurrence of case 1 implies a number of things. The first is thatc was sealed on the

platform ρs and unsealed onρu, and thats = u. The second is thatID(P) of the unsealing

principal equalsID(Pu) specified as the identity of the intended unsealing application.

The occurrences of cases 2, 3, and 4 are assumed to be caused by the underlying crypto-

graphic algorithms operating as expected. The decryptionD(c) should fail when the key used

is not the same as used inE(d) that givesc. Case 2 implies thatc has been tampered with

while stored on persistent storage medium. Case 3 implies that the unsealing application is not

intended to unsealc. Case 4 implies thatρs 6= ρu.

2.3 Components of a Trusted Computing Framework 34

Seal Unseal

P1 P2

Seal(d2, ID(P2))Seal(d1)

c1 c2 c1 c2

P1 P3

ρi ρ j

d1 d2

Figure 2.6: Operation of sealed store command, resultant sealed text and respective unseal command.

Case 5 occurs when a modifiedc′ decrypts tod′, through the failure of the underlying

cryptography to detect a change in the integrity ofd. It also occurs whenID(P) of the unsealing

principal does not equalIDu, and this decryption yields ac′ that is not detected as incorrect.

Case 6 is listed here for completeness;D(c) will not so much fail as never begin. Cases

2 and 6 are the result of storingc on an untrusted medium. The sealed data is intended to be

stored on a storage medium not under the control of either the sealing application or a trusted

operating system enforcing policy restrictions set by the sealing application. Providing a secure

trusted storage medium is expensive, as discussed in 1.3, but results in fewer failing cases for

D(c). A motivation for the design of the sealed storage primitive is to give no guarantee of

data availability, and strong guarantees of confidentiality and integrity, at a greatly reduced cost

compared with giving a strong guarantee of data availability.

Figure 2.6, adapted from [25], gives a graphical illustration of the seal and unseal primitives,

and illustrates their typical uses. Below, we analyse this figure in terms of the six cases we

identified above. PrincipalP1 is shown, callingseal twice, both times on platformρi . The first

call specifies only one parameter, the data to be encryptedd1, resulting inc1. The second call

specifies two parameters. The first is the data to be encryptedd2, and the second is the code

ID ID(P2) of the principal intended to unseald2. Theunseal call is shown six times, called

by each principalP1,P2,P3 on each sealed data blobc1,c2. PrincipalsP1 andP2 call unseal on

2.3 Components of a Trusted Computing Framework 35

ρi , and principalP3 calls unseal onρ j . Additionally, ID(P1) = ID(P3). The unseal call byP1

passingc1 as the parameter results inD(c1) completing successfully, andd1 being returned to

P1. The unseal call byP1 passingc2 results inD(c2) failing. This failure is an example of case

3. PrincipalP2, calling unseal onc1, results in a failure due to case 3, also. When principal

P2 calls unseal onc2 however,D(c2) succeeds becauseP1 specified the code ID ofP2 (ID(P2))

when calling seal onc2. Both calls byP3 result in a failure ofc1 andc2. These failures are

examples of case 4.

Figure 2.6 shows that cases 1, 3, and 4 are the commonly-occurring cases, assuming thatc

is not deleted or modified. The modification or deletion ofc occurs due to an attack or hardware

failure. If c has been modified, allunseal operations in Figure 2.6 will fail due to case 2, and

if c has been deleted, will fail due to case 6. The occurrence of case 5 implies a weakness being

found in standard cryptographic theory.

Due to the lack of secure, persistent storage mechanisms, a number of attacks are possible

under the threat model outlined in Section 1.2. The first of these is a denial of service attack

(DoS), resulting in a failure due to case 1 or 4 occurring. An application relying on sealed

storage to persist long-lived application state from execution to execution cannot rely on that

state to be available when it next executes. A malicious operating system, application or user

can delete or corrupt a sealed secret thereby forcing an application to return to its null, or initial,

state on each execution.

A more subtle attack, taking advantage of the same vulnerabilities that lead to the above DoS

attack, is known as areplay attack. To describe a replay attack, the notationcT is introduced.

HereT indicates a point in time, or an execution in an ordering of executions ofP, that result in

c being unsealed atP’s initialisation, modified during execution, then sealed whenP exits.

In a replay attack, an attacker replaces a sealed storecn, with a copyci , wherei < n, obtained

from a previous execution cycle of the application. If the application relies on the sealed store

c to save its state from execution to execution, that application will in effectreplaysome earlier

behaviour executed when it first saw the state contained inc. A malicious attacker can perform

a replay attack for a range of reasons.

One possible reason is that the attacker wishes to haveP perform some action a number

2.3 Components of a Trusted Computing Framework 36

of times, which would result in a violation of a security policy ofP. Alternatively, they may

wish to obtain information, random bits of which are being leaked during each successive ex-

ecution. Further more, they may wish to replay a certain execution that is dependent on some

external factor they are not able to directly influence. This may involve some communication

via network to a third party server, which is only rarely in the required or appropriate state.

Sealed storage enables restricted access to data to a selected set of applications. In the

normal case, the selected set will have only one member — the application which created the

data. But the additional case allows for interaction between and amongst sets of programs. In

this case, an applicationPi can generate and seal some data, and specify at the same time some

other applicationPj to be the only application which is able to unseal the data. At a later point,

applicationPj can unseal that same data, perform some other computation upon it, and then

seal the data again, nominating some third applicationPk as the application able to unseal the

resultant data.

As long as no malicious attacker intervenes, and modifies or replaces the sealed data be-

tweenPi and Pj or Pj and Pk, the resultant data can be assured to have passed through the

nominated applications in the prescribed order. This method of strictly ordering computations

can be seen in strongly typed systems, and is explained further in Section 3.4.1 on page 82. It

is one example of an assured application made possible by sealed storage.

Following on from the discussion of sealed storage above, Definition 2.2 is given below.

This definition highlights the aspects of sealed storage discussed above. It states that an appli-

cationP, in layer l i , on platformρ is only assured that sealed datad will remain confidential

and unmodified until it is unsealed, not that it will be available toP at later execution. This

is due to the failure cases outlined above. It only assuresP that d is unmodified by, and kept

confidential from, all other principals in layersl i , wherei = j, on ρ. Specifically, it is not kept

confidential from the principalQ in layer l i−1 on ρ that performs the seal and unseal functions

for P. The principalQ may or may not execute in layerl0. It is however kept confidential from

all principals in all layers not onρ.

Definition 2.2. A trusted computing frameworkτ providessealed storageif an application

P in layer l i with code ID ID(P) on a computing deviceρ implementingτ is assured of the

2.3 Components of a Trusted Computing Framework 37

confidentiality and integrity of datad, when sealed, from all other applications withID(P′) 6=

ID(P) in layerl j for all j ≥ i onρ, and all applications on all devicesρ′, unlessID(P) = ID(Pu),

whereID(Pu) is the intended unsealer specified byP, andρ = ρ′.

The implementation of sealed storage may involveP interacting directly with the sealing

resource in layerl0. However, if principalQ in layerl1 provides access to the resource inl0 to P

in l2, Q can viewd before it is encrypted and after it is decrypted. In addition,Q may be able to

arbitrarily unseald by generatingID(Pu), if known toQ, withoutPu issuing an unseal request.

Correctly assuringP of the correct behaviour of anyQ used to implement sealed storage on

τ, if Q is not in l0, is an open problem in trusted computing frameworks.

2.3.4 Curtained Memory

Curtained memoryprovides, possibly hardware-enforced, assured memory space separation

between processes. Curtained memory is also calledcurtained executionor strong process

isolation. In this thesis, it will be known as curtained memory. It prevents processes from

reading or modifying another process’ memory space. Additional to this, it prevents a process

from learning of another process’ existence on the computing device.

In the 1950s, computer programs were typically batch-processed one after another. They

were queued up by a system administrator, and then executed and left to run unattended. Pro-

grams ran until they generated an error, or until they completed. This meant that an executing

program had exclusive access to all the resources of the computer it was running on. More

pointedly, it meant that the entire address space of the computer was available for use by the

executing program. There was no resource contention for memory, and programs were written

to address memory directly.

This method of sharing a computer was not a particularly efficient use of the limited comput-

ing resources available, especially for users of the computer. Multi-tasking operating systems

were developed to allow more than one program to run concurrently; programs were swapped

out when they made a request to some peripheral, and a waiting program was swapped in and

began executing. This meant the processor was not left idle, waiting for a slow peripheral to

2.3 Components of a Trusted Computing Framework 38

return some data. This also mean that an executing program was forced to share resources on

the computer. A program was no longer able to address the entire memory range directly, as

memory was now shared between executing programs.

This forced operating systems to take a more active role in memory management, especially

enforcing some form of memory protection. Memory protection prevented programs from ac-

cessing memory addresses outside of their allocated range. If a program tried to access such

an address, an exception would occur and the operating system would deal with the program,

typically by stopping any further execution.

Multi-tasking (multiple programs) and multi-tasking (multiple users) operating systems

were primarily advances in software. Hardware advances lead to virtual memory addresses,

allowing the operating system to virtualise a programs address space, possibly allocating that

program more RAM than the computer had. Slower storage, such as a hard drive, was used to

store pages of memory when they weren’t being accessed. A program’s memory space was now

managed completely by the operating system, considered to be executing with a higher privi-

lege level. This resulted in significant usability and efficiency gains for programmers and users.

Users were able to run programs that required more memory than was physically available on

their machine, and programmers could leave memory management up to the operating system.

Operating system (privileged, or layerl1) memory management code and virtualised mem-

ory went some way to keeping (unprivileged, or layerl2) programs from accidentally or mali-

ciously overwriting the memory of other programs. However, for an attacker it was trivial to

write code that could be run with the same privilege level as the operating system kernel. On

x86 architectures, device driver code, installed by the system administrator, is able to view and

modify the entire memory space of the computing device, including virtual memory address

ranges. Hardware architectures designed to run Unix variants fared better, as processes were

able to mark pages of their address space as read, write, or execute only at the hardware level.

As a result of architectural changes since programs ran exclusively on a computer, an ap-

plication’s address space could no longer be trusted to remain confidential to, or unmodified

by, other processes. With an untrusted operating system at layerl1, an individual application

at layerl2 can be given no guarantee that its memory address space will not be read from or

2.3 Components of a Trusted Computing Framework 39

written to by code, either deliberately or accidentally, executing at either levell1 or l2. Despite

these vulnerabilities, most applications are written on the presumption that their memory range

will remain unmodified by another process, during its execution.

One noteworthy application that does not trust its memory space to remain unmodified dur-

ing execution is the Google search engine. As is commonly known, Google pioneered the use

of low-cost, low-quality components to build their massively parallel and distributed search en-

gine. Instead of low-count, high-cost mainframes responding to a user’s query, Google employ

highly fault-tolerant software running on high-count, low-quality commodity-component com-

puters prone to failure [45]. Multiple levels of redundancy ensure that if a computer fails while

processing a query, that query is also being processed on another computer, which is able to

step in and finish the transaction seamlessly.

In addition to using low quality CPUs, hard drives, and mother boards, Google also sources

below-retail grade memory. This memory has failed manufacturer’s tests and been declared

unfit for sale at regular prices. Given the low quality of the memory, data read from an address

x cannot be relied upon to be equal to what was last written to addressx. Google has extended

the memory I/O routines in their custom operating system. Memory operations involve the

of use error-correcting codes to perform highly expensive checksum operations to verify all

memory reads and writes at the operating system level.

Google is obviously an extreme edge-case of memory usage. However, the steps taken to

verify data stored temporarily in volatile memory can be seen as equivalent to those required to

protect a user-level application’s address space from accidental modification by poorly written

device driver code. Such driver code could be expected to write seemingly at random into a

user-level application’s address space. Google’s error-detection motivated checksumming of

memory I/O would not resist an intelligent attacker attempting to modify the memory space of

an application. For a considerable increase in computational cost, the naive checksum could be

replaced with a cryptographically secure hash verifying the integrity of data stored to volatile

memory. Such a scheme would, of course, require a location in memory hidden from the attack

in which to store the key that generates the hash.

Most applications written today do not perform any extra memory verification or protection

2.3 Components of a Trusted Computing Framework 40

Principal -&%
'$

-Request Guard - Resource

P in layer l2 read/writea Layer l i<2 RAM

Figure 2.7: Access control model showing a layer l2 principal issuing a read or write volatile memory request to
an address µi .

than what is provided by the operating system and hardware. As mentioned above, for assured

computation on multi-tasking and time-sharing computing devices, this is not good enough.

Trusted computing aims to provide higher levels of assurance than the weak protection currently

available in desktop personal computers.

Curtained memory is intended to keep the address space of a program executing at level

l2 protected from viewing and modification from all other untrusted processes on the machine.

This includes kernel level code at levell1, made up of (badly written) device drivers, as well

as code maliciously inserted to attack user-level programs. As discussed in Section 1.2, trusted

computing treats the user or owner of the machine as a malicious attacker. In line with this

reasoning, curtained memory does not allow the local user or administrator to view or modify

the address space of any application running behind the so calledcurtain.

Figure 2.7 shows the access control model introduced in Section 2.3.1 showing a program

P accessing (read or write) memory at addressµi . The guard here is any lower layerl i<2. The

request can be approved or denied by any principal in any lower layer in the computing device,

depending upon the implementation ofτ. However, for a givenτ, every request by all principals

in layer l i must be serviced by the same principal in layerl j , where j < i.

Each programP executes in an associated memory address range, denotedµ0...n. A specific

memory address is denotedµi . This memory space contains, to keep our model simple, both

code (instructions) and data. Instructions and static data is stored in the rangeµ0... j−1, and stack

and heap data in the rangeµj...k. As mentioned in Section 2.3.1, a principal at layerl j runs with

higher privileges than a principal at layerl i , where j > i. As with most hierarchical operating

system security models, a higher privilege implies the ability to signal, create, modify, and view

processes with a lower privilege.

2.3 Components of a Trusted Computing Framework 41

Definition 2.3 of curtained memory suffices under the assumption that no principal in layer

l j , where j < i, is incorrect or acts maliciously. This assumption leads to the current model of

memory protection, outlined above. To provide curtained memory, a principal in layerl i must

have no principals considered untrusted, in a layer with higher privilege (l j<i) — remembering

that layerl0 is axiomatically trusted by all principals in a layerl i , where 0< i.

Definition 2.3. A trusted computing frameworkτ providescurtained memoryif there exists

a memory rangeµ0...n, associated with an applicationP in layer l i , unaddressable to all other

applicationsP′ in layer l j for all j ≥ i.

A principal P in layer l1 is able to view or modify the memory rangeµ0...n of any principal

in layerl i , i > 1. In order to assure the confidentiality and integrity of the memory of a principal

in layer l i , i = 2, the axiomatic trust in layerl0 must be extended from layerl0 to layer l i−1.

This extension of trust must encompass all principal-guards servicing memory access requests

for principals in each layer froml0 to l i (l1 only in our model). Once trust has been extended

from l0 to a principalQ in l1 in some manner, principalQ’s memory range must share the same

attributes as principalP’s, as given by Definition 2.3, so thatQ is not subverted by a malicious

principal in the same layerl1.

This observation leads to the conclusion thatstrongcurtained memory, where Definition

2.3 holds true for each pair of principalsP and P′ from the set of all principals in a layer

l i , is difficult to achieve. Aweakcurtained memory definition, Definition 2.4, is easier to

implement. Conceptually, it partitions the entire memory range of a computing device into

two, one side of which iscurtained from the other side. An applicationP’s memory range

behind the curtain is unaddressable to all applicationsP′ not behind the curtain, regardless of

their respective levels. However,P′’s memory range is addressable by some principalP behind

curtain, allowing communication between the two partitions.

Definition 2.4. A trusted computing frameworkτ provides weakcurtained memoryif there

exists a memory rangeµ0...k, associated with a set of applicationsP0...n in levelsl i , ..., l j , where

0 < i ≤ j, that to all principals not in the setP0...n is unaddressable.

Curtained memory prevents applications that are running ‘uncurtained’ from knowing of

2.3 Components of a Trusted Computing Framework 42

the curtained memory range. With strong curtained memory, programs behind the curtain are

also curtained from each other. Weak curtained memory merely provides a single contiguous

curtained address range, in which all curtained principals execute.

2.3.5 Attestation

Attestationenables a computing device to export a data structure verifying its identity and local

state. This data structure, known as anattestation vector(AV), enables achallengerto perform

remote verification of the device’s state. This allows arbitrary computation, performed remotely

on an otherwise untrusted device, to be trusted as though done locally. Of the three primary

trusted computing primitives, attestation is the most significant, and most novel.

Early computers were typically shared amongst many users, connected to a single computer

via a dumb terminal or similar. Programs and data that users relied upon typically resided on

the same machine that a user logged in to, even if the user was not located at the console of

the machine. A user, making use of applications and data residing in layerl2, relied on the

administrator of the system, located in layerl1, to ensure the integrity of their workspace (see

Section 1.2 for discussion of user classes).

An application, locally stored, could be trusted to remain unmodified as long as the proper

access controls were set, and enforced correctly by the operating system. Users at layerl2

were not intended to be able to make changes that would affect system integrity, and system

administrators at layerl1 were not considered to be malicious. The security boundary in this

environment was limited to the one computer that all users logged in to.

Computing environments moved from this monolithic, single machine environment to a

client/server architecture. Users had computers on their desktops for personal use. Depending

on specific application characteristics, user data and applications could reside on the local ma-

chine, or the user would run a client application, consuming data and services provided by a

server on the network. Users worked in layerl2, and typically had no levell1 access to their

machine. All machines on the network were under the control of an administrator at levell1.

Operating systems capable of providing this form of computing environment were necessarily

2.3 Components of a Trusted Computing Framework 43

network-aware. The security boundary extended to cover the entirety of all the machines under

the administrator of a single entity.

During the 1990s, the Internet increased the levels of communication between what were

previously autonomous networks under different administrators. Corporations and individuals

began to rely on applications and data provided by entities on different networks, all outside the

security boundary from within which they traditionally used to work.

Attestation grew out of a desire to assure the executing image and environment of an ap-

plication located on a remote host. Specifically, so that these assurances could be given for

computing devices outside the security boundaries noted above. More formally, a single ad-

ministrative principalP at layerl1 in a set of computing devices{ρ0...n} implies the security

boundary covers all applications{Q0...n} in layerl2 on all devices{ρ0...n}. This security bound-

ary typically results in an implicit trust relationship existing between all applications in the set

{Q}.

There is no single administrative entityP at layerl1 over the disparate computing devices

in the ‘network of networks’ that users now interact with. Attestation attempts to provide a

similar extension of security boundaries that a single administrative entity at layerl1 provides,

by providing a single administrative entity at levell0.

Attestation can also be considered an evolution in integrity-checking in client-server soft-

ware architectures. Cryptographically signed Java applets, in conjunction with some public

key infrastructure (PKI), allow end users to verify the integrity and manufacturer of a Java ap-

plication. In this technique, an applet distributor cryptographically signs the Java Application

Runtime (JAR) file. The distributor uses the private key of an asymmetric key pair, the pub-

lic part of which is distributed through some PKI. The resulting certificate is distributed with

the applet, and can be used by the client to verify that the JAR has not been corrupted, either

maliciously or during network transmission.

The guarantee of integrity provided by this mechanism is only available to the client. The

trust relationship goes only one way. Should the applet perform some computation, acting as

a client, and send the results back to the applet distributor server, the results are unable to be

verified. The applet can be modified in some way before it is executed, so as to affect the results

2.3 Components of a Trusted Computing Framework 44

of the computation in some way. Alternatively, the applet could not be executed at all, and

fabricated results returned. To use traditional client-server architecture parlance, the server is

unable to rely upon any computation, performed by the applet at the client, to be performed

correctly. Other methods of assuring the results of a remote computation are discussed briefly

in Section 3.4.

From the motivations for the development of an attestation procedure outlined above, it

can be seen that attestation vector must be capable of withstanding attacks from users at both

levels l1 and l2 on a computing deviceρ. The local administrator must not be able to modify

the attestation procedure, or vector, in any way. The affect of this on a trusted computing

framework’s threat model is discussed in Section 1.2.

The attestation vector must contain sufficient information to allow a computing platformρi

to be assured that a platformρ j is also running a validτ. This assurance allowsρ j to trust that

the attestation vector was generated correctly, and accurately reflects the state ofρ. It prevents

a deviceρ′, not running the frameworkτ, from fabricating a valid attestation vector.

The attestation vector is required to travel over an untrusted network fromρi to ρ j . The

integrity of the AV must therefore be guaranteed by the attestation procedure itself; the primitive

cannot rely on a secure transport layer provided by a principal in any layerl i , wherei > 0.

Attestation is intended to assure a remote platformρi of the relevant state ofρ j , in order

to assure the correctness of the computation of a principalP on ρ j . The relevant stateof ρ j

that can affect the computation ofP depends on the implementation of the frameworkτ. For

example, in a traditional personal computer architecture, a principalP in layerl2 can be affected

by all principals in layerl1. For an arbitrary operating system, this includes all executable code

loaded intol1, as well as configuration files, from the point in time when execution was passed

from the BIOS in layerl0 to software in layerl1 to when the attestation vector is created.

The function which derives the attestation vector must be immutable, and located in level

l0. It may be thatl0 is not properly able to identify all principalsQ1...n in layersl i>1 capable of

affectingP, and include their identitiesID(Q j). To increase the functionality of the attestation

function in layerl0, a principalR in layerl1 can be used to find allQ1...n. If the attestation vector

from ρi includesID(R), ρ j can includeRas a parameter in its decision to trust the computation

2.3 Components of a Trusted Computing Framework 45

performed byP.

Recall that an Attestation Vector (AV) is a statement about the present state of a platform

ρ and a principalP. The information contained in the vector may not allow a remote party

to infer the state ofρ and P for any point after the generation of the AV. In the traditional

computer architecture mentioned above, an administrative user in layerl2 can make arbitrary

changes to principals in layersl1 and l2 at any point after an attestation vector is generated,

either by elevating an applicationP in layer l2 to layer l1, or introducing a new application

directly into layerl1. The computation that a remote party is interested in can be delayed by the

administrative user until they are able to compromise it.

Attacks based on this vulnerability are classed as Time Of Check to Time Of Use (TOC-

TOU) attacks. The mitigation of these sorts of attacks is an open problem in trusted computing

frameworks. Various implementations, and the manner in which they approach TOCTOU at-

tacks, are discussed in Chapter 3.

Table 2.5 proposes some attributes, derived from the discussion above, which we would

require of an attestation procedure in order for it to assure a remote party of the state of a

platform. The proposals are split into two categories — those of the attestation procedure or

protocol, itself, including the generation of the attestation vector, and those of the generated

attestation vector.

Requirement 1 comes from the trusted computing thread model discussed in Section 1.2.

Requirement 2 prevents the AV from being modified undetected when being transmitted across

an untrusted network. Requirement 3 prevents the disclosure of sensitive information, such as

executing programs, disclosed in the attestation vector, discussed below. This is typically im-

plemented through encryption of the AV betweenρ and the challenger. Requirement 4 requires

the attestation vector to protect against replay attacks, in which an attestation vector is reused

by an attacker to fool a challenger. Requirement 5 indicates that the attestation protocol should

make some attempt to reduce the vulnerability of the generated vector to TOCTOU attacks.

Requirement 6 assures a remote party that the generation of the AV was performed as spec-

ified by the trusted computing frameworkτ, and thatτ is executing in layerl0. This implies that

ρ is under the control, in some sense, ofτ, and not being emulated. Emulation by an attacker

2.3 Components of a Trusted Computing Framework 46

Requirements of attestation protocol

1. Withstand software attacks from all levelsl i , wherei > 0.

2. Ensure the integrity of the Attestation Vector (AV) when transmitted
from layerl0 on ρi , to the challenger onρ j .

3. Ensure the confidentiality of the AV when transmitted over an un-
trusted network betweenρ′ andρ.

4. Ensure freshness of the attestation vector.

5 Mitigate Time of Check to Time of Use class attacks.

Requirements of attestation vector

6. Assure the challenger thatρ is runningτ in layer l0.

7. Attest to all state onρ j capable of affecting the computation of the
principalP being attested.

8. Attest to all principals used to derive the AV in layersl i>0.

9. Mitigate losses of privacy.

Table 2.5: Proposed requirements of trusted computing attestation protocol, as well as contents of attestation
vector.

would allow the correct operation ofτ to be subverted. Requirement 7 states that the AV should

identify all principals capable of affecting the state ofP. Requirement 8 states that any principal

used by layerl0 to obtain the code identities in the AV, should also be included in the AV. This

formalises protection against an attacker subverting a trusted kernel in layerl1 used to generate

code identities for the attestation procedure. Requirement 9 points out that an attestation vector

that includes all principalsQ1...n on ρ, when attesting the state ofP, may result in privacy con-

cerns, allowing a challenger to see all applications executing onρ. These privacy concerns are

further discussed below.

Definition 2.5 formally specifies the requirements of an attestation procedure discussed

above.

Definition 2.5. A frameworkτ providesattestationif it can transmit anattestation vectorfor

an applicationP from layerl0 on deviceρi to layerl0 on deviceρ j , ensuring the AV’s confiden-

tiality and integrity, that

• assuresρ j runningτ thatρi is also runningτ; and

2.3 Components of a Trusted Computing Framework 47

• includes the identitiesID(Qi) of all principalsQ1...n able to affect the state ofP (dependent

on τ); and

• includes the identitiesID(Ri) of all principalsR1...n used byl0 to obtainID(Q1...n) (if

any); and

• includes the identitiesID(Ri) of all principalsR1...n used byl0 to obtainID(P) (if any);

and

• includes the identityID(P) of P.

The nature of the information contained in an attestation vector raises a number of privacy

issues. An AV is required to include all principals capable of affecting the state ofP, to enable

the challenger to make a decision about trustingP. Attesting to all principals onρ results in a

significant loss of privacy for a user onρ. Mitigating this loss of privacy, yet still generating a

meaningful attestation vector, is an open problem in trusted computing frameworks.

