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Abstract

A trusted computing framework attempts to provide high levels of assurance for general purpose
computation. Trusted computing, still a maturing research field, currently provides four security
primitives — attestation, sealed storage, curtained memory and secure I/O. To provide high
assurance levels amongst distributed, autonomous systems, trusted computing frameworks treat
a machine owner as a potential attacker.

Trusted computing frameworks are characterised by a need for their software to be closed-
source. Ken Thompson’s famous subverted-compiler shows that a user’s trust in software tools
may be considered lower when their source is not examinable.

This thesis proposes required characteristics of a community-developed trusted computing
framework that enables trust in the framework through examination of the source code, while
retaining assurances of security. The functionalities of a general purpose computing platform
are defined, and we propose that a trusted computing framework should not restrict the usability
or functionality of the general purpose platform to which it is added. Formal definitions of
trusted computing primitives are given, and open problems in trusted computing research are
outlined.

Trusted computing implementations are surveyed, and compared against the definitions pro-
posed earlier. Difficulties in establishing trusted measurements of software are outlined, as well
as enabling the use of shared libraries while making a meaningful statement about an applica-
tion’s functionality.

A security analysis of framework implementations of the Trusted Computing Group and
Microsoft are given. Vulnerabilities caused by the implementation of curtained memory outside
the Trusted Computing Base are discussed, and a novel attack is proposed.

We propose modifications to the Trusted Computing Group specification to enable curtained
execution through integration with an architecture intended to prevent unauthorised software ex-
ecution. This integration enables virtualisation of the Trusted Platform Module, and the benefits
this gives are discussed.
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“Begin at the beginning,” the King said, gravely, “and go on till you

come to the end: then stop.”

Lewis Carroll
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1.1 Background

Trusted computing is a relatively new approach to computer security that allows secure appli-
cations to be built on standard hardware and operating system architectures. It is intended to
allow specific applications to be given increased security properties, without requiring signifi-
cant modifications to the underlying hardware and operating system currently in use. Trusted
computing adds some hardware-enforced immutable functionality and secure storage to im-
plement a number of security primitives. This additional functionality is enabled through the
addition of a chip to a standard PC motherboard.

Trusted computing aims to provigessuredoperation of applications both locally, and on
remote platforms, under the control of a possibly malicious administrator. A limited set of
functionality contained within &rusted Computing Bag&CB) is assumed to operate correctly.

This functionality is used to assure the state of a computer to a remote party, enabling them to
trust arbitrary computation performed on that computer. It also enforces a number of security
features locally, to protect an application and its data from a wide range of software attacks.

We consider &rusted Computing Framewo(K CF) to be a collection of both software and
hardware that implements and enforces trusted computing primitives. It is assured by the as-
sumption in the correctness of the Trusted Computing Base, and trusted through the correctness
of software which has those restrictions and controls enforced upon it. The Trusted Computing

Base is the technicabot of trustfrom which trust in the correct operation of the TCF flows.

1.2 Trusted Computing Threat Model

Before continuing further, this section outlines the threat model of trusted computing discussed
in this thesis.

The trusted computing primitives outlined in section 2.3 are not intended to protect against
any form of physical attack against the platform on which they run. Safford explains this when

discussing the Trusted Computing Group’s implementation (Sectipn 3.2) [50]:

[The] chip sits on... [an] easily monitored [bus]. The chip is not defended against
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Class Layer Explanation

1. I A malicious application or normal user.
2. I A malicious operating system or administrative user.
3. lo A malicious hardware device or hardware-modifying or

hardware-snooping user.

Table 1.1: Classes of attackers.

power analysis, RF analysis or timing analysis. The bottom line is that the physical

owner of the machine could easily recover any ... secrets from the chip.

...we simply are not concerned with threats based on the user attacking the chip...

Trusted computing is intended to secure consumer and corporate desktop PCs. The threat
model is not intended to guarantee any form of availability of data or service. This is because
the most naive attacker can easily succeed in preventing a PC from operating. Safford states
that physically owning the machine enables a user to “easily” recover any secrets from the chip.
Recovering secrets from the chip does require an attacker to physically read the secrets from
the bus on the motherboard. It is not clear how “easy” this form of attack is. Certainly it
would require a technically advanced user. Less advanced attacks, such as resetting the BIOS
by removing its backup battery, should not allow an attacker to cause the trusted computing
chip to leak any secrets.

The trusted computing threat model is primarily concerned with protecting against software
attacks from malicious users and malicious system administrators, as well as applications and
operating systems. There are three main classes of attackers. These are showr in]Table 1.1. The
layer indicates the level that the software or user executes in the system model introduced in
Sectior] 2.3]1 on pae25. Each class of attacker includes both a user and the associated software
attack they are able to perform. A normal user is one who can only install user-level applica-
tions such as Adobe Acrobat. An administrative user is one who is able to install arbitrary
kernel drivers or modify or affect the configuration of the operating system in critical ways. A
hardware-modifying attacker represents a technically advanced user that trusted computing is
not intended to protect against.

One of the contentious issues surrounding trusted computing is the inclusion of the system
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administrator, or owner, in the threat model. As will be discussed in Sectipn 2.3 of page 23,
trusted computing primitives are intended to protect against attacks by a malicious system ad-
ministrator in order to ensure the confidentiality and integrity of certain data. Schoen of the
Electronic Frontier Foundation proposes a change in the threat model of trusted computing
[58]. His suggestion, known asvner-override would allow the system administrator to force

the trusted computing framework to generate false statements when they are not prepared for a
truthful statement to be presented. These statements, known as attestations, are a critical part
of the security of a trusted computing framework. Attestation is introduced in Sectiof 2.3.5,
and reasoning given there makes clear why Shoen’s owner-override feature is unworkable in
the context of trusted computing primitives.

As mentioned above, the trusted computing threat model is not concerned with guaranteeing
availability. It is required, however, to guarantee the confidentiality and integrity in the face of
attackers in class 1 and 2 in Table|1.1. The threat model can be considered to require trusted
computing frameworks téail-safe That is, when presented with a given attack, data protected
by a trusted computing primitive can fail to be available, but must never be released. The
threat model is this way primarily due to cost considerations. Availability is typically far more
expensive to secure than confidentiality and integrity, and trusted computing is intended to

operate on consumer and corporate desktops where availability may be impossible to guarantee.

1.3 Motivation

As outlined in Sectioh 1}2, a user is forced to rely on a Trusted Computing Framework to control
access restrictions to her data and applications in a manner that she cannot influence. Given
the assumption of the immutability of the security primitives it provides, this thesis examines
various trusted computing frameworks for their ability to enable a user to properly consider the
framework as a root of trust, through enabling examination of the source code by herself or
another party she trusts, while still securely enforcing the assured primitives. In general, we
propose a definition obpennesshat allows a trusted computing framework to be developed

and examined by an open community. It is this community that then forms the sooiadf
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trust which allows a user to trust the operation of the Trusted Computing Framework will be
correct.

Trusted computing frameworks have a technroalt of trustthat is implemented in hard-
ware for a number of reasons. Firstly, functionality that implemented in hardware is more
difficult to modify than the equivalent functionality implemented in software. Indeed, given the
architecture of a standard PC, there are difficulties in guaranteeing the immutability of some
piece of software without requiring substantial changes to that underlying hardware and soft-
ware design that motivated trusted computing initially.

Secondly is the difficultly, or impossibility [19], of hiding secrets in software. Trusted
computing frameworks have, at the heart, some cryptographic secret used to assure remote
parties of their validity, as well as to keep local data secure from modification.

This thesis also examines the ability of proposed trusted computing frameworks to properly
enforce their security primitives, yet still retain the usability and functionality of the operating
system and platform to which they are added. As trusted computing research is still a developing
field, we propose definitions of the security primitives that it aims to provide, and compare
existing implementations against these definitions.

Given the relative immaturity of trusted computing research, this thesis attempts to out-
line some of the open problems that must be solved before an open, general purpose, trusted

computing framework can be implemented.

1.4 Organisation

Chaptef R proposes definitions of the teropenandgeneral purposeas well as giving tech-

nical definitions for the security primitives that trusted computing intends to provide. Chapter
surveys a humber of trusted computing implementations, describing frameworks specified by
industry, as well as academic research. Chapter 4 discusses the frameworks outlined in Chap-
ter[3, and compares them against the definitions given in CHapter 2. Chapter 5 proposes some
architectural changes to improve the security and usability of the trusted computing framework

discussed in Chaptgl 3. Chagiér 6 summarises our conclusions, and discusses future work.



For secrets are edged tools,

And must be kept from children and from fools.

John Dryden

Defining an Open, General Purpose,

Trusted Computing Platform
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2.1 Open

Of the three attributes this thesis aims to descripennesss the most nebulous, and the most
contentious. To ascertain if a trusted computing framework is open, the term must first be
defined for our specific purpose. As discussed in Chapter 1, this thesis concerns itself with
the development of an open trusted computing platform. Current trusted computing platforms,
and why they do not meet the definition of open, described below, are discussed in Chapter 3.
The relative merits of an open or closed security primitive are beyond the scope of this thesis.
This thesis considers an open security framework to be worth investigating. Various properties
required for open, community-developed code to be able to engender trust are proposed. The
ability of naive users to rely on a closed proprietary entity, as opposed to an open community,
is considered.

Section[2.1]1 surveys a number of sources to find requirements for openness, especially
as it affects security. Sectipn 2.]L.2 surveys the processes through which open source software
is developed and examined, improving the security and correctness of the code. [Sectjon 2.1.3
surveys literature regarding the make-up and motivations of a community that is able to function
as a root of trust. Sectign 2.1.4 proposes some ways in which the community must operate to
facilitate trust in the framework. Sectipn 2.]1.5 compares the open framework that results from

our requirements to one developed in a closed, proprietary manner.

2.1.1 Requirements of Openness

In order to limit the scope of our definition of open, we concern ourselves primarily with those
attributes which influence the assertion made by Thompson in his 1983 Turing Award Lecture

[65]:

You can’t trust code that you did not totally create yourself... No amount of source-

level verification or scrutiny will protect you from using untrusted code.

Thompson'’s assertion states that unless you had a hand in the writing of every part of your

software environment, you cannot trust any code you compile inside that environment. He
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proves his case by subverting the C compiler to insert a back door into every copy of the Unix
login program that it compiles. Examination of thegin code itself will not reveal the back
door.

While Thompson'’s assertion is demonstrably true, it is equally true that developing a useful
software environment yourself is entirely impractical, if not impossible, over the course of a
lifetime. An argument against such an enterprise could be that, for the majority of computing
tasks, the level of trust that would be obtained is not required. A relatively lower level of trust
can be obtained by examining the source code, in its entirety, of a given software environment.

Bruce Schneier, a noted computer security expert, is of the opinion that computer security

comes from transparency, allowing public examination of source code [57]:

Security in computer systems comes from transparency — open systems that pass

public scrutiny — and not secrecy.

He also asserts that those responsible for engineering security products, and who wish to de-

velop strong security products, should require transparency and availability of.code [56]:

...the only way to tell a good security protocol from a broken one is to have experts

evaluate it...

The exact same reasoning leads any smart security engineer to demand open source

code for anything related to security.

The source and binary representations of software are legally protected through copyright.
Only the copyright owner is entitled to make further copies of a piece of software, and in order
to sell a program, the end user is typically grantéidense The termsopen sourcendclosed
sourcetypically describe two opposing methods of software development. However, they are
also used to classify the license under which a piece of software can be distributed.

The Open Source Initiative (OSI)/[5] was set up to vet and approve licenses which could
be referred to as ‘open source, or more specific@lfyl Certified Open Source Softwaf@ur-
rently, the OSI website lists over 50 licenses which are able to refer to themselves as open source

licenses. The ten criteria which a license must meet to be considered open source by the OSI
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Requirement Explanation

1. Free Redistribution The license shall not require a royalty or fee, not prevent the
software being given away for free or being sold, as part of
an aggregate software distribution.

2. Source Code The program must include source code, and must allow dis-
tribution in source code as well as compiled form. Where
some form of a product is not distributed with source code,
there must be a well-publicised means of obtaining the
source code for no more than a reasonable reproduction cost,
preferably downloading via the Internet without charge. The
source code must be the preferred form in which a program-
mer would modify the program. Deliberately obfuscated
source code is not allowed. Intermediate forms such as the
output of a preprocessor or translator are not allowed.

3.  Derived Works The license must allow modifications and derived works.
4. Integrity of The Au- The license may restrict source-code from being distributed
thor's Source Code in modified form only if the license allows the distribution of

“patch files” with the source code, for the purpose of modi-
fying the program at build time. The license must explicitly
permit distribution of software built from modified source
code. The license may require derived works to carry a dif-
ferent name or version number from the original software.

5. No Discrimination The license must not discriminate against any person or
Against Persons or group of persons.
Groups

6. No Discrimination The license must not restrict anyone from making use of the

Against Fields of program in a specific field of endeavour.
Endeavour

7. Distribution of Li- The rights attached to the program must apply to all users.
cense

8. License Must Not Be The rights attached to the program must not depend on the
Specific to a Product  program being part of a particular software distribution.

9. License Must Not Re- The license must not place restrictions on other software that
strict Other Software s distributed along with the licensed software.

10. License Must Be No provision of the license may be predicated on any indi-
Technology-Neutral vidual technology or style of interface.

Table 2.1: Criteria of open source licenses, as specified by the Open Source Initiative, reproduced from [5]. Re-
quirements in bold are proposed to be relevant to the security of the trusted computing framework, and
are adopted by our definition.
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are adapted and shown in Taple]|2.1. The OSI criteria require open source licenses to give all
possible users (requirements 5 and 6) a wide range of rights. Requirement 1 stipulates that open
source software can be sold, or given away for free. Requirement 3 stipulates that users of Open
Source Software (OSS) must be able to modify the software, and distribute their modifications.
These two requirements match the traditional conceptpehnnessvhen discussing software.

We are concerned with restricting a definitionagfento those criteria which are relevant
from the perspective of security, and especially a user’s ability to obtain and view the source
code. The majority of the ten criteria listed by the OSI do little to affect this goal.

To this end, we adopt requirement 2 in Tablg 2.1 as a requirement fupenirusted com-
puting framework. Source-code of the framework must be available for inspection by all users.
Additionally, we adopt requirement 4 in Taljle 2.1 as a requirement. This means software dis-
tributed with the trusted computing framework comes with a ‘certificate of authenticity’ as be-
ing the work of the stated author. Requirements for identifying authors are discussed in Section
2.1.3.

Requirement 1 is notincluded in our definition of open as it does not affect the availability of
source code for viewing, nor its authenticity. Requirement 3 allows dilution of the appearance
of there being an official, trusted version of the framework. It is not adopted for this reason. We
discuss this issue at greater length in Sedtion P.1.4. Also, in Séctioh 2.1.3 we discuss how trust
can be developed for a single, official, version of an open source operating system.

Requirements 5, 6, and 7 allow the equal distribution and use of the software by any and all
parties. These requirements are also adopted for our security-focused definition. They ensure
that all groups are able to use and examine the framework, without restriction imposed by an
authority who may be concerned with preventing the examination of the framework by some
groups.

Requirement 8 stipulates that an individual program cannot be required to only be dis-
tributed with a specific distribution. Our trusted computing framework should always be dis-
tributed wholly, never in part, as this may result in weakened security.

Requirement 9 states that use of the trusted computing framework should not preclude or

prevent the use of any other software. This prevents the security of the product from depending
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on the lack of certain software. For this reason, requirement 9 is adopted by our definition of
open.

Requirement 10 prevents the software from being dependent on a specific technology or in-
terface. For a trusted computing framework to give satisfactory security assurances, it may need
to be implemented or run on specific implementations of hardware, as discussed in[Seftion 1.3.
For this reason, we specifically do not include requirement 10 in our definition — the security

of the framework will depend on its use with specific hardware devices and technologies.

2.1.2 Examination of Source

Criteria 3 (Tablé 2]1), allowing derivations and modifications to be distributed, encourages the
traditional development model of OSS. This model of development, in part, contributes to the
contention about the security of OSS. The OSS development model is thoughtfully explained
and justified by Eric Steven Raymond in his boblke Cathedral and the Baza§49]. The
cathedral and bazaar models of software development are discussed below, as well as the impli-
cations for security and trust in the code they generate.

Many of the central tenets of, and justifications for, the OSS development model are ex-
plained by Raymond in his book. One of them he dubwmis’ Law. Linus Torvalds is the
creator of the Linux operating system, one of the most well-known and successful open source
software projects. Linus’ Law is defined @&ven enough eyeballs, all bugs are shalldvore

formally Raymond says that:

Given a large enough beta-tester and co-developer base, almost every problem will

be characterized quickly and the fix obvious to someone.

Linus’ Law is not immediately concerned with the security of a given piece of code. Instead,
it refers to the overall number of bugs, and the speed with which they are found and resolved.
The open source community does argue, however, thah#mg/-eyeprinciple means security
holes are found more quickly in an open source product than in a closed source product. Closed
source advocates argue in return that open source codeldaashatsthe ability to study the

source of a program to find vulnerabilities and exploit them, bevdnge hatscan find and



2.1 Open 12

fix them. The strength of these arguments is outside the scope of this thesis, and will not be
discussed in depth here.

Linus’ Law is given here to show where some of the perceived value of an open source
product is derived from. The argument described here is best applied to a popular product, with
relatively ‘many-eyes’. For the purposes of discussion, the Linux kernel will be used as a case
in point.

Just as it is impractical to develop an entire software environment on your own, it is also
impractical to study and understand the source code of one developed by others. For a naive
user, the Linux kernel is perceived to be secure, correct, and not contain malicious code based
on the consensus of the community that develops and examines it.

A naive user may not have either the time or expertise to fully understand the source code
in the Linux kernel. She instead relies on the combined technical expertise of the development

community, and trusts them to be actively looking for, reporting, and fixing bugs.

2.1.3 Community as Root of Trust

Linus’ Law shows why open source software gains value and quality. For an open trusted
computing framework, it is envisioned thatist, as Thompson intended it to mean![65], would

flow from the community that develops, examines, and vets the source code. This leverages the
many-eyes principal discussed above, but also gives another significant advantage to the closed
frameworks discussed in Chapiiér 3. If a user so chooses, they are able to move from relying on
many-eyes to relying on their eyes. A naive user however, requires a sucogesicbmmunity

to show that its interests are similarly aligned with their own. Such interests include developing
and assuring a trusted computing framework that operates without malice or deception towards
a user. Our inclusion of requirements 5—7 from Tgble 2.1 allows all groups and individuals
with an interest, to examine the framework. Examination by a group whose motivations a naive
user considers similar to her own allow her to avoid the infeasibility of examining the source
code herself. This is an examination by proxy.

The title of Raymond’s bookThe Cathedral and the Baza§49], refers to two different
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models of open source development. Although it is common to attribute the cathedral to the
closed, proprietary development model and the bazaar to the open source model, both Ray-
mond’s analogies refer to open source development. In the cathedral model, source code is
available to the public only with official releases. Between releases, development goes on be-
hind closed doors with only an exclusive, and approved, set of developers being involved.

The bazaar model differs in that the project is developed in full view of the public. Anyone
is able to view and use the latest version of the source code, typically obtained over the Internet.
Motivated by Thompsori [65], we aim to maximise the possibility of source code scrutiny, and
SO require an open trusted computing framework to operate under the bazaar model of software
development.

Additionally we require that the development community be composed of many groups,
with diverse interests. They should also be security-conscious. Such a community is capable
of serving as trustworthy ‘other-eyes’ for examination by proxy for a wide range of groups and
users with differing security requirements.

For the naive user described above to be able to consider the open source development
community as a suitableot of trust(see Sectiop 1]3), that community, and the way in which it
interacts with the project’s code, must be defined. From the variables given i Tgble 2.2 on the
following page, and their effect on the development community and processes, we will derive
further requirements for our definitions of open.

There is no one open source development model. Each community comes with its own
variations. The exact development model used by an open source project varies along a number
of axes. A number of these are described by Gacek [27], and shown in an abbreviated form
in Table[2.2 on the next page. As discussed above, the development model and administration
processes can affect the security of the derived code in a number of subtle ways.

The starting point of the project is of concern to security if the community begins by adopt-
ing a code base used for another purpose. The security design of the adopted code must be
examined carefully. The motivations and interests of the community members directly affects
the security of the code. Lakhani and Wolf [33] say the following in regard to ascertaining the

motivations of OSS developers:
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Variable Characteristics

e Project starting points

e Motivation

e Size of community and code base

e Community
o Balance of centralisation and decentralisation
o How their meritocratic culture is implemented

o Whether contributers are co-located or geographically
distributed, and if so, to what degree

¢ Software development support

o Modularity of the code

o Visibility of the software architecture

o Documentation and testing

o Tool and operational support
e Process of accepting submissions

o Choice of work area

o Decision making process

o Information submission and dissemination process
e Licensing

Table 2.2: Variable characteristics of open source software development models, adapted from [27].

Another central issue in F/OSS [Free and Open Source Software] research has been
the motivations of developers to participate and contribute to the creation of a pub-
lic good. The effort expended is substantial. ... But there is no single dominant
explanation for an individual software developer’s decision to participate and con-
tribute in a F/OSS project. Instead we have observed an interplay between extrinsic
and intrinsic motivations: neither dominates or destroys the efficacy of the other.

It may be that the autonomy afforded project participants in the choice of projects

and roles one might play has “internalized” extrinsic motivations.

An associated requirement for a successful open trusted computing frame is that the com-
munity be of a sufficient size, and populated with a sufficient number of experts in the field.
Quantifying these numbers is non-trivial and depends highly on the project field in question. It
is currently an open problem in the field of open source software research.

Variable characteristics, pertaining to the community associated with an OSS project match-
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Role Title Explanation

Project Leader Person who initiated the project, and responsible for
vision and overall direction.

Core Member Responsible for guiding and coordinating develop-

ment. Involved for a relatively long time.
Active Developer  Regularly contribute new features and fix bugs.
Peripheral Devel- Occasionally contribute new functionality or fea-

oper tures to the existing system.

Bug Fixer Fix bugs discovered either by themselves or reported
by other members.

Bug Reporter Discover and report bugs, but do not fix them them-
selves.

Readers Active users of the system, who invest time to un-
derstand its operation by reading source code.

Passive User Use the system in the same way they use closed

source systems.

Table 2.3: Categories of open source software project contributors, adapted from [74].

ing our definition of open, involving centralisation and geographical distribution (Talle 2.2) do
not affect the security or trust in the derived code. The operation of the meritocratic culture
however, is important. An open community relies on the contributions of its members, and an
open trusted computing framework requires those members who are experts in the field to have
more control over the project than others. Ye and Kishida [74] place contributors to an open
source project into eight different categories, shown in Table 2.3. Not all eight types exist in all
open source communities, and there are differing percentages of each type in each community.
For example, they cite the Apache [1] community as consisting of 99% of passive users.
Figure[2.1, adapted from Ye and Kishida|[74], shows the onion-like hierarchy of member
types, and their influences. According to Ye and Kishida, the ability for an individual to effect

change on the project decreases in relation to their distance from the centre.

...[a] role closer to the centre has a larger radius of influence... the activity of a
Project Leader affects more members than that of a Core Member, who in turn has a

larger influence than an Active Developer... Passive Users have the least influence...

Figurg2.1(d) shows the relationship diagram of a normalised open source community, where
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Project Leader

Core Member
Active Developer
Peripheral Developer
Bug Fixer

Bug Reporter

Reader

Passive User

(2) Normalised group sizes.

Project Leader

Core Member

Active Developer

Peripheral Developer

Bug Fixer

Bug Reporter
Reader

<4— Passive User

(b) Adjusted group sizes for open trusted computing framework.

Figure 2.1: Hierarchical structure of relative group sizes in open source communities, adapted from [74].

ability to effect change in the project decreases proportionally from the middle. There may be
no open source project that actually fits this model of relative group sizes and influences, and it
is shown here only to contrast with Figlire 2.1(b).

Figure[ 2.1(H) show relationships for an open trusted computing framework community. Mo-
tivated by the many-eyes factor resulting in increased trust in the source code (see above), an
increase is required in the roles and influences of bug reporters and readers. An individual

reader, with a prior reputation as an expert in the field she is commenting on, is of dispro-
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portionate importance to the project. Such comments and bug reports from experts with little
history inside the community should be given a disproportionate weighting in the project. This
structure increases the ability of the passive user group to rely on the community as the root of
trust described above.

Apart from the less formal description of a preferred community structure, there are also
more formal criteria for an open trusted computing framework, related specifically to charac-
teristics described by Gacek [27] (see T4gblg 2.2 on pape 14) as software development support
and the processes of accepting submissions.

Requirement 4 in Table 2.1, included in our definition of open, is also intended to indicate
the author of each piece of code in the framework. Anonymous check-ins of code are not
allowed. While readers and bug reporters may need to be anonymous, depending on their
circumstances, code must first be vetted, approved, and included in the code tree by identified
and traceable individuals. Code must not be modified without clear indication of the author of

the modification.

2.1.4 Operation of the Community

The project leaders and core members should be responsible for deciding when and how to
issue official releases of the code base. Requirement 3 of [Table 2.1 specifically requires OSS
licenses to allow modification and distribution of software. Modification and distribution of
the trusted framework by individuals outside of the community may result in vulnerabilities or
bugs being introduced into the code. Additionally, use of such code may result in code with
known vulnerabilities and exploits remaining in use, weakening the assurances given by the
primitives described in Sectiofis 2.3. An open framework that also specifies requirement 3 of
Table[2.] allows for the possibility of a fork, or unofficial versions of the framework created, to
be distributed and used. To ensure the security and correctness of the framework, this should not
be allowed. The attestation primitive, discussed in Se¢tion]2.3.5, allows a challenger to verify
the state of a remote platform. Such verification could assure the challenger that the platform is

running a correct, official version of the framework. However, other security primitives operate
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only locally, and are not subject to external verification. The use of a modified framework could

result in those primitives being subverted by the user themselves, or by a third-party attacker.
These requirements result in the operation of our open framework community being dif-

ferent from traditional open source projects in a number of ways. The OSS philosophy that

motivates the ten licensing criteria of the OSI (see Table 2.1) is given on their weli page [5].

When programmers can read, redistribute, and modify the source code for a piece of
software, the software evolves. People improve it, people adapt it, people fix bugs.
And this can happen at a speed that, if one is used to the slow pace of conventional

software development, seems astonishing.

This philosophy encourages the modification, derivation, and distribution of open source soft-
ware. The requirements for a root of trust to be formed from the community are in contrast to
this philosophy. Once the trusted computing framework features (see Seciion 2.3) have been
developed, the code base should remain static and resistant to change. Necessary changes to
fix bugs and vulnerabilities must, of course, be done. But, to borrow a phrase from software
engineering, &ature freezenust occur.

This allows naive or passive users to treat the static code base, and associated community,
as the root of trust. It is difficult to imagine passive users being willing to trust an always
moving code base. Additionally, from a purely technical standpoint, administering a constantly
changing code base, while still giving the required security assurances, would be non-trivial.
The number of different official versions in use must be kept minimal, as attestatiowhises

lists of known code signatures. Attestation is discussed in Selction] 2.3.5 of gage 42.

2.1.5 Comparison with Closed Development

The requirements of an open framework given here, are intended to satisfy the need for source
to be available, be developed by an open community with many interests and motivations, and
yet still act as the root of trust in a similar manner to closed, proprietary systems. A significant
criticism of OSS is that there is no one to apportion blame or liability for faults in the code.

One argument for proprietary, closed software is that the cost of the closed software includes
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the ability to acquire either support or financial recompense in case something goes wrong with
it. It is this corporate entity which acts as the root of trust for the product. For example, IBM’s
secure coprocessor, discussed in Se¢tion 3.6, was developed primarily for the banking industry.
IBM provides guarantees of the correctness of the manufacture and design of the device. But it
is IBM’s reputation, and its fiscal and legal responsibilities to its shareholders, that enable other
corporate entities (banks) to have IBM as the root of trust for the device.

A corporate entity has no avenue for recompense against an open source community follow-
ing some software failure. To date, however, little recompense has been obtained from major
software vendors for failures in their products. The license of one major software vendor ex-
plicitly states they are not liable for any costs incurred due to failings in their software. A legal
analysis of Microsoft's End-User License Agreement (EULA) is outside the scope of this thesis.
It is interesting, however, to quote a relevant portion of their EULA for their Windows Server

2003, Enterprise Edition [41]:

15. DISCLAIMER OF WARRANTIES. ... Except for the Limited Warranty and to
the maximum extent permitted by applicable law, Microsoft and its suppliers pro-
vide the Software and support services (if any) AS IS AND WITH ALL FAULTS,
and hereby disclaim all other warranties and conditions, whether express, implied
or statutory, including, but not limited to, any (if any) implied warranties, duties
or conditions of merchantability, of fithess for a particular purpose, of reliability or
availability, of accuracy or completeness of responses, of results, of workmanlike
effort, of lack of viruses, and of lack of negligence, all with regard to the Software,
and the provision of or failure to provide support or other services, information,
software, and related content through the Software or otherwise arising out of the

use of the Software.
Landwehr[36] elaborates on the arguments about software:

It has a significant cost of design and implementation, yet very low cost of repli-
cation. Very minor changes in its physical realisation can cause major changes in

system behavior. Though a great deal of money is spent on it, it is rarely sold. Usu-
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ally it is licensed, customarily under terms that relieve the producer from nearly all

responsibility for its correct functioning.

Depending on their situation, the fiscal and legal avenues for recompense provided by
closed, proprietary systems may not be of any use to the user. Users in different countries,
or with little financial resources, may be of little importance to a major software vendor unless
there is some other contractual obligation between the two parties.

The value of an open community-developed framework for a passive, or naive, user is de-
pendent on the similarity between their security requirements and those of the project leaders,
core members, and developers. They may find their requirements are closer to those involved
with an open framework than an alternative developed by a corporate entity. The security re-
qguirements of those in charge of the closed framework for their framework, may not dominate
the development direction of that framework. Other considerations, such as a return on invest-

ment or possible liabilities, may be the motivating interests.

2.2 General Purpose

This section establishes some measures of functionality and usability that lead to a general
purpose computing platform.

A general purpose computer is formally understood to be one which is Turing-complete.
That is, it matches the definition of a universal Turing machine. This section discusses a less
formal, higher-level, interpretation of the phrase. When declaring a given trusted computing
framework to be general purpose, we are not making reference to its ability, or otherwise, to be
used as a universal Turing machine. All the trusted computing frameworks discussed in Chapter
are implemented on hardware machines, and in software languages, that are Turing-complete.

A trusted computing framework is itself considered togemeral purposé it does not re-
strict the general purpose usability and functionality of the computing platform and operating
system upon which it builds. As discussed in Secfiof 1.3, trusted computing extends general
purpose hardware and software architectures to provide assured computation for chosen appli-

cations. General purpose computer architectures in use today give the user a considerable range
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of functions and abilities with regards to administering their system, writing, compiling and dis-
tributing applications, and obtaining and executing arbitrary applications. It is measurements
of usability and functionality like this that a trusted computing framework, when added to a
platform that already enables such use, should not restrict in order to implement the security
primitives discussed in Sectipn P.3.

Garfinkel et all[28] give examples of general purpose computing platforms such as “work-
stations, mainframes, PDAs and PCs.” In contrast to this, they list “automated tellers, game
consoles, and satellite receivers” as examplesrafle or special purposeomputing devices.

Their simple taxonomy defines single purpose computing devices as platforms that are restricted
in their usage through a limited hardware or software interface. The internal architecture and

components of a single-purpose and general-purpose computing platform may not differ greatly.
It is the interface, and functionality, that each presents to a user that separates them.

One of the functionalities of a general-purpose computing platform is the ability of users
to write, compile, and run their own programs, listed in Tablé 2.3 as characteristic 1. Spinellis

[61] cites the Xbox consolé [15] as an example of a special-purpose computing device:

The Xbox... can be considered an instance of a special-purpose TC [Trusted Com-
puting] platform. Although based on commodity hardware, the Xbox is designed

in a way that allows only certified applications (games) to run...

The Xbox is not intended to allow a user to execute arbitrary code on it. Code must be inspected
and approved by Microsoft before it can be sold to end users, and there is no avenue for the free
distribution of programs to run legally on an Xbox. The inspection procedure can guarantee
a certain standard in the final product, but it means the code that executes on an Xbox is not
arbitrary. This restriction of arbitrary code is listed in Tablg 2.4, as required characteristic 2 of
a general purpose computing platform.

Characteristic 3 in Table 2.4 is best understood by considering the measures taken to con-
trol a corporate computing environment. The installation of software on desktops and servers
is under the control of an IT department. Users make specific requests to have software in-

stalled on their desktop. Additionally, versioning of a software application is tightly controlled.



2.2 General Purpose 22

Characteristics

1. Write, compile, and run own programs.
2. Execute arbitrary programs.
3. Control over software versioning.

Table 2.4: Capabilities of a general purpose computing platform.

Versioningis the process through which patches and updates are installed, over time incre-
mentally keeping a software application up to date. Strict control over the software installed
on a computing platform, and the ability to prevent the installation of malicious programs, or
programs considered insecure, allows the corporate desktop to be made considerably secure
without trusted computing primitives.

Software applications are typically upgraded through the release of patches and updates. A
general purpose computing platform allows the user to manage the installation of these releases.
A release denoted agatchtypically implies it is concerned with fixing a security vulnerability
or bug. A release denoted as @pdatetypically implies the addition or upgrading of features
in the application. A general purpose computing platform allows the owner to apply patches
and updates at their discretion. Most patches and updates are in the user’s interests — they do
not remove some aspect of the application the user previously found useful, but supply instead
either improved security or usability.

The distinction between thewnerand theuserof the platform is important. A corporate
desktop is owned by a different entity to its every day user. The interests of the user are only
considered in relation to the ability of the user to do what the owner of the platform requires.
For a home computer, the owner and the user are the same.

The requirements listed in Taljle P.4 for a general purpose computing platform, enable wide
and varied usage of the platform by many different groups of users. Applications that were not
considered when the software and hardware platform was released can be developed, deployed,
and tested. Hardware peripherals can be added to extend functionality. Upgrades can be per-
formed to improve the performance, functionality, and usability of both software and hardware.

The security features provided by a trusted computing framework, discussed in $edtion 2.3,

are intended to be used to secure specific applications in a manner not possible without the
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framework. As discussed in Sectipn]1.3, trusted computing primitives are intended to secure
certain applications where and when it is considered necessary, not improve the security of the
platform as a whole.

One measure we propose of the usefulness, or general purposefulness, of a trusted com-
puting framework is its ability to improve the security and assurance of specific applications
without reducing the general purpose platform upon which it runs to a special or single-purpose
one. A reduction in the general usability and functionality of a platform as a whole, to a level
that would allow applications to be secured and assured to comparable levels through that re-
duction alone, is not especially useful.

It should be noted that trusted computing primitives do preclude the functions of a general
purpose computing platform in order to provide assurances of confidentiality and integrity. For
example, the sealed storage primitive (Secfion 2.3.5 on[pdge 42) is intended to enforce strict
limitations on programs that can be used to access specific data, and the attestation primitive
may be used by a remote challenger to prevent a user from accessing a service with an arbitrary
application. Reductions in functionality and usability required to assure confidentiality and

integrity, are not considered reductions of the general purposefulness or usability of a platform.

2.3 Components of a Trusted Computing Framework

As discussed in Sectign 1.3, trusted computing uses a hardware-based component to assure a
limited set of immutable functionality and a limited set of cryptographic secrets. These two
functions are used as leverage to provide a considerably larger set of security functions. The
four security primitives considered to make up a trusted computing framework are known as
attestation curtained memorysealed storageandsecure 1/0

Attestation provides remote assurance of the state of the hardware and software stack run-
ning on a computer. Curtained memory provides memory separation of processes. Sealed stor-
age provides access controls to data based on the executing software stack. Secure 1/0O provides
assured input and output from the CPU to peripherals such as the keyboard or display.

Using a hardware device, embedded in the motherboard, to provide assurance is a relatively
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new approach to securing the personal computer. The motivation and reasoning for trusted com-
puting was discussed in Chapfer 1, and will not be repeated here. The four trusted computing
primitives are not implementations of new concepts in computer security. They are generally
evolutions of previous security features found in previous operating systems.

The termtrusted computingused in this thesis is distinct to the tersecure computing
commonly used to describe development processes, standards, and verifications that must be
applied to arrive at a ‘secure’ system. The United States Government Department of Defence’s
Orange Bookl[16] specifies four different levels (D—A) of what it refers to as ‘trusted computer
systems.” Common Criteria (CC) was introduced in 1999 to replace the ageing Orange Book
specification. It specifies seven different Evaluation Assurance Levels (EAL1-7) against which
products and systems can be tested.

The trusted computing primitives described in this section are not intended to meet any
of the CC or Orange Book standards for secure computing. Their use by an application or
system does not guarantee anything about the security of that application or system as a whole.
However, trusted computing primitives can be used as part of systems or applications intending
to be evaluated against CC.

For example, the attestation primitive of trusted computing allows a remote party to trust
some statement made by a platform about itself. This statement is limited in its nature —
“program A is (or programs A-D are) executing, under operating system X, and | am a device
Y with capabilities Z, here are my credentials W to prove what | say is true.”

The security of the entities named in the attestation statement is not assured in any way.
The development processes, methods, and verifications applied to those programs, operating
systems, and devices affect the security of those products, not the validity of the attestation
statement itself.

In computer security, the method of guaranteeing the security of a software component,
either through secure engineering practises using specific development methodologies through-
out the software life cycle or through formal verification of the final state, is an open problem.
Proving the correctness of code is non-trivial. Trusted computing does not attempt to assure the

securityof arbitrary code or a system. It only assures the correctness of certain functionality,



2.3 Components of a Trusted Computing Framework 25

and the validity of the contents of a limited statement made about a platform.

To the best of our knowledge, the primitives provided by a trusted computing framework
have not been comprehensively formalised to date. This thesis makes the first steps toward an
adequate formalisation of trusted computing. A fully developed and fully-argued formalisation
is beyond the scope of this thesis. The definitions given here should be considered first drafts
of further formalisations.

Section[2.31 will briefly introduce the system model used in this thesis. Sg¢ctioh 2.3.2
introduces the concept of code identity. Sections P[3.3,]2.3.4] 2.3.5, and 2.3.6 each introduce a

trusted computing primitive, and place it in a historical context. Motivations for the primitive
will be given, as well as some examples of the types of application-layer features that could
be built with it. Classes of attacks possible against each primitive will also be discussed. Each
primitive will be formally defined, and these formal definitions will be used to validate trusted

computing frameworks discussed in Chapférs 3and 5.

2.3.1 Machine Model

A common model used for the discussion and development of computer securityasctss
control mode([34]. Figurg 2.2 shows the components of the access control model. Explanations

for each of the components is given by Lampson €t &l [35], and reproduced below.
e Principals— sources for requests.
¢ Request— attempt to perform an operation with or on a resource.

e Reference Monito— a guard for each object that examines each request for the object

and decides whether to grant it.
e Objects— resources such as files, devices, or processes.

In a trusted computing framework, objects typically take the form of cryptographic keys
to which the principal is requesting some form of access. This access could either require the
disclosure of the key, or the decryption of some cipher text by the monitor on its behalf. The

specific entities in the model will be described on a case by case basis throughout this thesis.
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Principal | . Guard

Figure 2.2: Components of the access control model, adapted from [35, |34].

Y

Resource

A trusted computing framework operates both on the level of a single machine, and in a
distributed environment. The threat model a trusted computing framework is designed to resist
is discussed in Sectign ].2. Trusted computing functions occur either on a single machine, or
between two machines across some network. England and Peinado [26] give a usable definition

of acomputing device

...the computing device is a programmable, state-based computer with a central
processing unit (CPU) and memory. The memory is used to store state information
(data) and transition rules (programs). The CPU executes instructions stored at a

memory location, which is identified by an internal register (instruction pointer IP).

In addition to this definition, our computer device has a network interface through which it
is able to communicate with other computing devices. The network channel itself is untrusted.
Data that is not otherwise protected before it is transmitted, is able to be viewed or modified by
attackers.

As discussed in Secti¢n 1.3, trusted computing builds its trust from the immutability prop-
erty of some hardware-based device. This formation of trust leads us to consider the layers
which make up a computing device, and build a model to introduce trusted computing with.
England and Peinad0 [26] outline their model, and an adapted version is reproduced in Figure
[2.3. The immutable hardware device is shown at ldyethe operating system kernel at layer
l1, and applications at layds. Layerlg acts as a guard to some resource — a cryptographic
function or secret. Laydyr acts as a principal to layég, and as a guard to layé&r. Layerl,
acts as a principal to layér. As in the access control model outlined above, a principal at layer
li initiates requests to a guard at layer,. This guard/principal relation continues until layer

lo, where the resource resides, and the request is serviced.
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Layer 2 . Layer 1 . Layer 0
Operating
Applications System Hardware
service
interface | request
Principal Guard | Principal Guard | Resource
< <
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®isolation A4

Figure 2.3: A layered computing system showing hardware, firmware, and software, adapted from [26]

The interaction between principals in differing layers is not restricted to the request and
response access control model, discussed above. The relative layers in which two principals
are executing also indicate their relative privileges. A principaxecuting in a layel; has
the ability to affect a principaQ in a layerlj, wherei < j, without requiringQ to initiate a
request. Specifically, our system model requires an operating systexecuting in layel; to
have specific functions it can perform on a princi@Qa¢xecuting in layet,. An OSP must be
able tocreate Q by loading code from the file system into memory, marking it executable, and
initiating its execution on the CPU. Once started, anf>&nviewthe state ofQ throughout
its execution, to ensure it operates correctly. It is alsmtwlifythat state arbitrarily, perhaps
halting the execution of) if it behaves maliciously or in a manner contrary to some system
policy. An applicationQ is also capable of beingignalled in a well-defined manner, bl.

This can informQ of some important state-change in the system, or pass a mess@dmto
the user, or another application.

In our system model, such actions may occur from the point of vie@, @irbitrarily — that
is without Q initiating a request. Additionally, two principaBandQ, both executing in layer
lj, are able to communicate through some mechanism set up or managed by a pRneipal
layerlj, wherej =i — 1. This can be viewed, in our access control model, as a requesffrom

in |2 to access a resource provided@®yalso in layel,. The guard in this case Rin layerl;.



2.3 Components of a Trusted Computing Framework 28

2.3.2 Code Identity

Code identity is a pivotal concept in distributed computer systems. This is especially true from
trusted computing frameworks. It is introduced here, before discussion of any specific trusted
computing primitive, because it is relevant to all of them.

England et all[25] give a brief introduction to code identity when discussing Microsoft’s
Next-Generation Secure Computing Base. However, their introduction is not only relevant to
Microsoft’'s product. Informally, they state that a code identity (code ID) is a “cryptographic
digest or “hash” of the program executable code” [25, p 56]. England et al succinctly outline

the motivation for a securely derived identity for program codé [26]:

If the operating system can guarantee file-system integrity, it can simply assume
that the program “is who it says it is.” However, in distributed systems or platforms
that let mutually distrustful operating systems run, establishing a cryptographic

identity for programs is necessatry.

It is obvious that when used in a distributed system to make access control decisions, the
code ID must be derived in exactly the same manner on all computing devices in the system.
Additionally, there must be some way to prove to the remote platform that this is occurring.

This leads us to definitidn 2.1 of code identity.

Definition 2.1. A trusted computing framework has a correctode identitymechanism if it
derives identical cryptographic digesf3(P) for a programP on all computing platforme

running the framework, and no other distinct progra@hasID (Q) = ID(P) on any othep'.

Under definitior] 2.1, the use oD (P) to identify the functionality of® is only reasonable
if P is not dependent on functionality provided by code not measurHa(iR). This functional
dependence is precisely the case wRanakes use of shared, or dynamically-linked, libraries.
Shared libraries are not distributed withand are usually managed and updated by an entity
other than the author &f. If the shared libraries called by an application are included in its code
identity, updates to one shared library will change the code identities of all the applications that

call it.
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If the code identity oP does not include all the libraries thatalls, then the code IID (P)
is not a meaningful statement about the functionalityofA third party cannot use this code
identity to make decisions that depend on the identity and functionalRy &h identity ID (P)
fixed only toP does not indicate changes in functionality caused by updated shared libraries.
Generating a meaningful statemébt(P) about the functionality oP, whenP has a func-
tional dependence on shared libraries or other code outside the code HRAsé @n open
problem in trusted computing frameworks. Various trusted computing frameworks attempt to
solve the problem in different ways. These solutions are discussed in S¢ction§ 3.24, 3.3.3, and
B.7.3.