In addition to mitigating the loss of privacy ofρ to the challenger described above, the

contents of an attestation vector should be confidential to those two parties. This allows the

attesterρi to be assured their platform state is being revealed only to the challenger.

The cryptographic keys located in layerl0 uniquely identity that platform. These invariant

keys pose a privacy issue similar to the per-processor serial number included in Intel’s Pentium

III CPUs [30]. The actual threats to privacy caused by the processor serial number were dis-

counted by some commentators [59] because the serial number was never linked to the identity

of a platform, nor intended to be used to strongly identify a platform. In contrast, the unique

keys embedded in a layerl0 device are intended to identity that platform, to assure challengers it

is a validτ. Those keys can be linked to an individual when they sign an AV sent to a challenger

that collects personal information with the assured computation.

Anonymous attestation, where an attestation vector assures a challenger thatrhoi is running

a valid implementation ofτ without revealing any information distinguishingρi from ρk, also

running a validτ, is non-trivial to implement. An implementation has been developed [21]

which allowsdirect anonymous attestation between two parties. Alternatively, a platformρ can

2.3 Components of a Trusted Computing Framework 48

have a third party, trusted by them and the challenger, to verifyτ on ρ and generate anidentity.

This identity is signed by the Trusted Third Party (TTP), and certifies that the identity belongs

to a validτ. A platform ρ can use the obtained identity to prove the validity of an attestation

vector.

2.3.6 Secure I/O

Secure I/O allows applications to assure the end-points of input and output operations. This

allows a program to be assured output intended for a specific peripheral, such as a printer or a

video display, is actually consumed by that device. It also allows a principal to be assured that

data received from a device, such as a keyboard or a mouse, is generated by that device.

Secure I/O is intended to assure the confidentiality and integrity of I/O between an appli-

cation and any peripherals it communicates with. In addition, secure I/O also identifies two

end-points of the communication. A user can be assured that their interaction with an applica-

tion P is not intercepted by another applicationQ, nor thatQ can spoof input from a user, so as

to appear toP that it was typed on the keyboard.

Cryptographically assuring input and output from an application to a peripheral has not

evolved from any comparable feature in present operating systems. Plug and Play (PnP,[7]) as-

sists with the automatic configuration of peripherals when they are attached to a computer, most

typically in Microsoft Windows. A platform and device-independent group also develops spec-

ifications for seamlessly identifying and configuring devices (Universal Plug and Play, [13]).

This plug and play technology can be seen to have led to secure I/O only in that it uniquely

identifies peripherals.

Identifying the privileges a user has when interacting with the system currently occurs in

Unix-style operation systems. When a user is logged in as the root, or super user, the command-

line interface typically indicates a change in privilege level through a change in the user inter-

face. The standard command line prompt is indicated by a$ symbol, whereas interaction as

the root user is indicated by#. Although not resistant to spoofing, this change in interface is

intended to inform the user they are interacting with a specific part of the system.

2.3 Components of a Trusted Computing Framework 49

Definition 2.6. A trusted computing frameworkτ implementssecure I/Oif an applicationP

can be assured that some specific

• input is obtained from a specific peripheral; or

• output is received by a specific peripheral.

Definition 2.6 gives a definition of secure I/O. A trusted computing framework may not im-

plement secure I/O for all peripherals. Typically it is provided to assure input, in the form of

passwords or mouse movements, is from the user and has not been spoofed by another appli-

cation. This allows, for example, electronic banking applications to be assured that a user is

present and is initiating a transaction.

Who would not rather trust and be deceived?

Eliza Cook

3
Survey of Trusted Computing

Frameworks

50

3.1 Introduction 51

3.1 Introduction

This chapter surveys the field of trusted computing frameworks, including industry implemen-

tations and academic research projects. Chapter 4 discusses aspects of the framework imple-

mentations, and compares them against the requirements proposed in Chapter 2.

The Trusted Computing Group’s Trusted Platform Module is discussed in Section 3.2. This

specification deals with a layerl0 entity exclusively. Software implementations in layersl1 and

l2 are introduced. Section 3.3 discusses Microsoft’s Next-Generation Secure Computing Base,

built upon the layerl0 TPM device. NGSCB specifies extra modifications to layerl0, as well

as a software kernel executing in layerl1 providing services to specially written secure appli-

cations in layerl2. Some relevant implementations providing assured computation in software

are discussed in Section 3.4.Sections 3.5, 3.6, and 3.7 discuss trusted computing frameworks

that do not build upon the Trusted Platform Module, but which are based upon other immutable

hardware devices.

3.2 Trusted Computing Group’s Trusted Platform Module

The Trusted Computing Group (TCG) [12], previously known as the Trusted Computing Plat-

form Alliance (TCPA), is an industry group made up of over 90 members with interests in com-

puter security. The seven major members are AMD, Hewlett-Packard, IBM, Intel, Microsoft,

Sony, and Sun Microsystems. The TCG describe [70] their purpose and role as:

... to develop, define, and promote open, vendor-neutral industry specifications for

trusted computing. These include hardware building block and software interface

specifications across multiple platforms and operating environments.

They have published the lengthy Trusted Platform Module (TPM) Specification version 1.2

[72, 68, 69], three documents that together run for over six hundred pages. Working from this

specification, selected TCG members have developed their own chips. Intel has developed what

they refer to asLaGrandetechnology. AMD calls their own development Secure Execution

Mode (SEM) [62]. IBM’s own TCG specification-compatible chips are called Embedded Se-

3.2 Trusted Computing Group’s Trusted Platform Module 52

Capabilities

Asymmetric key generation

Asymmetric encryption and decryption

Hashing

Random number generation

Table 3.1: Specified capabilities of the cryptographic coprocessor in a Trusted Platform Module, as specified by
the Trusted Computing Group in [72].

curity Subsystem (ESS). IBM have been shipping these ESS chips in some desktop and laptop

computers since 2002 [51].

An in-depth discussion of the TPM 1.2 specification document is outside the scope of this

thesis. However, as mentioned the TPM chip specification is used as the base of Microsoft’s

NGSCB (3.3) trusted computing framework. IBM’s own TPM chip is also used as the basis

of their Global Security Analysis Lab’s (GSAL) research and analysis of the specification and

its capabilities, as well as other researcher’s attempts to develop practical trusted computing

frameworks. This section will first discuss the TCG’s technical specification for the Trusted

Platform Module v1.2, limited to layerl0. Layer l1 andl2 functions, implemented in software,

developed by IBM’s GSAL and other researchers will then be discussed.

3.2.1 Concepts

Safford describes the TPM chip as having three primary functions [50]. Listed below, item 1

refers to both asymmetric and symmetric encryption routines. Item 2 allows the TPM to attest

to a specific software state. Item 3 refers to features that allow the chip to be ’owned’ by an

entity, not necessarily the primary user of that specific TPM.

1. Cryptographic functions

2. Trusted boot functions

3. Initialisation and management functions

Cryptographic functions are enabled by three algorithms that each TPM must support: RSA,

SHA-1 and HMAC [72]. The cryptographic processor inside the TPM must be able to perform

3.2 Trusted Computing Group’s Trusted Platform Module 53

the operations listed in Table 2.4. Symmetric encryption is only is only used within the TPM

itself. Specifically, the specification states the TPM is not allow to “expose any symmetric

algorithm functions to general users of the TPM” [72, p.12]. The specification also stipulates

a lower bound on key strength. Storage and Attestation Identity Keys (AIK), explained below,

must both be at least as strong as 2048 bit RSA keys. The hashing function, implemented

with SHA-1, serves to generate platform integrity measurements, which are stored in Platform

Configuration Registers (PCR). PCRs are used by the Trusted Platform Module to securely

store, record, and report the state of the platform itself. Each TPM must provide at least 16

PCRs.

When the system is booted, each PCR is zeroed. Before the CPU begins the execution of

some piece of software or firmware, the code is firstmeasuredby the Core Root of Trust for

Measurement (CRTM), and the results are stored in one of the PCR registers. Measurement is

the term used by the TCG to describe the generated of the code IDID(P) for an application

P, as described in Section 2.3.2 on page 28. This measurement procedure is defined below.

The first code to execute on a TPM device, the BIOS, is assumed to reliably measure itself.

Pashalidis and Mitchell [47] give a succinct description of the process used to measure and

record a platform’s state, adapted below. We define the notationM[x](P) as the steps listed

below, wherex specifies the appropriate PCR.

1. Software or firmware code,P, about to be executed is hashed giving a digest SHA-1(P).

2. A specific PCR is selected, and its existing value concatenated with the calculated digest

giving {SHA-1(P)‖PCR[x]}.

3. The concatenated string is hashed again, and stored in the specific PCR register, giving

PCR[x] = SHA-1({SHA-1(P)‖PCR[x]}).

4. The Stored Measurement Log (SML) is updated with an entry containing the identity of

P, and the PCR register used in step 3.

Step 3 in the above is referred to asextendinga PCR digest. This process of extending a

PCR digest has a number of important properties. The first is its ability to record an arbitrary

3.2 Trusted Computing Group’s Trusted Platform Module 54

number of program measurements in a limited amount of secure storage space. An alternative

method, storing all individual measurements ofP separately and securely, results in expensive

space requirements. Using the Stored Measurement Log, it is possible to obtain any earlier

PCR value by simply repeating all the measurements that occur before it in the SML. The only

constraint is that all values ofP must still be available to the TPM. The PCR values are stored

inside the TPM, and only modifiable in two ways. The first is when the platform is reset, or

turned on, resulting in all PCR registers being zeroed. The second is through the use of the

measure command, defined above.

Additionally, the non-commutative nature of the extend operation, step 3 in the definition

of M[x](P) above, captures the changing state of a computing platform. The execution of a

programP followed by the execution of a programQ does not result in the same state as the

execution ofQ followed byP. Equation (3.1) shows this important property.

M[i](A then B) 6= M[i](B then A) (3.1)

This measurement procedure is used by the TPM in its implementation of attestation. The

first few steps of booting a TPM-enabled device are described by Marchesini et al. [39] below:

During boot time, the BIOS measures itself and reports that to the TPM ... The

BIOS feeds the Master Boot Record (MBR) to the TPM to hash before passing

control to it. Subsequent software components are expected to hash their successors

before loading them, and the hashes are stored in PCRs.

As mentioned above, the BIOS is assumed to measure itself, and then the MBR, before

passing execution to the MBR. The Root of Trust for Measurement is one of three roots of trust

in the TPM. A function or entity considered to be a root of trust in the TCG specification is one

which is “trusted to function correctly without external oversight” [71]. The TCG intend for

trust in the correct operation of these entities to be generated by the design and implementation

procedures, as well as by inspection. The specification states [71, p.6]:

Trusting “roots of trust” may be achieved through a variety of ways but is antici-

pated to include technical evaluation by competent experts.

3.2 Trusted Computing Group’s Trusted Platform Module 55

The other two roots of trust in the TPM are the Root of Trust for Storage (RTS) and the Root

of Trust for Reporting (RTR). The RTM is the procedure outlined above, and is implemented

through a number of TPM commands, shown in Table 3.2. The RTS is a logical entity capable

of maintaining values generated by the RTM for as long as necessary. In the TPM, the PCR

registers fill this role. The TCG specify that only four commands are able to alter the value of

the PCR registers.

TPMExtend Used to extend a PCR value with a 160 bit field not calculated by the TPM itself.

TPMSHA1CompleteExtend Used to extend a PCR value with a SHA-1 digest calculated

by the TPM.

TPMStartup When called with aclearflag, resets all PCR registers to default (zeroed) state.

TPMPCRReset Resets specified PCRs to default (zeroed) state, if they are marked as ‘reset-

table.’ PCR registers reserved for system use (0–7) are marked as not resettable.

These four commands prevent an attacker from resetting specific PCR registers, or from

‘rolling back’ a PCR to an earlier value. The platform must be rebooted, thereby resetting all

data measured and stored in the PCR registers themselves, to reset the PCR registers.

The RTR is a mechanism for correctly exporting the values held in the RTS to interested

parties. In the TPM, this function is implemented through commands:TPM PCRRead and

TPM Quote. These commands are used to implement the attestation primitive, discussed be-

low.

The TCG specification uses a concept oftransport sessionsto ensure the confidentiality and

integrity of communication between a calling principalP and the TPM chip inside the TCB [72,

p.71]:

Session establishment creates a shared secret ... [and uses the] shared secret to

authorize and protect commands sent to the TPM using the session.

The exact implementation of the session encryption layer is outside the scope of this thesis.

Two protocols are specified: Keyed-Hashed for Message Authentication (HMAC) [32] and a

3.2 Trusted Computing Group’s Trusted Platform Module 56

Command Explanation

TPM SHA1Start Prepares TPM for subsequentUpdateor Completecom-
mands. Initialises a thread in the TPM to calculate a
SHA-1 digest.

TPM SHA1Update Adds an integral number of 64 byte blocks to the current
SHA-1 digest being calculated.

TPM SHA1Complete Adds a partiali < 64 or completei = 64 byte block to
the current SHA-1 digest. Finishes the calculation, and
returns the completed SHA-1 hash.

TPM SHA1CompleteExtend Adds a partiali < 64 or completei = 64 byte block to the
current SHA-1 digest. Finishes the calculation, extends a
specified PCR register, and returns the extended value.

TPM Extend Extends the specified PCR register with an arbitrary 160
bit value.

TPM PCRRead Returns the 160 bit value of 1 specified PCR.

TPM Quote Returns the 160 bit value of 1 or more specified PCRs, a
nonce value (arbitrary 160 bit field) specified as a param-
eter, all signed with a specified key.

TPM PCRReset Resets all specified PCRs, if all those PCRs are able to be
reset.

TPM Init Command sent by hardware platform to inform TPM that
platform is starting the boot process. Unable to be issued
via software, and must occur only during platform power
up.

TPM Startup Preceded byInit command above, and called with one of
three flags to indicate to the TPM its initial state: clear,
save or deactivate.

TPM ExecuteTransport Delivers a wrapped TPM command, ensuring its confi-
dentiality and integrity, from a caller to the TPM, which
unwraps and executes it.

TPM ReleaseTransportSigned Completes a transport session. If logging is enabled for
the session, the log is returned. If logging is not, an error
is returned.

TPM Seal Seals data so that the returned blob can only be unsealed
when PCR registers are in the state specified.

TPM Unseal Unseals a blob. Unsealing will only succeed if the PCR
registers match those specified by the seal command that
generated the blob.

TPM CreateWrapKey Creates a secure storage bundle for asymmetric keys. The
newly created key can be locked to a specific PCR value
by specifying a set of PCR registers.

Table 3.2: Commands present in the Trusted Computing Group’s Trusted Platform Module v1.2 specification [69].

3.2 Trusted Computing Group’s Trusted Platform Module 57

Mask Generation Function (MGF1) [31, §10.2]. Together they are intended to authenticate

commands and parameters, and prevent replay and man-in-the-middle attacks. They are not

intended to provide long-term confidentiality guarantees for authentication data made up of

passwords or other low-entropy data [72, p.48].

The session is managed and enforced by the TCG Software Stack (TSS). The TSS is in-

tended to alleviate interface shortcomings of the TPM that arise due to its limited resources.

The TSS is responsible for resource management of the TPM, ensuring synchronised access

and proving a single entry point for applications to use the TPM. In regards to session manage-

ment, it is specifically required to [72, p.89]:

...ensure that only commands using the session reach the TPM. ...the TSS should

control access to the TPM and prevent any other uses of the TPM.

Session management, done by the TSS, occurs outside the TPM. The TSS is considered un-

trusted, just like the operating system and applications on the platform [67, p.14].

In the TCG architecture, the boundary around the TPM is the TCB [Trusted Com-

puting Base]. All components outside the TPM (i.e., the TCB) are untrusted such

as the TSS, OS, and applications.

The TCG specification places a number of restrictions on session management. The TPM is

able to support only one session at a time. Any command, other thanTPM ExecuteTransport

or TPM ReleaseTransportSigned (see Table 3.2), being issued when a session exists results

in that session being invalidated.

3.2.2 Code Identity

TheTPM SHA1* group of commands are used to generate a SHA-1 digest of arbitrary data. The

TPM SHA1CompleteExtend command allows the resulting digest to be used to extend a specific

PCR value, without requiring the computed digest to leave the TPM. It should be noted that

the TPM command specification does not enable a SHA-1 digest to be computed and used to

extend a PCR atomically. To compute a SHA-1 digest of data over 64 bytes in length, at leastn

commands must be issued.

3.2 Trusted Computing Group’s Trusted Platform Module 58

1st TPM SHA1Start

2 ... (n−1)th TPM SHA1Update

nth TPM SHA1CompleteExtend

The TPM SHA1Start command returns a value specifying the maximum number of bytes

that can be specified in aTPM SHA1Update command. The maximum size of the update com-

mand is limited to 232 bytes, by the use of a 32 bit field to specify the size of the command. No

available information specifies the maximum number of bytes that can, in practise, be processed

by aTPM SHA1Update command.

To briefly summarise, the SHA-1 digest generated by the TPM is used as the code identity

(Section 2.3.2) of an application. The SHA-1 algorithm is considered to meet Definition 2.1 on

page 28 for a code identity function. Specifically, that there is no collision for any two distinct

programsP andQ. Additionally, the mechanism used to generate the digest onρ is contained

within the TPM and trusted implicitly by all other platformsρ′.

3.2.3 Sealed Storage

Another of the cryptographic capabilities of the TPM is protected storage. This is implemented

through two TPM commands, listed in Table 3.2 on page 56,TPM Seal and TPM Unseal.

Marchesini et al. [39] describe the sealing and unsealing process from a programmer’s point

of view:

...one can ask the TPM to seal data, and specify a subset of PCRs and target values.

The TPM returns an encrypted blob (with an internal hash, for integrity checking).

One can also give an encrypted blob to the TPM, and ask it to unseal it. The TPM

will release the data only if the PCRs specified at sealing now have the same values

they had when the object was sealed (and if the blob passes its integrity check).

The TPM device itself makes use of both asymmetric and symmetric encryption routines

whensealingdata. A set of PCR digest values, the PCR register indexes they are found in,

and the symmetric keyKs used to encrypt the data, are asymmetrically encrypted with a key

3.2 Trusted Computing Group’s Trusted Platform Module 59

Kpub. The set of PCR digest values are 160 bit SHA-1 digests. The set of them is denoted by

PCR{X}, whereX is a set of 2-tuples(i,v), in which i specifies a PCR index from 0–15, andv

is the SHA-1 digest.

It is important to note that the “data” referred to by Marchesini et al. is restricted in size to

a few kilobytes. An applicationP is intended to use the seal primitive to store a cryptographic

key. An applicationP must use this key to ensure the confidentiality and integrity of data by

encrypting and decrypting it outside the TPM.

Equation (3.2) shows the encryption performed by theTPM Seal command, resulting in an

encrypted blobβ. Equation (3.3) shows the decryption performed by theTPM Unseal command

on the resultantβ.

Here, the notationE(k,d) indicates the encryption ofd, limited in size to a few kilobytes,

with the keyk. When called, it returns the cipher text ofd. Similarly, the notationD(k,d)

indicates the decryption ofd with the keyk. The encryption and decryption method is dependent

upon the key type ofk.

E
(

Kpub,
{
{X} ‖Ks

})
= β (3.2)

D
(

Kprv,β
)

=
{

PCR{X} ‖Ks

}
(3.3)

The keyKprv is the decrypting key of the asymmetric encrypting keyKprv selected in the

seal command. The set of register indexes and values specified by theTPM Seal command are

not the set of values in the PCR registers when the command is called. They are intended to

be specified separately so that a future configuration, when unsealing the returned blobβ is

intended, can be specified.

When theTPM Unseal call succeeds, the unencrypted data is returned to the caller. Addi-

tionally, the call returns the full set of PCR register values at the time theTPM Seal was called.

The TCG specification explains the motivation for this [69, p.44].

...suppose an OS [Operating System] contains an encrypted database of users al-

lowed to log on to the platform. The OS uses a sealed blob to store the encryption

3.2 Trusted Computing Group’s Trusted Platform Module 60

Index Usage

0 CRTM, BIOS and platform extensions, limited to executable code only.

1 Motherboard configuration including hardware components and their configuration.

2 Optional ROM executable code contained on executable peripherals.

3 Option ROM configuration and data that may influence ROM execution.

4 Initial Program Loader (IPL) code, usually the Master Boot Record (MBR).

5 IPL code configuration and data that may influence MBR execution, such as config-
uration data selecting the partition to be booted.

6 Power events such as sleep and wake cycles.

7 Reserved for future usage.

Table 3.3: Defined Platform Configuration Register Usage for 32 bit PC architecture, adapted from [66].

key for the user-database. However, the nature of seal is that any software stack can

seal a blob for any other software stack. Hence the OS can be attacked by a sec-

ond OS replacing both the sealed-blob encryption key, and the user database itself,

allowing untrusted parties access to the services of the OS. To thwart such attacks,

sealed blobs include the past software configuration.

For the OS to properly trust the contents of a decrypted blob, it must verify the state, as

defined in PCR registers, of the platform when it was encrypted. That state must be known and

trusted by the OS. The PC Specific Specification v1.1 [66] discusses implementation specific

details for the 32 bit PC architecture. It specifies the usage of the 8 PCR registers that are

reserved for the system. These are shown in Table 3.3. This set of PCR registers identifies all

code in layerl0, as well as the initial portions of the operating system code loaded into layerl1.

When a principalP callsTPM Seal they may, in addition to the parameters described above,

be required to specify a 20 byte (160 bit SHA-1 digest) authorisation code. This authorisation

code proves to the TPM that the caller is authorised to use the symmetric keyKs, used to encrypt

the blob, seen in Equation (3.2). An authorisation code is first established for the TPM owner

during anownership-initiationphase. This ownership-initiation procedure is discussed in more

detail below, in regards to the TCG’s specification for secure I/O.

The ownership-initiation phase establishes a shared secret between the TPM and theTPM

Owner. This shared secret takes the form of a SHA-1 160 bit digest, typically obtained by

3.2 Trusted Computing Group’s Trusted Platform Module 61

hashing a password obtained from the user. Once a TPM Owner has been established, they are

able to create the Storage Root Key (SRK). This is a type of storage key, shown in Table 3.4.

There is only one SRK key in the TPM, and it is used to encrypt other keys outside the TPM,

enabling vastly increased storage space for keys, yet ensuring their confidentiality and integrity

[71, p.17]. The SRK is considered part of the Root of Trust for Storage (RTS) and is assured to

be unable to be removed from the TPM.

In addition to creating the SRK, the TPM owner can create other storage keys. These keys

can be created with an associated authorisation code, requiring a pass phrase from the user to

be used. Alternatively, they can be associated with a set of PCR registers, limiting their use to

a specific platform configuration. It is this authorisation code that, if set when the asymmetric

key pairKprv,pub (Equation (3.3)) is created, must be specified by the caller ofTPM Seal and

TPM Unseal. The symmetric key used to encrypt the data is generated by the Random Number

Generator (RNG) inside the TPM, and is stored only inside the returned blobβ.

Creating a storage key, and associating it with a set of PCR values, including those in Ta-

ble 3.3, as well as PCR values indicating the identity of the calling principalP, satisfies the

definition of sealed storage given in Section 2.3.3 on page 29. The use of the SRK, tied to the

platform on which it was created, prevents a sealed blobβ, sealed on a platformρ from being

unsealed on any other platformρ′. The TCG specify a command,TPM CreateWrapKey, for this

specific task. Marchesini et al. [40] describe the command:

[The commandTPM CreateWrapKey makes it] possible to create keys which are

bound to a specific machine configuration ... This alleviates the need to create a

key and then seal it, allowing both events to be performed by one atomic operation.

3.2.4 Attestation

The other keys listed in Table 3.4 are used by the TPM to implement the attestation primitive

described in Section 2.3.5 on page 42. They work in conjunction with thecredentialslisted

in Table 3.5 to prove that the attestation vector (AV) is from a platformρ with a valid TPM

implementation.

3.2 Trusted Computing Group’s Trusted Platform Module 62

Key Usage

Signing keys Asymmetric, general purpose. Used to sign application data and
messages.

Storage keys Asymmetric, general purpose. Used to encrypt data or other keys.

Identity keys Asymmetric, non-general purpose. Used to sign data exclusively
generated by the TPM (e.g. PCR values).

Endorsement Key (EK) Asymmetric, single key, with public (PUBEK) and private
(PRVEK) components. Used to establish platform ownership and
when generating Attestation Identity Keys (AIK). Inserted by plat-
form manufacturer.

Bind keys Asymmetric, used to encrypt small amounts of data for transfer-
ence between TPM platforms.

Legacy keys Asymmetric, general purpose. Generated outside TPM and im-
ported in, to be used for signing and encryption.

Authentication keys Symmetric, used to protect transport sessions.

Table 3.4: Key types and uses in the Trusted Computing Group’s Trusted Platform Specification v1.2 [71].

Credential Usage

Endorsement credential Issued by the manufacturer inserting the EK, inserted into
the TPM by the manufacturer before shipping. Signed by
theTPM Manufacturer.

Conformance credential Issued by an entity with sufficient expertise to verify the
correctness of the TPM and the platform, either the manu-
facturer, vendor, or third party. Signed by aConformance
Entity.

Platform credential Identifies platform manufacturer and capabilities. Refer-
ences the endorsement credential and any conformance cre-
dentials. Signed by thePlatform Manufacturer.

Validation credential Issued by an entity with sufficient expertise to take and at-
test to measurement values that validate the correct oper-
ation of certain devices which may pose a security threat,
such as disk storage or video adaptors. A validation is per-
formed in a clean-room environment, and a measurement is
produced for comparison with measurements taken during
normal use. Intended to detect tampering of hardware and
firmware. Signed by aValidation Entity.