2.3.3 Sealed Storage

Sealed storagallows applications to persist data securely between executions, making use of
traditional untrusted long term storage medium like hard drives, flash memory, or optical disks.
Data is encrypted with some symmetric encryption algorithm before storing. The particular
encryption scheme used depends on the implementation. Strong cryptography assures the con-
fidentiality and integrity of data when stored on an insecure medium. The symmetric key used
to encrypt and decrypt the plain and cipher text is derived from the code ID of the application
requesting the cryptographic operation.

Sealed storage, also knownsesure storages an evolution of traditional file system access
control mechanisms. When implemented in a trusted computing framework, sealed storage
allows an application to encrypt some secret of arbitrary size, and be assured only it will be
able to decrypt it. To provide this assurance, the key that is used to encrypt the data cannot be
specified or obtained by the application.

Early access control mechanism, such as those found in Unix-style operating systems, based
decisions for allowing or restricting access to files solely on ownership and identity parameters.
Which accounbwneda file was stored in a data structure associated with the file. Additional
access control information specified the possible access permissions (read, write, or execute)

pertaining to the owner of the file, users in the same group as the file, as well as all other users
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Principal | . Guard

» Resourcs
Netscape (Joe) read 0OS /homel/joe/bookmark.html

Figure 2.4: Access control model showing attempt to read a file from the file system with Unix-style access control
mechanisms.

in the system. If an account was named as the owner of a file, that was given full control over
the file. Full control includes the ability to specify another user account as the owner of the file,
as well as change the specific access permissions associated with the file.

Each running process in the operating system runs withdetity of a user account on
the system. User accounts are maintained by the system administrator, and most programs take
the identity of the user that started the application. The system requires a user to authenticate
herself to the system, establishing their user account name in the process.

When a user, or program running with that user’s identity, attempts to read, write, or execute
a specific file, the operating system makes an access decision based on the permissions stored
with the file. This process is shown in terms of the access control model in Figlre 2.4. Here, the
web browser Netscape, running with Joe’s privileges, is attempting to readdk@ark . html
file from his home directory. This is a typical access request. Although not shown here, the
access permissions set would be examined by the operating system. If Joe, as the owner of
the file, had given himselfead permission, the operating system would allow the request to
continue.

This model shows the identity of the logged-in user, Joe, and the set of permissions on
the relevant file being used as parameters to the access control decision. Programs that are
intended to run without user interaction, or be accessed remotely over a network, can be run
under their own user account. These programs, often network daemons, are started by the root
(superuser) account, and set to execute under their own specific user account. This user account
is deliberately configured to adhere to the principle of least privilege. In practise, this means
that the user account is configured to allow the minimum access for the program to function as

required.
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Figure 2.5: Access control model showing Netscape requesting some arbitrary data to be sealed.

An example of this configuration involves running the Unix e-mail daemon Sendmail [10]
under asendmail user account. This program has had a long history of security exploits which
give a remote user shell-access to the server with the privileges of the user account Sendmail
was running under. When run under its own user account, a successful attack against Sendmail
by a remote attacker gives only a minimum privilege account. Ifsthteimail user account
is configured correctly, the attacker is severely restricted in their ability to further compromise
the system. If Sendmail had been run under the account it was started by (typically root), the
attacker would have complete access to, and control over, the compromised system.

This technique conflates the two parameters of the traditional access control decision, ac-
count identity and file permission, into one logical parameter — the identity of the program
itself. The sealed store primitive continues this trend, by binding access control decisions to the
code ID of the application in question, without checking the identity of the user.

In the majority of trusted computing implementations, the sealed store function is carried
out by some trusted entity at a lower layer in the system hierarchy. As explained in $edtion 1.3,
trusted computing relies on the immutability property of some hardware device to be implicitly
trusted by higher layers. From an application’s perspective at lay#re sealed store function
is carried out by some lower layéy,>. This layer simply passes on the request until it reaches
layerlp. In practise, the hardware device does not often contain all the required functionality for
the primitive to be usable, and so all layers below the application work in conjunction to provide
the required functionality. An equivalent effect can be also be shown to be obtained through
different methods, as discussed in Sectjonk 3.7 on[page 92 and 3.4.1 pnjpage 82. These methods
do not directly map to the access control model, and operate without requiring a request to be
iIssued to a lower layer.

An application makes use of the sealed storage primitive by makiwgr a call, passing
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one or two parameters. If the calling principal ©fal, Ps, specifies only one parameter, the
data to be sealed|, the lower layer generates the code identityfgflD (Ps), and uses it as the
second parameter, referred to as the intended unsealing prirgjpdhe first case is a special
subset of the second. It is equivalentRpcalling seal and passingl, generatingD (Ps), and
including it as the second parameter. The second parameter is used to authenticate the caller of
theunseal operation.

The seal function returns the datd symmetrically encrypted, denoted @asAn example
is seen in Figurgé 2]5. Here Netscape, at ldyemitiates a request to some lower layer,
passing in password data(plain text), as a parameter to be sealed securely. Some lower layer
li, depending on implementation, generates the code ID of Netscape and udgs It akould
be noted that the guard in the model does not authenticate or authorise the requesting principal.
Any principal P is able to call theseal function and logically the code IDP(PR,), is used to
generate the encryption key, ensuring that dilg able to decrypt the resulting cipher text

Layerlp useslD(P,) of the intended unsealing application, to generate the symmetric key
it will encrypt the passed dath with. Sealed storage assures the decryptios will only
occur on the same platform it was encrypted. The sealing platform is denoprdaasl the
unsealing platform denoted pg . To this end, a device-unique property is used to generate the
symmetric key used to encrygt As discussed in Secti¢n 1.3, the hardware device at lgyer
of the specific trusted computing framework contains a number of keys. These keys are never
allowed to leave layelp. One of these is a device-unique symmetric kgy The keyKs and
ID(P) are concatenated togethg) {o form a key of the forn{K|ID(P)}, denoted a&g)p p)-
This key is constructed to be unique to both the specific platform and application. It is used to
encryptd. This encryptionEKsHlD(P)(d), results in a cipher texd@. This cipher text is returned
In response to the initial request from the principal, Netscape, at layBietscape then stores
c using the traditional insecure file system provided by the operating system.

In the example above, Netscape does not specify an intended unsealing application, and so
its own code ID is used ad (P,). Netscape could equally have specified another intended
unsealing application, by passing its code IDR$P,). Netscape obtains this code ID through

some traditional means of inter-process communication (IPC) — either a shared directory, or
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through a socket. It should be noted that there needs to be no pre-existing trust relationship
between Netscape and any application it intends to be able to uhseal

Theunseal function takes only one parameter — the data be unsealed. A princip& at
layerl; initiates a request, passingo some lower layelk 2, depending on the implementation.
Layerlg generate$D (P) and uses it alD (P,), along with the platforms symmetric kd§g, as
when sealing data. The generated key, of the fokg|ID (P,) }, denoted a&g)p(p), is used to

decryptc. Dk (c) givesd, which is returned to the calling principgl

s||ID(P)

We have identified six cases for the operation@feal.

1. The datad is returned; or
2. the decryptiorD(c) fails, because has been modified; or

3. the decryptioD(c) fails, because the calling principalefseal, R, identified bylD (R,),
is not the same as the identified unsealing application specified by the calling principal of

seal; Or

4. the decryptiorD(c) fails, because the device-unique property used to derive the symmet-

ric key is different; or

5. datad’ is returned, because the underlying cryptographic algorithms failed to operate as

expected; or

6. if c has been deleted.

The occurrence of case 1 implies a number of things. The first ixthvas sealed on the
platform ps and unsealed op,, and thats=u. The second is thdD(P) of the unsealing
principal equaldD (R,) specified as the identity of the intended unsealing application.

The occurrences of cases 2, 3, and 4 are assumed to be caused by the underlying crypto-
graphic algorithms operating as expected. The decryiia) should fail when the key used
is not the same as used H{(d) that givesc. Case 2 implies that has been tampered with
while stored on persistent storage medium. Case 3 implies that the unsealing application is not

intended to unseal Case 4 implies thais # py.
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Seal Unseal

Figure 2.6: Operation of sealed store command, resultant sealed text and respective unseal command.

Case 5 occurs when a modifiel decrypts tod’, through the failure of the underlying
cryptography to detect a change in the integritgoft also occurs whetD (P) of the unsealing
principal does not equdb, and this decryption yields@ that is not detected as incorrect.

Case 6 is listed here for completeneBgr) will not so much fail as never begin. Cases
2 and 6 are the result of storirggon an untrusted medium. The sealed data is intended to be
stored on a storage medium not under the control of either the sealing application or a trusted
operating system enforcing policy restrictions set by the sealing application. Providing a secure
trusted storage medium is expensive, as discussed]in 1.3, but results in fewer failing cases for
D(c). A motivation for the design of the sealed storage primitive is to give no guarantee of
data availability, and strong guarantees of confidentiality and integrity, at a greatly reduced cost
compared with giving a strong guarantee of data availability.

Figure[2.6, adapted frorn [25], gives a graphical illustration of the seal and unseal primitives,
and illustrates their typical uses. Below, we analyse this figure in terms of the six cases we
identified above. Principad is shown, callingseal twice, both times on platform;. The first
call specifies only one parameter, the data to be encryfatecdsulting inc;. The second call
specifies two parameters. The first is the data to be encrgptemhd the second is the code
ID ID(P;) of the principal intended to unsedd. Theunseal call is shown six times, called

by each principaP;, P>, P; on each sealed data blalp, c,. PrincipalsP; andP, call unseal on
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pi, and principalP; calls unseal op;. Additionally, ID(Py) = ID(Ps). The unseal call by
passingc; as the parameter resultsiic;) completing successfully, arti being returned to
P;. The unseal call by passingc; results inD(c;) failing. This failure is an example of case
3. PrincipalP,, calling unseal orty, results in a failure due to case 3, also. When principal
P, calls unseal om; however,D(c;) succeeds because specified the code ID d® (ID(P,))
when calling seal omy,. Both calls byPs result in a failure ofc; andc,. These failures are
examples of case 4.

Figure[ 2.6 shows that cases 1, 3, and 4 are the commonly-occurring cases, assunging that
is not deleted or modified. The modification or deletiorr otcurs due to an attack or hardware
failure. If c has been modified, allnseal operations in Figurg 2.6 will fail due to case 2, and
if c has been deleted, will fail due to case 6. The occurrence of case 5 implies a weakness being
found in standard cryptographic theory.

Due to the lack of secure, persistent storage mechanisms, a number of attacks are possible
under the threat model outlined in Section|1.2. The first of these is a denial of service attack
(DoS), resulting in a failure due to case 1 or 4 occurring. An application relying on sealed
storage to persist long-lived application state from execution to execution cannot rely on that
state to be available when it next executes. A malicious operating system, application or user
can delete or corrupt a sealed secret thereby forcing an application to return to its null, or initial,
state on each execution.

A more subtle attack, taking advantage of the same vulnerabilities that lead to the above DoS
attack, is known as eeplay attack To describe a replay attack, the notatmnis introduced.

HereT indicates a point in time, or an execution in an ordering of executioRs thiat result in
¢ being unsealed &’s initialisation, modified during execution, then sealed wResxits.

In areplay attack, an attacker replaces a sealed gtpnath a copyc;, wherel < n, obtained
from a previous execution cycle of the application. If the application relies on the sealed store
cto save its state from execution to execution, that application will in efégday some earlier
behaviour executed when it first saw the state containedAnmalicious attacker can perform
a replay attack for a range of reasons.

One possible reason is that the attacker wishes to Rgeerform some action a number
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of times, which would result in a violation of a security policyBf Alternatively, they may

wish to obtain information, random bits of which are being leaked during each successive ex-
ecution. Further more, they may wish to replay a certain execution that is dependent on some
external factor they are not able to directly influence. This may involve some communication
via network to a third party server, which is only rarely in the required or appropriate state.

Sealed storage enables restricted access to data to a selected set of applications. In the
normal case, the selected set will have only one member — the application which created the
data. But the additional case allows for interaction between and amongst sets of programs. In
this case, an applicatidh can generate and seal some data, and specify at the same time some
other applicatiorP; to be the only application which is able to unseal the data. At a later point,
applicationP; can unseal that same data, perform some other computation upon it, and then
seal the data again, nominating some third applicafoas the application able to unseal the
resultant data.

As long as no malicious attacker intervenes, and modifies or replaces the sealed data be-
tweenP, andPj or P; and R, the resultant data can be assured to have passed through the
nominated applications in the prescribed order. This method of strictly ordering computations
can be seen in strongly typed systems, and is explained further in Sectign 3.4.1 ¢n|page 82. It
Is one example of an assured application made possible by sealed storage.

Following on from the discussion of sealed storage above, Definjitign 2.2 is given below.
This definition highlights the aspects of sealed storage discussed above. It states that an appli-
cationP, in layerl;, on platformp is only assured that sealed dakavill remain confidential
and unmodified until it is unsealed, not that it will be availablePtat later execution. This
is due to the failure cases outlined above. It only assBrématd is unmodified by, and kept
confidential from, all other principals in layeks wherei = |, onp. Specifically, it is not kept
confidential from the principaD in layerl;_1 on p that performs the seal and unseal functions
for P. The principalQ may or may not execute in laygy. It is however kept confidential from

all principals in all layers not op.

Definition 2.2. A trusted computing framework providessealed storagef an application

P in layerl; with code IDID(P) on a computing device implementingt is assured of the
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confidentiality and integrity of datd, when sealed, from all other applications With(P") #
ID(P) in layerl; for all j > i onp, and all applications on all device§ unlesdD(P) = ID(Ry),
wherelD (R,) is the intended unsealer specified®yandp = p'.

The implementation of sealed storage may invdvmteracting directly with the sealing
resource in layelp. However, if principalQ in layerl, provides access to the resourcégito P
in |2, Q can viewd before it is encrypted and after it is decrypted. In addit@may be able to
arbitrarily unsead by generatingD (R,), if known to Q, without P, issuing an unseal request.
Correctly assurind of the correct behaviour of ar used to implement sealed storage on

T, if Qis notinlg, is an open problem in trusted computing frameworks.

2.3.4 Curtained Memory

Curtained memonyprovides, possibly hardware-enforced, assured memory space separation
between processes. Curtained memory is also callethined executioror strong process
isolation In this thesis, it will be known as curtained memory. It prevents processes from
reading or modifying another process’ memory space. Additional to this, it prevents a process
from learning of another process’ existence on the computing device.

In the 1950s, computer programs were typically batch-processed one after another. They
were queued up by a system administrator, and then executed and left to run unattended. Pro-
grams ran until they generated an error, or until they completed. This meant that an executing
program had exclusive access to all the resources of the computer it was running on. More
pointedly, it meant that the entire address space of the computer was available for use by the
executing program. There was no resource contention for memory, and programs were written
to address memory directly.

This method of sharing a computer was not a particularly efficient use of the limited comput-
ing resources available, especially for users of the computer. Multi-tasking operating systems
were developed to allow more than one program to run concurrently; programs were swapped
out when they made a request to some peripheral, and a waiting program was swapped in and

began executing. This meant the processor was not left idle, waiting for a slow peripheral to
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return some data. This also mean that an executing program was forced to share resources on
the computer. A program was no longer able to address the entire memory range directly, as
memory was now shared between executing programs.

This forced operating systems to take a more active role in memory management, especially
enforcing some form of memory protection. Memory protection prevented programs from ac-
cessing memory addresses outside of their allocated range. If a program tried to access such
an address, an exception would occur and the operating system would deal with the program,
typically by stopping any further execution.

Multi-tasking (multiple programs) and multi-tasking (multiple users) operating systems
were primarily advances in software. Hardware advances lead to virtual memory addresses,
allowing the operating system to virtualise a programs address space, possibly allocating that
program more RAM than the computer had. Slower storage, such as a hard drive, was used to
store pages of memory when they weren’t being accessed. A program’s memory space was now
managed completely by the operating system, considered to be executing with a higher privi-
lege level. This resulted in significant usability and efficiency gains for programmers and users.
Users were able to run programs that required more memory than was physically available on
their machine, and programmers could leave memory management up to the operating system.

Operating system (privileged, or layle) memory management code and virtualised mem-
ory went some way to keeping (unprivileged, or lajgrprograms from accidentally or mali-
ciously overwriting the memory of other programs. However, for an attacker it was trivial to
write code that could be run with the same privilege level as the operating system kernel. On
x86 architectures, device driver code, installed by the system administrator, is able to view and
modify the entire memory space of the computing device, including virtual memory address
ranges. Hardware architectures designed to run Unix variants fared better, as processes were
able to mark pages of their address space as read, write, or execute only at the hardware level.

As a result of architectural changes since programs ran exclusively on a computer, an ap-
plication’s address space could no longer be trusted to remain confidential to, or unmodified
by, other processes. With an untrusted operating system atligyaan individual application

at layerl, can be given no guarantee that its memory address space will not be read from or



2.3 Components of a Trusted Computing Framework 39

written to by code, either deliberately or accidentally, executing at eitherligeel,. Despite
these vulnerabilities, most applications are written on the presumption that their memory range
will remain unmodified by another process, during its execution.

One noteworthy application that does not trust its memory space to remain unmodified dur-
ing execution is the Google search engine. As is commonly known, Google pioneered the use
of low-cost, low-quality components to build their massively parallel and distributed search en-
gine. Instead of low-count, high-cost mainframes responding to a user’s query, Google employ
highly fault-tolerant software running on high-count, low-quality commodity-component com-
puters prone to failure [45]. Multiple levels of redundancy ensure that if a computer fails while
processing a query, that query is also being processed on another computer, which is able to
step in and finish the transaction seamlessly.

In addition to using low quality CPUs, hard drives, and mother boards, Google also sources
below-retail grade memory. This memory has failed manufacturer’s tests and been declared
unfit for sale at regular prices. Given the low quality of the memory, data read from an address
x cannot be relied upon to be equal to what was last written to addré&&sogle has extended
the memory 1/O routines in their custom operating system. Memory operations involve the
of use error-correcting codes to perform highly expensive checksum operations to verify all
memory reads and writes at the operating system level.

Google is obviously an extreme edge-case of memory usage. However, the steps taken to
verify data stored temporarily in volatile memory can be seen as equivalent to those required to
protect a user-level application’s address space from accidental modification by poorly written
device driver code. Such driver code could be expected to write seemingly at random into a
user-level application’s address space. Google’s error-detection motivated checksumming of
memory I/O would not resist an intelligent attacker attempting to modify the memory space of
an application. For a considerable increase in computational cost, the naive checksum could be
replaced with a cryptographically secure hash verifying the integrity of data stored to volatile
memory. Such a scheme would, of course, require a location in memory hidden from the attack
in which to store the key that generates the hash.

Most applications written today do not perform any extra memory verification or protection
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Figure 2.7: Access control model showing a layer |, principal issuing a read or write volatile memory request to
an address .

than what is provided by the operating system and hardware. As mentioned above, for assured
computation on multi-tasking and time-sharing computing devices, this is not good enough.
Trusted computing aims to provide higher levels of assurance than the weak protection currently
available in desktop personal computers.

Curtained memory is intended to keep the address space of a program executing at level
|> protected from viewing and modification from all other untrusted processes on the machine.
This includes kernel level code at lede| made up of (badly written) device drivers, as well
as code maliciously inserted to attack user-level programs. As discussed in $egtion 1.2, trusted
computing treats the user or owner of the machine as a malicious attacker. In line with this
reasoning, curtained memory does not allow the local user or administrator to view or modify
the address space of any application running behind the so cait&sin.

Figure[2.7 shows the access control model introduced in Séction 2.3.1 showing a program
P accessing (read or write) memory at addngsslhe guard here is any lower laykr,. The
request can be approved or denied by any principal in any lower layer in the computing device,
depending upon the implementatiormofHowever, for a given, every request by all principals
in layerl; must be serviced by the same principal in layewherej <.

Each prograni’ executes in an associated memory address range, dgpoted? specific
memory address is denotgd This memory space contains, to keep our model simple, both
code (instructions) and data. Instructions and static data is stored in theangg, and stack
and heap data in the ranpg . As mentioned in Secti.l, a principal at laljjenuns with
higher privileges than a principal at layerwherej > i. As with most hierarchical operating
system security models, a higher privilege implies the ability to signal, create, modify, and view

processes with a lower privilege.
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Definition[2.3 of curtained memory suffices under the assumption that no principal in layer
lj, wherej < i, is incorrect or acts maliciously. This assumption leads to the current model of
memory protection, outlined above. To provide curtained memory, a principal inllayeist
have no principals considered untrusted, in a layer with higher privilggg {~ remembering

that layerlg is axiomatically trusted by all principals in a laylgrwhere 0< i.

Definition 2.3. A trusted computing framework providescurtained memoryf there exists
a memory rang¢l.. n, associated with an applicatidghin layerl;, unaddressable to all other

applicationd”’ in layerl; for all j > i.

A principal P in layerl; is able to view or modify the memory range ., of any principal
in layerl;, i > 1. In order to assure the confidentiality and integrity of the memory of a principal
in layerl;, i = 2, the axiomatic trust in laydp must be extended from layés to layerl;_1.
This extension of trust must encompass all principal-guards servicing memory access requests
for principals in each layer frory to |; (I1 only in our model). Once trust has been extended
from g to a principalQ in |1 in some manner, princip&’s memory range must share the same
attributes as principd®'s, as given by Definitioh 2|3, so thtis not subverted by a malicious
principal in the same layéyj.

This observation leads to the conclusion thwong curtained memory, where Definition
holds true for each pair of principasand P’ from the set of all principals in a layer
l;, is difficult to achieve. Aweakcurtained memory definition, Definitign 2.4, is easier to
implement. Conceptually, it partitions the entire memory range of a computing device into
two, one side of which igurtainedfrom the other side. An applicatioR’'s memory range
behind the curtain is unaddressable to all applicat®nsot behind the curtain, regardless of
their respective levels. Howevd?s memory range is addressable by some prindipa¢hind

curtain, allowing communication between the two partitions.

Definition 2.4. A trusted computing framework provides weakcurtained memoryf there
exists a memory range_ k, associated with a set of applicatioRsg n in levelsl;, ..., lj, where

0<i < |, that to all principals not in the s&_, is unaddressable.

Curtained memory prevents applications that are running ‘uncurtained’ from knowing of
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the curtained memory range. With strong curtained memory, programs behind the curtain are
also curtained from each other. Weak curtained memory merely provides a single contiguous

curtained address range, in which all curtained principals execute.

2.3.5 Attestation

Attestationenables a computing device to export a data structure verifying its identity and local
state. This data structure, known asagiestation vecto(AV), enables ahallengerto perform
remote verification of the device’s state. This allows arbitrary computation, performed remotely
on an otherwise untrusted device, to be trusted as though done locally. Of the three primary
trusted computing primitives, attestation is the most significant, and most novel.

Early computers were typically shared amongst many users, connected to a single computer
via a dumb terminal or similar. Programs and data that users relied upon typically resided on
the same machine that a user logged in to, even if the user was not located at the console of
the machine. A user, making use of applications and data residing inllay&iied on the
administrator of the system, located in laygrto ensure the integrity of their workspace (see
Sectior] 1. for discussion of user classes).

An application, locally stored, could be trusted to remain unmodified as long as the proper
access controls were set, and enforced correctly by the operating system. Users bt layer
were not intended to be able to make changes that would affect system integrity, and system
administrators at laydr were not considered to be malicious. The security boundary in this
environment was limited to the one computer that all users logged in to.

Computing environments moved from this monolithic, single machine environment to a
client/server architecture. Users had computers on their desktops for personal use. Depending
on specific application characteristics, user data and applications could reside on the local ma-
chine, or the user would run a client application, consuming data and services provided by a
server on the network. Users worked in laygrand typically had no levdl access to their
machine. All machines on the network were under the control of an administrator at;level

Operating systems capable of providing this form of computing environment were necessarily
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network-aware. The security boundary extended to cover the entirety of all the machines under
the administrator of a single entity.

During the 1990s, the Internet increased the levels of communication between what were
previously autonomous networks under different administrators. Corporations and individuals
began to rely on applications and data provided by entities on different networks, all outside the
security boundary from within which they traditionally used to work.

Attestation grew out of a desire to assure the executing image and environment of an ap-
plication located on a remote host. Specifically, so that these assurances could be given for
computing devices outside the security boundaries noted above. More formally, a single ad-
ministrative principalP at layerl; in a set of computing devicelo n} implies the security
boundary covers all applicatiod€o.n} in layerl, on all deviceg po..n}. This security bound-
ary typically results in an implicit trust relationship existing between all applications in the set
{Q}.

There is no single administrative enti®at layerl, over the disparate computing devices
in the ‘network of networks’ that users now interact with. Attestation attempts to provide a
similar extension of security boundaries that a single administrative entity atllageavides,
by providing a single administrative entity at levgl

Attestation can also be considered an evolution in integrity-checking in client-server soft-
ware architectures. Cryptographically signed Java applets, in conjunction with some public
key infrastructure (PKI), allow end users to verify the integrity and manufacturer of a Java ap-
plication. In this technique, an applet distributor cryptographically signs the Java Application
Runtime (JAR) file. The distributor uses the private key of an asymmetric key pair, the pub-
lic part of which is distributed through some PKI. The resulting certificate is distributed with
the applet, and can be used by the client to verify that the JAR has not been corrupted, either
maliciously or during network transmission.

The guarantee of integrity provided by this mechanism is only available to the client. The
trust relationship goes only one way. Should the applet perform some computation, acting as
a client, and send the results back to the applet distributor server, the results are unable to be

verified. The applet can be modified in some way before it is executed, so as to affect the results



2.3 Components of a Trusted Computing Framework 44

of the computation in some way. Alternatively, the applet could not be executed at all, and
fabricated results returned. To use traditional client-server architecture parlance, the server is
unable to rely upon any computation, performed by the applet at the client, to be performed
correctly. Other methods of assuring the results of a remote computation are discussed briefly
in Sectior 3.4.

From the motivations for the development of an attestation procedure outlined above, it
can be seen that attestation vector must be capable of withstanding attacks from users at both
levelsl; andl, on a computing devicp. The local administrator must not be able to modify
the attestation procedure, or vector, in any way. The affect of this on a trusted computing
framework’s threat model is discussed in Secfion 1.2.

The attestation vector must contain sufficient information to allow a computing plagiorm
to be assured that a platfor is also running a valid. This assurance allows; to trust that
the attestation vector was generated correctly, and accurately reflects the ptatiepoévents
a devicep’, not running the framework, from fabricating a valid attestation vector.

The attestation vector is required to travel over an untrusted networkgrdmp;. The
integrity of the AV must therefore be guaranteed by the attestation procedure itself; the primitive
cannot rely on a secure transport layer provided by a principal in any liayédrerei > O.

Attestation is intended to assure a remote platfpfrof the relevant state gdj, in order
to assure the correctness of the computation of a prinétpat p;. The relevant stateof p;
that can affect the computation Bfdepends on the implementation of the framewurkor
example, in a traditional personal computer architecture, a prineipealyerl, can be affected
by all principals in layet;. For an arbitrary operating system, this includes all executable code
loaded intd, as well as configuration files, from the point in time when execution was passed
from the BIOS in layeltg to software in layel; to when the attestation vector is created.

The function which derives the attestation vector must be immutable, and located in level
lo. It may be thatg is not properly able to identify all principal3;. , in layersl;~; capable of
affectingP, and include their identitiedD (Qj). To increase the functionality of the attestation
function in layeig, a principalRin layerl; can be used to find a;._ . If the attestation vector

from pj includesID(R), pj can includeR as a parameter in its decision to trust the computation
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performed byP.

Recall that an Attestation Vector (AV) is a statement about the present state of a platform
p and a principaP. The information contained in the vector may not allow a remote party
to infer the state op and P for any point after the generation of the AV. In the traditional
computer architecture mentioned above, an administrative user inlfagan make arbitrary
changes to principals in layels andl, at any point after an attestation vector is generated,
either by elevating an applicatidd in layer |, to layerls, or introducing a new application
directly into layen ;. The computation that a remote party is interested in can be delayed by the
administrative user until they are able to compromise it.

Attacks based on this vulnerability are classed as Time Of Check to Time Of Use (TOC-
TOU) attacks. The mitigation of these sorts of attacks is an open problem in trusted computing
frameworks. Various implementations, and the manner in which they approach TOCTOU at-
tacks, are discussed in Chagptgr 3.

Table[2.5 proposes some attributes, derived from the discussion above, which we would
require of an attestation procedure in order for it to assure a remote party of the state of a
platform. The proposals are split into two categories — those of the attestation procedure or
protocol, itself, including the generation of the attestation vector, and those of the generated
attestation vector.

Requirement 1 comes from the trusted computing thread model discussed in §egtion 1.2.
Requirement 2 prevents the AV from being modified undetected when being transmitted across
an untrusted network. Requirement 3 prevents the disclosure of sensitive information, such as
executing programs, disclosed in the attestation vector, discussed below. This is typically im-
plemented through encryption of the AV betwgeand the challenger. Requirement 4 requires
the attestation vector to protect against replay attacks, in which an attestation vector is reused
by an attacker to fool a challenger. Requirement 5 indicates that the attestation protocol should
make some attempt to reduce the vulnerability of the generated vector to TOCTOU attacks.

Requirement 6 assures a remote party that the generation of the AV was performed as spec-
ified by the trusted computing framewarkand that is executing in layely. This implies that

p is under the control, in some sense;tplind not being emulated. Emulation by an attacker
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Requirements of attestation protocol

1. Withstand software attacks from all levglswherei > 0.

2. Ensure the integrity of the Attestation Vector (AV) when transmitted
from layerlg on pj, to the challenger op;.

3. Ensure the confidentiality of the AV when transmitted over an un-
trusted network betwegui andp.

4. Ensure freshness of the attestation vector.
Mitigate Time of Check to Time of Use class attacks.

a1

Requirements of attestation vector

6. Assure the challenger thais runningt in layerlp.

7. Attest to all state op; capable of affecting the computation of the
principal P being attested.

8. Attest to all principals used to derive the AV in laygrs.
9. Mitigate losses of privacy.

Table 2.5: Proposed requirements of trusted computing attestation protocol, as well as contents of attestation
vector.

would allow the correct operation ofto be subverted. Requirement 7 states that the AV should
identify all principals capable of affecting the statedFofRequirement 8 states that any principal
used by layefg to obtain the code identities in the AV, should also be included in the AV. This
formalises protection against an attacker subverting a trusted kernel ilJajssd to generate
code identities for the attestation procedure. Requirement 9 points out that an attestation vector
that includes all principal®:..» on p, when attesting the state Bf may result in privacy con-
cerns, allowing a challenger to see all applications executing dihese privacy concerns are
further discussed below.

Definition[2.5 formally specifies the requirements of an attestation procedure discussed

above.

Definition 2.5. A frameworkTt providesattestationif it can transmit amattestation vectofor
an applicatiorP from layerlo on devicep; to layerlg on devicepj, ensuring the AV'’s confiden-

tiality and integrity, that

e assurepj runningt thatp; is also running; and
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includes the identitiekD (Q;) of all principalsQs..  able to affect the state & (dependent

ont); and

e includes the identitie$D(R;) of all principalsR;.  used bylg to obtainID(Q1. n) (if

any); and

e includes the identitietD (R;) of all principalsR;. , used bylg to obtainID(P) (if any);

and

e includes the identityD (P) of P.

The nature of the information contained in an attestation vector raises a number of privacy
issues. An AV is required to include all principals capable of affecting the std®etofenable
the challenger to make a decision about trustngittesting to all principals o results in a
significant loss of privacy for a user gn Mitigating this loss of privacy, yet still generating a
meaningful attestation vector, is an open problem in trusted computing frameworks.

In addition to mitigating the loss of privacy @ to the challenger described above, the
contents of an attestation vector should be confidential to those two parties. This allows the
attestep; to be assured their platform state is being revealed only to the challenger.

The cryptographic keys located in laylgruniquely identity that platform. These invariant
keys pose a privacy issue similar to the per-processor serial number included in Intel’'s Pentium
[l CPUs [30]. The actual threats to privacy caused by the processor serial number were dis-
counted by some commentatars|[59] because the serial number was never linked to the identity
of a platform, nor intended to be used to strongly identify a platform. In contrast, the unique
keys embedded in a laykydevice are intended to identity that platform, to assure challengers it
is a validt. Those keys can be linked to an individual when they sign an AV sent to a challenger
that collects personal information with the assured computation.

Anonymous attestation, where an attestation vector assures a challengkojtisatunning
a valid implementation of without revealing any information distinguishirg from py, also
running a validt, is non-trivial to implement. An implementation has been developed [21]

which allowsdirectanonymous attestation between two parties. Alternatively, a platboram
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have a third party, trusted by them and the challenger, to vefyp and generate aidentity.
This identity is signed by the Trusted Third Party (TTP), and certifies that the identity belongs
to a validt. A platform p can use the obtained identity to prove the validity of an attestation

vector.

2.3.6 Securel/O

Secure 1/O allows applications to assure the end-points of input and output operations. This
allows a program to be assured output intended for a specific peripheral, such as a printer or a
video display, is actually consumed by that device. It also allows a principal to be assured that
data received from a device, such as a keyboard or a mouse, is generated by that device.

Secure /0O is intended to assure the confidentiality and integrity of 1/0O between an appli-
cation and any peripherals it communicates with. In addition, secure 1/O also identifies two
end-points of the communication. A user can be assured that their interaction with an applica-
tion P is not intercepted by another applicati@nnor thatQ can spoof input from a user, so as
to appear td° that it was typed on the keyboard.

Cryptographically assuring input and output from an application to a peripheral has not
evolved from any comparable feature in present operating systems. Plug and Play (PnP,[7]) as-
sists with the automatic configuration of peripherals when they are attached to a computer, most
typically in Microsoft Windows. A platform and device-independent group also develops spec-
ifications for seamlessly identifying and configuring devices (Universal Plug and Play, [13]).
This plug and play technology can be seen to have led to secure 1/O only in that it uniquely
identifies peripherals.

Identifying the privileges a user has when interacting with the system currently occurs in
Unix-style operation systems. When a user is logged in as the root, or super user, the command-
line interface typically indicates a change in privilege level through a change in the user inter-
face. The standard command line prompt is indicated Bysgmbol, whereas interaction as
the root user is indicated by Although not resistant to spoofing, this change in interface is

intended to inform the user they are interacting with a specific part of the system.
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Definition 2.6. A trusted computing framework implementssecure I/Oif an applicationP

can be assured that some specific
e input is obtained from a specific peripheral; or
e output is received by a specific peripheral.

Definition[2.6 gives a definition of secure 1/O. A trusted computing framework may not im-
plement secure I/O for all peripherals. Typically it is provided to assure input, in the form of
passwords or mouse movements, is from the user and has not been spoofed by another appli-
cation. This allows, for example, electronic banking applications to be assured that a user is

present and is initiating a transaction.
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3.1 Introduction

This chapter surveys the field of trusted computing frameworks, including industry implemen-
tations and academic research projects. Chapter 4 discusses aspects of the framework imple-
mentations, and compares them against the requirements proposed in Chapter 2.

The Trusted Computing Group’s Trusted Platform Module is discussed in Sectjon 3.2. This
specification deals with a lay&y entity exclusively. Software implementations in laygrand
I, are introduced. Sectign 3.3 discusses Microsoft's Next-Generation Secure Computing Base,
built upon the layetyg TPM device. NGSCB specifies extra modifications to ldgeas well
as a software kernel executing in layemproviding services to specially written secure appli-
cations in layet,. Some relevant implementations providing assured computation in software
are discussed in Sectipn B.4.Sectipns 3.5, 3.6] and 3.7 discuss trusted computing frameworks
that do not build upon the Trusted Platform Module, but which are based upon other immutable

hardware devices.

3.2 Trusted Computing Group’s Trusted Platform Module

The Trusted Computing Group (TCG) [12], previously known as the Trusted Computing Plat-
form Alliance (TCPA), is an industry group made up of over 90 members with interests in com-
puter security. The seven major members are AMD, Hewlett-Packard, IBM, Intel, Microsoft,

Sony, and Sun Microsystems. The TCG desciibé [70] their purpose and role as:

... to develop, define, and promote open, vendor-neutral industry specifications for
trusted computing. These include hardware building block and software interface

specifications across multiple platforms and operating environments.

They have published the lengthy Trusted Platform Module (TPM) Specification version 1.2
[72,68,69], three documents that together run for over six hundred pages. Working from this
specification, selected TCG members have developed their own chips. Intel has developed what
they refer to as aGrandetechnology. AMD calls their own development Secure Execution

Mode (SEM) [62]. IBM’s own TCG specification-compatible chips are called Embedded Se-
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Capabilities

Asymmetric key generation
Asymmetric encryption and decryption
Hashing

Random number generation

Table 3.1: Specified capabilities of the cryptographic coprocessor in a Trusted Platform Module, as specified by
the Trusted Computing Group in [72].

curity Subsystem (ESS). IBM have been shipping these ESS chips in some desktop and laptop
computers since 2002 [b1].

An in-depth discussion of the TPM 1.2 specification document is outside the scope of this
thesis. However, as mentioned the TPM chip specification is used as the base of Microsoft’s
NGSCB [3.B) trusted computing framework. IBM’s own TPM chip is also used as the basis
of their Global Security Analysis Lab’s (GSAL) research and analysis of the specification and
its capabilities, as well as other researcher’s attempts to develop practical trusted computing
frameworks. This section will first discuss the TCG's technical specification for the Trusted
Platform Module v1.2, limited to laydp. Layerl; andl, functions, implemented in software,

developed by IBM’s GSAL and other researchers will then be discussed.

3.2.1 Concepts

Safford describes the TPM chip as having three primary functiors [50]. Listed below Jitem 1
refers to both asymmetric and symmetric encryption routines. [lfem 2 allows the TPM to attest
to a specific software state. ltdm 3 refers to features that allow the chip to be 'owned’ by an

entity, not necessarily the primary user of that specific TPM.
1. Cryptographic functions
2. Trusted boot functions
3. Initialisation and management functions

Cryptographic functions are enabled by three algorithms that each TPM must support: RSA,

SHA-1 and HMAC [72]. The cryptographic processor inside the TPM must be able to perform
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the operations listed in Table 2.4. Symmetric encryption is only is only used within the TPM
itself. Specifically, the specification states the TPM is not allow to “expose any symmetric
algorithm functions to general users of the TPM”[[72, p.12]. The specification also stipulates
a lower bound on key strength. Storage and Attestation Identity Keys (AIK), explained below,
must both be at least as strong as 2048 bit RSA keys. The hashing function, implemented
with SHA-1, serves to generate platform integrity measurements, which are stored in Platform
Configuration Registers (PCR). PCRs are used by the Trusted Platform Module to securely
store, record, and report the state of the platform itself. Each TPM must provide at least 16
PCRs.

When the system is booted, each PCR is zeroed. Before the CPU begins the execution of
some piece of software or firmware, the code is fingtasuredy the Core Root of Trust for
Measurement (CRTM), and the results are stored in one of the PCR registers. Measurement is
the term used by the TCG to describe the generated of the codle (&) for an application
P, as described in Section 2.B.2 on page 28. This measurement procedure is defined below.
The first code to execute on a TPM device, the BIOS, is assumed to reliably measure itself.
Pashalidis and Mitchell [47] give a succinct description of the process used to measure and
record a platform’s state, adapted below. We define the notMioi(P) as the steps listed

below, wherex specifies the appropriate PCR.

1. Software or firmware codé, about to be executed is hashed giving a digest SKA-1

2. A specific PCR is selected, and its existing value concatenated with the calculated digest

giving {SHA-1(P)||PCRX|}.

3. The concatenated string is hashed again, and stored in the specific PCR register, giving

PCRX| = SHA-1({SHA-1(P)||PCRX]}).

4. The Stored Measurement Log (SML) is updated with an entry containing the identity of
P, and the PCR register used in sfép 3.

Step[ 3 in the above is referred to estendinga PCR digest. This process of extending a

PCR digest has a number of important properties. The first is its ability to record an arbitrary
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number of program measurements in a limited amount of secure storage space. An alternative
method, storing all individual measurementsPodeparately and securely, results in expensive
space requirements. Using the Stored Measurement Log, it is possible to obtain any earlier
PCR value by simply repeating all the measurements that occur before it in the SML. The only
constraint is that all values & must still be available to the TPM. The PCR values are stored
inside the TPM, and only modifiable in two ways. The first is when the platform is reset, or
turned on, resulting in all PCR registers being zeroed. The second is through the use of the
measure command, defined above.

Additionally, the non-commutative nature of the extend operation,[step 3 in the definition
of M[x](P) above, captures the changing state of a computing platform. The execution of a
programP followed by the execution of a progra@ does not result in the same state as the

execution ofQ followed byP. Equation|(3.]l) shows this important property.

M[i](A then B) # M[i](B then A) (3.1)

This measurement procedure is used by the TPM in its implementation of attestation. The

first few steps of booting a TPM-enabled device are described by Marchesini et al. [39] below:

During boot time, the BIOS measures itself and reports that to the TPM ... The
BIOS feeds the Master Boot Record (MBR) to the TPM to hash before passing
control to it. Subsequent software components are expected to hash their successors

before loading them, and the hashes are stored in PCRs.

As mentioned above, the BIOS is assumed to measure itself, and then the MBR, before
passing execution to the MBR. The Root of Trust for Measurement is one of three roots of trust
in the TPM. A function or entity considered to be a root of trust in the TCG specification is one
which is “trusted to function correctly without external oversight”|[71]. The TCG intend for
trust in the correct operation of these entities to be generated by the design and implementation

procedures, as well as by inspection. The specification states [71, p.6]:

Trusting “roots of trust” may be achieved through a variety of ways but is antici-

pated to include technical evaluation by competent experts.
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The other two roots of trust in the TPM are the Root of Trust for Storage (RTS) and the Root
of Trust for Reporting (RTR). The RTM is the procedure outlined above, and is implemented
through a number of TPM commands, shown in Tabl¢ 3.2. The RTS is a logical entity capable
of maintaining values generated by the RTM for as long as necessary. In the TPM, the PCR
registers fill this role. The TCG specify that only four commands are able to alter the value of

the PCR registers.

TPMExtend Used to extend a PCR value with a 160 bit field not calculated by the TPM itself.

TPMSHA1CompleteExtend Used to extend a PCR value with a SHA-1 digest calculated
by the TPM.

TPMStartup  When called with &learflag, resets all PCR registers to default (zeroed) state.

TPMPCRReset Resets specified PCRs to default (zeroed) state, if they are marked as ‘reset-

table.” PCR registers reserved for system use (0—7) are marked as not resettable.

These four commands prevent an attacker from resetting specific PCR registers, or from
‘rolling back’ a PCR to an earlier value. The platform must be rebooted, thereby resetting all
data measured and stored in the PCR registers themselves, to reset the PCR registers.

The RTR is a mechanism for correctly exporting the values held in the RTS to interested
parties. In the TPM, this function is implemented through commands!_PCRRead and
TPM Quote. These commands are used to implement the attestation primitive, discussed be-
low.

The TCG specification uses a conceptrahsport session® ensure the confidentiality and
integrity of communication between a calling principand the TPM chip inside the TCB[72,
p.71]:

Session establishment creates a shared secret ... [and uses the] shared secret to

authorize and protect commands sent to the TPM using the session.

The exact implementation of the session encryption layer is outside the scope of this thesis.

Two protocols are specified: Keyed-Hashed for Message Authentication (HMAC) [32] and a
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Command

Explanation

TPM_SHAlStart

TPM_SHA1Update

TPM_SHAlComplete

TPM_SHA1CompleteExtend

TPM_Extend

TPM_PCRRead
TPM_Quote

TPM_PCRReset

TPM_Init

TPM_Startup

TPM_ExecuteTransport

TPM_ReleaseTransportSigned

TPM_Seal

TPM_Unseal

TPM_CreateWrapKey

Prepares TPM for subsequddpdateor Completecom-
mands. Initialises a thread in the TPM to calculate a
SHA-1 digest.

Adds an integral number of 64 byte blocks to the current
SHA-1 digest being calculated.

Adds a partiali < 64 or completd = 64 byte block to
the current SHA-1 digest. Finishes the calculation, and
returns the completed SHA-1 hash.

Adds a partial < 64 or complete = 64 byte block to the
current SHA-1 digest. Finishes the calculation, extends a
specified PCR register, and returns the extended value.

Extends the specified PCR register with an arbitrary 160
bit value.

Returns the 160 bit value of 1 specified PCR.

Returns the 160 bit value of 1 or more specified PCRs, a
nonce value (arbitrary 160 bit field) specified as a param-
eter, all signed with a specified key.