Attestation Identity credential Identifies the AIK private key used to sign PCR values. Con-
tains the AIK public key. A Trusted Third Party (TTP) is-
sues an AIK in return for proof that the AIK is owned by a
TPM with valid Endorsement, Platform, and Conformance
credentials. Signed by aTrusted Third Party.

Table 3.5: Credentials supplied with a Trusted Platform Module, as specified by the Trusted Computing Group [71].

3.2 Trusted Computing Group’s Trusted Platform Module 63

During the manufacturing process, the Endorsement Key (EK) (Table 3.4) is generated and

inserted into the TPM. A TPM can only have one EK inserted over its life time. Subsequent

attempts to insert another EK will fail. The EK is a 2048 bit RSA key, with public (PUBEK)

and private (PRIVEK) parts. The Endorsement Credential (Table 3.5) includes PUBEK. This

has the effect of certifying the corresponding PRIVEK as belonging to a valid TPM platform.

If the PRIVEK can be removed from the TPM, it can be used to impersonate a TPM device,

thereby invalidating all assurances of security.

The EK is unique to each TPM, and is considered to bepersonally identifiable information

[72, p.25]. While the PUBEK key alone does not contain personal information, it does uniquely

identify the TPM platform. These unique invariant keys inside the TPM pose a privacy issue as

described in Section 2.3.5.

The TCG specify the creation of an Attestation Identity Key (AIK), certified by a TTP (Table

3.5) to provide a layer of indirection and reduce the risk of loss of privacy. A TPM can generate

any number of AIKs. This allows a TPM user to present a different identity to all services that

require them. An AIK is a symmetric key used exclusively for signing purposes, the private

component of which never leaves the TPM. Initialising an AIK involves 5 steps, discussed by

Pashalidis and Mitchell [47] and Marchesini et al. [40].

1. The TPM Owner callsTPM MakeIdentity. This generates a new asymmetric key pair

AIKpub,prv, and anidentity-binding. This structure contains the public key of the key pair,

an arbitrary text namet, and the public key of the TTP which will be used to generate the

AIK TTPpub. The final structure is:

{
AIKpub‖t‖TTPpub

}

2. The TPM packages the identity-binding described above, along with the Endorsement

CredE, PlatformCredP, and ConformanceCredC credentials (Table 3.5) into a structure,

encrypted with the TTP’s public key.

E
(

TTPpub,
{

AIKpub‖t‖TTPpub

∥∥∥CredE‖CredP‖CredC}
)

= β

3.2 Trusted Computing Group’s Trusted Platform Module 64

3. The above structure is sent to the TTP, which decrypts and examines it. The TTP verifies

the signatures of the issuing authorities of the supplied credentials. If satisfied the TPM is

genuine, the TTP generates the Identity credential. The Identity credential, signed by the

TTP, binds the public key of the key pair generated in step 1 to the arbitrary text name,

along with a statement about the capabilities of the platform, obtained from the Platform

and Conformance credentials.

D
(

TTPprv,β
)

=⇒
{

AIKpub‖t‖TTPpub‖CredE‖

CredP‖CredC

}
S
(

TTPprv,{AIKpub‖t‖Cred′P‖Cred′C
})

=⇒ CredI

4. The TTP encrypts an arbitrary symmetric session keyKs (see Table 3.4), used to encrypt

the Identity credential, with the PUBEK of the TPM obtained from the Endorsement

credential. This ensures that only the TPM named by the Endorsement credential is able

to decrypt and use the Identity credential. It also ensures that the IDK keys were generated

by the TPM in question. The encrypted Identity credential and the encrypted symmetric

key are returned to the TPM.

E
(

PUBEK,Ks

)
=⇒ β1

E
(

Ks,CredI

)
=⇒ β2

5. The TPM owner callsTPM ActivateIdentity, specifying the two encrypted blobs re-

ceived from the TTP. The TPM uses PRIVEK to decrypt the symmetric session key, which

is then used to decrypt the Identity credential.

D
(

PRIVEK,β1

)
=⇒ Ks

D
(

Ks,β2

)
=⇒ CredI

At the end of this procedure, the TPM owner has an Identity credentialCredI , signed by a

3.2 Trusted Computing Group’s Trusted Platform Module 65

TTP with a root signing keyTTPprv, that names a public keyAIKpub of a key pair. The private

keyAIKprv of the pair cannot be extracted from the TPM. The TPM owner uses this private key

in TPM Quote andTPM CertifyKey commands.

The attestation vector (AV) discussed in Section 2.3.5 is created by callingTPM Quote. The

caller specifies both an AIK to be used for signing, and a set of PCR registersPCR{X} to be

signed. In addition to these two values, the caller can also specify 160 bits of external data,d.

This means that the signing key can be used to sign arbitrary data, not just data generated by

the TPM (see Table 3.4).

The attestation vectorAV of a TPM platformρ is made up of two parts. The first is the

attestation itself. This is created by a call toTPM Quote, seen in equation (3.4), denoted as

Q(signingkey,PCRvalues). The second is the identity credential associated with the specified

AIK. These two components are concatenated together. The result is encrypted with the public

key of the receiverρ′ of the AV to ensure its confidentiality and integrity during transmission,

seen in Equation (3.5).

Q
(

AIKprv,PCR{X}
)

=⇒ AV (3.4)

E
(

ρ′prv,
{

AV‖CredI

})
=⇒ β (3.5)

The construction of this attestation vector and its contents satisfies the requirements given

in Table 2.5 on page 46. The attestation procedure itself is resistant to all software attacks from

all levelsl i , where> 0, as all the information attesting to the state of the platformρ is generated

inside the TCB. The confidentiality and integrity ofAV is assured through the use of encryption

with an asymmetric key ofρ′. The attesting platformρ does not required an assurance that the

AV can only be read on another platform with a valid implementation of the TCF. Additionally,

the arbitrary data inAV allows the challengerρ′ to specify a nonce to guarantee the freshness of

theAV it receives.

The AIK-creation procedure discussed above requires both platforms to trust a third party

beforeρ′ can be assuredρ is a valid platform. The construction of the AIK helps mitigate

3.2 Trusted Computing Group’s Trusted Platform Module 66

privacy losses, assuming the non-collusion ofρ′ and the TTP, as described in Section 4.5.1.

The discussion thus far of the TCG’s TPM has focused on the device itself, executing in

layer l0, and the interface it presents to principals in layersl i>0. Discussion that extends from

the specifications put forward by the TCG alone [72, 68, 69, 67, 71] lacks implementation

experience of those upper layers. Given the specification for layerl0, it is difficult to assess the

functionality and features of layersl i>0, used to implement a trusted computing framework with

the properties discussed in Chapter 2.

The definitions of attestation (Definition 2.5 on page 47) and of sealed storage (Defini-

tion 2.2 on page 37) require an understanding and verification of all layersl i>0, in addition to

the axiomatically trusted TCB in layerl0. As an example, for sealed storage it is important to

ensure that a principalQ cannot impersonate a principalP, so that it appearsID(P) = ID(Q).

3.2.5 Secure I/O

The TCG TPM v1.2 implements only a severely limited for of secure I/O. It is not considered

to be one of the core priorities for the TCG platform [69].

Secure I/O is used to establish thephysical presenceof the user through the depression of

a hardware switch, or a key sequence depressed during the Power-On Self-Test (POST). Such

physical presence is used to initially authenticate as the owner of a Trusted Platform Module.

Once authenticated as being physically present, the user can establish a shared secret, in the

form of a password, between themselves and the TPM.

3.2.6 Curtained Memory

The TCG TPM v1.2 specification does specify any implementation of curtained memory. The

consequences of this are discussed in Section 4.5.1.

3.2.7 Framework Implementations

An examination of a trusted computing framework implies not just a discussion of the trusted

device in layerl0. An examination of the software layerl1 that can be built upon it, and the

3.2 Trusted Computing Group’s Trusted Platform Module 67

features layerl1 provides to applications in layerl2, as well as the features both layers provide

to the user, is required. Literature [40, 39, 53, 52] discussing implementations of software in

layerl1 andl2 built on top of the TCG’s TPM specification forms the basis for further discussion

and critique.

Marchesini et al. [40] were motivated to attempt to solve the canonical problem that moti-

vates Trusted Computing (see Section 1.1), given an additional two constraints:

...Alice needs to trust that certain properties hold for a program running on Bob’s

machine, even though Alice may have little reason to trust Bob.

To be effective, a solution to this problem must satisfy several constraints:

• It must bereal...

• It must bepractical...

They considered the TCG’s TPM v1.1b, shipping in a number of IBM’s laptops and desk-

tops, to satisfy their constraint of the solution being real, by which they mean currently avail-

able. Their constraint of practicality requires it to work with standard protocols, and not be a

“significant departure from the standard software base” [40].

Their instantiation of the general problem takes three forms, two of which are relevant to

this discussion. The first is that of securing an SSL web server run by Bob offering a service

with some security-critical properties to Alice. Marchesini et al. state that this would give Bob

a marketing advantage: “You can trust my service, because you don’t have to trust me [40,

p.4]”. The second is a more general case, attempting to solve the problems arising with the

specification’s lack of curtained memory, mentioned in Section 3.2.6 on the preceding page.

To solve the first problem, Marchesini et al. [39] use a TPM device to bind a private key

to a specific software configuration, as described in Section 3.2.3. This private key,SSLprv, is

used to decrypt messages intended for the SSL web server by users of the system, encrypted

with SSLpub. Their first attempt bound this private key to the code identities of the entire server

configuration. A Certificate Authority (CA) inspects this configuration and binds it to an AIK

used for signing messages from the server, and a Storage Key (SK, see Table 3.4) used to store

SSLprv. The authors quickly realise the error of this approach.

3.2 Trusted Computing Group’s Trusted Platform Module 68

The naivete of this approach is obvious to anyone who has ever tried to deploy a

system or a Web site in the real world. For one thing, the software will not be static.

For bug fixes and security patches alone, various elements of the suite will have

to be upgraded (and perhaps sometimes downgraded) over time.The promise of

responsibly maintaining a secure site requires that the executable suite, considered

as a whole, be dynamic.

Their second attempt partitions the system software based on how often they are expected to

change. Along-livedsystem core consisted of the BIOS, MBR, kernel, and theEnforcerkernel

module. The TPM boot process, previously described, ensures that the kernel and Enforcer are

properly measured and loaded. Any change in their structure will result in differing PCR values

being recorded, and the TPM denying access to the AIK and SK secrets of the SSL web server.

Their Enforcer kernel module is used to verify the correctness of themedium-livedsoftware,

consisting of the Apache web server and configuration data.

The correct medium-lived software configuration code identity is generated by a third party,

aSecurity Admin. The security admin creates a certificate including the code IDs of the medium-

lived software. The Enforcer module was responsible for verifying the signature of the security

admin on the certificate, by using the security admin’s public key stored in the long-lived core.

It also ensured that, once loaded, the PCR register values of the Apache web server, and its

configuration data, were the same as the certificate. The Enforcer would then release the AIK

and SK secrets to the Apache web server.

The system was built on a Debian “unstable” distribution, with the Enforcer implemented

as a Linux Security Module (LSM). The first-stage of the LILO boot loader was modified to

measure the second-stage, which was in turn modified to measure the Linux kernel itself.

The second instantiation of their motivating problem confronts the issues raised by the

TPM’s lack of curtained memory. Marchesini et al. [40] describe this ascompartmented at-

testation.They conclude that the problems discussed in Section 3.2.6 are not solvable by the

TCG’s TPM specification itself [39, §3.3]:

...consider the case where Bob is a consumer [of some content], running a program

3.2 Trusted Computing Group’s Trusted Platform Module 69

P whose authenticity and integrity is of concern to a remote stakeholder Alice...

Alice would like to ensure that Bob uses [a valid and correctP] that makes illicit

use sufficiently difficult for her tastes.

...Bob may have to exposeeverythingon his machine to Alice — even programs

and data that have little to do with the application in question. Alice might even

choose to deny services ... to Bob, if he has a competitor’s product installed.

...TCPA/TCG itself appears insufficient to solve Alice’s problems... Even [version]

1.2 TPM’s attempts to localize PCR contexts appear to suffer from this problem.

To address these issues, Marchesini et al. merged the National Security Agency’s (NSA)

Security Enhanced Linux (SELinux) [9] with their Enforcer LSM. SELinux is mandatory ac-

cess control architecture similar in many respects to that implemented by the LOCK system,

discussed in Section 4.2.1 on page 102. SELinux will only be discussed in the context of the

merger with the Enforcer kernel module here. SELinux enables what Marchesini et al. refer to

assoftware compartments. These confine applications to their own compartment, prescribed by

policy set by the system administrator. Specifically, the merger of SELinux with the Enforcer

module givesfiner granularity, a restricted root, and a central access-control checking mod-

ule [39, §3.3]. Finer granularity refers to the ability of SELinux to differentiate between more

privilege levels than the two, root (layerl1) and normal (layerl2) , that traditional operating

systems provide. Restricted root refers to its ability to prevent the superuser from modifying

the memory range of other applications. A central access-control checking module allows the

concentration of all system security policy in one place, instead of it being spread around the

operating system and file system in configuration and meta-data. The SELinux integration itself

provides a number of specific features:

The Enforcer module can use a key pair to testify about (and certify a key pair for)

the contents of just one compartment... Alice can have assurance that the attestation

she receives really pertains to the compartment in question, and that the Enforcer

with SELinux will confine her data to just that compartment; Bob can have con-

fidence that nothing outside of that compartment and above Enforce/SELinux will

3.2 Trusted Computing Group’s Trusted Platform Module 70

be communicated to Alice.

Sailer et al. [53] did not attempt to solve the privacy concerns voiced by Marchesini et al.

when instrumenting the Linux operating system to provide integrity measurement and reporting

for layersl1 andl2. With a TCG/TPM system, they implement a form oftrusted boot. Trusted

boot refers to a boot process that measures and records all code and data relevant to the integrity

of the system, before it is executed. The generated log can be trusted, via external mechanisms,

by a remote party to have been correctly maintained, and not be tampered with. At the time

of attestation, the log accurately reflects the state of the platform. This is in contrast tosecure

boot, implemented by the Aegis system (Section 3.5), which compares measured values with

stored values to insure integrity of a program before it is allowed to execute.

The motivation of Sailer et al. [53] is the same general problem as that which drove the work

of Marchesini et al. described above.

Our goal is to enable a remote system (thechallenger) to prove that a program on

another system (theattesting systemowned by theattester) is of sufficient integrity

to use.

They split the implementation of their system into three areas:

• The Measurement Mechanism, responsible for determining what and when to measure,

and storing the results securely.

• An Integrity Challenge Mechanism, enabling a remote platform to request an attestation

vector, and be guaranteed of its freshness and completeness.

• An Integrity Validation Mechanism, capable of being run by the remote platform to verify

all aspects of the attestation vector.

The implementation of the measurement mechanism was done on a Redhat 9.0 desktop box

with a TPM module supplied by IBM. Like Marchesini et al. the software component respon-

sible for taking measurements was implemented as a LSM. Similarly, the example application

used throughout the discussion was the Apache web server, in this case also running Tomcat.

3.2 Trusted Computing Group’s Trusted Platform Module 71

Building from the TPM boot process discussed in Section 3.2.1, the LSM extends this mea-

surement process to include all executable content loaded by the kernel. This LSM is the mea-

surement mechanism described above. The measured code IDs of all executable content are

kept as an ordered list inside the kernel, filling the role of the Stored Measurement Log (SML)

described earlier. A specific PCR register inside the TPM is updated along with SML. If the

aggregate value of the code IDs found in the SML matches the value of the PCR register, the

SML log is assumed to be untampered and correct. This enables the attestation vector to be

formed, as described in Section 3.2.4, and accompanied with the SML. This integrity challenge

mechanism, and its protocol, is given in Table 3.7 and described below. The integrity validation

mechanism includes the decision process the requesting platform goes through to arrive at a

decision in regard to the integrity of the attesting platform.

They consider the integrity of each programP in a system to be a binary property. Given

the lack of curtained execution acting as coarse-grained mandatory access control, the integrity

of the system as a whole is dependent upon the set of all integrity measurements of programs

on the system. Specifically, Sailer et al. state that [53, §2.3]:

Unless information flows among processes are under a mandatory restriction, the

integrity of all processes must be measured.

The most interesting aspect of the system proposed by Sailer et al. is that encapsulated by

the measurement mechanism. The determination ofwhatto measure, andwhento measure it, is

crucial. For the initial execution of a programP, measurement occurs before execution begins,

and ID(P) is added to the SML, as well as the PCR register inside the TPM. For repeated

executions ofP, whereP is unmodified, no record is made in the SML. For this reason, the

SML is not an ordered log of all executions of principalsP1..n on ρ, but an ordered log of the

initial executions of principalsP1...n only.

In addition to the executable content itself, Sailer et al. give two distinct categories of data

that may affect the integrity properties of a program [53, §2.4]. The first isstructured data,

defined as data that has anidentifiable integrity semantics. For the Apache web server under

discussion, a number of files meet this definition:

3.2 Trusted Computing Group’s Trusted Platform Module 72

• Apache configuration file (httpd.conf)

• Java virtual machine security configuration files

• Servlets and web services libraries

The second type of data isunstructured data, defined as data that affects the program, but

whose integrity semantics cannot be measured. In the case of the Apache web server, this form

of data includes the various kinds of requests received from remote users. In addition to the

impracticality of measuring all requests from users, such measurement would be useless as it is

impossible to predict values that would result in a loss of integrity. In effect, it is necessary to

trust an application to resist attacks that may arrive in unstructured data. For the Apache web

server, this may come in the form of malformed HTTP requests.

The first category of data can easily be measured in the same way as executable content is

measured. However, it is not so trivial to ensure that an applicationP will either:

• correctly report to the LSM which configuration files will be interpreted at this execution

and have identifed integrity semantics, so that the LSM may measure then and add them

to the SML; or

• correctly measure and report to the LSM the code IDs of those configuration files that it

will interpret and that have identified integrity semantics, so that it may add them to the

SML.

Applications that have so-called structured integrity semantic data in configuration files must

be re-written for the system proposed by Sailer et al.

One major class of program relies almost entirely on unstructured code — script interpreters.

The interpreter itself is measured and loaded as per a standard executable. However, the call to

execute a script interpreter may not include all the information necessary to identity all integrity

semantic data. Modification of these programs to do one of either case described above is

not sufficient. Pointedly, the authors instrumented thebashshell as an example of a script

interpreter that cannot identify all integrity semantic data when it is first loaded [53, §5.1]:

3.2 Trusted Computing Group’s Trusted Platform Module 73

Vulnerability Definition

TOCTOU race condition A Time of Check to Time of Use (TOCTOU) condition
where file contents are changed after measurement, and
before execution. Involves tracking number of open file
descriptors pointing to the file, and invalidating the log if
suspicious activity is detected.

Bypass user-level measurements A redirection of user-level calls to the
/sys/security/measure node requesting measurement
of a file by preventing the unmounting of the system file
system by root.

Bypass dirty flagging Attempts by the root user to access the storage interface
/dev/hda and the memory interface/dev/kmem, and in-
validates integrity measurement log.

Run-time errors Any error during the recording of measurements, such as
an out-of-memory or other exception preventing the cor-
rect logging of measurement data, results in the invalida-
tion of the measurement log.

Table 3.6: Vulnerabilities that lead to possible subversions of the integrity measurement log and cause a deliberate
invalidation, adapted from [53].

...we have instrumented thebashshell to measure any interpreted script and config-

uration files before loading and interpreting them. This includes all service startup

scripts into the measurement list [sic]... Instrumenting other programs (Perl, Java)

is straightforward, but we anticipate the need for more support from application

programmers.

One of the gains of the system proposed by Marchesini et al. was that, however cumbersome,

the root or superuser was restricted from changing the memory addresses of other processes

with a debugger. The system proposed by Sailer et al. does not actively seek to prohibit the root

user from doing this. Instead, the system invalidates the SML log and aggregate PCR register,

causing all future attestation attempts to fail, at step 5c of the integrity challenge protocol seen

in Table 3.7, until the system is reboot. The cases that lead to an invalidation of the integrity

measurement system are listed in Table 3.6.

Invalidation of the measurement log results in a system which is unable to perform a suc-

cessful run of the integrity challenge protocol until the system is rebooted. Sailer et al. admit

that the detection of the vulnerabilities cases given in Table 3.6 that result in an invalidation

3.2 Trusted Computing Group’s Trusted Platform Module 74

Step Action

1. ρ′: create non-predictable 160 bit nonce

2. ρ′ → ρ: ChReq(nonce)

3a. ρ: load protectedAIKprv into TPM

3b. ρ: obtainQ(AIKprv,PCR‖nonce) from the TPM

3c. ρ: retrieve SML

4. ρ → ρ′: ChRes(Q’, SML)

5a. ρ′: determine trusted certificate forAIKpub

5b. ρ′: validate signature generated in step 3b byAIKprv

5c. ρ′: validate nonce and SML with PCR value

Table 3.7: Integrity challenge protocol implemented on a TPM, adapted from [53].

occurring, may not be the result of an actual attack, nor that the attack would be successful.

They describe the system as being necessarilypessimisticabout such occurrences.

The integrity challenge mechanism, a protocol shown in Table 3.7, begins with a requesting

platformρ′ creating a non-predictable non-repeating nonce. This nonce ensures the freshness

of the response, preventing replay attacks, as required in Table 2.5 on page 46. This nonce

is packaged into a suitable data structure, and sent toρ. Sailer et al. assume communication

betweenρ andρ′ occurs over a SSL-authenticated transmission link. The attesting platform

ρ uses an AIK key pair, as discussed in Section 3.2.4, to have the TPM sign (TPM Quote) the

aggregate PCR register, as well as the nonce. The attesting platform packages the signed data

structured returned byTPM Quote, denotedQ′ in Table 3.7, with the SML, and returns both to

ρ′.

Steps 5a through to 5c involveρ′ verifying the response to the attestation challenge. In step

5aρ′ checks to see the Trusted Third Party that signedAIKpub is one of the TTPs trusted byρ′.

This step assuresρ′ thatρ is a valid TPM implementing the same trusted computing framework

τ. Assuming thatρ′ does trust the TTP used byρ, step 5b verifies thatAIKprv, stored securely

in the TPM, was used to sign the aggregate PCR register and nonce. This step assuresρ′ that

the response originated from the TPM named inAIKpub. It also ensures the quoted values

have not been tampered with. Step 5c involves the verification of the SML with the aggregate

PCR register value, ensuring that the state ofρ described by the SML is correct. Sailer et al.

3.2 Trusted Computing Group’s Trusted Platform Module 75

succinctly describe this process [53, §4.3]:

Tampering ... is made visible ... by walking through the measurement listML

[SML] and re-computing the TPM aggregate (simulating the TPM extend opera-

tions [Section 2.3.2] ...) and comparing the result with the TPM aggregatePCR

that is included in the signedQuote...

If the two values match, the state ofρ when it generated the attestation response is assured

to be what is stated by the SML.

Onceρ′ has verified the state ofρ, a decision on whether or not to trust that state must be

made. For the system proposed by Sailer et al. this involves matching each individual code ID

in the SML with a previously computed one obtained from some trusted source, and reasoning

about its affect on the integrity of the system, and more specifically, the applicationP that is of

interest. The Redhat 9.0 system that Sailer et al. modified was measured by them to generate a

trusted repository of “known-good” application identities.

...the workstation used... which runs Redhat 9 and whose workload consists of

writing this paper, compiling programs, and browsing the web does not accumulate

more than 500 measurement entries. On a typical web server the accumulated

measurements are about 250.

Once each entry in the SML log has been identified, the remote platformρ′ must make a

decision on whether to trust the integrity ofρ. The policy used to describe the decision process

may be arbitrarily complex. The presence of any malicious programs may result in a decision

to not trust the integrity ofρ. More complex decision processes, dependent on the required

integrity and importance ofP, would be required when programs classified as being remotely

or locally vulnerable.

In response to the possibility of Time of Use to Time of Check (TOCTOU) attacks, Sailer et

al. require the attestation procedure to occur twice — once prior to the transaction taking place,

and once after, forρ′ to be assured that the transaction occurred in a manner suitable to it [53,

§4.4]:

3.3 Next-Generation Secure Computing Base 76

Figure 3.1: NGSCB hardware modifications, adapted from [42].

To verify the integrity of a transaction that is taking place ... the challenging party

can challenge the integrity of the attesting system before and after the transaction

was processed ... If the attesting system is trusted both times, then — so it seems

— the transaction can be trusted, too.

3.3 Next-Generation Secure Computing Base

Microsoft’s Next-Generation Secure Computing Base (NGSCB, pronounced“ing-scub”) ap-

peared to be, for much of 2003 and early 2004, the most advanced and complete trusted comput-

ing platform in development. In May of 2004, amidst confusing statements and press releases

Microsoft first dropped completely, then reinstated, their NGSCB program. News reports [14]

and correspondence with NGSCB team members [22] throughout the latter part of 2004 indi-

cate that NGSCB would undergo considerable revision before being released with Longhorn.

No information on the intended shipping version of NGSCB is available at the time of writ-

ing. With this in mind, this section will discuss the version of NGSCB released to attendees at

Microsoft’s Professional Developers Conference in Los Angeles, in November 2003.

3.3.1 Curtained Memory

NGSCB is based around the TCG’s Trusted Platform Module v1.2 device. This device has

been described in Section 3.2 on page 51, and will not be expounded upon here. In addition to

making use of the TPM chip, Microsoft also make significant changes to other parts of the PC

architecture. A typical logical view of a PC motherboard is shown in Figure 3.1, with changes

3.3 Next-Generation Secure Computing Base 77

Figure 3.2: Logical software layout of standard and secure operating systems in NGSCB, taken from [44].

due to NGSCB shown in red.

A new mode flag is added to the CPU to differentiate between standard execution mode,

and privileged execution mode. When this mode flag is active, the CPU is able to address

what is referred to ascurtained memory. Curtained memory is standard memory that has been

marked in the hardware page table with a new addressing-mode bit. Unless the CPU is in

privileged execution mode, the CPU is unable to address or access any pages marked as being

curtained. There are additional architectural changes to the USB and AGP buses, to allow

the exchange of encrypted data between the CPU and devices on the bus. Additionally, the

Low-Pin Count (LPC) bus permits communications between the CPU and the Security Support

Component (SSC). This SSC is Microsoft’s name for a device that fills the role of the TCG’s

Trusted Platform Module.

Seen in Figure 3.2 is the logical partitioning of the software architecture in NGSCB. Mi-

crosoft refers to programs executing in standard, or unprivileged mode, as executing on the

left-hand side(LHS) of the four-quadrant diagram. Privileged execution takes place on the

right-hand side(RHS). The bottom quadrants show the operating system executing in standard

mode on the LHS, and thenexusexecuting on the RHS. The nexus is the secure kernel that

hosts and provides services tonexus computing agents(NCA), which are directly analogous to

standard applications on the LHS. These NCAs interact with the nexus to obtain cryptographic

3.3 Next-Generation Secure Computing Base 78

services supplied by the SSC.

Software executing on the RHS (in nexus mode) is stored in curtained memory. This gives

it hardware-level memory protection from the standard Windows operating system and user-

land applications. The standard Windows operating system, and the applications that run on

it, will remain largely unchanged on the NGSCB platform. The insecure LHS will provide

some limited services to the nexus and NCAs. These will include I/O operations such as those

required to read and write files to disk, as well as communicate over a network. Such streams

will, of course, not be protected from the rest of the LHS environment. All data leaving the

RHS is intended to be encrypted, to protect its confidentiality and integrity.

Microsoft’s NGSCB implements all four trusted computing framework primitives — attes-

tation, sealed storage, strong process isolation, and secure I/O. NGSCB refers to secure I/O as

secure paths. As expected, Microsoft’s NGSCB makes heavy use of the cryptographic prim-

itives exposed by the underlying TPM device. Its implementations of attestation and sealed

storage are heavily influenced by the design decisions made by the TCG. There are a number of

subtle differences however. These stem from Microsoft’s decision to implement a secure kernel,

the nexus, as well as partitioning the software layer into an insecure LHS and a secure RHS.

As outlined above, the NGSCB platform modifies the PC hardware architecture to allow

for pages of memory to be marked as curtained. Such curtained memory can only be accessed

when the processor is in privileged mode. It is in this hardware-mandated privileged mode

that the nexus kernel executes. The hardware architecture prevents the unprivileged LHS from

observing any page that has been marked as curtained. Shown in Figure 3.2, the LHS is unable

to view the memory of any program on the RHS. However, the same is not true for the RHS,

which is not prevented in hardware from viewing pages not marked as curtained. It should also

be noted that individual NCAs on the RHS are granted no more memory protection from other

NCAs, than normal applications on the LHS are from each other.

This hardware-mandated separation of memory pages marked as privileged and unprivi-

leged meets our formal definition of weak curtained execution, defined in Section 2.3.4, defini-

tion 2.4 on page 41.

3.3 Next-Generation Secure Computing Base 79

3.3.2 Sealed Storage

The sealed storage primitive implements access control to sealed data, based on the code identity

of an NCA, and the nexus. This code identity is the hash of amanifestdescribing the NCA. This

manifest names all the code libraries, including specifying versions, that an NCA can load, as

well as data and configuration files. Changing a manifest, for example, by specifying a different

DLL version results in a distinct NCA identity being generated.

To seal some arbitrary data, an executing NCA calls theSeal function, exposed by the

nexus. This function takes two parameters,d and ID(Pu). The parameterd is the text to be

sealed, andID(Pu) is the code identity of the NCA that is able to unseal the returned cipher text.

In the general case, the calling NCA specifies its own code identity, ensuring the confidentiality

and integrity of the cipher text until it is unsealed at a later date. As mentioned previously,

the nexus relies on the insecure LHS operating system for various I/O services, including file

reads and writes. The encrypted cipher text is written to the standard file system, with no more

protection than is available now.

The alternative case is one in which an NCA specifies some other code identity which is

allowed to unseal the cipher text. This resultant cipher text can, however, only be unsealed on

the same NGSCB device it was sealed on. This is due to the use of the unique symmetric key

stored in the SSC (see Section 3.2) to encrypt the plain text. This use of code identity to name

the intended unsealer of the cipher text allows chains of computation to be designed, as in the

LOCK (see Section 3.4.1) and XOM (see Section 3.7) systems.

TheUnseal function takes only one parameter — the cipher text to be unsealed. The success

of the function is dependent on three identities. The first two, the NCA and the SSC chip, are

explained above. The third identity is that of the nexus kernel itself. Microsoft has said that it is

possible for anyone to write and distribute their own nexus [43], although doing so legally may

present some licensing issues [23]. If the unseal function depended on the identities of only the

NCA and the SSC, an attacker could modify the nexus before it is loaded. Such modifications,

made to the compiled binary of the nexus before it is loaded, could result in the nexus leaking

sealed data to the insecure LHS.

3.3 Next-Generation Secure Computing Base 80

Nexus ModeStandard Mode

Operating
System

Application

Nexus

Security Support
Component

Public
Key

Private
Key

NCA

NCA

NCA

NCA
Application

Application

User Mode

Kernel Mode

Figure 3.3: Hardware and software stack identified in an NGSCB attestation operation, shown in red.

3.3.3 Attestation

Microsoft’s implementation of attestation is built on top of the architecture of the Trusted Plat-

form Module. It is described in various technical white papers published by Microsoft [43, 44],

as well as by England et al. [25].

Logically, it uses theQuoteoperation, as well as various certificates, to identify the hardware

and software stack, seen in Figure 3.3, running on the NGSCB platform. The stack identified

consists of the TPM device, the executing nexus, and a specific NCA. The quote operation is

described by England et al. in [25]:

The Quote operation concatenates an input string from the program wishing to

authenticate itself with the program’s code ID, signs the resulting data structure

with the platform’s privacy quoting key, and returns the result to the caller. The

requesting program can send this signed data structure to a remote party, typically

along with platform certificates that support use of the platform-quoting key.

In operation, the executing nexus calls the TPM’sQuote function, passing in a data structure

containing the code ID of the nexus requesting the attestation,NCAid. The TPM concatenates

the code ID of the nexus with this data structure, forming(NEXUSid‖NCAID). It then signs

3.3 Next-Generation Secure Computing Base 81

with the appropriate private key named in the manufacturer’s certificate, and returns to the nexus

(NEXUSid‖NCAID)k′. k′ signifies the private key embedded in the TPM, as described in Section

3.2.

3.3.4 Secure I/O

Microsoft’s NGSCB treats secure I/O as one of the core components of its trusted computing

framework. It allows secure, assured communication between NCAs and various peripherals

connected to the device. Microsoft intends to secure those devices which are typically found

outside the computer case. These include things like printers, speakers, keyboards, and mice.

One exception to this is a secured video card, which resides inside the computer case.

Microsoft does not intend for NGSCB’s secure I/O be used, at least initially, for DRM-

style applications [48]. Typically, secure I/O reduces throughput of the device below acceptable

limits for media playback. They are more concerned about securing the input from the keyboard

and mouse to an enabled application. In the same manner, they intend to secure certain output

from an enabled application so that it reaches the local user. Common attacks which Microsoft’s

secure I/O aims to prevent include user spoofing and screen scraping. User spoofing occurs

when an attacker sends keystrokes to a program so as to appear as if they came from the local

user. Screen scraping involves an attacker capturing an application’s screen output and storing it

for later use, either by replaying (in the case of video) or by capturing textual information from

the data. For example, other work by the author [20] investigated using Microsoft’s NGSCB to

assure high-value legal documents were delivered to a valid printer, and not printed to a file.

Microsoft intends to demarcate user interface windows used to display a secure I/O-enabled

application. This demarcation is intended to elevate the level of trust a user can have when

interacting with that window. The typical use-case of this technology is to properly secure and

assure communication with an online banking service provider. Such assurance prevents local

attackers from monitoring the keystrokes of the user (to obtain passwords), and the information

displayed in the window (bank account numbers, etc). Secure I/O also prevents local attacks

from sending keystrokes to initiate bank account transfers. The demarcated window is intended

3.4 Trusted Computing in Software 82

to indicate to the user that when interacting with such an application, more care should be taken,

as the information is considered to be security-relevant.

3.4 Trusted Computing in Software

As discussion in Section 1.3, it is considered most appropriate to implement a trusted computing

base with trust rooted in a hardware device. However, the manufacture of these hardware de-

vices, such as the Trusted Platform Module (Section 3.2), has only recently begun. Prior to this,

many attempts were made to provide what is now the level of assurance that hardware-driven

trusted computing aims to provide, through software-only means. This section will discuss and

outline some of these attempts, specifically focusing on methods which attempted to arrive at

the three security primitives outlined in Section 2.3.

3.4.1 LOCK

Section 2.3.3 discussed sealed storage, and illustrated a method of using theseal primitive

to form cryptographically secured computation paths. This concept of using the identity of an

entity to evaluate and allow access to data is not new. The concept of usingobject typeto set

and enforce access restrictions to resources has been an area of research in computer science

for some time.

The Logical Coprocessing Kernel (LOCK) system, developed in the late 1980s, is able to

enforce security restrictions derived from strongly-typed data domains. LOCK is considered a

strongly-typed Unix-like operating system. The LOCK system itself is introduced in [54], and

further developed in [55]. Rogers and O’Brien in [46] describe the use of LOCK to design and

build a LOCK-enabled application. As described in their paper, LOCK is:

...a highly assured INFOSEC [information security] system that can be used as a

platform to develop countermeasures to current and future security threats. The sys-

tem is based on a trusted computing base (TCB) that satisfies the security require-

ments defined for the A1 level in theTrusted Computer System Evaluation Criteria

3.4 Trusted Computing in Software 83

[16, Orange Book]... [and] uses a security coprocessor, called the SIDEARM, that

makes access decisions ... [along with] LOCK’s unique type enforcement mecha-

nism.

The LOCK system provides security primitives equivalent to a current trusted computing

system’s sealed storage and curtained execution. It also goes some way to implementing se-

cure I/O. The system described in [46] does not consider network operations, and so does not

implement remote attestation.

Entities on a LOCK system are divided into two groups;subjects, which represent processes

(programs), andobjectswhich represent data and other resources on the system including hard-

ware. Each subject is placed into adomain, and each object is given atype. The type of access

permitted for each domain to each type is defined in aDomain Definition Table(DDT). A sam-

ple DDT, modified from [46, p 149], can be seen in Table 3.8. Capabilities that can be specified

in the DDT are: r — read, w — write, a — append, e — execute, c — create, and d — destroy.

Table 3.8 shows how a subject in the domainF1 is allowedr, read, access to objects of type

UnF1 Data. A subject in theDB domain is able to read, write, create, and destroy objects of

typeDB Data, and can execute data of typeDB Code.

A detailed explanation of how the LOCK system ensures that these access restrictions re-

main mandatory, and cannot be circumvented, will not not be given here. For the purposes

of illustration, we will assume the access restrictions are mandatory. The purpose of this dis-

cussion is to highlight, with a (trusted) mandatory type enforcement mechanism, how trusted

computing security primitives can be built.

Sealed Storage

As discussed in Section 2.3.3, sealed storage allows applications to store some arbitrary data

and be assured that no other entity on the system is able to modify or view that data. The file

system, a hardware resource typeTf s, is used to persist the arbitrary data. Each domain given

access toTf s is done so through intermediary access via a unique domainDint into which an

application in domainDschedhas only write-access. The file system, in its own domain, is able

3.4 Trusted Computing in Software 84

Table 3.8: Sample Domain Definition Table adapted from [46], listing domains on the vertical and types on the
horizontal. A cell (i, j) contains the types of access a subject in domain i is permitted to make on an
object of type j .

to only read fromDint . The file system on a LOCK system is constructed to enforce access

restrictions based on the DDT table. To a LOCK-enabled application, it appears as though

they have their own private file system. This construction of sealed storage in LOCK meets the

definition as given in Section 2.3.3.

Curtained Execution

The Domain Interaction Table(DIT) defines allowed interactions between domains. The ca-

pabilities that can be specified in the DIT differ from those that can be specified in the DDT,

to reflect the difference between types and domains. The DIT capabilities are observe, signal,

create, and destroy. In this case, for an application in domainD j to be able to observe an ap-

plication executing in domainDk, the cell(j,k) in the DDT must be explicitly marked with the

observe capability. Interaction between domains must occur with through well-defined sig-

nals. For two domains,D j andDk, to communicate with each other, the cells(j,k) and(k, j)

must be marked with thesignal capability.

3.5 Aegis 85

Secure I/O

From the two previous implementations described, it can be seen that implementing secure

I/O in the LOCK system is trivial. Each hardware resource is designated with its own type,

and placed in its own domain. Access to that domain is controlled through an intermediary

arrangement of domains, as with sealed storage.

3.5 Aegis

AEGIS provides an assured, trusted environment to host a general purpose operating system.

Execution begins with power-on, and will not pass to the next level unless that level passes

cryptographic integrity checks. This process is referred to by Arbaugh et al. [18] as aguaranteed

secureboot process.

Integrity verification in the AEGIS system is based upon levelln being trusted to perform

integrity verification of levelln+1, before passing execution to that level. Levell0 is presumed

to be trusted, and does not have its integrity verified, in a meaningful way, by any other entity.

AEGIS makes some modifications to a normal IBM PC’s boot process. These are comprised

of partitioning the standard BIOS into two. The first, levell0, contains thetrustedcomponents

required for integrity verification of levell1, including level l1’s precomputed hash. It also

contains rudimentary code to replace code in levell1, if it is found to be corrupted, from some

external trusted source. This could be an AEGIS expansion card added into the machine, or

some remote network host.

The AEGIS concept and threat model is relatively simplistic compared with more advanced

trusted computing models. Arbaugh assumes [18, p 66]:

...the motherboard, processor, and a portion of the system ROM (BIOS) are not

compromised,i.e., the adversary is unable or unwilling to replace the motherboard

or BIOS.

Although not explicitly stated, it seems reasonable to assume that the AEGIS architecture

is intended to operate in a corporate environment, where hardware can be protected from user

3.5 Aegis 86

replacement or modification through traditional methods, and the administrator is not an ad-

versary, but interested in securing the system. The AEGIS system is designed to protect a

computing environment from amalicious user, not amalicious administrator(see Section 1.2).

AEGIS is one of the first attempts to enable the creation of a known-secure environment on

commodity hardware, without major modifications to the underlying architecture. The system

is very brittle — any modification to the components in the measurement chain results in the

system failing to boot. The executing operating system is able to presuppose that, because it is

executing, it can trust the lower layers.

It is useful to include in our discussion the formal definition of AEGIS’ trust model. The

AEGIS n to n+ 1 method of inducing trust from lower layers to higher layers is analogous to

many other trusted computing models, which do not state their assumptions or reliance on a

trusted root so explicitly. Arbaugh et al. give two recurrence equations showing thechainingof

trust, from levell0 [18, p 69].

I0 = True,

Ii+1 =
{

Ii
^

Vi(Li+1) for 0 < i ≤ 4 (3.6)

Here,l i is a boolean value giving the integrity of leveli,
V

is the booleanandoperation.Vi is

the verification function associated with theith level, taking the level to verify as its argument,

and returning a boolean. As described earlier, AEGIS performs a cryptographic hash of the

level being verified, and compares the resultant hash with a precomputed value. This value is

retrieved from a previously verified level; either the currently executing level, or some other

lower level.

This recurrence equation (3.6) explicitly states the axiomatic trust placed in levell0. During

operation, levell0 is trusted to not allow execution to continue onto levell1 if it fails to pass

a verification check. This behaviour is also expected of all other levels. Assuming each level

is functioning correctly, level 5, consisting of user-level applications, will be hosted in a well-

known environment of levels 0–4.

The AEGIS system is not intended to directly provide any of the three primitives of a trusted

3.6 IBM 4758 87

computing framework. However, it does restrict the boot process to only allow well-known

software to begin executing on the machine. It could be used to boot a software system like

LOCK (see Section 3.4.1 on page 82). The LOCK operating system would then be guaranteed

to be executing on benign hardware with unmodified software configured to properly enforce

the primitives.

3.6 IBM 4758

Work by IBM in the late 1990s lead to the development of the IBM 4758 Secure Coprocessor

[4]. It was developed to provide IBM’s Common Cryptographic Architecture product group

with a tamper-responsive, general purpose, secure coprocessor. A tamper-responsive device

performs some action when it is tampered with. A tamper-resistant device merely makes at-

tempts to subvert the device difficult. The design goals and challenges are discussed by Dyer

et al. in [24]. The 4758 takes the form of a PCI-bus expansion card, that can be added to an

unmodified IBM PC.

While the implementation and design of all aspects of the 4758 is not immediately relevant,

it does implement an interesting form of attestation. Calledoutbound authentication, it enables

a 4758 card to export information about its current internal state. The manufacturing process

of the card is also similar to that of trusted platform modules, used as the trusted root in other

trusted computing frameworks (see Sections 3.3 and 3.2). The 4758 can be seen as the precursor

device to the trusted platform module.

Shown in Figure 3.4, the IBM 4758 is heavily protected from physical tampering. Upon de-

tecting a physical attack, the IBM 4758 is designed to clear its internal secrets and destroy cer-

tificates embedded during manufacture. The 4758 is sensitive to“physical penetration, power

sequencing, temperature, and radiation [attacks]”[3].

The design goals, decisions, and processes were described by Dyer et al. [24], and show

their consideration of the same design principals used to construct the LOCK software system.

The logical design structure consists of three major components; the hardware, the firmware,

and the end-user supplied software. These are shown in Table 3.9, including their further cate-

3.6 IBM 4758 88

Supplier Category Components Relative Trust

Users Software Applications Low

Operating System Environment

Kernel

Loaders

IBM Firmware Post Medium

Miniboot

IBM Hardware Processor High

Flash, RAM and ROM

Locks

Tamper-responding unit

Crypto functions

Table 3.9: Components of the IBM 4758, logically split into the familiar categories of hardware, firmware, and
software, including their logical layers. The relative level of trust in each layer decreases from hardware,
to firmware, to software.

gorisations.

Similar to the AEGIS system, trust in any layer above the first is inherited from the lower

layer. The hardware layer is manufactured by IBM, as is the firmware layer. The software layer

is supplied by the card owner, and is designed to run on the embedded 486-class processor.

As mentioned above, the IBM 4758 is capable of outbound authentication, which is analo-

gous to attestation. It also implements a form of secure boot, similar to AEGIS. Although not

intended to be part of a trusted computing framework, the 4758 does provide persistent stor-

age. The 4758’s method of implementing attestation is illustrative, as it is similar in method

to that chosen by IBM researchers when working on the TCG’s Trusted Platform Module (see

sections 3.2 on page 51, and 4.4.2 on page 111).

During the manufacturing process a root certificate, used for attestation, is embedded in

the device. This root certificate is signed by keys derived from IBM’s root key, and attests

that the named public key is associated with a private key also embedded in the device during

manufacture. It is from this certificate that trust in the identity of the device is obtained, as

explained in Section 2.3.5. Trust in attestation statements made by the device are dependent on

IBM’s root keys remaining uncompromised.

3.6 IBM 4758 89

Figure 3.4: Photograph of the IBM 4758 secure coprocessor.

The IBM 4758’s firmware and software stack is delineated intolayers. The initial layer,

consisting of an asymmetric key pair, manufacturers certificate, and minimal operating code is

embedded in ROM during this manufacturing process. It is the only layer which is inserted into

the device without a public key authentication operation taking place.

Layers are used to break up software on the 4758 into separate pieces, along functional and

trustworthy lines, as in LOCK. Each software load operation results in a new logical layer in the

device, and each operation must be permitted by theownerof the previous software layer. This

authentication chainingof ownership, most of which takes place during manufacturing, layers

theminiboot(layer 0) andboot (layer 1) firmware layers, seen in Table 3.9, directly above the

ROM code. Ownership of layerN allows that owner to name and install code into layerN+1.

Each of the layers (1 and 2) programmable in the field have various information associated

with them. Each layer has an ownership id; the layer 2 owner ID is assigned by IBM, and the

layer 3 owner id is assigned by the owner of layer 2. The content of each layer also has data

stored about it. This consists of an image name and revision field, specified by the owner of that

layer, and most importantly ahash field. This hash field is derived, by layers 0 and 1 inside the

device, from the entire contents of that layer’s code.

When delivered to the purchaser, the 4758 is configured to allow only one further software

3.6 IBM 4758 90

Component Explanation

A nonce This nonce is originally specified by the requester, so they can
be assured of the vector’s freshness.

The Vital Product Data
(VPD)

This specifies the exact model of the IBM 4758.

Whether layer 2 and layer 3
are owned and have reliable
contents

Indicates if layers 2 and 3 have become owned since
being shipped from IBM, and that the physical tamper-
responsiveness has not activated.

The layer 2 OwnerID and
layer 3 OwnerID

A two byte field, indicating owning entity of layerN, set by
the owner of theN−1 layer.

If layer 2 is owned and reli-
able, the name of the image
it contains

The human-readable name of the installed software.

If layer 3 is owned and reli-
able, the name of the image
it contains

The human-readable name of the installed software.

Table 3.10: Components of an IBM 4758 attestation (remote authentication) vector, adapted from [60].

load — that of the end-user’s custom application. With only one user application executing

on the device, it is unable to launch an attack against any other application on the device,

or be attacked itself from another user-level application. Only attacks against lower layers

are possible, attempting to subvert some given operation of the device. The code for these

lower layers has, by the time execution passes to layers 2 and 3, been protected in hardware

by advancinghardware ratchets. These ratchets protect the firmware from modification until

the device is next reset, and the ratchets released. This ‘single-application’ design is a major

restriction in the use of the IBM 4758 as a general-purpose trusted computing platform.

The operating system, a variant of the CP/Q operating system known as CP/Q++ [29], is

loaded into layer 2, and is usually included when shipped from IBM. The end user application

is loaded into layer 3. The attestation procedure involves a signed vector being transmitted

from the device, in response to a user query. IBM outlines the procedure in a white paper [60],

as well as the information found in the response. This is reproduced, with modifications and

explanations, in Table 3.10.

This vector is signed with the unique key of layer 0 in that device, which in turn is named

in a certificate chain that ends with IBM’s root key. By trusting the tamper-proof hardware,

3.6 IBM 4758 91

and the code in layers 0 and 1, the user can trust that the information contained in the vector is

correct. They are then able to make an informed decision about trusting the entities named as

owners of layers 2 and 3. It should be noted that the attestation vector described here does not

include the hash fields of layers 2 and 3. This data is available through another API call, and is

used in the Reusable Proof of Work (RPOW) concept server, described in Section 3.6.1.

The IBM 4758 device also provides a form of sealed storage. The 4758 is able to store

data across power cycles in flash memory. Flash memory chips are also found in the ubiquitous

USB key-chain storage devices. Application data is encrypted when stored in flash memory.

The device is unable to guarantee the wiping of data stored in flash memory if the device is

physically attacked. Therefore it is encrypted with a symmetric cipher; the key is stored in

battery-backed RAM (BBRAM). BBRAM is guaranteed to be wiped in response to physical

attack, thereby rendering the data encrypted in flash unrecoverable.

The 4758’s implementation of secure storage illustrates a common pattern in trusted com-

puting frameworks. A small, secure, and expensive portion of memory can be used to satisfac-

torily secure data stored on larger, less secure, and cheaper memory. This leveraging of trusted

storage could have been used to provide persistent storage on the host device; denial of service

attacks would then become far easier.

3.6.1 Reusable Proof of Work

The Reusable Proof of Work [8] (RPOW) server is a proof-of-concept implementation on an

IBM 4758 device. It makes excellent usage of the outbound authentication capability of the

4758 card. The system itself allowshashcash(also known as Proof of Work) tokens [2], instead

of being disposed after a single use, to be exchanged for another of equal value, and addressed

to another recipient. In essence, this allows one hashcash instance to be used multiple times by

two communicating individuals. Additionally, users are able to trade in one POW token, with a

given valuex, for two POW tokens both of valuex/2. The RPOW server acts as a virtual bank,

enabling the exchange of POW tokens to take place in a similar manner to a real bank.

All software used in the system is available through an open source license, allowing end

3.7 Execute Only Memory 92

users to verify and compile the client they use to interact with the server. They are also able to

verify the source code for the software that runs on the 4758 device itself, as well as the host

software running on the server PC. The client software, during each interaction with the RPOW

server, requests the generated hash of the card’s running software. This value is compared

against a precomputed value distributed with the client application. This computed hash value

is signed and delivered in a data structure similar to the one outlined in Section 3.6 on page 87.

Taken together, the two attestation vectors assure the client of the validity of, firstly the IBM

4758 device itself, and secondly the hashed identity of its executing code.

3.7 Execute Only Memory

Execute Only Memory (XOM) was developed at Stanford University [64] in 2000. XOM (pro-

nounced“zom”) was originally intended to prevent unauthorised softwareexecution. Later

research by a number of the same authors [37] led to the implementation of an untrusted oper-

ating system running on XOM hardware. One section of their paper described how components

of XOM Operating System (XOMOS) were able to implement the three parts of a trusted com-

puting platform (see Section 2.3 on page 23). While the XOM architecture was not developed

to form part of a Trusted Computing Framework (TCF), it is a simple, elegant architecture.

The rest of this section will briefly describe the hardware architecture of XOM, and how the

trusted computing aspects of XOMOS operate.

3.7.1 Concepts and Hardware Architecture

The XOM architecture introduces a number of concepts similar to those found in most trusted

computing platforms, such as an axiomatically trusted hardware layer. While no functioning

XOM system has been built in hardware, it has been modelled in software on a MIPS with

IRIX system [37].