Resets all specified PCRs, if all those PCRs are able to be
reset.

Command sent by hardware platform to inform TPM that
platform is starting the boot process. Unable to be issued
via software, and must occur only during platform power
up.

Preceded bynit command above, and called with one of
three flags to indicate to the TPM its initial state: clear,
save or deactivate.

Delivers a wrapped TPM command, ensuring its confi-
dentiality and integrity, from a caller to the TPM, which
unwraps and executes it.

Completes a transport session. If logging is enabled for
the session, the log is returned. If logging is not, an error
is returned.

Seals data so that the returned blob can only be unsealed
when PCR registers are in the state specified.

Unseals a blob. Unsealing will only succeed if the PCR
registers match those specified by the seal command that
generated the blob.

Creates a secure storage bundle for asymmetric keys. The
newly created key can be locked to a specific PCR value
by specifying a set of PCR registers.

Table 3.2: Commands present in the Trusted Computing Group’s Trusted Platform Module v1.2 specification [69].
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Mask Generation Function (MGF1) [31, 810.2]. Together they are intended to authenticate
commands and parameters, and prevent replay and man-in-the-middle attacks. They are not
intended to provide long-term confidentiality guarantees for authentication data made up of
passwords or other low-entropy datal[72, p.48].

The session is managed and enforced by the TCG Software Stack (TSS). The TSS is in-
tended to alleviate interface shortcomings of the TPM that arise due to its limited resources.
The TSS is responsible for resource management of the TPM, ensuring synchronised access
and proving a single entry point for applications to use the TPM. In regards to session manage-

ment, it is specifically required t0 [72, p.89]:

...ensure that only commands using the session reach the TPM. ...the TSS should

control access to the TPM and prevent any other uses of the TPM.

Session management, done by the TSS, occurs outside the TPM. The TSS is considered un-

trusted, just like the operating system and applications on the platform [67, p.14].

In the TCG architecture, the boundary around the TPM is the TCB [Trusted Com-
puting Base]. All components outside the TPM (i.e., the TCB) are untrusted such

as the TSS, OS, and applications.

The TCG specification places a number of restrictions on session management. The TPM is
able to support only one session at a time. Any command, otherrthapRxecuteTransport
or TPM ReleaseTransportSigned (See Tabl¢ 3]2), being issued when a session exists results

in that session being invalidated.

3.2.2 Code Identity

TheTpM_sHAL* group of commands are used to generate a SHA-1 digest of arbitrary data. The
TPM_SHA1CompleteExtend command allows the resulting digest to be used to extend a specific
PCR value, without requiring the computed digest to leave the TPM. It should be noted that
the TPM command specification does not enable a SHA-1 digest to be computed and used to
extend a PCR atomically. To compute a SHA-1 digest of data over 64 bytes in length, at least

commands must be issued.
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15t TPM_SHAIStart
2...(n—1)™" TPM_SHAlUpdate

nt" TPM_SHAlCompleteExtend

The TPM_SHA1Start command returns a value specifying the maximum number of bytes
that can be specified in®M_SHA1Update command. The maximum size of the update com-
mand is limited to 32 bytes, by the use of a 32 bit field to specify the size of the command. No
available information specifies the maximum number of bytes that can, in practise, be processed
by aTPM_SHA1Update command.

To briefly summarise, the SHA-1 digest generated by the TPM is used as the code identity
(Sectiorj 2.3.2) of an application. The SHA-1 algorithm is considered to meet Definition 2.1 on
pagg 28 for a code identity function. Specifically, that there is no collision for any two distinct
programsP andQ. Additionally, the mechanism used to generate the digesgt isrcontained

within the TPM and trusted implicitly by all other platforrps

3.2.3 Sealed Storage

Another of the cryptographic capabilities of the TPM is protected storage. This is implemented
through two TPM commands, listed in Taljle |3.2 on ppage 156]_Seal and TPM_Unseal.
Marchesini et al.[[39] describe the sealing and unsealing process from a programmer’s point

of view:

...one can ask the TPM to seal data, and specify a subset of PCRs and target values.
The TPM returns an encrypted blob (with an internal hash, for integrity checking).
One can also give an encrypted blob to the TPM, and ask it to unseal it. The TPM
will release the data only if the PCRs specified at sealing now have the same values

they had when the object was sealed (and if the blob passes its integrity check).

The TPM device itself makes use of both asymmetric and symmetric encryption routines
whensealingdata. A set of PCR digest values, the PCR register indexes they are found in,

and the symmetric kel(s used to encrypt the data, are asymmetrically encrypted with a key
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Koub- The set of PCR digest values are 160 bit SHA-1 digests. The set of them is denoted by
PCR{X}, whereX is a set of 2-tuple$i,v), in whichi specifies a PCR index from 0-15, and
is the SHA-1 digest.

It is important to note that the “data” referred to by Marchesini et al. is restricted in size to
a few kilobytes. An applicatioR is intended to use the seal primitive to store a cryptographic
key. An applicationP must use this key to ensure the confidentiality and integrity of data by
encrypting and decrypting it outside the TPM.

Equation [(3.R) shows the encryption performed by1he Seal command, resulting in an
encrypted blolf. Equation|(3.B) shows the decryption performed bymthe Unseal command
on the resultang.

Here, the notatior (k,d) indicates the encryption af, limited in size to a few kilobytes,
with the keyk. When called, it returns the cipher text @f Similarly, the notatiorD(k,d)
indicates the decryption afwith the keyk. The encryption and decryption method is dependent

upon the key type dk.

E(Koun { (X} [[Ks}) = B (3.2)
D(KonB) = {PCR{X}||Ks} (3.3)

The keyKpy is the decrypting key of the asymmetric encrypting kgy, selected in the
seal command. The set of register indexes and values specified byMiseal command are
not the set of values in the PCR registers when the command is called. They are intended to
be specified separately so that a future configuration, when unsealing the returngti®lob
intended, can be specified.

When theTpPM_Unseal call succeeds, the unencrypted data is returned to the caller. Addi-
tionally, the call returns the full set of PCR register values at the timemkeseal was called.

The TCG specification explains the motivation for this|[69, p.44].

...suppose an OS [Operating System] contains an encrypted database of users al-

lowed to log on to the platform. The OS uses a sealed blob to store the encryption



3.2 Trusted Computing Group’s Trusted Platform Module 60

Index Usage

0 CRTM, BIOS and platform extensions, limited to executable code only.

1 Motherboard configuration including hardware components and their configuration.

2 Optional ROM executable code contained on executable peripherals.

3 Option ROM configuration and data that may influence ROM execution.

4 Initial Program Loader (IPL) code, usually the Master Boot Record (MBR).

5 IPL code configuration and data that may influence MBR execution, such as config-
uration data selecting the partition to be booted.

6 Power events such as sleep and wake cycles.

7 Reserved for future usage.

Table 3.3: Defined Platform Configuration Register Usage for 32 bit PC architecture, adapted from [66].

key for the user-database. However, the nature of seal is that any software stack can
seal a blob for any other software stack. Hence the OS can be attacked by a sec-
ond OS replacing both the sealed-blob encryption key, and the user database itself,
allowing untrusted parties access to the services of the OS. To thwart such attacks,

sealed blobs include the past software configuration.

For the OS to properly trust the contents of a decrypted blob, it must verify the state, as
defined in PCR registers, of the platform when it was encrypted. That state must be known and
trusted by the OS. The PC Specific Specification vl.1 [66] discusses implementation specific
details for the 32 bit PC architecture. It specifies the usage of the 8 PCR registers that are
reserved for the system. These are shown in Table 3.3. This set of PCR registers identifies all
code in layellp, as well as the initial portions of the operating system code loaded intolkayer

When a principaP callsTPM_Seal they may, in addition to the parameters described above,
be required to specify a 20 byte (160 bit SHA-1 digest) authorisation code. This authorisation
code proves to the TPM that the caller is authorised to use the symmetig kesed to encrypt
the blob, seen in Equatioh (3.2). An authorisation code is first established for the TPM owner
during anownership-initiationphase. This ownership-initiation procedure is discussed in more
detail below, in regards to the TCG'’s specification for secure 1/O.

The ownership-initiation phase establishes a shared secret between the TPM aRtthe

Owner This shared secret takes the form of a SHA-1 160 bit digest, typically obtained by
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hashing a password obtained from the user. Once a TPM Owner has been established, they are
able to create the Storage Root Key (SRK). This is a type of storage key, shown in Table 3.4.
There is only one SRK key in the TPM, and it is used to encrypt other keys outside the TPM,
enabling vastly increased storage space for keys, yet ensuring their confidentiality and integrity
[71, p.17]. The SRK is considered part of the Root of Trust for Storage (RTS) and is assured to
be unable to be removed from the TPM.

In addition to creating the SRK, the TPM owner can create other storage keys. These keys
can be created with an associated authorisation code, requiring a pass phrase from the user to
be used. Alternatively, they can be associated with a set of PCR registers, limiting their use to
a specific platform configuration. It is this authorisation code that, if set when the asymmetric
key pairKprypub (Equation [(3.B)) is created, must be specified by the callernfseal and
TPM_Unseal. The symmetric key used to encrypt the data is generated by the Random Number
Generator (RNG) inside the TPM, and is stored only inside the returnedblob

Creating a storage key, and associating it with a set of PCR values, including those in Ta-
ble[3.3, as well as PCR values indicating the identity of the calling prind&paktisfies the
definition of sealed storage given in Section 2.3.3 on page 29. The use of the SRK, tied to the
platform on which it was created, prevents a sealed Blad®ealed on a platforrp from being
unsealed on any other platfoph The TCG specify a commantPM_CreateWrapKey, for this

specific task. Marchesini et al. [40] describe the command:

[The commandrpM Createlrapkey makes it] possible to create keys which are
bound to a specific machine configuration ... This alleviates the need to create a

key and then seal it, allowing both events to be performed by one atomic operation.

3.2.4 Attestation

The other keys listed in TabJe 3.4 are used by the TPM to implement the attestation primitive
described in Section 2.3.5 on pdge 42. They work in conjunction wittcibeentialslisted
in Table[3.5 to prove that the attestation vector (AV) is from a platfprmith a valid TPM

implementation.
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Key Usage

Signing keys Asymmetric, general purpose. Used to sign application data and
messages.

Storage keys Asymmetric, general purpose. Used to encrypt data or other keys.

Identity keys Asymmetric, non-general purpose. Used to sign data exclusively

generated by the TPM (e.g. PCR values).

Endorsement Key (EK) Asymmetric, single key, with public (PUBEK) and private
(PRVEK) components. Used to establish platform ownership and
when generating Attestation Identity Keys (AIK). Inserted by plat-
form manufacturer.

Bind keys Asymmetric, used to encrypt small amounts of data for transfer-
ence between TPM platforms.

Legacy keys Asymmetric, general purpose. Generated outside TPM and im-
ported in, to be used for signing and encryption.

Authentication keys Symmetric, used to protect transport sessions.

Table 3.4: Key types and uses in the Trusted Computing Group’s Trusted Platform Specification v1.2 [71].

Credential Usage

Endorsement credential Issued by the manufacturer inserting the EK, inserted into
the TPM by the manufacturer before shipping. Signed by
the TPM Manufacturer.

Conformance credential Issued by an entity with sufficient expertise to verify the
correctness of the TPM and the platform, either the manu-
facturer, vendor, or third party. Signed byCanformance
Entity.

Platform credential Identifies platform manufacturer and capabilities. Refer-
ences the endorsement credential and any conformance cre-
dentials. Signed by thelatform Manufacturer.

Validation credential Issued by an entity with sufficient expertise to take and at-
test to measurement values that validate the correct oper-
ation of certain devices which may pose a security threat,
such as disk storage or video adaptors. A validation is per-
formed in a clean-room environment, and a measurement is
produced for comparison with measurements taken during
normal use. Intended to detect tampering of hardware and
firmware. Signed by &alidation Entity.

Attestation Identity credential ldentifies the AIK private key used to sign PCR values. Con-
tains the AIK public key. A Trusted Third Party (TTP) is-
sues an AIK in return for proof that the AIK is owned by a
TPM with valid Endorsement, Platform, and Conformance
credentials. Signed byBusted Third Party.

Table 3.5: Credentials supplied with a Trusted Platform Module, as specified by the Trusted Computing Group [71].
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During the manufacturing process, the Endorsement Key (EK) (TaBle 3.4) is generated and
inserted into the TPM. A TPM can only have one EK inserted over its life time. Subsequent
attempts to insert another EK will fail. The EK is a 2048 bit RSA key, with public (PUBEK)
and private (PRIVEK) parts. The Endorsement Credential (Tabje 3.5) includes PUBEK. This
has the effect of certifying the corresponding PRIVEK as belonging to a valid TPM platform.
If the PRIVEK can be removed from the TPM, it can be used to impersonate a TPM device,
thereby invalidating all assurances of security.

The EK is unique to each TPM, and is considered tpé&esonally identifiable information
[72, p.25]. While the PUBEK key alone does not contain personal information, it does uniquely
identify the TPM platform. These unique invariant keys inside the TPM pose a privacy issue as
described in Sectidn 2.3.5.

The TCG specify the creation of an Attestation Identity Key (AIK), certified by a TTP (Table
[3.5) to provide a layer of indirection and reduce the risk of loss of privacy. A TPM can generate
any number of AlKs. This allows a TPM user to present a different identity to all services that
require them. An AIK is a symmetric key used exclusively for signing purposes, the private
component of which never leaves the TPM. Initialising an AIK involves 5 steps, discussed by

Pashalidis and Mitchell [47] and Marchesini et al./[40].

1. The TPM Owner callgpPM MakeIdentity. This generates a new asymmetric key pair
AlKpun prv,» @and andentity-binding This structure contains the public key of the key pair,
an arbitrary text name and the public key of the TTP which will be used to generate the

AIK TTRyp The final structure is:
{ AIKpult T T Pou |

2. The TPM packages the identity-binding described above, along with the Endorsement
Cred:, PlatformCreds, and Conformanc€red: credentials (Table 3.5) into a structure,

encrypted with the TTP’s public key.

E (TT Poub, {AI Kpullt| T T Pou

CredE||Credo||Credc}> =B
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3. The above structure is sent to the TTP, which decrypts and examines it. The TTP verifies
the signatures of the issuing authorities of the supplied credentials. If satisfied the TPM is
genuine, the TTP generates the Identity credential. The Identity credential, signed by the
TTP, binds the public key of the key pair generated in step 1 to the arbitrary text name,
along with a statement about the capabilities of the platform, obtained from the Platform

and Conformance credentials.

D (TT Forv, B) = {AI Kputh ITT Ppub||CredE I
Creda||Crect;}

S(TT R, {AIKpultCrecpCrect } ) — Cred

4. The TTP encrypts an arbitrary symmetric sessionkegsee Tablé 3]4), used to encrypt
the ldentity credential, with the PUBEK of the TPM obtained from the Endorsement
credential. This ensures that only the TPM named by the Endorsement credential is able
to decrypt and use the Identity credential. It also ensures that the IDK keys were generated
by the TPM in question. The encrypted Identity credential and the encrypted symmetric

key are returned to the TPM.

E(PU BEK KS) — B

E (Ks,Cred) = [

5. The TPM owner callgpPM ActivateIdentity, specifying the two encrypted blobs re-
ceived from the TTP. The TPM uses PRIVEK to decrypt the symmetric session key, which

Is then used to decrypt the Identity credential.

D<PRIVEK [31> — Ks

D (Ks, [32> — Creq

At the end of this procedure, the TPM owner has an Identity credetwea , signed by a
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TTP with a root signing key T By, that names a public kedl Ky, of a key pair. The private
key AlKry Of the pair cannot be extracted from the TPM. The TPM owner uses this private key
In TPM_Quote andTPM CertifyKey commands.

The attestation vector (AV) discussed in Secfion 2.3.5 is created by catlinguote. The
caller specifies both an AIK to be used for signing, and a set of PCR regiX@d®$X} to be
signed. In addition to these two values, the caller can also specify 160 bits of external.data,
This means that the signing key can be used to sign arbitrary data, not just data generated by
the TPM (see Table 3.4).

The attestation vectodV of a TPM platformp is made up of two parts. The first is the
attestation itself. This is created by a call1Bv_Quote, seen in equatiorj (3.4), denoted as
Q(signingkeyPCRvalues The second is the identity credential associated with the specified
AIK. These two components are concatenated together. The result is encrypted with the public
key of the receivep’ of the AV to ensure its confidentiality and integrity during transmission,

seen in Equation (3.5).

Q(AIKprV, PCR{X}> — AV (3.4)

E(p’prv,{AVHCred}) — B (3.5)

The construction of this attestation vector and its contents satisfies the requirements given
in Table 2.5 on page 46. The attestation procedure itself is resistant to all software attacks from
all levelsl;, where> 0, as all the information attesting to the state of the platfprisigenerated
inside the TCB. The confidentiality and integrity&¥ is assured through the use of encryption
with an asymmetric key qb’. The attesting platforrp does not required an assurance that the
AV can only be read on another platform with a valid implementation of the TCF. Additionally,
the arbitrary data iV allows the challengey’ to specify a nonce to guarantee the freshness of
the AV it receives.

The AlK-creation procedure discussed above requires both platforms to trust a third party

beforep’ can be assured is a valid platform. The construction of the AIK helps mitigate
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privacy losses, assuming the non-collusiopdnd the TTP, as described in Secfion 4.5.1.

The discussion thus far of the TCG’s TPM has focused on the device itself, executing in
layerlp, and the interface it presents to principals in laylgss. Discussion that extends from
the specifications put forward by the TCG alone![72, [68,(69,. 67, 71] lacks implementation
experience of those upper layers. Given the specification for lgyieiis difficult to assess the
functionality and features of layeks o, used to implement a trusted computing framework with
the properties discussed in Chagter 2.

The definitions of attestation (Definitign 2.5 on pdge 47) and of sealed storage (Defini-
tion[2.2 on pagg 37) require an understanding and verification of all I&ygrsn addition to
the axiomatically trusted TCB in layég. As an example, for sealed storage it is important to

ensure that a princip&) cannot impersonate a princigal so that it appear® (P) = ID(Q).

3.2.5 Securel/O

The TCG TPM v1.2 implements only a severely limited for of secure 1/O. It is not considered
to be one of the core priorities for the TCG platfoim|[69].

Secure I/O is used to establish thieysical presencef the user through the depression of
a hardware switch, or a key sequence depressed during the Power-On Self-Test (POST). Such
physical presence is used to initially authenticate as the owner of a Trusted Platform Module.
Once authenticated as being physically present, the user can establish a shared secret, in the

form of a password, between themselves and the TPM.

3.2.6 Curtained Memory

The TCG TPM v1.2 specification does specify any implementation of curtained memory. The

consequences of this are discussed in Seftion|4.5.1.

3.2.7 Framework Implementations

An examination of a trusted computing framework implies not just a discussion of the trusted

device in layerg. An examination of the software layér that can be built upon it, and the
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features layel; provides to applications in layés, as well as the features both layers provide
to the user, is required. Literaturie [40, 839] 53| 52] discussing implementations of software in
layerl, andl, built on top of the TCG’s TPM specification forms the basis for further discussion
and critique.

Marchesini et al.[[40] were motivated to attempt to solve the canonical problem that moti-

vates Trusted Computing (see Secfior 1.1), given an additional two constraints:

...Alice needs to trust that certain properties hold for a program running on Bob’s

machine, even though Alice may have little reason to trust Bob.

To be effective, a solution to this problem must satisfy several constraints:

e It must bereal...

e |t must bepractical...

They considered the TCG’s TPM v1.1b, shipping in a number of IBM’s laptops and desk-
tops, to satisfy their constraint of the solution being real, by which they mean currently avail-
able. Their constraint of practicality requires it to work with standard protocols, and not be a
“significant departure from the standard software base” [40].

Their instantiation of the general problem takes three forms, two of which are relevant to
this discussion. The first is that of securing an SSL web server run by Bob offering a service
with some security-critical properties to Alice. Marchesini et al. state that this would give Bob
a marketing advantage: “You can trust my service, because you don’t have to trust/me [40,
p.4]”. The second is a more general case, attempting to solve the problems arising with the
specification’s lack of curtained memory, mentioned in Se¢tion|3.2.6 on the preceding page.

To solve the first problem, Marchesini et al. [39] use a TPM device to bind a private key
to a specific software configuration, as described in Seftion|3.2.3. This privat8 &gy, is
used to decrypt messages intended for the SSL web server by users of the system, encrypted
with SSlyp. Their first attempt bound this private key to the code identities of the entire server
configuration. A Certificate Authority (CA) inspects this configuration and binds it to an AIK
used for signing messages from the server, and a Storage Key (SK, seg Table 3.4) used to store

SSLyry. The authors quickly realise the error of this approach.
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The naivete of this approach is obvious to anyone who has ever tried to deploy a
system or a Web site in the real world. For one thing, the software will not be static.
For bug fixes and security patches alone, various elements of the suite will have
to be upgraded (and perhaps sometimes downgraded) over Tiheepromise of
responsibly maintaining a secure site requires that the executable suite, considered

as a whole, be dynamic.

Their second attempt partitions the system software based on how often they are expected to
change. Along-livedsystem core consisted of the BIOS, MBR, kernel, ancBhiorcerkernel
module. The TPM boot process, previously described, ensures that the kernel and Enforcer are
properly measured and loaded. Any change in their structure will result in differing PCR values
being recorded, and the TPM denying access to the AIK and SK secrets of the SSL web server.
Their Enforcer kernel module is used to verify the correctness oftéeium-livedsoftware,
consisting of the Apache web server and configuration data.

The correct medium-lived software configuration code identity is generated by a third party,
aSecurity AdminThe security admin creates a certificate including the code IDs of the medium-
lived software. The Enforcer module was responsible for verifying the signature of the security
admin on the certificate, by using the security admin’s public key stored in the long-lived core.

It also ensured that, once loaded, the PCR register values of the Apache web server, and its
configuration data, were the same as the certificate. The Enforcer would then release the AIK
and SK secrets to the Apache web server.

The system was built on a Debian “unstable” distribution, with the Enforcer implemented
as a Linux Security Module (LSM). The first-stage of the LILO boot loader was modified to
measure the second-stage, which was in turn modified to measure the Linux kernel itself.