The XOM architecture, as described by Lie et al. in [64], relies on a modified processor that

provides three key operational extensions. The first operation allows for asymmetric decryp-

tion of a data block using a private key embedded securely within the processor. The second

3.7 Execute Only Memory 93

operation allows symmetric decryption of an instruction stream, with what is known as ases-

sion key. The third and final operation provides, and enforces, compartmentalised storage that

prevents one process from viewing the contents of any register not marked as belonging to its

own compartment. Additional hardware modifications include a number of XOM-specific state

bits on register and cache lines. Lie et al. [37] briefly describe the benefits of compartmented

execution:

XOM uses its master secret to protect programs by supportingcompartments. A

compartment is a logical container that prevents information from flowing into or

out of it. A process in a compartment is immune to bothmodificationandobserva-

tion.

The XOM chip contains, at its heart, an asymmetric key pair which is created or embedded

during manufacture. As in other trusted computing architectures the private key of this key

pair should never be transmitted outside the chip. While not specified in the original literature

describing XOM, the public key should be signed by the manufacturer. This asserts that the

certified public key belongs to an actual XOM device, and allows it to verify its identity.

3.7.2 Application Distribution and Execution

The distribution process, as described by Lie et al. [64], is seen in Table 3.11. The process

begins with a user on a XOM platformχ requesting an applicationP from the distributor,D.

The XOM chip, as with the TCG’s TPM chip, contains a unique key pairχpub,prv, embedded

during manufacture. The distributorD, upon receiving a request fromχ, encrypts their appli-

cationP with a unique symmetric keyKs. The encryption,E(Ks,P) results in a blobβ. The

symmetric keyKs is encrypted with the public keyχpub of the requesting platform. The result

of E(χpub,Ks) is an encrypted blobα. These two blobs are concatenated into a data structure,

{α‖β}, which is returned toχ. This data structure allows the execution ofP on χ, analogous to

the execution ofP normally. At this point,χ has been supplied with a customised version ofP

that only it is able to decrypt and execute.

The distribution and execution scheme described above ensures the integrity and confiden-

3.7 Execute Only Memory 94

Step Action

1. χ → D: AppReq(χpub)

2a. D: verify χpub

2b. D: generateKs

2c. D: performE(Ks,P)⇒ β
2d. D: performE(χpub,Ks)⇒ α
3. D → χ: AppRep({α‖β})

...

4a. χ: load{α‖β}
4b. χ: performD(χprv,α)⇒ Ks

5a. χ: performD(Ks,β)⇒ P

5b. χ: executeP

Table 3.11: Packaging and distribution protocol of XOM, used to ensure an application’s integrity and confiden-
tiality throughout its lifetime.

tiality of P from its packaging byD until it is decrypted insideχ. The applicationP exists

in unencrypted form only in the L1 and L2 caches and registers ofχ. The XOM architecture

implements compartments to prevent another applicationQ from viewing or modifyingP while

it is unencrypted, and stored in the CPU registers. This compartmentalisation, discussed below,

satisfies the requirements of curtained memory defined in Section 2.3.4. Specifically, it satisfies

the requirements ofstrongcurtained memory, given in Definition 2.3 on page 41.

At some later point in time,χ is able to executeP without further interaction withD. To

begin with, the XOM chip inχ decryptsα, D(χprv,α). The resulting symmetric keyKs is not

released outside of the XOM chip. During the execution ofP, β is stored in main memory,

and is decrypted withKs inside the XOM CPU, and stored decrypted in the L2 memory and L1

instruction cache. Data created and used byP during execution is stored in memory usingKs.

During the loading and decryption ofP, a new entry for the program is made in theXOM key

tablecontaining, amongst other information, the symmetric key just obtained. Acompartment

ID is also generated, and this is used to reference the table to obtain the symmetric key when

required. Entries in the key table represent what are known asprincipals, analogous to executing

processes on a normal processor. The currently executing principal on the XOM chip is known

as theactive principal, and its tag is stored in theXOM ID register.

3.7 Execute Only Memory 95

Main Memory

Symmetric Decryption Unit

L2 Cache

L1
Instruction

Cache
L1 Data
Cache

Decode DatapathRegister
File

Private
Memory

XOM Asymmetric
Decryption Microcode and

Key
XOM ID

Tags and
Valid Bits

XOM ID
Tags

XOM ID
Tags

XOM ID
Tags

Figure 3.5: Overview of XOM architecture, adapted from [64]. Bold black borders indicate new components to a
traditional CPU architecture.

As shown in Figure 3.5, the instruction stream is brought in from main memory, then de-

crypted and stored in the L1 instruction cache, on each cache miss. Also shown in Figure 3.5

is the state required in the XOM chip. There must be an appropriately sizedprivate memory

to allow the XOM processor to maintain the key table. The maximum key table size limits the

number of concurrently executing principals. The minimum table size is 2 lines — one for the

null compartment, and one for an active principal. The null compartment is active when the

XOM processor is executing normal (non-XOM encrypted) code.

The XOM key table itself is made up of two sub-tables, theRegister Key Tableand theCom-

partment Key Table. TheXOM ID Registercontains the compartment ID of the currently active

principal. This compartment ID is used, in the Register Key Table, to denote the compartment

the data in a register belongs to. If the register contains data belonging to a process executing

in the null compartment, that is also recorded here. Every time the active principal tries to read

from a register, the ownership of that register is checked against the Register Key Table. If the

register tag does not match that in the XOM ID Register, an exception is thrown by the XOM

3.7 Execute Only Memory 96

hardware. As data is stored unencrypted in registers on the XOM chip, it is this mechanism,

implemented in hardware, that prevents principals from viewing another’s memory space.

Table 3.12 shows the two commands,xsd andxld, used by an application executing in a

compartment to save and load data securely. As an executing principal generates data, it is

stored in memory with thexsd command. Initially, the data is stored unencrypted in an L1

or L2 cache line. The specific line is tagged with the compartment ID of the active principal.

The XOM CPU prevents principals from reading cache lines that are tagged with a different

compartment ID to its own. These tags are present on all caches inside the XOM CPU, and are

shown in Figure 3.5.

The process described above ensures the confidentiality and integrity of instructions and

data when it is unencrypted in the L2 and L1 caches, and in the register files. Data generated by

a programP executing in a compartment is also secured when it is evicted from the L2 cache,

and stored in main memory. Figure 3.5 shows the encryption and decryption of data occurring

at the boundary between the L2 cache and main memory.

When a cache line is evicted, the XOM CPU retrieves the symmetric compartment key from

the compartment table, and uses it to encrypt the data before it is stored in memory. This ensures

the integrity of the data. To ensure that data is not tampered with when stored in main memory,

the data is hashed. The hash used is a keyed cryptographic hash, or message authentication

code (MAC) [32, p.181]. Lie et al. describe the process of storing and retrieving data [37]:

Each time a cache line is written to memory, a hash of it is generated, and both the

hash and the cache line are encrypted. The hash pre-image contains both the virtual

address and the value of the cache line. When decrypting the cache line, a matching

hash must also be loaded before the XOM processor will accept the encrypted value

as valid.

In order to implement a properly multi-tasking operating system with the XOM chip, the

untrusted operating system must be able to save the state of the active principal when it is

interrupted. The operating system, in layerl1, is intended to execute in the null compartment.

The XOM architecture allows an untrusted operating system in layerl1 to schedule and interrupt

3.7 Execute Only Memory 97

Instruction Explanation

xsd $rt, offset($base) Stores register$rt to memory, tagging the cache line with
the active principal’s compartment ID.

xld $rt, offset($base) Loads the specified memory address into register$rt. If
the load results in a cache miss, the data is retrieved from
main memory, its associated hash is validated, and the value
decrypted and stored in the specified register.

xgetid $rt, $rd Get the register tag value of$rt and store it in$rd.

xenc $rt, $rd Check that the ownership tag of$rt matches that of$rd.
If so, use the contents of$rd to index the Register Key Ta-
ble to locate the corresponding register key. Encrypt the
contents of$rt with this key and place it in XOM private
memory registers$0...$3.

xsave $rt, offset($base) Store$rt, one of the private memory registers$0...$3, to
the memory address specified. The cache line is tagged with
thenull compartment.

xrstr $rt offset($base) Fill $rt, one of the private memory registers$0...$3, with
the encrypted value to be restored, located at the specified
memory address.

xdec $rt, $rd Use the contents of$rd to index the Register Key Table
to locate a register key. Decrypt the 256 bit value set by
xrstr, validate the result and restore to register$rt. Set
the ownership tag of$rt using the contents of$rd.

xmvtn $rt Sets the compartment tag of$rt to null, as long as the reg-
ister$rt belongs to the active principal.

xmvfn $rt Sets the compartment tag of$rt to that of the active princi-
pal, as long as the register$rt is in the null compartment.

Table 3.12: Adapted from [37], additional processor operations implemented in hardware to support XOM. Origi-
nal hardware is described in [64], while the new hardware is described in [37]

an active principalP executing in a compartment in layerl2, without resulting in a loss of

confidentiality or integrity forP. XOM implements an on-chip method of securely saving and

restoring the state of an active principal when it is interrupted.

Shown in Table 3.12, the commandsxgetid, xenc, andxsave, allow the operating system,

executing in layerl1, to securely save the state information of an application executing in layerl2

to main memory, without being able to view or modify that state itself. The commandsxrstr

andxdec are used to restore the context of a principal when it is scheduled by the operating

system.

Thexgetid command retrieves the compartment ID of the specified register$rt and stores

3.7 Execute Only Memory 98

it in $rd. The$xenc command ensures that the ownership tag of$rt is the same as the tag

stored in$rd. If it is, $xenc continues and encrypts the contents of with the correct register key.

The encryption process is outlined below.

The 64 bit register is encrypted with the register key, and stored in the first of four reserved

XOM register files,$0. The register ownership tag and register number are stored in$1. A 128

bit MAC is generated over registers$0 and$1, and stored in$2 and$3.

This 256 bit word is then stored in main memory at a location specified by an argument to

the xsave command. It is first cached in the L2 cache line, where it is tagged with the null

compartment. This allows the untrusted operating system to manage the encrypted context.

This process is repeated for all other registers in the ownership of the active principal.

To restore the context of a principal, the encryption process is reserved. Thexrstr com-

mand retrieves the 256 bit word, and stores it in the private registers$0...$3. The integrity of

the registers$0 and$1 are checked by calculating their hash, and comparing it with the hash

stored in$2 and$3. If the integrity check succeeds, the register key specified in$1 is retrieved,

and used to decrypt the value in$0. The decrypted value is stored back in the appropriate

register, again retrieved from register$1.

The register key used in the above process is distinct from the symmetric key used to decrypt

the instruction stream and encrypt and decrypt data stored in main memory. The register key

is generated by the XOM CPU, and is regenerated for each compartment each time a process

switch occurs. This prevents an attacker from replaying encrypted register values from previous

context switches. The register key is changed after a compartment’s context is restored.

The processes described above enable strong curtained execution for all principalsP1, ...,Pn

that execute in a compartment, by assuring the confidentiality and integrity of their individ-

ual memory ranges. In addition, a principal in layerl2 is protected during execution from a

malicious operating system in layerl1.

To enable principals executing in a compartment to communicate with other applications,

and process I/O, the XOM CPU provides two commands, seen in Table 3.12. These are the

move-to-null commandxmvtn, and the move-from-null commandxmvfn. These commands

simply change the associated compartment tag of a register, allowing data to be brought into or

3.7 Execute Only Memory 99

pushed out of a principal’s secure memory space.

3.7.3 Aspects of Trusted Computing

The XOM architecture, originally intended to prevent unauthorised execution, also provides a

form of attestation and sealed storage. Using the XOM architecture as the base of a trusted

computing framework is discussed only tangentially by Lie et al. in [37, p.190].

A XOM application attests to a third party by way of them both knowing some shared secret,

sayKshd. The method of preparing an application for distribution is outlined in Section 3.7.2 on

page 93. During this preparation, a secret keyKshd is embedded in the application image. This

can either be personalised for each customer, or be the same key for all copies of the application.

If the key is the same for all distributed copies of the application, two copies of that application

may attest to each other in a straight forward manner. To communicate securely, the two copies

of the XOM application simply encrypt their messages with the shared secretShk they both

have. As long as the symmetric keys which encrypt the application images are not decrypted

outside a XOM chip, the shared secret remains secure.

The model of attestation for XOM has one shared secret amongst all copies of the applica-

tion. This is vulnerable to abreak once, break everywhere(BOBE) style failure. To prevent

one compromised application invalidating the integrity of all others, each distributed applica-

tion must be customised, by embedding unique key pairs and certificates, before distribution to

the user’s machine. Specifically, more customisation than just differing headers for each XOM

CPU is required.

The XOM architecture implements sealed storage by making use of cryptographic keys

embedded in the encrypted binary image, similar to attestation. Given that an applicationP

must be unmodified in order to successfully execute on a platform,P can use a symmetric

key embedded in its own image to encrypt data before moving it to the null compartment and

storing it on untrusted, long-term medium. As with attestation, each application image must

be customised with a unique key to prevent a BOBE-class vulnerability, and to ensure that data

encrypted on one platform cannot be encrypted on another.

3.7 Execute Only Memory 100

The security primitives provided by the XOM architecture rely on the correct operation of

the software distributorD. The distributorD is required to customise a XOM applicationP by

embedding keys in the image for use with attestation and sealed storage, and encrypt the whole

of P with a unique symmetric key as described in Table 3.11. These keys should be unique toP,

and no record of them should be kept byD. A XOM-enabled application relies on the correct

operation of the XOM CPU, but is also dependent on the integrity of the distributor to properly

customiseP.

He who is firmly seated in authority soon learns to think security, and

not progress, the highest lesson of statecraft.

James Russell Lowell

4
Discussion

101

4.1 Introduction 102

4.1 Introduction

This chapter explores a number of issues with the implementations discussed in Chapter 3.1,

and describes some of the open problems in trusted computing that they highlight.

Section 4.2 discusses frameworks that only implement part of a trusted computing frame-

work. Section 4.3 discusses the difficulties with generating trusted code identities (measure-

ments) for software. Section 4.4 discusses the difficulties with implementing shared libraries,

and including them in statements of a programs functionality. Section 4.5 discusses resistance

to software attacks.

4.2 Partial Framework Implementations

4.2.1 LOCK

It is instructive to observe the differences between modern trusted computing platforms and

the LOCK system as a whole. Current trusted computing platforms are strongly tied to the

identity of the application. LOCK, on the other hand, concerns itself more with information flow

inside a specific application. Moving an existing application to the LOCK platform requires

considerable thought during design to correctly modularise the application. Rogers and O’Brien

describe this in [46]:

Rather than just decomposing the application along functional lines, it must also

be partitioned along security and integrity lines. The application designer must

identify the components of the application that require added security or integrity,

and modularise the application to isolate those components in separate subjects...

The design goal is to put each different security or integrity relevant task into its

own subject that runs in a distinct domain, and to isolate the data that these subjects

must handle into special types.

Discussed in Section 3.3, Microsoft intends NGSCB to be used in much the same way.

Those parts of an application which perform security-relevant computations should be imple-

4.2 Partial Framework Implementations 103

Unfiltered Data
Type

Unfiltered
Data

Filter
Domain

Filter
Process

Filtered Data
Type

Filtered
Data

Filter Code Type

Filter
Code

execute

read write

Dr Df

Figure 4.1: A filter process illustrating an assured pipeline as implemented in the LOCK system, adapted from
[46].

mented separately, and partitioned accordingly, so as to be implemented in the secure Right

Hand Side (RHS). Each module should perform its service or computation for the remainder of

the application, with interaction occurring through well-defined interfaces. This method of sys-

tem design and construction is well known, and is similar to object-orientated software design.

Mentioned in Section 2.3.3 was the use of sealed storage, based on the identity of the appli-

cation, to createassured pipelinesof computation. The type enforcement architecture of LOCK

lends itself ideally to the construction of these assured pipelines in software. An example of

such an assured pipeline is given in [46], through the construction of a filter to process data.

This example is shown in Figure 4.1. Shown is unfiltered (raw) data,Dr , being read by a filter

process,Pf . The filter domain is only able to read data of the typeDr , and only able to write

filtered data of the typeD f . Also shown is the filtering code, marked in the system’s DDT as

being only able to execute in the filtering domain. As only unfiltered data of typeDr can be

read into that domain, the filter is assured of operating correctly, filtering only appropriate data,

and writing it, once processed, to only the correct type.

As can be seen, the LOCK system is highly reliant on type definitions. During system

and application design, the designer must define named domains or types for all entities. This

designated name is relevant only on the local system itself.

4.2 Partial Framework Implementations 104

This is in contrast to modern trusted computing systems, where the identity of the appli-

cation is given by a secure hash derived from the executing code, and is invariant for all plat-

forms. The trust in the invariance of the derived hash is dependent on trusting layerl0 to operate

correctly. On a LOCK system, layerl0 is a secure coprocessor trusted to enforce domain inter-

actions correctly. However domain, type, subject and role information is created by a system

administrator and stored in layerl1. This is trusted axiomatically, like layerl0, because the

LOCK system was not designed to withstand attacks from a local administrator, only a local

user. A LOCK system is capable of providing and enforcing all of the trusted computing prim-

itives except attestation.

A LOCK system is intended to be designed, developed, and verified as a whole, in order

to ensure that the relevant security policies are correctly enforced. Once this process has been

completed, a LOCK system remains relatively static. Code intended to run on a LOCK system

must be compiled elsewhere and introduced to the system by an administrator, who ensures that

the required additions and changes to the LOCK Domain Definition and Domain Interaction

Tables to not compromise any security policy.

It should be obvious that the complicated development procedure required to use a system

such as LOCK precludes the use of the platform as a usable general purpose computing device

(Section 2.2).

4.2.2 Hardware Assured Security

The AEGIS, IBM 4758, and XOM architectures all assure their security primitives with an

axiomatically-trusted layerl0 hardware device.

The IBM 4758 and XOM architectures are capable of withstanding attacks on the confiden-

tiality and integrity of their assured programs and data from a malicious system administrator.

Both rely on an untrusted host in order to ensure availability. A malicious system user or admin-

istrator is able to perform a naive denial of service attack by simply turning the untrusted host

off. A more advanced denial of service attack, that does not reduce the usability of the system

for the attacker, can be accomplished by a system administrator for both systems. A malicious

4.2 Partial Framework Implementations 105

operating system, running on the XOM architecture, is capable of preventing XOM-enabled

applications from executing by either starving their scheduled execution time, or modifying

the encrypted application image. An IBM 4758, able to be administered by a distinct entity

to that of the host platform it runs in, is able to ensure the long term availability of a limited

amount of data. However, it is limited in internal capacity and in practise will need to rely on

the untrusted host for storage of arbitrarily sized data. These two examples serve to show that

assuring availability is considerably harder, and more expensive, than assuring confidentiality

and integrity.

The AEGIS system is not intended to provide secure booting in the face of a malicious sys-

tem administrator. To be of practical use, the integrity measurements AEGIS validates to ensure

layer ln+1 has not been tampered with must be able to be upgraded. Software environments, as

discussed in Section 2.2, require the installation of patches and upgrades in order to remain

secure in the face of newly-discovered vulnerabilities and bugs. This process requires a system

administrator capable of generating the required integrity measurements and installing them in

layersl0, ln−1 wheren is the last layer measured for integrity.

In order to prevent naive denial of service attacks, and guarantee availability in the face

of non-malicious corruption of a layerl i , wherei > 0, the AEGIS architecture is capable of

retrieving valid copies of upper layer software. For this, a layerl i must be able to contact a

trusted, secure host to retrieve a copy of the software component in layerl i+1. This retrieval

method is only viable in the face of naive DoS attacks through modification and non-malicious

corruption of layerl i+1. Performing a denial of service attack on a typical network transport

layer is trivial. This guarantee of availability can be strengthened through appropriate securing

of the transport layer used to connect with the trusted host. Again, the AEGIS system shows

the difficulty and cost in assuring availability when compared with integrity and confidentiality.

The XOM implementations of sealed storage and attestation are unsatisfactory, as described

in Section 3.7.3 on page 99, and rely heavily on the behaviour of an application distributor

D. Even if D is trusted to behave correctly, the distribution method is necessarily inefficient,

requiring the individual customisation of each application copy. It is possible to imagine the

use of XOM, as initially described by Lie et al. [37], to be appropriate for only a few classes

4.3 Generating Trusted Measurements of Applications 106

of applications. An application distributorD would be required to implement the procedure

outlined above for each copy of their application downloaded over the Internet. Applications

could be customised, encrypted and stored on CD/DVD media for later distribution, but a user is

still required to interact with the distributor to obtain the unique symmetric key used to encrypt

their copy.

4.3 Generating Trusted Measurements of Applications

Section 2.1 on page 7 discusses the motivations for an open source trusted computing frame-

work. An open source framework allows a user to trust the code based on her own examination,

or to make a decision to trust the code on the basis of its examination by a group, or groups, of

people that they trust. Section 2.3.2 on page 28 discusses the importance of a cryptographically

secure code identityID(P) to strongly identify the functionality of a programP.

With a software environment capable of compilingP, a user is able to obtain the source

code ofP, and compile it herself. She can then generateID(P) and obtain the code ID of a

P compiled from known source, in a known environment. Recall the assertion of Thompson

[65]: a user cannot trust the compiledP any more than she trusts the software environment that

was used to compile it (assembler, linker, compiler, etc). This implies that a user who highly

depends on the integrity ofP, measured byID(P), must only trust a measurementID(P) she

has generated herself.

A measurementID(P) of P that a user does not generate herself does not guarantee the

integrity or correctness ofP itself. Instead, repeated presentations ofID(P) in an attestation

vector only guarantee the non-modification ofP from challenge to challenge.

Let a platformρ, used to compileP from source, generate aPρ that gives a measurement

ID(Pρ). Two platformsρ and ρ′, used to compile identical copies of the source code ofP,

are unlikely to produce identical binaries ofP. This results in distinct measurements ofP,

ID(Pρ) 6= ID(Pρ′). Differences in the compiled versions ofP,P′, as measured by comparing

ID(P) 6= ID(P′), result from the compilation ofP 6= P′. These differences cannot be distin-

guished fromID(P) 6= ID(P′) resulting from differences in the software environments used for

4.3 Generating Trusted Measurements of Applications 107

the compilation ofP = P′ on ρ andρ′.

Reconciling the disconnection between the source ofP and a compiled version ofP iden-

tified by ID(P) in general is an open problem in trusted computing. The RPOW architecture

(Section 3.6.1 on page 91) has solved this problem for one application through publishing the

specific software environment used to compile the software that executes on the IBM 4758.

Recall the Reusable Proof-of-Work (RPOW) server discussed in Section 3.6.1 on page 91.

The RPOW system administrator [8] makes available the complete compilation environment on

the platformρ′ used to generate the binary running on the IBM 4758 server. The specifications

given include the GCC version number, as well as other tools that affect the final binary. A

user is able to reproduce this software environment on their own machineρ, and generate an

identicalP, such thatID(Pρ) = ID(Pρ′), compiled from source. This solution cannot practically

be repeated for every piece of software that a user wishes to trust. Below we propose a number

of possible approaches to solving this problem in general.

1. An open trusted computing framework community could prescribe an approved, official

(and necessarily open) software environment to be used to compile applications.

2. Attestation vectors could include compilation environments for eachP, along with the

generatedID(P).

3. Distributed compilations by members of the community lead to many differing versions

of Pi , resulting in manyID(Pi) that are considered correct compilations ofP from source.

Proposal 1 would allow a user to recreate the software environment used to compile a spe-

cific applicationP, and to generate an identical measurementID(P) for P as presented in an

attestation vector by another party. The difficulties in managing prescribed software environ-

ments for arbitrarily large numbers of programs would be non-trivial. This approach has the

benefit of allowing a naive user to trust a group, or groups, to maintain their own software envi-

ronment, as prescribed by the framework community. These groups would check the integrity

of a compiledP, such thatID(P) = ID(P′), and publish matches and discrepancies as required.

4.4 Shared Libraries 108

Proposal 2 allows software authors to control the software environment used to compileP

themselves. The inclusion of a statement about the compilation environment with all applica-

tions would require a complicated PKI to ensure the integrity and validity of the statements.

This is equally non-trivial.

Proposal 3 relies on a secure server to store multiple computed measurementsID(P) of P

generated by individual members of the community. An attestation protocol would contact one

of these servers and submitID(P) for each application in the vector as required. The server

would return information aboutP such as the application name, version, and author as well as

the compilation environment used to generatePi . It would also return the number of times the

measurementID(Pi) had been submitted forP, as well as other measurements ofP generated

in different compilation environments.

A user could make a decision to trustP based on a statistical calculation of the number of

people that generatedID(Pi) for theP in question, compared with the number of people who

generated a distinctID(P j). For example, a single measurementID(Pi) with a significantly

greater number of measurementsID(P j), could lead a user to conclude thatP had been ma-

liciously modifiedP→ P′ before compilation, and the measurementID(P′) submitted to the

server in an attempt to fool her.

This method relies on the assumption that, as the number of peoplen performing non-

malicious compilations and measurements ofP increases, the frequency of distinct measure-

mentsID(P) for P being generated decreases, i.e. that there is a finite number of compilation

environments that generate distinctID(P) 6= ID(P), for P = P. This assumption may not be

correct.

4.4 Shared Libraries

It is important to note the differences between a XOM attestation and an attestation of the

NGSCB and the TCG frameworks (see Sections 3.3 on page 76 and 3.2 on page 51 respec-

tively). In XOM, the validity of an application’s attestation is based on the assumption that the

symmetric key which encrypts the application binary is never exposed outside a XOM chip.

4.4 Shared Libraries 109

Also, standard cryptographic techniques are employed to ensure that a modified application im-

age cannot be executed successfully. Contrasted with NGSCB and TCG models, the end-user’s

trust in the validity of an attestation requires trust in the distributor of that application to properly

ensure the confidentiality of the shared secret, as well as trust in the manufacturer of the XOM

CPU. An NGSCB or TCG attestation is considered valid if the manufacturer of the TPM device

ensures the key used to sign the attestation vector is kept secret. These differing attestation

procedures result in differing methods of properly measuring shared, or dynamically-linked,

libraries as discussed in Section 2.3.2.

The XOM architecture, designed by Lie et al. [37] allows an untrusted software agent, the

operating system in layerl1, to manage a trusted resource (the XOM CPU), and allow software

in layer l2 to execute on that resource, while assuring its integrity and confidentiality. With

the trend in modern day software application architectures away from monolithic application

code, and towards using dynamically shared libraries executing in either layerl1 or l2, it is

expected that software in layerl2 will wish to execute both securely as well as be reliant on

shared libraries for functional integrity.

Third party software libraries can either be statically linked during compilation, or linked

at run time by the operating system. For the XOM architecture, the former case allows easy

inclusion of third party libraries, at the cost of an increase in size in the final application. Such

an increase in size comes with the benefit of a decrease in the required number of context

switches, resulting in a slight performance improvement. In the latter case, the compartmental

operation of the XOM architecture prevents code not encrypted with the same key from reading

a principal’s registers. Lie et al. address this issue [37, pp 185-186]. It is their intention, in

line with the modularity principal discussed in Section 3.4.1, that third party code critical to the

security of the application, i.e. OpenSSH [6], should be statically linked during compilation.

The counter example, of standard I/O routines, can execute insecurely through dynamic linking

at runtime.

An active principal in the XOM architecture calls dynamically-linked code in a specific

manner. It must first copy parameters intended for the called library to the null compartment. It

must then call the unencrypted, dynamically-linked code to run in the null compartment. When

4.4 Shared Libraries 110

the linked code finishes executing, the XOM application can copy the results from the null

compartment. As discussed in Section 3.2.2, this results in the principal relying on possibly

modified shared libraries for functional purposes.

4.4.1 NGSCB

Microsoft’s NGSCB framework precludes the use of third party shared libraries. Additionally,

code intended to execute as an NCA on the secure Right Hand Side (RHS) must be modified to

execute under the secure kernel known as the nexus. NCAs can be full applications, or a limited

security-relevant component of an application or a service. This is similar to the modularity

suggested by the designers of the LOCK system (Section 3.4.1 on page 82). During the NGSCB

presentation at Microsoft’s 2003 PDC [23], the concept of Trusted Service Providers (TSP) was

introduced. The difference between a TSP and a standard NCA is only logical. It is intended

by Microsoft that as the NGSCB environment matures, TSPs will be developed that provide

standard services and capabilities in secure, trusted code. They will function similarly to public

shared libraries on the LHS. They will provide libraries to NCAs, typically like an RPC call,

and will work through Inter-Process Communication (IPC). The attestation vector of an NCA,

seen in Figure 3.3 on page 80, will be modified to include all TSPs that the NCA calls on.

Previous work by the author [20] showed that it is possible to refactor an existing application

P into secure and insecure modules in order to solve existing vulnerabilities inP:

[Our] integration illustrates that it is possible to redesign an existing application

to make use of the new security primitives provided by NGSCB, without being

forced to redesign completely, discarding the existing usability and strengths of an

application.

This research showed that, for certain application classes, it is possible to implement security-

relevant functionality separately, without being forced to redesign the entire application.

4.4 Shared Libraries 111

4.4.2 Trusted Platform Module

The measurement of shared libraries in the layerl1 and l2 systems discussed for the TCG’s

Trusted Platform Module differs due to the implementations of attestation built by Marchesini

et al. and Sailer et al.

Our definition of attestation (definition 2.5 on page 47) requires the attestation vector to

include the identities of all principalsQ1...n able to affect the state ofP. The Trusted Computing

Group’s Trusted Platform Module v1.2 specification does not provide curtained memory. This

means that, as discussed in Section 2.3.4, any principalQ in layer l1 is capable of affecting the

state of a principalP in layer l2 or layerl1. Any attestation vectorAV for a principalP on ρ in

layer l2 must include all principalsQ1...n that are able to affect the state ofP. This is dependent

on the operating system controls and code loaded into layerl1, and their use of the functions

provided by the TPM in layerl0.

Implementation of Sailer et al.

The implementation work carried out by Sailer et al. [53] (see Section 3.2.7 on page 66) was

done on a Redhat 9.0 system. Recall Table 3.7 on page 74 that shows the integrity challenge

protocol. Step 5c. involves the verification of the Stored Measurement Log (SML). Each mea-

surementID(P) in the SML must be classified by the verifier, and a decision then made about

the integrity of the attesting platform. This implementation enables the use of shared libraries,

as all code used on byP is identified in the SML. Any decision about the integrity of aP that

depends on shared libraries for functional importance can be made knowing the integrity of

those shared libraries.

Work by Sailer et al. [52] classified applications into five classes depending on their abil-

ity to affect the integrity of the system, shown in Table 4.1. Sailer et al. classify only those

programs in theknownset, and did not include in their discussion classification of measured

structured data with identifiable security semantics. Table 4.1 has been extended with these

extra classifications. Structured data, typically a configuration file, known to enable possible

vulnerabilities in an associated program, reclassifies that program as either remotely or locally

4.4 Shared Libraries 112

Class Explanation

Malicious Programs known to be malicious, such as versions of system tools
found in root kits, or those designed to attack the measuring system
directly.

Remote Vulnerabilities Programs that rely on unstructured data from the network, such as
e-mail or web browsers, with known vulnerabilities. Acceptable
programs configured with structured data known to cause remote
vulnerabilities.

Local Vulnerabilities Programs that rely on unstructured data from local input, and are
known to have vulnerabilities. Acceptable programs configured
with structured data known to cause local vulnerabilities.

Uncontrolled Programs that change the software stack, but have not been instru-
mented to measure and record the changes.

Acceptable Programs with no known vulnerabilities or malicious code that do
not enable the user to circumvent measurement system. Also struc-
tured (configuration) data associated with an acceptable program
that maintains that program’s integrity.

Unknown Unidentified programs and structured data.

Table 4.1: Integrity classes of software, adapted from [52].

vulnerable. Additionally, structured data known to configure an acceptable programP in a

manner ensures the integrity ofP is classified as acceptable.

For the framework implementation described by Sailer et al. the known set of measurements

included “all Redhat 9.0 programs and libraries including updates, the fingerprints of our own

extensions for client policy control, acceptable kernels, and boot configurations” [52, §4.1].

This measurement process is known as anenrolment scheme. Sailer et al. enrolled the Redhat

9.0 platform into their classification by generating measurementsID(P) for all programs and

structured data. Each measurement was classified asacceptable, as defined in Table 4.1.

Establishing and implementing an enrolment scheme for a single, well-defined platform

(Redhat 9.0) and environment is trivial. The problem quickly becomes non-trivial as the en-

rolment scheme is scaled to include other platforms and software, and enrolment performed by

other parties. The issue of establishing a link between a code identityID(P) and a specified

applicationP are discussed in Section 4.3 on page 106. The implementation of attestation pro-

posed by Sailer et al. mitigates those problems through defining a compiled set of applications

that are considered trusted.

4.4 Shared Libraries 113

We introduce the notationTq and Tq′ to indicate a point in time at which an application

Q begins executing (Tq) and finishes executing (Tq′). Consider an applicationQ that starts

executing at timeTq and finishes executing at timeTq′. Consider also an applicationP that

starts executing at timeTp, where< indicates ‘before’ andTq < Tp < Tq′. Recall the code ID

measurements of applicationsP andQ are taken immediately beforeTp andTq respectively. An

attestation vectorAV prepared for applicationP, denotedAV(P), attests to the identity ofP at

timeTp. However, the attestation vector itself is prepared afterTq′. No assurance thatQ has not

affected the state ofP during the periodTp → Tq′ can be given withoutP executing in assured

curtained memory. The attestation vectorAV(P), to comply with definition 2.5 on page 47, must

contain the code ID of all applicationsQ1...n able to affect the state ofP. This set of applications

includes all that executed at any point in time afterTp, including those that finished executing

beforeAV(P) is created.

This means that any attestation vector forP from ρ is required to include the identities of

all other principalsQ1...n on ρ. This obviously leads to a significant loss of privacy for any

user ofρ, forcing them to include the identities (through the Stored Measurement Log) of all

applications on their computer. It also greatly increases the complexity of a decision by another

platform ρ′ to trust the software configuration ofρ. Given the abilities of a general purpose

platform, as described in Section 2.2, making a decision to trust anAV that contains code IDs

of unknown applications may be impossible.

Consider a measurement verification policy ofρ′ that considers the integrity ofρ to be

unsatisfactory if any application not considered acceptable is found in the SML. This results in

a service not being supplied byρ′, or in ρ′ not using a service provided byρ. Recall that the

measurement system onρ will invalidate the SML if it detects one of the cases in Table 3.6 on

page 73, requiring a reboot before any attestation will succeed. Ifρ executes anyunacceptable

or unknownapplication before attempting an attestation it will fail, and require a reboot ofρ

before the attestation will succeed.

Given the prevalence of applications with known local or remote vulnerabilities, regular

reboots may be required. With the increased stability and functionality of modern operating

systems, this sort of user experience has long been considered unacceptable. Alternatively, a

4.4 Shared Libraries 114

Issues

Establishing suitable enrolment scheme to move digests fromunknownto
known.

Managing movement of measurements fromacceptableto vulnerable.

Reliance on PKI to distribute measurement lists.

Timing attacks used to exploit different versions of the classification list.

Classification of a program asacceptablemay not reflect its actual in-
tegrity or security properties.

Closed source programs can have measurements performed and signed by
authors.

User compilation of open source programP results in many distinct mea-
surements ofP.

Table 4.2: Issues with enrolling and managing application measurements.

weaker policy could allow some quantity of vulnerable programs to be present in the SML.

However, user knowledge of these programs could lead to their use and installation purely to

exploit their vulnerabilities.

The implementation of a large scale enrolment scheme to generate and maintain correct clas-

sifications of programs and structured data raises a number of issues distinct to those discussed

in Section 4.3. These issues are summarised in Table 4.2, and discussed briefly below.

The enrolment scheme must ensure that only acceptable programs, i.e. those without any

known vulnerability, are classified as acceptable. Doing this in a distributed environment re-

quires trust in third parties to correctly analyse a program and make a statement about its ac-

ceptability, as well as a PKI to distribute those statements securely. An applicationP that has

been enrolled and classified, in some manner, asacceptablemay become considered vulnerable

at some later point in time. Both the initial enrolment and any later reclassification of an accept-

able program as vulnerable must ensure that programs are truly vulnerable. An attacker should

not be able to force an acceptable program to be wrongly classified as vulnerable. Any deci-

sion about the integrity of a platform will require an evaluation of the cost of false rejections or

false acceptances. Preventing malicious classification of programs as vulnerable requires care-

ful administration of the enrolment scheme, and it may not be possible to achieve a completely

correct classification.

4.4 Shared Libraries 115

All verifications of an SML log must be performed against the most recent classification

list, to prevent attackers from exploiting the time period between updates to a locally-cached

list from a central repository. The classification of an application asacceptablemerely indicates

that it is thoughtto not be vulnerable to attacks that allow the subversion of the integrity of the

platform it executes on. An operating system distributor, such as Redhat, can perform and

distribute measurements of their product for inclusion in the classification lists. For individual

software applications released as binaries, measurements may be obtained from the author. The

compilation of open source software by users may result in considerable numbers of programs

in an SML to be consideredunknown(see Section 4.3 on page 106). A solution to the issues

listed in Table 4.2, and discussed above, that result from a classification scheme (Table 4.1)

being used to make decisions about the integrity of a remote platform, is an open problem.

There are two other important points to note about the implementation described by Sailer

et al. One of these is the partially-ordered nature of the SML, and the other is the vulnerability

of the system to Time Of Check to Time Of Use (TOCTOU) class attacks.

Recall that repeated executions of a programPdo not result in repeated additions ofID(P) to

the Stored Measurement Log (SML, Section 3.2.7 on page 66). Consider an interaction between

two distinct programsP andQ, that exposes a vulnerability whenP is executed beforeQ. In

notation introduced above, this can be stated asTp < Tq, whereTp is the point in time whereP

is executed. Consider an SML log indicating the execution ofQ beforeP (Tq < Tp). Given that

repeated executions ofQ are not recorded, this statement shows that an execution sequenceTq <

Tp < Tq, resulting in the vulnerability exposed byTp < Tq, may have occurred. The measurement

system, as currently designed, is not intended to expose such execution sequences onρ. The

measurement system was designed like this to keep the size of the SML to a minimum, so that

it could be easily transmitted toρ′. While every execution could be recorded in the SML, long-

lived execution ofρ may result in the size of the SML increasing beyond the storage capacity

of ρ.

The attestation vector does not assure the integrity ofρ at any point in time after it has

been generated, so Sailer et al. [53] intend attestation to occur twice for any transactionΘ

— immediately beforeΘ and immediately afterΘ. We propose the following attack, where a

4.4 Shared Libraries 116

platformρ is compromised after a valid attestation vectorAV has been generated and transmitted

to ρ′, who verifies the integrity ofρ as suitable.

Consider a platformρ responding to an attestation challenge, intended to assureρ′ the in-

tegrity ofρ is suitable for some transactionΘ to occur. There is some non-trivial time∆ between

the generation of the attestation vectorAV on ρ and the beginning of the transactionΘ on ρ.

This time∆ is made up of a number of components:

1. The transmission ofAV from ρ to ρ′.

2. The verification ofAV on ρ′

3. The transmission ofΘ from ρ′ to ρ.

Of the three components of∆, ρ′ is only able to affect the first and third. The attacker onρ

wishes to delay the start of the transactionΘ until he can compromiseρ. He must therefore not

act suspiciously untilρ′ has verified the SML and issuedΘ. There are many possible ways this

could be done. As an example,ρ could compromise the integrity of the network link causing

repeated re-transmission ofΘ by ρ′.

In general, the attesting platformρ can delay the start ofΘ on ρ, by maliciously extending

∆, until they are able to compromise the integrity ofρ. The delayedΘ would then be processed

onρ in a state that would cause an attestation challenge to fail. The second attestation challenge

from ρ′, intended to occur immediately after the completion ofΘ, could be ignored byρ. The

challenging partyρ′ would be left uncertain as to whetherρ had been subverted by a malicious

attacker, or simply suffered from hardware or network failure.

This observation implies that an attestation vector must guarantee integrity ofρ for some

non-trivial period of time into the future. Otherwise, any conclusion drawn byρ′ about the

integrity of ρ for a transactionΘ is reduced to simply trusting the local administrator to not

delayΘ and compromiseρ as described here.

Implementation of Marchesini et al.

The attestation protocol implemented by Marchesini et al. [40] (see Section 3.2.7 on page 66)

exposed limitations of both their implementation and the TCG specification. One of these was

4.4 Shared Libraries 117

the ability of a root or superuser, known as an administrative user in our threat model (see

Section 1.2), to modify the memory space of other applications [39, p.11]:

... a simple test on Linux shows that, without further countermeasures, the root user

can manipulate the memory space of other processes with a debugger.

This vulnerability, well documented when discussing curtained memory in Section 2.3.4,

leads to a possible TOCTOU attack on their system. The code IDs of the long-lived and

medium-lived software are generated directly before they are loaded. The inability to secure

the code base from the root user leads to the possibility of the AIK and SK keys being released

to the SSL web server, after which a malicious administrative user uses a debugger to modify

the executing code. Marchesini et al. also consider the possibility of hardware based attacks,

possible even if the root user can be prevented from modifying the memory address space of

other programs. Such an attack involve some internal bus, perhaps an IEEE1394 OHCI Firewire

bus, being used to write directly via DMA to some processP’s address space, afterID(P) has

been generated.

As discussed in Section 3.2.7 on page 66, Marchesini et al. integrated the NSA’s LinuxSE

mandatory-access control system into their framework to allowcompartmented attestation.

While the integration itself was successful, defining a usable security policy was non-trivial,

and in one instance resulted in a system that required a complete re-installation. In addition, it

is not clear that the information about the defined SELinux security policy onρ required to be

sent toρ′ does not result in equivalent privacy concerns as an attestation vector attesting to all

programs onρ. Marchesini et al. describe the usability of SELinux as less than satisfactory:

The policy language is robust and expressive, but is also cumbersome to learn and

use. It is not always clear how to state the security goals of the system and then

build a policy which accomplishes those goals.

Their attempted implementation concerned only one program, with only one associated

security goal. The difficulty for specifying a security policy in SELinux for a general purpose

computing platform, with many programs, perhaps with conflicting security goals, would be

4.4 Shared Libraries 118

Requirements of attestation protocol Marchesini et al. Sailer et al.

1. Withstand software attacks. · ?

2. Mitigate TOCTAU-class attacks. ? ·

Requirements of attestation vector

3. Mitigate losses of privacy. · ·

Table 4.3: Features of attestation implementations by Marchesini et al. and Sailer et al. A star (?) indicates the
feature is present.

exponentially more difficult. An implementation of the framework proposed by Marchesini

et al. [40] for a general purpose computing platform (Section 2.2 on page 20) would severely

restrict its usability. Integrating shared libraries into the access policy could, in theory, be done

securely. An attestation vector from the framework proposed by Marchesini et al. could include

those software compartments that contained the shared libraries.

The design of a powerful, robust mandatory access policy language that allows developers

and end users to succinctly specify their security goals is still an open problem in the field of

trusted and secure computing research.

Summary

The two attestation procedures discussed here both fail to fulfil all of the requirements of an

attestation procedure discussed in Section 2.3.5, Table 2.5. Table 4.2 summarises those elements

of Table 2.5 that either implementation fails to provide. Marchesini et al. fail to secureρ from

an administrative user. Their integration of SELinux results in a difficult and cumbersome

to manage system that is non-trivial to reconcile with the requirements of a general purpose

computing platform, discussed in Section 2.2. However, it does allow an attestation vector to

give some guarantee of the integrity ofρ into the future. It is not clear that attesting the presence

of a SELinux-enabled kernel, along with only a specific software compartment’s security policy,

properly assuresρ′ of the integrity of that compartment. The entire security policy ofρ may

need to be attested, resulting in privacy concerns.

Sailer et al. do succeed in protecting from the administrative user, by non-intrusively causing

4.5 Resistance to Software Attacks 119

future attestations to fail if a possibly malicious situation occurs. However, they do nothing to

reduce the privacy implications of the SML. Protection from TOCTOU attacks is limited, only

succeeding in assuring a challenging platformρ′ that a platformρ could be trusted throughout

a transaction when it is not compromised. A compromised system can fail to report its status,

leavingρ′ unsure of the final status of the transaction. In addition, with heterogeneous soft-

ware distributions onρ in layersl1 andl2, enrolling and maintaining the list of acceptable and

unacceptable programs is non-trivial. It also appears to preclude a user compiling their own

software, as such software appear asunknown. Any reasonable security policy onρ′ would

require an unknown entry in the SML to causeρ′ to distrust the integrity ofρ.

4.5 Resistance to Software Attacks

The threat model for trusted computing, discussed in Section 1.2, requires a framework to be

resistant to all forms of software attack. This section analyses both the Trusted Computing

Group’s TPM specification and Microsoft’s NGSCB from this perspective.

4.5.1 Trusted Platform Module

Recall that the Trusted Software Stack (TSS) in layerl1 (see Section 3.2.1 on page 52) enforces

synchronised access to the Trusted Platform Module in layerl0. The TSS works in conjunction

with a TPM Device Driver [67, p.16]:

The TPM Device driver is typically provide by the TPM manufacture and incorpo-

rates code that has understanding of the specific behavior of the TPM. This code is

expected to be loaded and function in Kernel Mode... The TSS exclusively opens

the TPM device driver; the driver does not allow any applications to have an addi-

tional connection to the TPM device besides the TSS.

Given the location of the TSS outside the Trusted Computing Base, it is vulnerable to soft-

ware attacks, and cannot be assured to operate correctly. It executes as a kernel-mode driver,

operating in layerl1. It is vulnerable to attacks by other code in layerl1. A simple attack in-

4.5 Resistance to Software Attacks 120

volves another principalQ in layer l1 issuing commands to the TPM, thereby invalidating an

existing session through whichP is issuing commands to the TPM. A principalP, executing

in layer l1 or above is unable to be guaranteed exclusive access to the TPM in layerl0. Our

analysis concludes that this construction, coupled with the TPM’s lack of curtained memory,

allows a possibleinsertion attackto occur, shown in Figure 4.2, as well as a denial of service

vulnerability.

As discussed in Section 3.2.2 on page 57, a measurement (see definition ofM[x](R) on

53) of a code IDID(R) is taken of an applicationR before it begins executing in layerl2.

If R is of a length greater than 64 bytes, the measurement requires at least 3 commands to

be issued by the measuring principal, in this caseP. The computation of a SHA-1 hash of

R of lengthR.length> 64 is ann-tuple set of commands(1,2,3, ...,n), wheren > 2 and ap-

proximatesR.lengthmodulo the maximum data size specified byTPM SHA1Start. The first

command,i = 1, is TPM SHA1Start. The last command,i = n, is TPM SHA1Complete or

TPM SHA1CompleteExtend. The middle commands, 1< i < n, areTPM SHA1Update.

Our attack, proposed below, assumes that a principalQ in layer l1 is able to monitor the

commandsP in layer l1 issues to the TPM. It can do this in at least two ways. The first is by

preventingP from using a session to ensure the confidentiality and integrity of its commands,

by consuming all available sessions with the TPM itself. It is then able to issue commands, as

discussed below, without invalidatingP’s interaction with the TPM.

The alternative is through monitoringP’s execution. The Trusted Computing Group’s v1.2

specification discussed here does not include provisions for assured curtained memory. This

means that a principal at layerl1 is able to view and modify the memory space of another

principal in layerl2, and in layerl1. When the callerP sets up the session, a shared secret is

established betweenP and the TPM. This shared secret is used to provide confidentiality and

integrity. A rolling nonce is used to prevent replay and man-in-the-middle attacks. With no

assurance of memory confidentiality or integrity, the secret values shared betweenP in layer

l2 or l1 and the TPM are able to be viewed and modified by any principalQ in layer l1. The

following attack assumes either of the two methods for inserting TPM commands described

here are possible.

4.5 Resistance to Software Attacks 121

R

P Q

TPM SHA1Start

TPM SHA1Update

1

2

...

n

n−1

TPM SHA1Update

Time}

TPM SHA1Update

}

TPM SHA1Update

}
}

{

R

d

R′ =

TPM SHA1Complete
Extend

d

Figure 4.2: An insertion attack being used by Q to force P to generate a measurement of an application R before
R begins executing. The program R′ is shown with d inserted into its measured image.

Figure 4.2 shows this attack. Consider the issuing of ann-tuple command sequence intended

to measure an applicationR, beforeR begins executing in layerl2. The operating systemP on

the left calculates a measurement of an applicationR, through issuing multipleTPM SHA1Update

commands, each one passing the TPM a range of bytes fromR. The operating systemP cannot

be assured that another principalQ in layer l1 will not maliciously issue aTPM SHA1Update

sometime betweenP’s issuing of the first command and the last.

An attackerQ, on the right, issues anTPM SHA1Update command, specifying some arbitrary

datad. The value ofd is not important, as it is only used to cause the TPM to generate an

incorrect measurementID(R′), such thatID(R) 6= ID(R′). The result, whenP finishes issuing

all its TPM SHA1Update commands and finally callsTPM SHA1CompleteExtend, is an incorrect

calculation of code identity (measurement) of the applicationR. The operating systemP then

allowsR to start executing, with an incorrectID(R′) stored in the Stored Measurement Log and

PCR register. There is no way forP to test the validity of the returned measurement, except for

re-computing it either using the TPM, or through an implementation in software. IfQ is able

4.5 Resistance to Software Attacks 122

to control the ordering of the maliciousTPM SHA1Update call, relative toP’s TPM SHA1Update

calls, the same incorrect measurement will be obtained for all ofP’s repeated computations of

ID(R).

The specific attack described above can be generalised. We refer to it as aninsertion attack.

An attackerQ in layer l1 is able to insert arbitrary TPM commands into a TPM command

sequence issued by applicationP, in layerl1 or l2. We refer to TPM commands that require the

issuing of ann-tuple command sequence to use as stateful commands. An attackerQ is able to

modify the output of stateful commands by inserting TPM commands, as appropriate, into the

n-tuple sequence issued byP.

A general solution to this vulnerability involves virtualising the TPM at layerl0 inside the

TCB, so that principalsP andQ are assured of interacting with logically distinct TPMs. A lim-

ited solution is modifying the function signatures of theTPM SHA1Update, TPM SHA1Complete,

andTPM SHA1CompleteExtend commands. Their function return signatures could either in-

clude the number of bytes processed so far, or the number of timesTPM SHA1Update has been

called sinceTPM SHA1Start. Either would allow a principalP to discover if another principal

Q had issued maliciousTPM SHA1Update calls as described above. This solution would pre-

vent an attack based on the second of the two possible methods for maliciously inserting TPM

commands described above. These solutions are discussed further in Chapter 5.

The complaint of Marchesini et al. about the complexity of SELinux (Section 4.4.2 on

page 111) seems equally applicable to the TCG’s TPM specification, and the difficulties in

assuring correct usage of the security primitives it provides. Specifically, the complexity of the

AIK creation procedure through a Trusted Third Party (Section 3.2.4 on page 61), caused con-

cern. When coupled with the additional requirements of creating a storage bound to the identity

specified in the attestation identity key Marchesini et al. stated [39, p.14]:

The complexity of this process troubles us. In security, one should be careful about

trusting something that is too big to fit into one’s head. It takes a long time to find

the right combination of commands and properties from the specification. What

othercombinations are present? Are there any combinations that enable function-

4.5 Resistance to Software Attacks 123

ality that the designers did not intend?

Their implementation experience was done with v1.1b of the TPM specification. The spec-

ification discussed in this thesis is version 1.2. It should be noted that the latest version of the

TPM specification discussed here does include support for Direct Anonymous Attestation [21].