The second instantiation of their motivating problem confronts the issues raised by the
TPM’s lack of curtained memory. Marchesini et al. [[40] describe this@spartmented at-
testation. They conclude that the problems discussed in Seftion|3.2.6 are not solvable by the
TCG’s TPM specification itself [39, 83.3]:

...consider the case where Bob is a consumer [of some content], running a program



3.2 Trusted Computing Group’s Trusted Platform Module 69

P whose authenticity and integrity is of concern to a remote stakeholder Alice...
Alice would like to ensure that Bob uses [a valid and corfdcthat makes illicit

use sufficiently difficult for her tastes.

...Bob may have to exposverythingon his machine to Alice — even programs
and data that have little to do with the application in question. Alice might even

choose to deny services ... to Bob, if he has a competitor’s product installed.

...TCPA/TCG itself appears insufficient to solve Alice’s problems... Even [version]

1.2 TPM’s attempts to localize PCR contexts appear to suffer from this problem.

To address these issues, Marchesini et al. merged the National Security Agency’s (NSA)
Security Enhanced Linux (SELinux)![9] with their Enforcer LSM. SELinux is mandatory ac-
cess control architecture similar in many respects to that implemented by the LOCK system,
discussed in Sectidn 4.2.1 on page|102. SELinux will only be discussed in the context of the
merger with the Enforcer kernel module here. SELinux enables what Marchesini et al. refer to
assoftware compartment3hese confine applications to their own compartment, prescribed by
policy set by the system administrator. Specifically, the merger of SELinux with the Enforcer
module givediner granularity, a restricted root, and a central access-control checking mod-
ule [39, 83.3]. Finer granularity refers to the ability of SELinux to differentiate between more
privilege levels than the two, root (layér) and normal (layetf,) , that traditional operating
systems provide. Restricted root refers to its ability to prevent the superuser from modifying
the memory range of other applications. A central access-control checking module allows the
concentration of all system security policy in one place, instead of it being spread around the
operating system and file system in configuration and meta-data. The SELinux integration itself

provides a number of specific features:

The Enforcer module can use a key pair to testify about (and certify a key pair for)
the contents of just one compartment... Alice can have assurance that the attestation
she receives really pertains to the compartment in question, and that the Enforcer
with SELinux will confine her data to just that compartment; Bob can have con-

fidence that nothing outside of that compartment and above Enforce/SELinux will
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be communicated to Alice.

Sailer et al.[[53] did not attempt to solve the privacy concerns voiced by Marchesini et al.
when instrumenting the Linux operating system to provide integrity measurement and reporting
for layersly andlo. With a TCG/TPM system, they implement a formtoisted boot Trusted
boot refers to a boot process that measures and records all code and data relevant to the integrity
of the system, before it is executed. The generated log can be trusted, via external mechanisms,
by a remote party to have been correctly maintained, and not be tampered with. At the time
of attestation, the log accurately reflects the state of the platform. This is in contsssiue
boot implemented by the Aegis system (Section 3.5), which compares measured values with
stored values to insure integrity of a program before it is allowed to execute.

The motivation of Sailer et al. [53] is the same general problem as that which drove the work

of Marchesini et al. described above.

Our goal is to enable a remote system (thallengej to prove that a program on
another system (thattesting systerawned by theattestej is of sufficient integrity

to use.
They split the implementation of their system into three areas:

e The Measurement Mechanismesponsible for determining what and when to measure,

and storing the results securely.

e An Integrity Challenge Mechanisnenabling a remote platform to request an attestation

vector, and be guaranteed of its freshness and completeness.

¢ An Integrity Validation Mechanispcapable of being run by the remote platform to verify

all aspects of the attestation vector.

The implementation of the measurement mechanism was done on a Redhat 9.0 desktop box
with a TPM module supplied by IBM. Like Marchesini et al. the software component respon-
sible for taking measurements was implemented as a LSM. Similarly, the example application

used throughout the discussion was the Apache web server, in this case also running Tomcat.
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Building from the TPM boot process discussed in Segtion 3.2.1, the LSM extends this mea-
surement process to include all executable content loaded by the kernel. This LSM is the mea-
surement mechanism described above. The measured code IDs of all executable content are
kept as an ordered list inside the kernel, filling the role of the Stored Measurement Log (SML)
described earlier. A specific PCR register inside the TPM is updated along with SML. If the
aggregate value of the code IDs found in the SML matches the value of the PCR register, the
SML log is assumed to be untampered and correct. This enables the attestation vector to be
formed, as described in Section 3]2.4, and accompanied with the SML. This integrity challenge
mechanism, and its protocol, is given in Tgblg 3.7 and described below. The integrity validation
mechanism includes the decision process the requesting platform goes through to arrive at a
decision in regard to the integrity of the attesting platform.

They consider the integrity of each progrdmn a system to be a binary property. Given
the lack of curtained execution acting as coarse-grained mandatory access control, the integrity
of the system as a whole is dependent upon the set of all integrity measurements of programs

on the system. Specifically, Sailer et al. state that [53, §2.3]:

Unless information flows among processes are under a mandatory restriction, the

integrity of all processes must be measured.

The most interesting aspect of the system proposed by Sailer et al. is that encapsulated by
the measurement mechanism. The determinatiovhatto measure, andhento measure it, is
crucial. For the initial execution of a prograf) measurement occurs before execution begins,
andID(P) is added to the SML, as well as the PCR register inside the TPM. For repeated
executions ofP, whereP is unmodified, no record is made in the SML. For this reason, the
SML is not an ordered log of all executions of princip&sp on p, but an ordered log of the
initial executions of principal®;. , only.

In addition to the executable content itself, Sailer et al. give two distinct categories of data
that may affect the integrity properties of a program/ [53, 82.4]. The firstrisctured data
defined as data that has mentifiable integrity semantics~or the Apache web server under

discussion, a number of files meet this definition:
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e Apache configuration file (httpd.conf)
e Java virtual machine security configuration files
e Servlets and web services libraries

The second type of data isistructured datadefined as data that affects the program, but
whose integrity semantics cannot be measured. In the case of the Apache web server, this form
of data includes the various kinds of requests received from remote users. In addition to the
impracticality of measuring all requests from users, such measurement would be useless as it is
impossible to predict values that would result in a loss of integrity. In effect, it is necessary to
trust an application to resist attacks that may arrive in unstructured data. For the Apache web
server, this may come in the form of malformed HTTP requests.

The first category of data can easily be measured in the same way as executable content is

measured. However, it is not so trivial to ensure that an applic&will either:

e correctly report to the LSM which configuration files will be interpreted at this execution
and have identifed integrity semantics, so that the LSM may measure then and add them

to the SML; or

e correctly measure and report to the LSM the code IDs of those configuration files that it
will interpret and that have identified integrity semantics, so that it may add them to the

SML.

Applications that have so-called structured integrity semantic data in configuration files must
be re-written for the system proposed by Sailer et al.

One major class of program relies almost entirely on unstructured code — script interpreters.
The interpreter itself is measured and loaded as per a standard executable. However, the call to
execute a script interpreter may not include all the information necessary to identity all integrity
semantic data. Modification of these programs to do one of either case described above is
not sufficient. Pointedly, the authors instrumented llashshell as an example of a script

interpreter that cannot identify all integrity semantic data when it is first loaded [53, 85.1]:
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Vulnerability Definition

TOCTOU race condition A Time of Check to Time of Use (TOCTOU) condition
where file contents are changed after measurement, and
before execution. Involves tracking number of open file
descriptors pointing to the file, and invalidating the log if
suspicious activity is detected.

Bypass user-level measurements A  redirection of user-level calls to the
/sys/security/measure node requesting measurement
of a file by preventing the unmounting of the system file
system by root.

Bypass dirty flagging Attempts by the root user to access the storage interface
/dev/hda and the memory interfac&lev/kmem, and in-
validates integrity measurement log.

Run-time errors Any error during the recording of measurements, such as
an out-of-memory or other exception preventing the cor-
rect logging of measurement data, results in the invalida-
tion of the measurement log.

Table 3.6: Vulnerabilities that lead to possible subversions of the integrity measurement log and cause a deliberate
invalidation, adapted from [53].

...we have instrumented tihashshell to measure any interpreted script and config-

uration files before loading and interpreting them. This includes all service startup
scripts into the measurement list [sic]... Instrumenting other programs (Perl, Java)
is straightforward, but we anticipate the need for more support from application

programmers.

One of the gains of the system proposed by Marchesini et al. was that, however cumbersome,
the root or superuser was restricted from changing the memory addresses of other processes
with a debugger. The system proposed by Sailer et al. does not actively seek to prohibit the root
user from doing this. Instead, the system invalidates the SML log and aggregate PCR register,
causing all future attestation attempts to fail, at step 5c of the integrity challenge protocol seen
in Table[3.7, until the system is reboot. The cases that lead to an invalidation of the integrity
measurement system are listed in Tablé 3.6.

Invalidation of the measurement log results in a system which is unable to perform a suc-
cessful run of the integrity challenge protocol until the system is rebooted. Sailer et al. admit

that the detection of the vulnerabilities cases given in Table 3.6 that result in an invalidation
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Step Action

1. p’: create non-predictable 160 bit nonce

2. p/ — p: ChReq(nonce)
3a. p: load protected\IKpyy, into TPM
3b. p: obtainQ(AlKyr, PCR|noncg from the TPM
3c. p: retrieve SML

4. p—p':iChRes(Q’, SML)
5a. p': determine trusted certificate féidKoyp
5b. p': validate signature generated in step 3bAbiK,ry
5c. p': validate nonce and SML with PCR value

Table 3.7: Integrity challenge protocol implemented on a TPM, adapted from [53].

occurring, may not be the result of an actual attack, nor that the attack would be successful.
They describe the system as being necesspeggsimisti@bout such occurrences.

The integrity challenge mechanism, a protocol shown in Table 3.7, begins with a requesting
platformp’ creating a non-predictable non-repeating nonce. This nonce ensures the freshness
of the response, preventing replay attacks, as required in [Table 2.5 of page 46. This nonce
is packaged into a suitable data structure, and sept tBailer et al. assume communication
betweenp andp’ occurs over a SSL-authenticated transmission link. The attesting platform
p uses an AIK key pair, as discussed in Secfion 3.2.4, to have the TPMTSigm(ote) the
aggregate PCR register, as well as the nonce. The attesting platform packages the signed data
structured returned bypM Quote, denoted’ in Table[3.7, with the SML, and returns both to
p.

Steps 5a through to 5c involy verifying the response to the attestation challenge. In step
5ap’ checks to see the Trusted Third Party that sighbtl,,;, is one of the TTPs trusted lpy.

This step assurgs thatp is a valid TPM implementing the same trusted computing framework

T. Assuming thap’ does trust the TTP used Ipy step 5b verifies thaAlKyy, stored securely

in the TPM, was used to sign the aggregate PCR register and nonce. This step pisthates

the response originated from the TPM namedAi,p. It also ensures the quoted values
have not been tampered with. Step 5c¢ involves the verification of the SML with the aggregate

PCR register value, ensuring that the stat@ ofescribed by the SML is correct. Sailer et al.
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succinctly describe this process [53, §84.3]:

Tampering ... is made visible ... by walking through the measurementlist
[SML] and re-computing the TPM aggregate (simulating the TPM extend opera-
tions [Sectior] 2.3]2] ...) and comparing the result with the TPM aggrde@te

that is included in the signe@uote..

If the two values match, the state @fvhen it generated the attestation response is assured
to be what is stated by the SML.

Oncep’ has verified the state @f, a decision on whether or not to trust that state must be
made. For the system proposed by Sailer et al. this involves matching each individual code ID
in the SML with a previously computed one obtained from some trusted source, and reasoning
about its affect on the integrity of the system, and more specifically, the appli¢attat is of
interest. The Redhat 9.0 system that Sailer et al. modified was measured by them to generate a

trusted repository of “known-good” application identities.

...the workstation used... which runs Redhat 9 and whose workload consists of
writing this paper, compiling programs, and browsing the web does not accumulate
more than 500 measurement entries. On a typical web server the accumulated

measurements are about 250.

Once each entry in the SML log has been identified, the remote plagiomust make a
decision on whether to trust the integrity@fThe policy used to describe the decision process
may be arbitrarily complex. The presence of any malicious programs may result in a decision
to not trust the integrity op. More complex decision processes, dependent on the required
integrity and importance d?, would be required when programs classified as being remotely
or locally vulnerable.

In response to the possibility of Time of Use to Time of Check (TOCTOU) attacks, Sailer et
al. require the attestation procedure to occur twice — once prior to the transaction taking place,
and once after, fop’ to be assured that the transaction occurred in a manner suitablé to it [53,

§4.4]:
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Figure 3.1: NGSCB hardware modifications, adapted from [42].

To verify the integrity of a transaction that is taking place ... the challenging party
can challenge the integrity of the attesting system before and after the transaction
was processed ... If the attesting system is trusted both times, then — so it seems

— the transaction can be trusted, too.

3.3 Next-Generation Secure Computing Base

Microsoft's Next-Generation Secure Computing Base (NGSCB, pronoutieggcub”) ap-

peared to be, for much of 2003 and early 2004, the most advanced and complete trusted comput-
ing platform in development. In May of 2004, amidst confusing statements and press releases
Microsoft first dropped completely, then reinstated, their NGSCB program. News reports [14]
and correspondence with NGSCB team members [22] throughout the latter part of 2004 indi-
cate that NGSCB would undergo considerable revision before being released with Longhorn.
No information on the intended shipping version of NGSCB is available at the time of writ-
ing. With this in mind, this section will discuss the version of NGSCB released to attendees at

Microsoft's Professional Developers Conference in Los Angeles, in November 2003.

3.3.1 Curtained Memory

NGSCB is based around the TCG's Trusted Platform Module v1.2 device. This device has
been described in Sectipn B.2 on pagk 51, and will not be expounded upon here. In addition to
making use of the TPM chip, Microsoft also make significant changes to other parts of the PC

architecture. A typical logical view of a PC motherboard is shown in Figufe 3.1, with changes
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Figure 3.2: Logical software layout of standard and secure operating systems in NGSCB, taken from [44].

due to NGSCB shown in red.

A new mode flag is added to the CPU to differentiate between standard execution mode,
and privileged execution mode. When this mode flag is active, the CPU is able to address
what is referred to asurtained memoryCurtained memory is standard memory that has been
marked in the hardware page table with a new addressing-mode bit. Unless the CPU is in
privileged execution mode, the CPU is unable to address or access any pages marked as being
curtained. There are additional architectural changes to the USB and AGP buses, to allow
the exchange of encrypted data between the CPU and devices on the bus. Additionally, the
Low-Pin Count (LPC) bus permits communications between the CPU and the Security Support
Component (SSC). This SSC is Microsoft's name for a device that fills the role of the TCG’s
Trusted Platform Module.

Seen in Figuré¢ 3|2 is the logical partitioning of the software architecture in NGSCB. Mi-
crosoft refers to programs executing in standard, or unprivileged mode, as executing on the
left-hand side(LHS) of the four-quadrant diagram. Privileged execution takes place on the
right-hand sidgRHS). The bottom quadrants show the operating system executing in standard
mode on the LHS, and theexusexecuting on the RHS. The nexus is the secure kernel that
hosts and provides servicesrtexus computing agentsICA), which are directly analogous to

standard applications on the LHS. These NCAs interact with the nexus to obtain cryptographic
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services supplied by the SSC.

Software executing on the RHS (in nexus mode) is stored in curtained memory. This gives
it hardware-level memory protection from the standard Windows operating system and user-
land applications. The standard Windows operating system, and the applications that run on
it, will remain largely unchanged on the NGSCB platform. The insecure LHS will provide
some limited services to the nexus and NCAs. These will include 1/0 operations such as those
required to read and write files to disk, as well as communicate over a network. Such streams
will, of course, not be protected from the rest of the LHS environment. All data leaving the
RHS is intended to be encrypted, to protect its confidentiality and integrity.

Microsoft's NGSCB implements all four trusted computing framework primitives — attes-
tation, sealed storage, strong process isolation, and secure I/0O. NGSCB refers to secure 1/O as
secure paths As expected, Microsoft's NGSCB makes heavy use of the cryptographic prim-
itives exposed by the underlying TPM device. Its implementations of attestation and sealed
storage are heavily influenced by the design decisions made by the TCG. There are a number of
subtle differences however. These stem from Microsoft’s decision to implement a secure kernel,
the nexus, as well as partitioning the software layer into an insecure LHS and a secure RHS.

As outlined above, the NGSCB platform modifies the PC hardware architecture to allow
for pages of memory to be marked as curtained. Such curtained memory can only be accessed
when the processor is in privileged mode. It is in this hardware-mandated privileged mode
that the nexus kernel executes. The hardware architecture prevents the unprivileged LHS from
observing any page that has been marked as curtained. Shown in[Figure 3.2, the LHS is unable
to view the memory of any program on the RHS. However, the same is not true for the RHS,
which is not prevented in hardware from viewing pages not marked as curtained. It should also
be noted that individual NCAs on the RHS are granted no more memory protection from other
NCAs, than normal applications on the LHS are from each other.

This hardware-mandated separation of memory pages marked as privileged and unprivi-

leged meets our formal definition of weak curtained execution, defined in Sectioh 2.3.4, defini-

tion[2.4 on pagg 41.
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3.3.2 Sealed Storage

The sealed storage primitive implements access control to sealed data, based on the code identity
of an NCA, and the nexus. This code identity is the hashr&aifesdescribing the NCA. This
manifest names all the code libraries, including specifying versions, that an NCA can load, as
well as data and configuration files. Changing a manifest, for example, by specifying a different
DLL version results in a distinct NCA identity being generated.

To seal some arbitrary data, an executing NCA calls3fel function, exposed by the
nexus. This function takes two parametetsandID(R,). The parameted is the text to be
sealed, antD (R,) is the code identity of the NCA that is able to unseal the returned cipher text.

In the general case, the calling NCA specifies its own code identity, ensuring the confidentiality
and integrity of the cipher text until it is unsealed at a later date. As mentioned previously,
the nexus relies on the insecure LHS operating system for various I/O services, including file
reads and writes. The encrypted cipher text is written to the standard file system, with no more
protection than is available now.

The alternative case is one in which an NCA specifies some other code identity which is
allowed to unseal the cipher text. This resultant cipher text can, however, only be unsealed on
the same NGSCB device it was sealed on. This is due to the use of the unique symmetric key
stored in the SSC (see Sect[on|3.2) to encrypt the plain text. This use of code identity to name
the intended unsealer of the cipher text allows chains of computation to be designed, as in the
LOCK (see Sectiop 3.4.1) and XOM (see Secfion 3.7) systems.

TheUnseal function takes only one parameter — the cipher text to be unsealed. The success
of the function is dependent on three identities. The first two, the NCA and the SSC chip, are
explained above. The third identity is that of the nexus kernel itself. Microsoft has said that it is
possible for anyone to write and distribute their own nexus$ [43], although doing so legally may
present some licensing issugesl[23]. If the unseal function depended on the identities of only the
NCA and the SSC, an attacker could modify the nexus before it is loaded. Such modifications,
made to the compiled binary of the nexus before it is loaded, could result in the nexus leaking

sealed data to the insecure LHS.



3.3 Next-Generation Secure Computing Base 80

Standard Mode Nexus Mode
NCA
Application Application NCA
NCA
Application NCA
User Mode
Kernel Mode
Nexus
Operating
System Security Support
Component
Private Public
Key Key

Figure 3.3: Hardware and software stack identified in an NGSCB attestation operation, shown in red.

3.3.3 Attestation

Microsoft's implementation of attestation is built on top of the architecture of the Trusted Plat-
form Module. Itis described in various technical white papers published by Microsoft [43, 44],
as well as by England et al. [25].

Logically, it uses th&uoteoperation, as well as various certificates, to identify the hardware
and software stack, seen in Fig{ire|3.3, running on the NGSCB platform. The stack identified
consists of the TPM device, the executing nexus, and a specific NCA. The quote operation is

described by England et al. in [25]:

The Quote operation concatenates an input string from the program wishing to
authenticate itself with the program’s code ID, signs the resulting data structure
with the platform’s privacy quoting key, and returns the result to the caller. The

requesting program can send this signed data structure to a remote party, typically

along with platform certificates that support use of the platform-quoting key.

In operation, the executing nexus calls the TPRliste function, passing in a data structure
containing the code ID of the nexus requesting the attestatiG#®y. The TPM concatenates

the code ID of the nexus with this data structure, formiNdgE XU $4||[NCAp). It then signs
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with the appropriate private key named in the manufacturer’s certificate, and returns to the nexus
(NEXUS|INCAD)- K signifies the private key embedded in the TPM, as described in Section
B.2.

3.3.4 Securel/O

Microsoft's NGSCB treats secure I/O as one of the core components of its trusted computing
framework. It allows secure, assured communication between NCAs and various peripherals
connected to the device. Microsoft intends to secure those devices which are typically found
outside the computer case. These include things like printers, speakers, keyboards, and mice.
One exception to this is a secured video card, which resides inside the computer case.
Microsoft does not intend for NGSCB’s secure I/O be used, at least initially, for DRM-
style applications [48]. Typically, secure I/O reduces throughput of the device below acceptable
limits for media playback. They are more concerned about securing the input from the keyboard
and mouse to an enabled application. In the same manner, they intend to secure certain output
from an enabled application so that it reaches the local user. Common attacks which Microsoft’s
secure 1/0O aims to prevent include user spoofing and screen scraping. User spoofing occurs
when an attacker sends keystrokes to a program so as to appear as if they came from the local
user. Screen scraping involves an attacker capturing an application’s screen output and storing it
for later use, either by replaying (in the case of video) or by capturing textual information from
the data. For example, other work by the author [20] investigated using Microsoft's NGSCB to
assure high-value legal documents were delivered to a valid printer, and not printed to a file.
Microsoft intends to demarcate user interface windows used to display a secure 1/0O-enabled
application. This demarcation is intended to elevate the level of trust a user can have when
interacting with that window. The typical use-case of this technology is to properly secure and
assure communication with an online banking service provider. Such assurance prevents local
attackers from monitoring the keystrokes of the user (to obtain passwords), and the information
displayed in the window (bank account numbers, etc). Secure 1/O also prevents local attacks

from sending keystrokes to initiate bank account transfers. The demarcated window is intended
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to indicate to the user that when interacting with such an application, more care should be taken,

as the information is considered to be security-relevant.