With this, a Trusted Platform Module is able to anonymously attest to a challenger, without

requiring the indirection of a trusted third party.

However, no other complexity has been removed between versions. This issue does not

affect the functionality or features provided by the TPM, but it does impact the ability of ap-

plication developers to interact with the device, correctly leveraging the security primitives it

provides. Without a trusted, standardised software kernel to interface with, developers writing

code to run in layerl2 may face considerable difficulties in validating the security properties

of their code’s interaction with the TPM. The TCG specification requires lengthy sequences of

commands to be issued by an applicationP to implement some security function. This require-

ment, coupled with the insertion attack described above, leads us to conclude that the SHA-1

sequence of commands may not be the only sequence that allows an attacker to successfully

subvert an applicationP.

Standardising an interface for the TPM, inside the Trusted Computing Base, that allows

applications to atomically execute commands yet also retain the power and flexibility of a com-

prehensive API, is an open problem in trusted computing research.

4.5.2 NGSCB

Recall that Microsoft’s Next-Generation Secure Computing Base (Section 3.3.1 on page 76)

implements weak curtained memory, as defined in definition 2.4 on page 41. This partitions

system memory into two, with secure Right Hand Side (RHS) software running with increased

privileges in order to address the curtained memory.

NGSCB uses a secure kernel, called the Nexus, to manage applications that execute on the

RHS. Figure 4.3 shows a Nexus Computing Agent (NCA) in layerl2 requesting theunseal

operation be performed on some data by the Nexus in layerl1 on the TPM in layerl0. An NCA

4.5 Resistance to Software Attacks 124

Principal -&%
'$

-Request Guard - Resource

NCA unseal Nexus TPM

Figure 4.3: Access control model showing Nexus Computing Agent (NCA) attempt to unseal a file through the
Nexus secure kernel.

relies on the Nexus to service all its access requests. The assurance that an NCA executing

on the RHS executes correctly relies on the nexus itself to be correct. Also, an NCA relies on

the nexus to correctly implement the trusted computing primitives sealed storage and curtained

memory. The Nexus enforces memory separation, in software only, between differing NCAs on

the RHS.

An NCA is unable to verify the identity of the Nexus under which it is running, and so

must trust it axiomatically. Microsoft will include with the NGSCB system an official Nexus,

distributed as a compiled binary. The source code of Microsoft’s nexus kernel will be kept

closed. It may eventually be made available to certified individuals and corporations for code

review — an attempt by Microsoft to engender trust in what is otherwise a closed system [48].

This process of only allowing certain individuals and groups to view the source code does not

meet the definition ofopengiven in Section 2.1 on page 7.

As discussed in Section 2.3.1 on page 25, in general any principalP in layer l2 relies on the

operating system or kernelQ in layer l1 to be non-malicious to ensure the correct operation of

P. This equally applies to an NCA in layerl2 and the Nexus in layerl1.

The software and hardware stack that is included in the attestation vector is shown in Fig-

ure 3.3 on page 80. The code IDs of the Nexus and the NCA, as well as credentials proving

the validity of NGSCB hardware platform itself are used to attest to a remote challenger. An

important consideration is that there is no similar concept for ‘local’ attestation. Specifically,

although the nexus is able to generate a code ID for any NCAs it is hosting, through use of the

Quote function, an NCA is not able to securely identify the nexus within which it is executing.

This implies that an NCAP mustperform an attestation to be assured of the validity of the

platformρ and NexusQ it is operating on and under. After an attestation procedure, in which

4.5 Resistance to Software Attacks 125

a remote party trusted byP verifies the identities ofρ andQ to be suitable forP, P can be

supplied with some datad expected to be kept confidential. It is able to seald, as described in

Section 3.3.2 on page 79, under theID(P), ID(Q) andρ.

This holds for any principalP in layerl2 that relies on the integrity ofQ in layerl1 for correct

operation. BeforeP generates or obtains data intended to be kept secure and confidential from

other principals in layerl2 or l1, as well as the local user or administrator, it must first perform

an attestation with some trusted remote party to verify the integrity ofρ andQ. AssuringP of

the correctness ofρ andQ, without relying on a trusted third party, is currently an open problem

in trusted computing research.

There is one safeguard known generally to the wise, which is

an advantage and security to all, but especially to democracies

as against despots. What is it?

Distrust.

Demosthenes

5
Architectural Improvements

126

5.1 Introduction 127

5.1 Introduction

This chapter proposes additions and modifications to the Trusted Computing Group’s Trusted

Platform Module v1.2 specification, through modifying and integrating the XOM CPU archi-

tecture.

Section 5.2 discusses the proposed modifications and additions. Section 5.3 summarises

some motivations for using the TCG specification as a base, as well as the issues and threats our

proposed design attempts to mitigate.

5.2 Modifications

The modification of the XOM architecture discussed here is referred to as TPM/XOM. Briefly,

the compartmented execution model of XOM is modified and added to the TCG specification,

enabling selected principals onτ to execute in curtained memory. The distribution and pack-

aging model of XOM, discussed in Section 3.7.2 on page 93, is removed. Intended to prevent

the unauthorised execution of applications, it is not required to obtain curtained execution. The

TPM is modified to include compartment-specific state, allowing each compartment to interact

with a logically separate TPM.

Section 5.2.1 discusses modifications to the application loading mechanism of the XOM

and TPM architectures. Section 5.2.2 discusses compartment-specific state inside the TPM.

Section 5.2.3 discusses hardware modifications. Section 5.2.4 discusses modifications to the

cryptographic algorithms proposed by Lie et al. [37] to improve performance. Section 5.2.5

discusses the use of shared libraries.

5.2.1 XOM Compartments

The XOM architecture ensures the integrity ofP from its packaging by a distributorD through

encryptingP. One of the characteristics of the attestation method of the trusted computing

frameworks built on top of the TCG’s TPM (Sections 3.2 on page 51 and 3.3 on page 76) is the

importance of the integrity ofP only after ID(P) has been measured and recorded. The decision

5.2 Modifications 128

Step Action

1. χ: LoadX(P)

2a. χ: generateID(P)
2b. χ: performE(Ks,P)
3a. χ: performD(Ks,P)
3b. χ: executeP

Table 5.1: Modified load and measure procedure of TPM/XOM.

of whether to trust the programP identified byID(P) is left up to the challenging party in the

attestation protocol.

The TPM/XOM architecture leverages the curtained execution provided by the XOM CPU

to ensure thatP, identified byID(P) remains unmodified throughout its execution. Table 3.11

gives the outline of the steps involved with loading an applicationP that will execute in a

compartment. The abstract commandLoadX(P) instructs the TPM/XOM CPU to loadP. The

LoadX command is distinct from a normalLoad command used to begin the execution of a

non-compartmented program. The commandLoadX signifies that the program to be loaded is

to execute in its own compartment. It is loaded into memory, and its code identityID(P) is

generated and stored in a XOM compartment table.

The initial generation of the code IDID(P) of P is vulnerable to the types of attacks de-

scribed in Section 4.5.1, Figure 4.2 on page 121. Under the threat model established in Section

1.2, all classes of software-only attacks are possible. Our TPM/XOM model thereforedoes not

rely on a trusted software stack, executing outside the TCB, to correctly load and measureP.

The TPM’s Trusted Software Stack (TSS) specification, in comparison, is required to ensure

exclusive, controlled access to the TPM itself.

The TPM/XOM architecture does not prevent these insertion attacks, but renders them inef-

fectual. The load and measure ofP, done by the untrusted operating system in layerl1, results

in two distinct cryptographic operations occurring in the TPM for eachTPM SHA1Update call.

The first is the generation of the SHA1 digest ofP, as in the unmodified TPM. The second is

the encryption ofP, and the storage of the resultE(k,P) into main memory for later execution.

Initialisation of the required state in the XOM CPU also occurs at this point. Encryption and

5.2 Modifications 129

protection against replay, spoofing, and splicing attacks are discussed in more detail in Section

5.2.4.

We introduce the notationP→ P′ to denote the modification (→) of P to P′. Our attack,

outlined in Section 4.5.1 on page 119, performsP→ P′ during the measurement ofP. This is

denotedID(P→ P′), which results in a measurement equal toID(P′).

Recall thatP is loaded from untrusted storage. The integrity and confidentiality ofP before

it is loaded is not assured in any way. An attack that performsID(P→ P′) for the generation

of ID(P) (step 2a, Table 5.1) is equivalent to an attackP→ P′ beforeLoadX is called. The

TPM/XOM architecture duplicates any malicious modificationP→ P′ during the generation of

ID(P), to the executing image ofP. The use ofID(P) in the access control decision of sealed

storage, and its inclusion in the attestation vector generated during attestation, remains the same

in TPM/XOM.

Recall that the XOM CPU architecture [37] performs the decryption of code retrieved from

main memory at the L2/main memory boundary. As code is brought in for execution, it is

decrypted from main memory into an L2 cache line. For this reason, the data block size used by

TPM/XOM to encryptP is the same as the L2 cache line. The payload of eachTPM SHA1Update

command must be encrypted in blocks of this size. The update command itself is specified to

take multiples of 64 byte blocks; the L2 cache line in the original XOM architecture is 128

bytes long. The TPM/XOMSHA1Update command must be modified to take multiples of the

L2 cache line size, specific to the platform it is on.

A code block ofP, denotedP[i], is encrypted by the TPM. It must then be stored in main

memory for later retrieval, decryption, and execution by the XOM CPU. This storage can occur

in two ways. The code blockP[i] can be:

• Returned from the TPM to the XOM CPU, where the untrusted operating system in layer

l1 copies it to the appropriate location in memory; or

• copied directly into main memory by the TPM through Direct-Memory Access (DMA).

Copying from the TPM to the XOM CPU results in considerable wasted processing; data

must be decrypted by the XOM CPU, stored in the cache, then ejected and encrypted again

5.2 Modifications 130

TPM/XOM Key Table

Reg. Key #1
Reg. Key #2
Reg. Key #3

...
Reg. Key #N

ID(#1)
ID(#2)
ID(#3)
 ...
ID(#K)

Register Key Table

Compartment Table

XOM ID
Register

Register
Owner tag

(1...N)

Cache Line
Owner tag

(1...K)

Memory Hash

k1
k2
k3

kK
...

Figure 5.1: Contents and design of TPM/XOM key tables, maintained inside the XOM CPU, adapted from [37].

before storage in main memory. Copying directly from the TPM to main memory via Direct-

Memory Access (DMA) is also possible, and decreases the time taken to load an application

considerably. As in the original XOM architecture (Section 3.7 on page 92), despite being

encrypted, the untrusted operating system in layerl1 still manages virtual memory forP in

layer l2.

A malicious operating system can give the TPM an incorrect memory address range to copy

encrypted blocks ofP to. This does not result in the loss of integrity or confidentiality ofP, but

does allow a loss of availability — meaning such behaviour by the operating system results in

a Denial of Service (DoS) attack.

The original XOM architecture [37] described two key tables stored inside the CPU. The

first of these was thecompartment key table. It is used to hold the symmetric key used to:

• decrypt the applicationP, and

• encrypt and decryptP’s reads and writes to memory.

The second key table was theregister key table, used to encrypt the register contents of an

executing principal when it is interrupted by the operating system. The TPM/XOM table archi-

5.2 Modifications 131

tecture can be seen in Figure 5.1. This key table design is adapted from work by Lie et al. [37].

The XOM ID Register indexes into the register key table, and specifies the register key of the

currently executing principal. The register key table in turn indexes into the compartment table,

specifying the compartment andID(P) of the currently executing principal. Each register key

in the register key table points to one compartment in the compartment table.

The manner in which TPM/XOM enforces the separation of principals executing in separate

compartments is the same as the original XOM architecture. This procedure is described in

Section 3.7 on page 92 and will not be repeated here.

5.2.2 TPM Virtualisation

Recall our attack discussed in Section 4.5.1, Figure 4.2 on page 121. In general, in the TCG’s

TPM specification, a principalP cannot be assured that a set of TPM commands(C1,C2, ...,Cn)

will not be interleaved with a command, or set of commands, from a malicious principalQ.

Such interleaving of commands renders the result ofP’s commands incorrect.

Our proposed TPM/XOM architecture prevents attacks of this type. Commands issued by

a principalP executing in a compartmenti on χ are handled by a virtualised TPM, through the

use ofcompartment-specific stateinside the TPM. The notationiP is used to indicate a principal

P executing in compartmenti, wherei > 0. The notation/0P indicates thatP is executing in the

null compartment.

Each command that a principaliP issues to the TPM acts on state inside the TPM exclusive

to the compartmenti. It should be noted that some TPM commands (see Table 3.2 on page 56)

are stateless, i.e. they do not affect state in the TPM. There are a number of stateful commands,

however. For example, the commands used to generate a SHA-1 digest of data involve an

initialisation command and a finalisation command, both of which affect state in the TPM.

When a principaliP issues a TPM command, the TPM queries the XOM CPU for the com-

partment ID of the active principal. The XOM CPU responds with the compartment number

i, wherei > 0, or i = /0 to indicateP is in the null compartment. The TPM device maintains

the required state for each compartmenti separately. This assures a principaliP that no other

5.2 Modifications 132

RAM

Controller

Display

TPM

Embedded
Devices

Removable
Devices

CPU
Init,

reset,
...

CRTM
BIOS

(a) TBB components and extent of the TCB in the
TCG’s TPM architecture.

RAM

Controller

Display

TPM

Embedded
Devices

Removable
Devices

XOM
CPU

CRTM
BIOS

(b) TBB components and extend of the TCB in the
TPM/XOM architecture.

Figure 5.2: Thick black borders indicate devices expected to not act maliciously, known as Trusted Building Blocks
(TBB), adapted from [71]. Thick red borders indicate devices inside the Trusted Computing Base
(TCB), containing shielded storage and protected functionalities.

principal jQ, wherei 6= j, is capable of inserting malicious commands into a stateful command

sequence ofiP. This attack was described in Figure 4.2 on page 121. The query and response

of the active compartment ID is carried out entirely in layerl0.

The loading procedure ofP, shown in Table 5.1, resets the compartment statei in the TPM.

This allows the re-use of compartment IDs, and ensures that no information is left behind byiP

when it finishes, foriQ to obtain.

Principals that execute in the null (/0) compartment all share the same state. The TPM does

not make any attempt to prevent the interleaving of stateful commands from principals in the

null compartment. Additionally, no principalQ in layer l1 is required to enforce synchronised

access to the TPM, as is the case with the TCG’s TPM specification.

5.2.3 Hardware Modifications

The original XOM design made significant changes to the internal architecture of the CPU. The

CPU was required to be able to perform asymmetric decryption of the program header with a

unique key pair, as well as perform symmetric encryption and decryption with that key. XOM

key tables were maintained inside the CPU. Cryptographic hash operations were also required

to ensure the integrity of data stored to main memory. In the XOM architecture, only the CPU

5.2 Modifications 133

was considered to be part of the Trusted Computing Base (TCB).

The Trusted Platform Module was the only entity considered to be within the TCB in the

TCG specification. It supports advanced cryptographic functionality and secure internal storage

as describe in Section 3.2. The TCB of the TPM/XOM architecture is seen in Figure 5.2,

outlined in red. The Trusted Building Blocks (TBB) of the TPM and TPM/XOM architectures

are shown outlined in black. A TBB is a hardware component not considered to be inside the

TCB itself, but is relied upon to perform correctly in order for the TPM to operate as expected.

It is these devices that are not designed or expected to with stand hardware attacks as described

in Section 1.2.

The TPM/XOM architecture keeps the Trusted Platform Module v1.2, and includes the

XOM CPU inside the TCB, as seen in Figure 5.2(b). The TPM/XOM CPU is still required

to perform asymmetric cryptography, and its symmetric encryption routines are simplified as

described in Section 5.2.4. It is not required to contain a unique asymmetric key pair. The

XOM CPU and the TPM communicate over a shared bus, which is not protected from hardware

snooping attacks.

5.2.4 Cryptographic Algorithms

Initial discussion of the XOM architecture by Lie et al. [37, 64] encryptedP with a symmetric

block cipher such as Triple DES, with the key generated by the distributorD. The execution of

a principalP in our TPM/XOM system begins withP being loaded, measured, and encrypted by

the TPM. Our encryption routine must ensure both the confidentiality and integrity ofP when it

is stored in main memory. Work by Suh, Clarke, Gassend, van Dijk and Devadas [63] propose

modifications to the XOM architecture to use One-Time Pad (OTP) encryption to speed up

memory read and write accesses. Yang, Zhang and Gao [73] propose the use of OTP encryption

to encrypt the instruction stream as well.

Suh et al. [63] propose the use of the AES decryption function (AES−1) to generate a suit-

able OTP key, where as Yang et al. [73] implement their OTP encryption scheme with the DES

encryption function. Adapted from Yang et al. the encryption and decryption of data to and

5.2 Modifications 134

from memory appears as equations (5.1) and (5.2) respectively. Here,p denotes plain text,c

denotes cipher text,sdenotes the seed,k denotes a random key, and⊕ denotes the exclusive-or

(XOR) operation.

p ⊕ AES−1
k (s) −→ c (5.1)

c ⊕ AES−1
k (s) −→ p (5.2)

A cryptanalysis of this scheme is outside the scope of this thesis. Suh et al. claim schemes of

this general form to be secure [63, p.6]:

The conventional one-time-pad scheme is proven to be secure [17]. Our scheme is

an instantiation of a counter-mode encrypt scheme, and can easily be proven to be

secure, given a good encryption algorithm that is non-malleable [38].

Our one-time pad encryption scheme is considered to be secure as long as the seeds is never

repeated with the same keyk.

We propose two possible OTP seed generation functions appropriate for the TPM/XOM

architecture. One is for the once-only encryption ofP itself, and another generates unique

OTPs to allow repeated encryption of data to the same virtual address.

The Random Number Generator (RNG) in the TPM is used to obtain a 128 bit keyk, equiv-

alent to the symmetric key generated by the distributorD. However, a different key is generated

and used for each execution ofP.

We require a 128 bit seeds. Suh et al. [63] state that for performance reasons the XOM

CPU should be able to generates, so as to compute AES−1
k (s), beforec is retrieved from main

memory. This allows a 1-cycle XOR operation to obtainp from c, whenc arrives. Equation

(5.3) shows the seed generated for the once-only encryption ofP. A is the 64 bit virtual address

of the 128 bit block being encrypted. It is concatenated with the low-order 64 bits ofID(P),

denotedID(P)[0,...,63].

A ‖ ID(P)[0,...,63] = s (5.3)

|s| = 128

5.2 Modifications 135

Equation (5.4) shows the seed generated for the encryption of data generated byP, adapted

from the one proposed by Suh et al. [63]. The random vectorV is generated by the TPM during

the initial encryption ofP. The time stampTS ensures that each cache line stored in main

memory is encrypted with a unique OTP. The time stampTSis a monotonic counter, increased

each time a cache line is evicted from memory. Suh et al. require the re-encryption of all blocks

in memory with a newly generated keyk when their time stamp reaches its maximum value.

They use a time stamp of 32 bits. A 64 bit time stamp allows 264 cache evictions before a new

key would need to be generated. However, ifTS is initialised equal to zero, an attacker may

guess its value through monitoring cache eviction counts. If there is no random vectorV used,

the seed depends on a non-randomTSand an easily obtained addressA. It should be noted

that the time stampTSused to encrypt a cache line must be stored in main memory for later

decryption of that cache line.

A ‖V ‖ TS = s (5.4)

|s| = 128

Recall the initial encryption ofP is performed inside the TPM, and that all decryption ofP

occurs inside the XOM CPU. The TPM must send the keyk and theID(P) to the XOM CPU for

storage in the compartment table. It should be noted that the transmission ofk from the TPM to

the XOM CPU occurs unencrypted along a bus vulnerable to hardware snooping. The general

trusted computing threat model does not include hardware attacks. However the generation of a

new keyk for every principal that executes in a compartment means a compromised key is only

valid for one execution ofP. For simplicity in the design of the XOM CPU, the random vector

V is also generated inside the TPM and sent to the CPU. However, this is not required and could

be generated inside the XOM CPU, preventing a hardware attack from revealing the vectorV.

The above OTP encryption scheme ensures the confidentiality ofP, and the data it generates,

but not the integrity. Lie et al. propose the use of a reversible hash to lower the computational

cost associated with each store and load to and from main memory [37, p.175]:

We can exploit the fact that a MAC provides much more functionality than we re-

5.2 Modifications 136

quire. A MAC is able to provide authentication for messages that are not encrypted,

by using a hash that is difficult to reverse. Since the cache lines are encrypted, we

are free to use a reversible hash for redundancy.

A reversible hash, such as a CRC, is generated from the L2 cache line before it is encrypted.

The generated hash is stored in a separate page to the encrypted data.

Suh et al. [63] proposed a novelLog Hashalgorithm. A discussion of its implementation

is outside the scope of this thesis. However, it ensures integrity of data generated byP with an

increase in the required storage space of only 6.25%.

Our proposed cryptographic algorithms, briefly discussed here, provide protection against

replay, splicing, and spoof attacks for data generated byP and stored in memory. Replay attacks

on data generated byP during a single execution are prevented through the use of the monotonic

time stampTSin the seed. A replay attack with data generated from a previous execution ofP,

whereTScould be expected to repeat in value, is prevented through the use of a different key

for each execution. Splicing attacks, where encrypted code or data are copied from elsewhere

in memory to form new contiguous blocks, are prevented through the use of the address in the

seed. And spoofing attacks, where data is generated by an attacker and copied over memory

of P, are prevented through the use of the keyk, and the random vectorV, being kept from

software-class attacks.

5.2.5 Shared Libraries

Recall in the original XOM architecture, shared libraries had to be statically compiled into the

application by the distributor. Layerl1 andl2 implementations on top of the TCG’s TPM spec-

ification took two general approaches. They either required the entire software stack of the

platformρ to be included in the attestation vector (Sailer et al. [53]), or they implemented soft-

ware compartmentalisation to provide curtained memory (Marchesini et al. [40]). The former

design allows the use of dynamically linked libraries, as each library used was present in the

Stored Measurement Log. The latter design did not properly consider the use of shared libraries.

Microsoft’s NGSCB platform precluded the use of shared libraries, requiring code that wished

5.2 Modifications 137

to run on the secure RHS to be rewritten.

Our proposed TPM/XOM architecture allows principals that execute in the null compart-

ment to use shared libraries as in a normal operating system. Programs that execute in a com-

partment communicate, as in the original XOM architecture (Section 3.7 on page 92), with

the operating system and other applications through the null compartment. The original XOM

architecture requires the use of acaller-savecalling convention [37, p.185]:

..recall that in a callee-save calling convention, the dynamic library subroutines are

expected to push the caller’s registers on the stack. However, since the subroutine

is not in the same compartment as the XOM code calling it, it will not have the

ability to access those values. Thus, the caller, rather than the callee, must save all

secure registers. In addition, before calling the subroutine, the calling XOM code

must first move, as necessary, [required] register values... to the null compartment

so that the callee can access them.

A principal P can call shared libraries that it does not functionally depend on (see Sec-

tion 2.3.2 on page 28), such as certain I/O routines, by making an insecure call through the null

compartment, with a caller-save convention. This functionality is described in Section 3.7.2 on

page 93. A principalP can also make use of shared libraries that it does functionally depend

on, and still have the platformρ generate an attestation vector that meaningfully identifies the

functionality ofP (see Section 2.3.2 on page 28).

Shared libraries, specified byP, are dynamically linked while the operating system is load-

ing P. The TPM/XOM architecture enables applications to specify two classes of shared li-

braries: unidentifiedand identified. Unidentified shared libraries are linked as in a standard

operating system.

Consider a principalP that wishes to call an identified shared libraryL. During the loading

of P, the operating system performs aLoadX(L), as described in Section 5.2.1, for each shared

library specified byP as identified. This results inL being loaded, measured, and encrypted

with the same keyk and seedsasP, i.e. the seed used to generate the OTP forL does not come

in part fromID(L). The code IDID(L) is stored, along withID(P), in the XOM compartment

5.2 Modifications 138

table in the XOM CPU.

In the TPM/XOM architecture, a principalP is protected during execution through the use of

compartments, as described above. For this reason, an attestation vectorAV need only include

the identity ofP itself, and the identities of any identified librariesL1,L2, ...,Ln, thatP considers

itself to be functionally dependent on.

Consider a principalP executing in compartmenti, denotediP, on a platformρ, where

i 6= /0. The attestation protocol has the same structure as described in Table 3.7 on page 74. It is

the generation and contents of the attestation vectorAV that differ in our proposed TPM/XOM

architecture.

For iP, the attestation vector includes a statement by the TPM indicating thatP is executing

in a compartmenti 6= /0. This allows a challenging partyρ′ to be assured of the curtained

memory protection implemented onρ. The code IDID(P), generated during the loading ofP,

is retrieved from the compartment table in the XOM CPU and included inAV. The code IDs

of any identified librariesID(L1), ID(L2), ..., ID(Ln), are also retrieved from the XOM CPU.

Additionally, becauseP executes in a compartment and interacts with a virtualised TPM,ρ′ can

be assured that, if properly instrumented,P’s measurement of any structured data with integrity-

semantics (Section 4.3 on page 106) has not been subverted or modified by an attacker.

Access control decisions made by the TPM, such as when performing a seal or unseal func-

tion for P, that were previously dependent onID(P), now depend on a concatenated code ID,

denotedID(P) ‖∑ ID(L), shown in equation (5.5).

ID(P) ‖ ∑ ID(L) = { ID(P) ‖ID(L1) ‖ID(L2)‖ ... ‖ID(Ln)} (5.5)

The TPM/XOM architecture described above allows a principalP to rely on shared libraries

L, and have them included in a statement made about its functionality. However, those shared

libraries may still be upgraded or modified by another principalQ on ρ or by the user. Such

modification∑ ID(L → L′) may not be malicious, but will result in any data sealed under

ID(P) ‖∑ ID(L) no longer being unsealable unless separate copies ofL are retained onρ. It

also means that, during execution ofP, any shared libraries used byP are stored in memory

5.3 Motivation and Benefits 139

Issue

Privacy concerns.

Non-intrusive architecture easier to implement, but requires invalidation
of the SML log.

An intrusive, or prohibitive, system is non-trivial to implement.

Difficulties with establishing a suitable enrolment scheme for application
identities.

Making trust decisions based on SML with unknown or known-vulnerable
applications non-trivial.

Invalidation of SML prohibits long-lived execution scenarios.

Attestation vector has no meaning for any duration of time after its gener-
ation.

Shared libraries are easy to implement.

Table 5.2: Issues arising from attestation of entire platform.

for the exclusive use ofP. Multiple principals, that both specify a shared libraryL as being

identified, result in two copies ofL being stored in memory.

5.3 Motivation and Benefits

We propose additions and changes to the TCG specification specifically for a number of reasons.

It is the most complete Trusted Computing Framework specification available, and is currently

shipping in a number of products. Our analysis of implementations based upon it revealed a

number of open problems and vulnerabilities that an integration with the XOM architecture

could possibly solve.

The lack of curtained memory in the TCG specification means that either an attestation

vector is required to include the identities of all principals on the system, or a secure kernel in

layer l1 is required it implement software compartments, through mandatory access control.

A number of issues that arise from attesting the state of the entire platformρ are summarised

in Table 5.2. The non-intrusive architecture proposed by Sailer et al. [53] does not intend

to prevent an administrative user from carrying out actions that result in compromises to the

integrity of the platform. Instead, it merely invalidates the Stored Measurement Log (SML),

preventing any future attestation from succeeding. This allows peculiar usage by developers

5.3 Motivation and Benefits 140

Issues

Mandatory access systems implemented with strongly typed sys-
tems are difficult to implement correctly.

Restricts general usability of the platform.

Entire security policy may need to included in attestation vector.

Shared libraries require complex security policies to work cor-
rectly.

Attestation vector makes some statement about application state
for a non-trivial period of time into the future.

Table 5.3: Issues arising from curtained memory being implemented in software.

and hackers to occur, not restricting or limiting the usability or functionality of the system for

them. Indeed, designing and implementing an intrusive system that prohibits a user from taking

actions that compromise the integrity of the system is an open problem in operating system

security research.

Issues that arise from implementing curtained memory in software, in a security kernel in

layer l1, are summarised in Table 5.3. The LinuxSE system was noted by Marchesini et al. [40]

as being cumbersome to work with, and a security policy that properly protects an application

from interference may require a restriction in usability for the rest of the system. Additionally,

the entire security policy may need to be included in the attestation vector, removing any pri-

vacy gains from compartmented attestation. A properly implemented mandatory access control

system can prevent an administrative user from taking actions that would compromise the in-

tegrity of the platform. This allows an attestation vector to guarantee the state of the platform

for some period of time into the future, mitigating Time of Check to Time of Use class attacks.

Both implementations, summarised above, also mean that an applicationP must attest to

a third party to ensure the correctness of the secure kernel in layerl1, as described in Sec-

tion 4.5.2 on page 123. Our proposed TPM/XOM architecture attempts to mitigate these threats

by implementing curtained memory in layerl0, and enforcing curtained memory on specific

principals in layerl i , wherei > 0, from layerl0.

The insertion attack described in Section 4.5.1, Figure 4.2 on page 121, results from TPM

commands issued by two principalsP andQ working on the same state inside the TPM. Gen-

5.3 Motivation and Benefits 141

erally this can be considered virtualisation of the TPMoutsidethe TCB. There are a number of

issues that arise from this. As shown, insertion attacks are possible, resulting in incorrect results

being produced forP. Additionally, naive denial of service attacks are possible. Our proposed

TPM/XOM architecture implements virtualisation of the TPMinsidethe TCB, mitigating these

sorts of issues.

I don’t have all the answers, but I am beginning to ask the right

questions.

Lee Lorenz

6
Conclusion and Future Work

142

6.1 Conclusion 143

6.1 Conclusion

This thesis investigated the requirements of an open, general purpose, trusted computing frame-

work. In Chapter 2, we defined the termsopenandgeneral purpose. Our definition of open

proposed characteristics of an open-source community-developed framework that would allow

it to form a social root of trust for naive users. It was compared with a closed, proprietary

trusted computing framework that was intended to act as a root of trust for those same users.

Our definition of general purpose defined certain aspects of usability and functionality that

a general purpose computing platform allows. We proposed a measurement of the usefulness

of a trusted computing framework to be its ability to assure certain security properties, without

restricting a general purpose platform to a single or special-purpose one.

We gave formal definitions of each of the four security primitives of trusted computing:

curtained memory, attestation, sealed storage, and secure I/O. Each was placed in a historical

context, and shown to be an evolution of a previous security feature. We discussed the concept

of a cryptographic code identity used to make statements about program functionality.

We outlined the difficulties in generating a meaningful statement about a program that de-

pended on shared libraries for functionality. Including shared libraries in code identities, for

all programs that rely on them, results in updates to any one shared library invaliding many

different code identities at once. Alternatively, the code identity of a program that uses shared

libraries, made without including those libraries, will not reflect changes in functionality that

arise through changes to shared libraries. We highlighted the reliance that applications exe-

cuting in layerl2 have on a secure kernel, executing in layerl1. Assurance about the correct

enforcement and operation of any trusted computing primitives that the secure kernel manages

rely on the kernel being valid. We showed that current implementations of trusted comput-

ing frameworks require an application to attest to a remote, trusted third party, to assure the

operating system and platform that they were executing on was considered trustworthy.

Chapter 3 surveyed implementations of trusted computing frameworks. Complete frame-

work implementations from the Trusted Computing Group and Microsoft were discussed, as

well as implementations discussed in academic literature. The LOCK system, that assured

6.1 Conclusion 144

all trusted computing primitives except attestation, was described. This illustrated that those

primitives could be constructed purely in software, and had in fact been implemented in earlier

research.

Chapter 4 discussed the framework implementations surveyed in Chapter 3. We showed

that the implementation of Sailer et al. [53], discussed in Section 4.4.2 on page 116, requires

an enrolment scheme to manage classifications of software integrity. We also showed that any

reasonable security policy for their system would require attestations to fail when the remote

platform had an unknown program executing on it.

The system proposed by Marchesini et al. [40], discussed in Section 4.4.2, implemented

curtained memory in software, and protected those compartments from modification from the

local administrator as well. This allowed their system to give some assurance about the integrity

of a compartment for some non-trivial period of time after the generation of an attestation vector.

The system proposed by Sailer et al. did not provide these assurances, remaining vulnerable to

Time of Check to Time of Use (TOCTOU) class attacks. We concluded that any attempt to

mitigate TOCTOU attacks would require curtained memory that ensured the integrity of an

application.

We proposed an insertion attack on the Trusted Computing Group’s Trusted Platform Mod-

ule, made possible by the expected virtualisation of the Trusted Platform Module outside the

Trusted Computing Base. Motivated by this observation, we proposed architectural changes to

the Trusted Platform Module. We removed the software distribution process of Execute Only

Memory (XOM), so that it ensured integrity and confidentiality of an application, through its use

of compartments, only after it had started executing on a platform. We mitigated the vulnerabil-

ity of a specific insertion attack on our system, by making the measurement and encryption of

an application atomic. This ensured that there could be no differences between the application

that was measured to derive its code identity, and the application that was loaded into memory

and executed. We mitigated the vulnerability to general insertion attacks, by virtualising the

Trusted Platform Module on a per-compartment basis.

Our proposed architecture enabled the selective use of shared libraries, including those li-

braries in any statement about the functionality of a program. These statements of functionality

6.2 Future Work 145

were used in the attestation and sealed storage primitives implement by our architecture.

6.2 Future Work

This thesis has outlined a number of open problems in trusted computing research. Many of

these need to be solved before an open, general purpose, trusted computing platform, as defined

in Chapter 2, is possible.

An examination of the statistical model described in Section 4.3 on page 106 is of interest.

If our assumptions are correct, it would allow many different compilation environments, giving

distinct code identitiesID(P) for the same source code ofP, to be compared. If so, a com-

munity may able to generate statements ofID(P), that are known to have been obtained from

unmodified versions ofP, without requiring a prescribed compilation environment to be used

for all compilations ofP.

The proposed integration of XOM and the Trusted Computing Group’s Trusted Platform

Module specification is another avenue for future research. The XOM architecture has been

implemented in software, and recently a Trusted Platform Module software emulator [11] has

been released. Integrating the TPM emulator and XOM system in software would allow for

analysis of performance, as well as formal verification of the security model.

Research into the implementation of curtained memory in software is considered. Specifi-

cally, research that attempts to assure separation of programs during execution with a simple,

expressive, mandatory access control language that does not severely restrict the usability of

the platform as a whole. Additionally, the ability to attest that assurance without requiring a

statement about the integrity of the platform as a whole would reduce privacy concerns.

6.2 Future Work 146

Bibliography

[1] Apache HTTP server project. Available online. Cited December, 2004.
http://httpd.apache.org/.

[2] Hashcash. Available online. Cited December, 2004.http://www.hashcash.org/.

[3] IBM hardware - IBM PCI cryptographic coprocessor. Available online. Cited December,
2004.http://www-3.ibm.com/security/cryptocards/overhardware.shtml.

[4] IBM PCI cryptographic coprocessor. Available online. Cited December, 2004.
http://www-3.ibm.com/security/cryptocards/pcicc.shtml.

[5] Open Source Initiative. Available online. Cited December, 2004.
http://www.opensource.org/.

[6] OpenSSH. Available online. Cited November, 2004.http://www.openssh.org/.

[7] Plug and Play - Architecture and Driver support. Available online. Cited December,
2004.http://www.microsoft.com/whdc/system/pnppwr/pnp/default.mspx.

[8] Reusable proof of work. Available online. Cited December, 2004.
http://www.rpow.net/.

[9] Security-Enhanced Linux. Available online. Cited November, 2004.
http://www.nsa.gov/selinux/.

[10] Sendmail. Available online. Cited December, 2004.http://www.sendmail.org/.

[11] Software-based TPM emulator. Available online. Cited February, 2005.
https://developer.berlios.de/projects/tpm-emulator.

[12] Trusted Computing Group. Available online. Cited December, 2004.
https://www.trustedcomputinggroup.org/home.

[13] Universal Plug and Play. Available online. Cited November, 2004.
http://www.upnp.org.

[14] WinHEC: Microsoft revisits NGSCB security plan. Available online. Cited December,
2004.http://napps.nwfusion.com/news/2004/0505msngscb.html.

[15] XBox games console. Available online. Cited December, 2004.
http://www.xbox.com/.

[16] Trusted Computer System Evaluation Criteria. Department of Defense, 1985.
Department of Defense Standard, DoD 5200.28-STD.

147

http://httpd.apache.org/
http://www.hashcash.org/
http://www-3.ibm.com/security/cryptocards/overhardware.shtml
http://www-3.ibm.com/security/cryptocards/pcicc.shtml
http://www.opensource.org/
http://www.openssh.org/
http://www.microsoft.com/whdc/system/pnppwr/pnp/default.mspx
http://www.rpow.net/
http://www.nsa.gov/selinux/
http://www.sendmail.org/
https://developer.berlios.de/projects/tpm-emulator
https://www.trustedcomputinggroup.org/home
http://www.upnp.org
http://napps.nwfusion.com/news/2004/0505msngscb.html
http://www.xbox.com/

BIBLIOGRAPHY 148

[17] ANDERSON, R. J.Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley and Sons, 2002.

[18] ARBAUGH, W., FARBER, D., AND SMITH , J. A secure and reliable bootstrap
architecture. InProceedings of IEEE Symposium on Security and Privacy(May 1997),
pp. 65–71.

[19] BARAK , B., GOLDREICH, O., IMPAGLIAZZO , R., RUDICH, S., SAHAI , A., VADHAN ,
S., AND YANG, K. On the (im)possibility of obfuscating programs. InAdvances in
Cryptology - CRYPTO ’01(Santa Barbara, California, August 2001), vol. 2139 of
Lecture Notes in Computer Science, pp. 1–18.

[20] BARRETT, M., AND THOMBORSON, C. Using NGSCB to mitigate existing software
threats. In2nd International Workshop on Certification and Security in
Inter-Organizational E-Services (CSES)(2004), Kluwer Academic Press, to be
published.

[21] CAMENISCH, J. Better privacy for trusted computing platforms. In9th European
Symposium On Research in Computer Security ESORICS(2004), Springer-Verlag.

[22] CRAM , E. Status of NGSCB. Private correspondence, 9 November, 2004.

[23] CRAM , E., AND KAPLAN , K. Next-Generation Secure Computing Base - Overview and
Drilldown. Presentation at Microsoft Professional Developers Conference, Los Angeles,
27 October 2003.

[24] DYER, J., LINDEMANN , M., PEREZ, R., SAILER , R., VAN DOORN, L., AND SMITH ,
S. Building the IBM 4758 secure coprocessor.Computer 34, 10 (2001), pp. 57–66.

[25] ENGLAND , P., LAMPSON, B., MANFERDELLI, J.,AND WILLMAN , B. A trusted open
platform. Computer 36, 7 (2003), pp. 55–62.

[26] ENGLAND , P.,AND PEINADO, M. Authenticated operation of open computing devices.
In Proceedings of the 7th Australian Conference on Information Security and Privacy
(2002), Springer-Verlag, pp. 346–361.

[27] GACEK, C. An interdisciplinary perspective of dependability in open source software. In
Proceedings of the Building the Information Society: Proc. IFIP 18th World Computer
Congress(Toulouse, France, August 2004), R. Jacquart, Ed., Kluwer Academic
Publishers, pp. 685–692.

[28] GARFINKEL , T., ROSENBLUM, M., AND BONEH, D. Flexible os support and
applications for trusted computing. InProceedings of the 9th Workshop on Hot Topics in
Operating Systems (HotOS-VIII)(May 2003), pp. 145–150.

[29] IBM CORPORATION. CP/Q Operating System Overview for OEMs, June 1998.
ftp://www6.software.ibm.com/software/cryptocards/lsldesgd.pdf.

[30] INTEL CORPORATION. Processor Serial Number Questions and Answers, 2003.
http://www.intel.com/support/processors/pentiumiii/psqa.htm.

ftp://www6.software.ibm.com/software/cryptocards/lsldesgd.pdf
http://www.intel.com/support/processors/pentiumiii/psqa.htm

BIBLIOGRAPHY 149

[31] KALISKI , B., AND STADDON, J. PKCS #1: RSA Cryptography Specifications Version
2.0, October 1998.http://www.faqs.org/rfcs/rfc2437.html.

[32] KRAWCZYK , H., BELLARE, M., AND CANETTI , R. HMAC: Keyed-hashing for
message authentication, February 1997.http://www.ietf.org/rfc/rfc2104.txt.

[33] LAKHANI , K., AND WOLF, R. G. Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. Tech. Rep. 4425-03, MIT
Sloan Working Paper, September 2003.http://ssrn.com/abstract=443040.

[34] LAMPSON, B. Protection. InProceedings of the 5th Annual Princeton Conference on
Information Sciences and Systems(Princeton University, 1971), pp. 437–443.

[35] LAMPSON, B., ABADI , M., BURROWS, M., AND WOBBER, E. Authentication in
distributed systems: Theory and practice.ACM Transactions on Computer Systems 10, 4
(1992), 265–310.

[36] LANDWEHR, C. E. Trusting strangers. InOpen-Source Software in Dependable Systems
(2004), IFIP, To be published.

[37] L IE, D., THEKKATH , C. A., AND HOROWITZ, M. Implementing an untrusted operating
system on trusted hardware. InProceedings of the Nineteenth ACM Symposium on
Operating Systems Principles(2003), ACM Press, pp. 178–192.

[38] L IPMAA , H., ROGAWAY, P.,AND WAGNER, D. Comments to NIST concerning
AES-modes of operations: CTR-mode encryption. InSymmetric Key Block Cipher
Modes of Operation Workshop(Baltimore, Maryland, USA, October 2000).

[39] MARCHESINI, J., SMITH , S. W., WILD , O., AND MACDONALD , R. Experimenting
with TCPA/TCG hardware, or: How I learned to stop worrying and love the bear.
Technical Report TR2003-476, Department of Computer Science, Dartmouth College,
December 2003.

[40] MARCHESINI, J., SMITH , S. W., WILD , O., STABINER, J.,AND BARSAMIAN , A.
Open-source applications of TCPA hardware. InACSAC ’04: Proceedings of the 20th
Annual Computer Security Applications Conference (ACSAC’04)(2004), IEEE
Computer Society, pp. 294–303.

[41] M ICROSOFTCORPORATION. End-User License Agreement for Microsoft Software,
Windows Server 2003 Enterprise Edition, March 2003.

[42] M ICROSOFTCORPORATION. Hardware Platform for the Next-Generation Secure
Computing Base, December 2003. Available from
http://www.microsoft.com/resources/NGSCB/documents/NGSCBhardware.doc.

[43] M ICROSOFTCORPORATION. NGSCB: Trusted Computing Base and Software
Authentication, November 2003. Available from
http://www.microsoft.com/resources/NGSCB/documents/NGSCB_tcb.doc.

[44] M ICROSOFTCORPORATION. Security Model for the Next-Generation Secure Computing
Base, 2003. Available fromhttp://www.microsoft.com/resources/NGSCB/
documents/NGSCB_Security_Model.doc.

http://www.faqs.org/rfcs/rfc2437.html
http://www.ietf.org/rfc/rfc2104.txt
http://ssrn.com/abstract=443040
http://www.microsoft.com/resources/NGSCB/documents/NGSCBhardware.doc
http://www.microsoft.com/resources/NGSCB/documents/NGSCB_tcb.doc
http://www.microsoft.com/resources/NGSCB/documents/ NGSCB_Security_Model.doc
http://www.microsoft.com/resources/NGSCB/documents/ NGSCB_Security_Model.doc

BIBLIOGRAPHY 150

[45] NEVILL -MANNING , C. Finding needles in a 20 TB haystack, 200 million times a day.
Presentation at the University of Auckland, June 2004.

[46] O’BRIEN, R., AND ROGERS, C. Developing applications on LOCK. InProceedings of
the 14th National Computer Security Conference(October 1991), NIST/NCSC,
pp. 147–156.

[47] PASHALIDIS , A., AND M ITCHELL , C. J. Single sign-on using trusted platforms. InISC
(2003), C. Boyd and W. Mao, Eds., vol. 2851 ofLecture Notes in Computer Science,
Springer, pp. 54–68.

[48] RAY, K., AND CRAM , E. Interview at Microsoft Professional Developers Conference,
29 October 2003.

[49] RAYMOND , E. S.The Cathedral and the Bazaar. O’Reilly, 2001.
http://www.catb.org/˜esr/writings/cathedral-bazaar/cathedral-bazaar/.

[50] SAFFORD, D. Why TCPA. IBM Research, October 2002.
http://www.research.ibm.com/gsal/tcpa/why_tcpa.pdf.

[51] SAFFORD, D., KRAVITZ , J.,AND VAN DOORN, L. Take control of TCPA.Linux J.
2003, p. 112 (2003), p. 2.

[52] SAILER , R., JAEGER, T., ZHANG, X., AND VAN DOORN, L. Attestation-based policy
enforcement for remote access. InCCS ’04: Proceedings of the 11th ACM conference on
Computer and communications security(2004), ACM Press, pp. 308–317.

[53] SAILER , R., ZHANG, X., JAEGER, T., , AND VAN DOORN, L. Design and
implementation of a tcg-based integrity measurement architecture. InThirteenth Usenix
Security Symposium(August 2004), pp. 223–238.

[54] SAMI SAYDJARI , O., BECKMAN , J.,AND LEAMAN , J. LOCKing computers securely.
In Proceedings of the 10th DoD/NBS Computer Security Conference(1987), NBS,
pp. 129–140.

[55] SAMI SAYDJARI , O., BECKMAN , J.,AND LEAMAN , J. LOCK trek: Navigating
uncharted space. InProceedings of the ”IEEE” Symposium on Security and Privacy
(1989), pp. 167–175.

[56] SCHNEIER, B. Open source and security. Crypto-Gram Newsletter, September 1999.
http://www.schneier.com/crypto-gram-9909.html.

[57] SCHNEIER, B. Getting out the vote — why is it so hard to run an honest election? San
Francisco Chronicle, October 2004.http://www.schneier.com/essay-067.html.

[58] SCHOEN, S. Trusted computing: Promise and risk. Available online. Cited Nov, 2004,
December 2003.
http://www.eff.org/Infrastructure/trusted_computing/20031001_tc.php.

[59] SHERRIFF, P. Intel PSN no threat to personal freedom. Available online, November
1999.http://www.theregister.co.uk/1999/11/29/intel_psn_no_threat/.

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.research.ibm.com/gsal/tcpa/why_tcpa.pdf
http://www.schneier.com/crypto-gram-9909.html
http://www.schneier.com/essay-067.html
http://www.eff.org/Infrastructure/trusted_computing/20031001_tc.php
http://www.theregister.co.uk/1999/11/29/intel_psn_no_threat/

BIBLIOGRAPHY 151

[60] SMITH , S. W. Verifying Type and Configuration of an IBM 4758 Device. IBM T.J.
Watson Resarch Center, February 2000.
ftp://www6.software.ibm.com/software/cryptocards/verify.pdf.

[61] SPINELLIS, D. Reflections on trusting trust revisited.Communications of the ACM 46, 6
(2003), 112.

[62] STRONGIN, G. Platform Security Architect, Advanced Micro Devices. Interview at
Microft Professional Developers Conference, Los Angeles, 28 October 2003.

[63] SUH, G. E., CLARKE , D., GASSEND, B., VAN DIJK, M., AND DEVADAS, S. Efficient
memory integrity verification and encryption for secure processors. InMICRO 36:
Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture(2003), IEEE Computer Society.

[64] THEKKATH , D. L. C., MITCHELL , M., L INCOLN, P., BONEH, D., MITCHELL , J.,
AND HOROWITZ, M. Architectural support for copy and tamper resistant software. In
Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems(2000), ACM Press, pp. 168–177.

[65] THOMPSON, K. Reflections on trusting trust.Commun. ACM 27, 8 (1984), pp. 761–763.

[66] TRUSTEDCOMPUTING GROUP. TCG PC Specific Implementation Specification,
v1.1 ed., August 2003.https://www.trustedcomputinggroup.org/downloads/
TCG_PCSpecificSpecification_v1_1.pdf.

[67] TRUSTEDCOMPUTING GROUP. TCG Software Stack Specification, August 2003.
https://www.trustedcomputinggroup.org/downloads/TSS_Version__1.1.pdf.

[68] TRUSTEDCOMPUTING GROUP. TPM Main Part 2 TPM Structures, v1.2 ed., October
2003.https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_
Part2%_TPM_Structures.pdf.

[69] TRUSTEDCOMPUTING GROUP. TPM Main Part 3 Commands, v1.2 ed., October 2003.
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part3%
_Commands.pdf.

[70] TRUSTEDCOMPUTING GROUP. Backgrounder, November 2004.
https://www.trustedcomputinggroup.org/downloads/background_docs/TCG_
Backgrounder_November_2004.pdf.

[71] TRUSTEDCOMPUTING GROUP. TCG Specification Architecture Overview, v1.2 ed.,
April 2004. https://www.trustedcomputinggroup.org/downloads/TCG_1_0_
Architecture_Overview.pdf.

[72] TRUSTEDCOMPUTING GROUP. TPM Main Part 1 Design Principles, v1.2 ed., October
2004.https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_
Part1%_Design_Principles.pdf.

[73] YANG, J., ZHANG, Y., AND GAO, L. Fast secure processor for inhibiting software
piracy and tampering. InMICRO 36: Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture(2003), IEEE Computer Society, p. 351.

ftp://www6.software.ibm.com/software/cryptocards/verify.pdf
https://www.trustedcomputinggroup.org/downloads/TCG_PCSpecificSpecification_v1_1.pdf
https://www.trustedcomputinggroup.org/downloads/TCG_PCSpecificSpecification_v1_1.pdf
https://www.trustedcomputinggroup.org/downloads/TSS_Version__1.1.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part2% _TPM_Structures.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part2% _TPM_Structures.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part3% _Commands.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part3% _Commands.pdf
https://www.trustedcomputinggroup.org/downloads/background_docs/TCG_Backgrounder_November_2004.pdf
https://www.trustedcomputinggroup.org/downloads/background_docs/TCG_Backgrounder_November_2004.pdf
https://www.trustedcomputinggroup.org/downloads/TCG_1_0_Architecture_Overview.pdf
https://www.trustedcomputinggroup.org/downloads/TCG_1_0_Architecture_Overview.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part1% _Design_Principles.pdf
https://www.trustedcomputinggroup.org/downloads/tpmwg-mainrev62_Part1% _Design_Principles.pdf

BIBLIOGRAPHY 152

[74] YE, Y., AND K ISHIDA , K. Toward an understanding of the motivation open source
software developers. InICSE ’03: Proceedings of the 25th International Conference on
Software Engineering(2003), IEEE Computer Society, pp. 419–429.

	Introduction
	Background
	Trusted Computing Threat Model
	Motivation
	Organisation

	Defining an Open, General Purpose, Trusted Computing Platform
	Open
	General Purpose
	Components of a Trusted Computing Framework

	Survey of Trusted Computing Frameworks
	Introduction
	Trusted Computing Group's Trusted Platform Module
	Next-Generation Secure Computing Base
	Trusted Computing in Software
	Aegis
	IBM 4758
	Execute Only Memory

	Discussion
	Introduction
	Partial Framework Implementations
	Generating Trusted Measurements of Applications
	Shared Libraries
	Resistance to Software Attacks

	Architectural Improvements
	Introduction
	Modifications
	Motivation and Benefits

	Conclusion and Future Work
	Conclusion
	Future Work