3.4 Trusted Computing in Software

As discussion in Sectidn 1.3, it is considered most appropriate to implement a trusted computing
base with trust rooted in a hardware device. However, the manufacture of these hardware de-
vices, such as the Trusted Platform Module (Segtioh 3.2), has only recently begun. Prior to this,
many attempts were made to provide what is now the level of assurance that hardware-driven
trusted computing aims to provide, through software-only means. This section will discuss and
outline some of these attempts, specifically focusing on methods which attempted to arrive at

the three security primitives outlined in Sectjon|2.3.

341 LOCK

Section 2.33 discussed sealed storage, and illustrated a method of usig thgrimitive

to form cryptographically secured computation paths. This concept of using the identity of an
entity to evaluate and allow access to data is not new. The concept ofalgeny typeto set

and enforce access restrictions to resources has been an area of research in computer science
for some time.

The Logical Coprocessing Kernel (LOCK) system, developed in the late 1980s, is able to
enforce security restrictions derived from strongly-typed data domains. LOCK is considered a
strongly-typed Unix-like operating system. The LOCK system itself is introduced in [54], and
further developed in [55]. Rogers and O’Brienin [46] describe the use of LOCK to design and
build a LOCK-enabled application. As described in their paper, LOCK is:

...a highly assured INFOSEC [information security] system that can be used as a
platform to develop countermeasures to current and future security threats. The sys-
tem is based on a trusted computing base (TCB) that satisfies the security require-

ments defined for the Al level in tHgusted Computer System Evaluation Criteria
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[16, Orange Book.. [and] uses a security coprocessor, called the SIDEARM, that
makes access decisions ... [along with] LOCK’s unique type enforcement mecha-

nism.

The LOCK system provides security primitives equivalent to a current trusted computing
system’s sealed storage and curtained execution. It also goes some way to implementing se-
cure I/0. The system described in [46] does not consider network operations, and so does not
implement remote attestation.

Entities on a LOCK system are divided into two grougshjectswhich represent processes
(programs), andbjectswhich represent data and other resources on the system including hard-
ware. Each subject is placed int@lamain and each object is giventgpe The type of access
permitted for each domain to each type is defined Doanain Definition Tabl€DDT). A sam-
ple DDT, modified from[[456, p 149], can be seen in Tdblé 3.8. Capabilities that can be specified
in the DDT are: r — read, w — write, a — append, e — execute, ¢ — create, and d — destroy.

Table[3.8 shows how a subject in the domiainis allowedr, read, access to objects of type
UnF1 Data A subject in theDB domain is able to read, write, create, and destroy objects of
type DB Data and can execute data of typ& Code

A detailed explanation of how the LOCK system ensures that these access restrictions re-
main mandatory, and cannot be circumvented, will not not be given here. For the purposes
of illustration, we will assume the access restrictions are mandatory. The purpose of this dis-
cussion is to highlight, with a (trusted) mandatory type enforcement mechanism, how trusted

computing security primitives can be built.

Sealed Storage

As discussed in Sectign 2.8.3, sealed storage allows applications to store some arbitrary data
and be assured that no other entity on the system is able to modify or view that data. The file
system, a hardware resource tyfyg, is used to persist the arbitrary data. Each domain given
access tdis is done so through intermediary access via a unique doygirinto which an

application in domaibscheghas only write-access. The file system, in its own domain, is able
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Table 3.8: Sample Domain Definition Table adapted from [46], listing domains on the vertical and types on the

horizontal. A cell (i, j) contains the types of access a subject in domain i is permitted to make on an

object of type j.
to only read fromDj,;. The file system on a LOCK system is constructed to enforce access
restrictions based on the DDT table. To a LOCK-enabled application, it appears as though

they have their own private file system. This construction of sealed storage in LOCK meets the

definition as given in Sectign 2.3.3.

Curtained Execution

The Domain Interaction Tabl€DIT) defines allowed interactions between domains. The ca-
pabilities that can be specified in the DIT differ from those that can be specified in the DDT,
to reflect the difference between types and domains. The DIT capabilities are observe, signal,
create, and destroy. In this case, for an application in doaito be able to observe an ap-
plication executing in domaiby, the cell(j,k) in the DDT must be explicitly marked with the
observe capability. Interaction between domains must occur with through well-defined sig-
nals. For two domaind)j andDy, to communicate with each other, the celjsk) and(k, j)

must be marked with theignal capability.
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Secure 1/0O

From the two previous implementations described, it can be seen that implementing secure
I/0 in the LOCK system is trivial. Each hardware resource is designated with its own type,
and placed in its own domain. Access to that domain is controlled through an intermediary

arrangement of domains, as with sealed storage.

3.5 Aegqis

AEGIS provides an assured, trusted environment to host a general purpose operating system.
Execution begins with power-on, and will not pass to the next level unless that level passes
cryptographic integrity checks. This process is referred to by Arbaugh et al. [1gLesanteed
secureboot process.

Integrity verification in the AEGIS system is based upon ldydieing trusted to perform
integrity verification of level, 1, before passing execution to that level. Lel\gls presumed
to be trusted, and does not have its integrity verified, in a meaningful way, by any other entity.

AEGIS makes some modifications to a normal IBM PC’s boot process. These are comprised
of partitioning the standard BIOS into two. The first, lelglcontains thérustedcomponents
required for integrity verification of levdl, including levell;’s precomputed hash. It also
contains rudimentary code to replace code in Iévef it is found to be corrupted, from some
external trusted source. This could be an AEGIS expansion card added into the machine, or
some remote network host.

The AEGIS concept and threat model is relatively simplistic compared with more advanced

trusted computing models. Arbaugh assumes [18, p 66]:

...the motherboard, processor, and a portion of the system ROM (BIOS) are not
compromisedi.e., the adversary is unable or unwilling to replace the motherboard

or BIOS.

Although not explicitly stated, it seems reasonable to assume that the AEGIS architecture

is intended to operate in a corporate environment, where hardware can be protected from user
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replacement or modification through traditional methods, and the administrator is not an ad-
versary, but interested in securing the system. The AEGIS system is designed to protect a
computing environment frommalicious usernot amalicious administratosee Sectiop 1]2).

AEGIS is one of the first attempts to enable the creation of a known-secure environment on
commodity hardware, without major modifications to the underlying architecture. The system
is very brittle — any modification to the components in the measurement chain results in the
system failing to boot. The executing operating system is able to presuppose that, because it is
executing, it can trust the lower layers.

It is useful to include in our discussion the formal definition of AEGIS’ trust model. The
AEGIS n to n+ 1 method of inducing trust from lower layers to higher layers is analogous to
many other trusted computing models, which do not state their assumptions or reliance on a
trusted root so explicitly. Arbaugh et al. give two recurrence equations showirtai@ngof

trust, from levelg [18, p 69].

lo = True

in = {liAViLisa) for 0<i<4 (3.6)

Here,l; is a boolean value giving the integrity of leve)\ is the booleamndoperationyV; is
the verification function associated with th&level, taking the level to verify as its argument,
and returning a boolean. As described earlier, AEGIS performs a cryptographic hash of the
level being verified, and compares the resultant hash with a precomputed value. This value is
retrieved from a previously verified level; either the currently executing level, or some other
lower level.

This recurrence equation (B.6) explicitly states the axiomatic trust placed irldeizliring
operation, levelg is trusted to not allow execution to continue onto lelelf it fails to pass
a verification check. This behaviour is also expected of all other levels. Assuming each level
is functioning correctly, level 5, consisting of user-level applications, will be hosted in a well-
known environment of levels 0—4.

The AEGIS system is not intended to directly provide any of the three primitives of a trusted
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computing framework. However, it does restrict the boot process to only allow well-known
software to begin executing on the machine. It could be used to boot a software system like
LOCK (see Sectiop 3.4.1 on page 82). The LOCK operating system would then be guaranteed
to be executing on benign hardware with unmodified software configured to properly enforce

the primitives.

3.6 IBM 4758

Work by IBM in the late 1990s lead to the development of the IBM 4758 Secure Coprocessor
[4]. 1t was developed to provide IBM's Common Cryptographic Architecture product group
with a tamper-responsivegeneral purpose, secure coprocessor. A tamper-responsive device
performs some action when it is tampered with. A tamper-resistant device merely makes at-
tempts to subvert the device difficult. The design goals and challenges are discussed by Dyer
et al. in [24]. The 4758 takes the form of a PCI-bus expansion card, that can be added to an
unmodified IBM PC.

While the implementation and design of all aspects of the 4758 is not immediately relevant,
it does implement an interesting form of attestation. Catletbound authenticatignt enables
a 4758 card to export information about its current internal state. The manufacturing process
of the card is also similar to that of trusted platform modules, used as the trusted root in other
trusted computing frameworks (see Sectjon} 3.3 and 3.2). The 4758 can be seen as the precursor
device to the trusted platform module.

Shown in Figuré 34, the IBM 4758 is heavily protected from physical tampering. Upon de-
tecting a physical attack, the IBM 4758 is designed to clear its internal secrets and destroy cer-
tificates embedded during manufacture. The 4758 is sensitRghisical penetration, power
sequencing, temperature, and radiation [attacKS]:

The design goals, decisions, and processes were described by Dyer et al. [24], and show
their consideration of the same design principals used to construct the LOCK software system.
The logical design structure consists of three major components; the hardware, the firmware,

and the end-user supplied software. These are shown in[Table 3.9, including their further cate-
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Supplier Category Components Relative Trust

Users Software  Applications Low
Operating System Environment
Kernel
Loaders

IBM Firmware Post Medium
Miniboot

IBM Hardware Processor High
Flash, RAM and ROM
Locks
Tamper-responding unit
Crypto functions

Table 3.9: Components of the IBM 4758, logically split into the familiar categories of hardware, firmware, and
software, including their logical layers. The relative level of trust in each layer decreases from hardware,
to firmware, to software.

gorisations.

Similar to the AEGIS system, trust in any layer above the first is inherited from the lower
layer. The hardware layer is manufactured by IBM, as is the firmware layer. The software layer
is supplied by the card owner, and is designed to run on the embedded 486-class processor.

As mentioned above, the IBM 4758 is capable of outbound authentication, which is analo-
gous to attestation. It also implements a form of secure boot, similar to AEGIS. Although not
intended to be part of a trusted computing framework, the 4758 does provide persistent stor-
age. The 4758's method of implementing attestation is illustrative, as it is similar in method
to that chosen by IBM researchers when working on the TCG’s Trusted Platform Module (see
section$ 32 on page51, gnd 4}4.2 on 111).

During the manufacturing process a root certificate, used for attestation, is embedded in
the device. This root certificate is signed by keys derived from IBM’s root key, and attests
that the named public key is associated with a private key also embedded in the device during
manufacture. It is from this certificate that trust in the identity of the device is obtained, as
explained in Section 2.3.5. Trust in attestation statements made by the device are dependent on

IBM'’s root keys remaining uncompromised.
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Figure 3.4: Photograph of the IBM 4758 secure coprocessor.

The IBM 4758's firmware and software stack is delineated lay@rs The initial layer,
consisting of an asymmetric key pair, manufacturers certificate, and minimal operating code is
embedded in ROM during this manufacturing process. Itis the only layer which is inserted into
the device without a public key authentication operation taking place.

Layers are used to break up software on the 4758 into separate pieces, along functional and
trustworthy lines, as in LOCK. Each software load operation results in a new logical layer in the
device, and each operation must be permitted bytnaeerof the previous software layer. This
authentication chainin@f ownership, most of which takes place during manufacturing, layers
theminiboot(layer 0) andboot (layer 1) firmware layers, seen in Table]3.9, directly above the
ROM code. Ownership of layeé allows that owner to name and install code into lalyler 1.

Each of the layers (1 and 2) programmable in the field have various information associated
with them. Each layer has an ownership id; the layer 2 owner ID is assigned by IBM, and the
layer 3 owner id is assigned by the owner of layer 2. The content of each layer also has data
stored about it. This consists of an image name and revision field, specified by the owner of that
layer, and most importantly lzash field This hash field is derived, by layers 0 and 1 inside the
device, from the entire contents of that layer’s code.

When delivered to the purchaser, the 4758 is configured to allow only one further software
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Component Explanation

A nonce This nonce is originally specified by the requester, so they can
be assured of the vector’s freshness.

The Vital Product Data This specifies the exact model of the IBM 4758.

(VPD)

Whether layer 2 and layer 3Indicates if layers 2 and 3 have become owned since

are owned and have reliablebeing shipped from IBM, and that the physical tamper-

contents responsiveness has not activated.
The layer 2 OwnerlD and A two byte field, indicating owning entity of layeM, set by
layer 3 OwnerID the owner of theN — 1 layer.

If layer 2 is owned and reli- The human-readable name of the installed software.
able, the name of the image
it contains

If layer 3 is owned and reli- The human-readable name of the installed software.

able, the name of the image
it contains

Table 3.10: Components of an IBM 4758 attestation (remote authentication) vector, adapted from [60].

load — that of the end-user’s custom application. With only one user application executing
on the device, it is unable to launch an attack against any other application on the device,
or be attacked itself from another user-level application. Only attacks against lower layers
are possible, attempting to subvert some given operation of the device. The code for these
lower layers has, by the time execution passes to layers 2 and 3, been protected in hardware
by advancinghardware ratchets These ratchets protect the firmware from modification until

the device is next reset, and the ratchets released. This ‘single-application’ design is a major
restriction in the use of the IBM 4758 as a general-purpose trusted computing platform.

The operating system, a variant of the CP/Q operating system known as CPR/Q++ [29], is
loaded into layer 2, and is usually included when shipped from IBM. The end user application
is loaded into layer 3. The attestation procedure involves a signed vector being transmitted
from the device, in response to a user query. IBM outlines the procedure in a white[paper [60],
as well as the information found in the response. This is reproduced, with modifications and
explanations, in Table 3.1L0.

This vector is signed with the unique key of layer 0O in that device, which in turn is named

in a certificate chain that ends with IBM’s root key. By trusting the tamper-proof hardware,
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and the code in layers 0 and 1, the user can trust that the information contained in the vector is
correct. They are then able to make an informed decision about trusting the entities named as
owners of layers 2 and 3. It should be noted that the attestation vector described here does not
include the hash fields of layers 2 and 3. This data is available through another API call, and is
used in the Reusable Proof of Work (RPOW) concept server, described in Sectigpn 3.6.1.

The IBM 4758 device also provides a form of sealed storage. The 4758 is able to store
data across power cycles in flash memory. Flash memory chips are also found in the ubiquitous
USB key-chain storage devices. Application data is encrypted when stored in flash memory.
The device is unable to guarantee the wiping of data stored in flash memory if the device is
physically attacked. Therefore it is encrypted with a symmetric cipher; the key is stored in
battery-backed RAM (BBRAM). BBRAM is guaranteed to be wiped in response to physical
attack, thereby rendering the data encrypted in flash unrecoverable.

The 4758’s implementation of secure storage illustrates a common pattern in trusted com-
puting frameworks. A small, secure, and expensive portion of memory can be used to satisfac-
torily secure data stored on larger, less secure, and cheaper memory. This leveraging of trusted
storage could have been used to provide persistent storage on the host device; denial of service

attacks would then become far easier.

3.6.1 Reusable Proof of Work

The Reusable Proof of Workl[8] (RPOW) server is a proof-of-concept implementation on an
IBM 4758 device. It makes excellent usage of the outbound authentication capability of the
4758 card. The system itself allolashcasltfalso known as Proof of Work) tokeris [2], instead

of being disposed after a single use, to be exchanged for another of equal value, and addressed
to another recipient. In essence, this allows one hashcash instance to be used multiple times by
two communicating individuals. Additionally, users are able to trade in one POW token, with a
given valuex, for two POW tokens both of value/2. The RPOW server acts as a virtual bank,
enabling the exchange of POW tokens to take place in a similar manner to a real bank.

All software used in the system is available through an open source license, allowing end
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users to verify and compile the client they use to interact with the server. They are also able to
verify the source code for the software that runs on the 4758 device itself, as well as the host
software running on the server PC. The client software, during each interaction with the RPOW
server, requests the generated hash of the card’s running software. This value is compared
against a precomputed value distributed with the client application. This computed hash value
is signed and delivered in a data structure similar to the one outlined in Sgction 3.6 ¢n page 87.
Taken together, the two attestation vectors assure the client of the validity of, firstly the IBM

4758 device itself, and secondly the hashed identity of its executing code.

3.7 Execute Only Memory

Execute Only Memory (XOM) was developed at Stanford University [64] in 2000. XOM (pro-
nounced‘zom”) was originally intended to prevent unauthorised softweecution Later
research by a number of the same authors [37] led to the implementation of an untrusted oper-
ating system running on XOM hardware. One section of their paper described how components
of XOM Operating System (XOMOS) were able to implement the three parts of a trusted com-
puting platform (see Sectign 2.3 on page 23). While the XOM architecture was not developed
to form part of a Trusted Computing Framework (TCF), it is a simple, elegant architecture.

The rest of this section will briefly describe the hardware architecture of XOM, and how the

trusted computing aspects of XOMOS operate.

3.7.1 Concepts and Hardware Architecture

The XOM architecture introduces a number of concepts similar to those found in most trusted
computing platforms, such as an axiomatically trusted hardware layer. While no functioning
XOM system has been built in hardware, it has been modelled in software on a MIPS with
IRIX system [37].

The XOM architecture, as described by Lie et allin [64], relies on a modified processor that
provides three key operational extensions. The first operation allows for asymmetric decryp-

tion of a data block using a private key embedded securely within the processor. The second
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operation allows symmetric decryption of an instruction stream, with what is knowrses-a

sion key The third and final operation provides, and enforces, compartmentalised storage that
prevents one process from viewing the contents of any register not marked as belonging to its
own compartment. Additional hardware modifications include a number of XOM-specific state
bits on register and cache lines. Lie et al./[37] briefly describe the benefits of compartmented

execution:

XOM uses its master secret to protect programs by suppocbngpartments A
compartment is a logical container that prevents information from flowing into or
out of it. A process in a compartment is immune to botbdificationandobserva-

tion.

The XOM chip contains, at its heart, an asymmetric key pair which is created or embedded
during manufacture. As in other trusted computing architectures the private key of this key
pair should never be transmitted outside the chip. While not specified in the original literature
describing XOM, the public key should be signed by the manufacturer. This asserts that the

certified public key belongs to an actual XOM device, and allows it to verify its identity.

3.7.2 Application Distribution and Execution

The distribution process, as described by Lie etlall [64], is seen in Table 3.11. The process
begins with a user on a XOM platform requesting an applicatiof from the distributorD.

The XOM chip, as with the TCG’s TPM chip, contains a unique key Rgik prv, €mbedded
during manufacture. The distribut@, upon receiving a request frog) encrypts their appli-
cationP with a unique symmetric keis. The encryptionE(Ksg, P) results in a blol3. The
symmetric keyKs is encrypted with the public keypp of the requesting platform. The result

of E(Xpun: Ks) is an encrypted bloli. These two blobs are concatenated into a data structure,
{a||B}, which is returned t. This data structure allows the executiorPodn x, analogous to

the execution oP normally. At this point,x has been supplied with a customised versioR of

that only it is able to decrypt and execute.

The distribution and execution scheme described above ensures the integrity and confiden-
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Step Action

1. X — D: AppReq (Xpub)
2a. D: verify Xpub
2b. D: generateég
2c. D: performg(Ks,P) =
2d. D: performE(Xpun Ks) = a

3. D —X: AppRep ({a|B})

4a. x:load{a|B}

4b. x: performD(Xprv,a) = Ks
5a. x: performD(Kg, ) = P
5b. x: execute?

Table 3.11: Packaging and distribution protocol of XOM, used to ensure an application’s integrity and confiden-
tiality throughout its lifetime.

tiality of P from its packaging byD until it is decrypted insideg. The applicatiorP exists
in unencrypted form only in the L1 and L2 caches and registeps dthe XOM architecture
implements compartments to prevent another applic&itmom viewing or modifyingP while
it is unencrypted, and stored in the CPU registers. This compartmentalisation, discussed below,
satisfies the requirements of curtained memory defined in Séction 2.3.4. Specifically, it satisfies
the requirements aftrongcurtained memory, given in Definitign 2.3 on page 41.

At some later point in timey is able to execut® without further interaction wittb. To
begin with, the XOM chip irx decryptsa, D(Xprv, ®). The resulting symmetric kel is not
released outside of the XOM chip. During the executioPpf is stored in main memory,
and is decrypted witKs inside the XOM CPU, and stored decrypted in the L2 memory and L1
instruction cache. Data created and usedloyring execution is stored in memory usikg

During the loading and decryption Bf a new entry for the program is made in k@M key
table containing, amongst other information, the symmetric key just obtaineshmpartment
ID is also generated, and this is used to reference the table to obtain the symmetric key when
required. Entries in the key table represent what are knowniasipals, analogous to executing
processes on a normal processor. The currently executing principal on the XOM chip is known

as theactive principal and its tag is stored in th¢OM ID register
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Figure 3.5: Overview of XOM architecture, adapted from [64]. Bold black borders indicate new components to a
traditional CPU architecture.

As shown in Figuré 3]5, the instruction stream is brought in from main memory, then de-
crypted and stored in the L1 instruction cache, on each cache miss. Also shown in[Figure 3.5
is the state required in the XOM chip. There must be an appropriately pragte memory
to allow the XOM processor to maintain the key table. The maximum key table size limits the
number of concurrently executing principals. The minimum table size is 2 lines — one for the
null compartment, and one for an active principal. The null compartment is active when the
XOM processor is executing normal (non-XOM encrypted) code.

The XOM key table itself is made up of two sub-tables, Register Key Tabland theCom-
partment Key TableTheXOM ID Registercontains the compartment ID of the currently active
principal. This compartment ID is used, in the Register Key Table, to denote the compartment
the data in a register belongs to. If the register contains data belonging to a process executing
in the null compartment, that is also recorded here. Every time the active principal tries to read
from a register, the ownership of that register is checked against the Register Key Table. If the

register tag does not match that in the XOM ID Register, an exception is thrown by the XOM



3.7 Execute Only Memory 96

hardware. As data is stored unencrypted in registers on the XOM chip, it is this mechanism,
implemented in hardware, that prevents principals from viewing another’'s memory space.

Table[3.12 shows the two commandsd andx1d, used by an application executing in a
compartment to save and load data securely. As an executing principal generates data, it is
stored in memory with thesd command. Initially, the data is stored unencrypted in an L1
or L2 cache line. The specific line is tagged with the compartment ID of the active principal.
The XOM CPU prevents principals from reading cache lines that are tagged with a different
compartment ID to its own. These tags are present on all caches inside the XOM CPU, and are
shown in Figuré 3]5.

The process described above ensures the confidentiality and integrity of instructions and
data when it is unencrypted in the L2 and L1 caches, and in the register files. Data generated by
a programP executing in a compartment is also secured when it is evicted from the L2 cache,
and stored in main memory. Figdre [3.5 shows the encryption and decryption of data occurring
at the boundary between the L2 cache and main memory.

When a cache line is evicted, the XOM CPU retrieves the symmetric compartment key from
the compartment table, and uses it to encrypt the data before it is stored in memory. This ensures
the integrity of the data. To ensure that data is not tampered with when stored in main memory,
the data is hashed. The hash used is a keyed cryptographic hash, or message authentication

code (MAC) [32, p.181]. Lie et al. describe the process of storing and retrieving data [37]:

Each time a cache line is written to memory, a hash of it is generated, and both the

hash and the cache line are encrypted. The hash pre-image contains both the virtual
address and the value of the cache line. When decrypting the cache line, a matching
hash must also be loaded before the XOM processor will accept the encrypted value

as valid.

In order to implement a properly multi-tasking operating system with the XOM chip, the
untrusted operating system must be able to save the state of the active principal when it is
interrupted. The operating system, in laygris intended to execute in the null compartment.

The XOM architecture allows an untrusted operating system in layeischedule and interrupt



3.7 Execute Only Memory 97

Instruction Explanation

xsd $rt, offset (Sbase) Stores registe$rt to memory, tagging the cache line with
the active principal’'s compartment ID.

x1d $rt, offset (Sbase) Loads the specified memory address into register. If

the load results in a cache miss, the data is retrieved from
main memory, its associated hash is validated, and the value
decrypted and stored in the specified register.

xgetid $rt, Srd Get the register tag value ¢ttt and store it insrd.

xenc $rt, $rd Check that the ownership tag 6ft matches that ofrd.
If so, use the contents ¢f-d to index the Register Key Ta-
ble to locate the corresponding register key. Encrypt the
contents ofsrt with this key and place it in XOM private
memory registerso. . .$3.

xsave Srt, offset (Sbase) StoreSrt, one of the private memory registerg. . . $3, to
the memory address specified. The cache line is tagged with
thenull compartment.

xrstr $rt offset (Sbase)  Fill $rt, one of the private memory registeys. . . $3, with
the encrypted value to be restored, located at the specified
memory address.

xdec $rt, Srd Use the contents ofrd to index the Register Key Table
to locate a register key. Decrypt the 256 bit value set by
xrstr, validate the result and restore to registet. Set
the ownership tag ofrt using the contents cfrd.

xmvtn $rt Sets the compartment tag $ft to null, as long as the reg-
ister $rt belongs to the active principal.
xmvfn Srt Sets the compartment tag ©ft to that of the active princi-

pal, as long as the registert is in the null compartment.

Table 3.12: Adapted from [37], additional processor operations implemented in hardware to support XOM. Origi-
nal hardware is described in [64], while the new hardware is described in [37]

an active principaP executing in a compartment in lay&s, without resulting in a loss of
confidentiality or integrity fo?. XOM implements an on-chip method of securely saving and
restoring the state of an active principal when it is interrupted.

Shown in Tabl¢ 3.72, the commangs:=t id, xenc, andxsave, allow the operating system,
executing in layel, to securely save the state information of an application executing inltayer
to main memory, without being able to view or modify that state itself. The commands
andxdec are used to restore the context of a principal when it is scheduled by the operating
system.

Thexgetid command retrieves the compartment ID of the specified redgisteand stores
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it in Srd. The $xenc command ensures that the ownership tagof is the same as the tag
stored insrd. Ifitis, $xenc continues and encrypts the contents of with the correct register key.
The encryption process is outlined below.

The 64 bit register is encrypted with the register key, and stored in the first of four reserved
XOM register files,50. The register ownership tag and register number are storgd i 128
bit MAC is generated over registess ands1, and stored irs2 ands3.

This 256 bit word is then stored in main memory at a location specified by an argument to
the xsave command. It is first cached in the L2 cache line, where it is tagged with the null
compartment. This allows the untrusted operating system to manage the encrypted context.
This process is repeated for all other registers in the ownership of the active principal.

To restore the context of a principal, the encryption process is reservedrEhe com-
mand retrieves the 256 bit word, and stores it in the private registers. $3. The integrity of
the registerss0 ands1 are checked by calculating their hash, and comparing it with the hash
stored in$2 and$3. If the integrity check succeeds, the register key specified is retrieved,
and used to decrypt the value $8. The decrypted value is stored back in the appropriate
register, again retrieved from registar.

The register key used in the above process is distinct from the symmetric key used to decrypt
the instruction stream and encrypt and decrypt data stored in main memory. The register key
is generated by the XOM CPU, and is regenerated for each compartment each time a process
switch occurs. This prevents an attacker from replaying encrypted register values from previous
context switches. The register key is changed after a compartment’s context is restored.

The processes described above enable strong curtained execution for all priRgipalz,
that execute in a compartment, by assuring the confidentiality and integrity of their individ-
ual memory ranges. In addition, a principal in laygis protected during execution from a
malicious operating system in laykar

To enable principals executing in a compartment to communicate with other applications,
and process /O, the XOM CPU provides two commands, seen in [Table 3.12. These are the
move-to-null commandmvtn, and the move-from-null commandwfn. These commands

simply change the associated compartment tag of a register, allowing data to be brought into or
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pushed out of a principal’s secure memory space.

3.7.3 Aspects of Trusted Computing

The XOM architecture, originally intended to prevent unauthorised execution, also provides a
form of attestation and sealed storage. Using the XOM architecture as the base of a trusted
computing framework is discussed only tangentially by Lie et al. in [37, p.190].

A XOM application attests to a third party by way of them both knowing some shared secret,
sayKsha. The method of preparing an application for distribution is outlined in Setion 3.7.2 on
pagg 9B. During this preparation, a secret Keyy is embedded in the application image. This
can either be personalised for each customer, or be the same key for all copies of the application.
If the key is the same for all distributed copies of the application, two copies of that application
may attest to each other in a straight forward manner. To communicate securely, the two copies
of the XOM application simply encrypt their messages with the shared s8hre¢hey both
have. As long as the symmetric keys which encrypt the application images are not decrypted
outside a XOM chip, the shared secret remains secure.

The model of attestation for XOM has one shared secret amongst all copies of the applica-
tion. This is vulnerable to &reak once, break everywhefBOBE) style failure. To prevent
one compromised application invalidating the integrity of all others, each distributed applica-
tion must be customised, by embedding unique key pairs and certificates, before distribution to
the user’'s machine. Specifically, more customisation than just differing headers for each XOM
CPU is required.

The XOM architecture implements sealed storage by making use of cryptographic keys
embedded in the encrypted binary image, similar to attestation. Given that an applRation
must be unmodified in order to successfully execute on a platférwan use a symmetric
key embedded in its own image to encrypt data before moving it to the null compartment and
storing it on untrusted, long-term medium. As with attestation, each application image must
be customised with a unique key to prevent a BOBE-class vulnerability, and to ensure that data

encrypted on one platform cannot be encrypted on another.



3.7 Execute Only Memory 100

The security primitives provided by the XOM architecture rely on the correct operation of
the software distributoD. The distributoD is required to customise a XOM applicati®rby
embedding keys in the image for use with attestation and sealed storage, and encrypt the whole
of P with a unique symmetric key as described in Table]3.11. These keys should be urftjue to
and no record of them should be keptby A XOM-enabled application relies on the correct
operation of the XOM CPU, but is also dependent on the integrity of the distributor to properly

customiseP.



He who is firmly seated in authority soon learns to think security, and

not progress, the highest lesson of statecraft.

James Russell Lowell

Discussion
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4.1 Introduction

This chapter explores a number of issues with the implementations discussed in Chapter 3.1,
and describes some of the open problems in trusted computing that they highlight.

Section 4.P discusses frameworks that only implement part of a trusted computing frame-
work. Sectior] 43 discusses the difficulties with generating trusted code identities (measure-
ments) for software. Sectign 4.4 discusses the difficulties with implementing shared libraries,
and including them in statements of a programs functionality. Sejctipn 4.5 discusses resistance

to software attacks.

4.2 Partial Framework Implementations

421 LOCK

It is instructive to observe the differences between modern trusted computing platforms and
the LOCK system as a whole. Current trusted computing platforms are strongly tied to the
identity of the application. LOCK, on the other hand, concerns itself more with information flow
inside a specific application. Moving an existing application to the LOCK platform requires
considerable thought during design to correctly modularise the application. Rogers and O’Brien

describe this in [46]:

Rather than just decomposing the application along functional lines, it must also
be partitioned along security and integrity lines. The application designer must
identify the components of the application that require added security or integrity,

and modularise the application to isolate those components in separate subjects...

The design goal is to put each different security or integrity relevant task into its
own subject that runs in a distinct domain, and to isolate the data that these subjects

must handle into special types.

Discussed in Sectign 3.3, Microsoft intends NGSCB to be used in much the same way.

Those parts of an application which perform security-relevant computations should be imple-
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Figure 4.1: A filter process illustrating an assured pipeline as implemented in the LOCK system, adapted from
[46].
mented separately, and partitioned accordingly, so as to be implemented in the secure Right
Hand Side (RHS). Each module should perform its service or computation for the remainder of
the application, with interaction occurring through well-defined interfaces. This method of sys-
tem design and construction is well known, and is similar to object-orientated software design.
Mentioned in Sectiop 2.3.3 was the use of sealed storage, based on the identity of the appli-
cation, to creatassured pipelinesf computation. The type enforcement architecture of LOCK
lends itself ideally to the construction of these assured pipelines in software. An example of
such an assured pipeline is given [in][46], through the construction of a filter to process data.
This example is shown in Figufe 4.1. Shown is unfiltered (raw) databeing read by a filter
processPs. The filter domain is only able to read data of the tyje and only able to write
filtered data of the typ®;:. Also shown is the filtering code, marked in the system’s DDT as
being only able to execute in the filtering domain. As only unfiltered data of Bypean be
read into that domain, the filter is assured of operating correctly, filtering only appropriate data,
and writing it, once processed, to only the correct type.
As can be seen, the LOCK system is highly reliant on type definitions. During system
and application design, the designer must define named domains or types for all entities. This

designated name is relevant only on the local system itself.
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This is in contrast to modern trusted computing systems, where the identity of the appli-
cation is given by a secure hash derived from the executing code, and is invariant for all plat-
forms. The trust in the invariance of the derived hash is dependent on trustindpletyeperate
correctly. On a LOCK system, lay&yis a secure coprocessor trusted to enforce domain inter-
actions correctly. However domain, type, subject and role information is created by a system
administrator and stored in layér. This is trusted axiomatically, like layeg, because the
LOCK system was not designed to withstand attacks from a local administrator, only a local
user. A LOCK system is capable of providing and enforcing all of the trusted computing prim-
itives except attestation.

A LOCK system is intended to be designed, developed, and verified as a whole, in order
to ensure that the relevant security policies are correctly enforced. Once this process has been
completed, a LOCK system remains relatively static. Code intended to run on a LOCK system
must be compiled elsewhere and introduced to the system by an administrator, who ensures that
the required additions and changes to the LOCK Domain Definition and Domain Interaction
Tables to not compromise any security policy.

It should be obvious that the complicated development procedure required to use a system

such as LOCK precludes the use of the platform as a usable general purpose computing device

(Sectior 2.P).

4.2.2 Hardware Assured Security

The AEGIS, IBM 4758, and XOM architectures all assure their security primitives with an
axiomatically-trusted laydp hardware device.

The IBM 4758 and XOM architectures are capable of withstanding attacks on the confiden-
tiality and integrity of their assured programs and data from a malicious system administrator.
Both rely on an untrusted host in order to ensure availability. A malicious system user or admin-
istrator is able to perform a naive denial of service attack by simply turning the untrusted host
off. A more advanced denial of service attack, that does not reduce the usability of the system

for the attacker, can be accomplished by a system administrator for both systems. A malicious
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operating system, running on the XOM architecture, is capable of preventing XOM-enabled
applications from executing by either starving their scheduled execution time, or modifying
the encrypted application image. An IBM 4758, able to be administered by a distinct entity
to that of the host platform it runs in, is able to ensure the long term availability of a limited
amount of data. However, it is limited in internal capacity and in practise will need to rely on
the untrusted host for storage of arbitrarily sized data. These two examples serve to show that
assuring availability is considerably harder, and more expensive, than assuring confidentiality
and integrity.

The AEGIS system is not intended to provide secure booting in the face of a malicious sys-
tem administrator. To be of practical use, the integrity measurements AEGIS validates to ensure
layerl,.1 has not been tampered with must be able to be upgraded. Software environments, as
discussed in Sectidn 2.2, require the installation of patches and upgrades in order to remain
secure in the face of newly-discovered vulnerabilities and bugs. This process requires a system
administrator capable of generating the required integrity measurements and installing them in
layerslp,In_1 wheren is the last layer measured for integrity.

In order to prevent naive denial of service attacks, and guarantee availability in the face
of non-malicious corruption of a layéy, wherei > 0, the AEGIS architecture is capable of
retrieving valid copies of upper layer software. For this, a ldyenust be able to contact a
trusted, secure host to retrieve a copy of the software component inljayefThis retrieval
method is only viable in the face of naive DoS attacks through modification and non-malicious
corruption of layer; ;. Performing a denial of service attack on a typical network transport
layer is trivial. This guarantee of availability can be strengthened through appropriate securing
of the transport layer used to connect with the trusted host. Again, the AEGIS system shows
the difficulty and cost in assuring availability when compared with integrity and confidentiality.

The XOM implementations of sealed storage and attestation are unsatisfactory, as described
in Section 3.73 on pade 99, and rely heavily on the behaviour of an application distributor
D. Even if D is trusted to behave correctly, the distribution method is necessarily inefficient,
requiring the individual customisation of each application copy. It is possible to imagine the

use of XOM, as initially described by Lie et al. [37], to be appropriate for only a few classes
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of applications. An application distribut@® would be required to implement the procedure
outlined above for each copy of their application downloaded over the Internet. Applications
could be customised, encrypted and stored on CD/DVD media for later distribution, but a user is
still required to interact with the distributor to obtain the unique symmetric key used to encrypt

their copy.

4.3 Generating Trusted Measurements of Applications

Section] 2.]L on pad€ 7 discusses the motivations for an open source trusted computing frame-
work. An open source framework allows a user to trust the code based on her own examination,
or to make a decision to trust the code on the basis of its examination by a group, or groups, of
people that they trust. Sectipn 2]3.2 on plage 28 discusses the importance of a cryptographically
secure code identit\D (P) to strongly identify the functionality of a prograf

With a software environment capable of compiliRga user is able to obtain the source
code ofP, and compile it herself. She can then genet&éP) and obtain the code ID of a
P compiled from known source, in a known environment. Recall the assertion of Thompson
[65]: a user cannot trust the compil®dany more than she trusts the software environment that
was used to compile it (assembiler, linker, compiler, etc). This implies that a user who highly
depends on the integrity &f, measured byD (P), must only trust a measuremdit(P) she
has generated herself.

A measurementD (P) of P that a user does not generate herself does not guarantee the
integrity or correctness d? itself. Instead, repeated presentationd®{P) in an attestation
vector only guarantee the non-modificationRofrom challenge to challenge.

Let a platformp, used to compild® from source, generateRP that gives a measurement
ID(PP). Two platformsp andp’, used to compile identical copies of the source cod®,of
are unlikely to produce identical binaries Bf This results in distinct measurementsRf
ID(PP) £ ID(P?). Differences in the compiled versions Bff’, as measured by comparing
ID(P) # ID(P'), result from the compilation oP # P’. These differences cannot be distin-

guished fromD(P) # ID (P') resulting from differences in the software environments used for
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the compilation o = P’ onp andp’.
Reconciling the disconnection between the sourcE ahd a compiled version & iden-
tified by ID(P) in general is an open problem in trusted computing. The RPOW architecture
(Sectiorf 3.6.]1 on page [91) has solved this problem for one application through publishing the
specific software environment used to compile the software that executes on the IBM 4758.
Recall the Reusable Proof-of-Work (RPOW) server discussed in Séctioh 3.6.1 dn page 91.
The RPOW system administrator [8] makes available the complete compilation environment on
the platformp’ used to generate the binary running on the IBM 4758 server. The specifications
given include the GCC version number, as well as other tools that affect the final binary. A
user is able to reproduce this software environment on their own maphered generate an
identicalP, such thatD (PP) = ID(P?'), compiled from source. This solution cannot practically
be repeated for every piece of software that a user wishes to trust. Below we propose a number

of possible approaches to solving this problem in general.

1. An open trusted computing framework community could prescribe an approved, official

(and necessarily open) software environment to be used to compile applications.

2. Attestation vectors could include compilation environments for éacalong with the

generatedD (P).

3. Distributed compilations by members of the community lead to many differing versions

of P!, resulting in manyD (P') that are considered correct compilation$dfom source.

Proposal [l would allow a user to recreate the software environment used to compile a spe-
cific applicationP, and to generate an identical measurem®{P) for P as presented in an
attestation vector by another party. The difficulties in managing prescribed software environ-
ments for arbitrarily large numbers of programs would be non-trivial. This approach has the
benefit of allowing a naive user to trust a group, or groups, to maintain their own software envi-
ronment, as prescribed by the framework community. These groups would check the integrity

of a compiledP, such thatD (P) = ID(P’), and publish matches and discrepancies as required.
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Proposal P allows software authors to control the software environment used to c@mpile
themselves. The inclusion of a statement about the compilation environment with all applica-
tions would require a complicated PKI to ensure the integrity and validity of the statements.
This is equally non-trivial.

Proposal B relies on a secure server to store multiple computed measuréin@)tsf P
generated by individual members of the community. An attestation protocol would contact one
of these servers and subnhi2 (P) for each application in the vector as required. The server
would return information abowR such as the application name, version, and author as well as
the compilation environment used to geneftelt would also return the number of times the
measuremenD (P') had been submitted fd?, as well as other measurementsPofienerated
in different compilation environments.

A user could make a decision to tri8tased on a statistical calculation of the number of
people that generatd® (P') for the P in question, compared with the number of people who
generated a distindD(P)). For example, a single measureméB{P') with a significantly
greater number of measuremetisP!), could lead a user to conclude tHahad been ma-
liciously modifiedP — P’ before compilation, and the measuremHn{P’) submitted to the
server in an attempt to fool her.

This method relies on the assumption that, as the number of pegpéeforming non-
malicious compilations and measurements?dficreases, the frequency of distinct measure-
mentsID (P) for P being generated decreases, i.e. that there is a finite number of compilation
environments that generate distinEt(P) # ID(P), for P = P. This assumption may not be

correct.

4.4 Shared Libraries

It is important to note the differences between a XOM attestation and an attestation of the
NGSCB and the TCG frameworks (see Section$ 3.3 on page 76 and 3.2 oh page 51 respec-
tively). In XOM, the validity of an application’s attestation is based on the assumption that the

symmetric key which encrypts the application binary is never exposed outside a XOM chip.
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Also, standard cryptographic techniques are employed to ensure that a modified application im-
age cannot be executed successfully. Contrasted with NGSCB and TCG models, the end-user’s
trust in the validity of an attestation requires trust in the distributor of that application to properly
ensure the confidentiality of the shared secret, as well as trust in the manufacturer of the XOM
CPU. An NGSCB or TCG attestation is considered valid if the manufacturer of the TPM device
ensures the key used to sign the attestation vector is kept secret. These differing attestation
procedures result in differing methods of properly measuring shared, or dynamically-linked,
libraries as discussed in Section 213.2.

The XOM architecture, designed by Lie et al.[[37] allows an untrusted software agent, the
operating system in layéy, to manage a trusted resource (the XOM CPU), and allow software
in layer |, to execute on that resource, while assuring its integrity and confidentiality. With
the trend in modern day software application architectures away from monolithic application
code, and towards using dynamically shared libraries executing in eitherliaget,, it is
expected that software in layéer will wish to execute both securely as well as be reliant on
shared libraries for functional integrity.

Third party software libraries can either be statically linked during compilation, or linked
at run time by the operating system. For the XOM architecture, the former case allows easy
inclusion of third party libraries, at the cost of an increase in size in the final application. Such
an increase in size comes with the benefit of a decrease in the required number of context
switches, resulting in a slight performance improvement. In the latter case, the compartmental
operation of the XOM architecture prevents code not encrypted with the same key from reading
a principal’s registers. Lie et al. address this issue [37, pp 185-186]. It is their intention, in
line with the modularity principal discussed in Secfion 3.4.1, that third party code critical to the
security of the application, i.e. OpenSSH [6], should be statically linked during compilation.
The counter example, of standard I/O routines, can execute insecurely through dynamic linking
at runtime.

An active principal in the XOM architecture calls dynamically-linked code in a specific
manner. It must first copy parameters intended for the called library to the null compartment. It

must then call the unencrypted, dynamically-linked code to run in the null compartment. When
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the linked code finishes executing, the XOM application can copy the results from the null
compartment. As discussed in Sectjon 3.2.2, this results in the principal relying on possibly

modified shared libraries for functional purposes.

441 NGSCB

Microsoft's NGSCB framework precludes the use of third party shared libraries. Additionally,
code intended to execute as an NCA on the secure Right Hand Side (RHS) must be modified to
execute under the secure kernel known as the nexus. NCAs can be full applications, or a limited
security-relevant component of an application or a service. This is similar to the modularity
suggested by the designers of the LOCK system (Sectior] 3.4.1 of gage 82). During the NGSCB
presentation at Microsoft's 2003 PDIC [23], the concept of Trusted Service Providers (TSP) was
introduced. The difference between a TSP and a standard NCA is only logical. It is intended
by Microsoft that as the NGSCB environment matures, TSPs will be developed that provide
standard services and capabilities in secure, trusted code. They will function similarly to public
shared libraries on the LHS. They will provide libraries to NCAs, typically like an RPC call,
and will work through Inter-Process Communication (IPC). The attestation vector of an NCA,
seen in Figurg 3|3 on pafe|80, will be modified to include all TSPs that the NCA calls on.
Previous work by the authar [20] showed that it is possible to refactor an existing application

P into secure and insecure modules in order to solve existing vulnerabilities in

[Our] integration illustrates that it is possible to redesign an existing application
to make use of the new security primitives provided by NGSCB, without being
forced to redesign completely, discarding the existing usability and strengths of an

application.

This research showed that, for certain application classes, it is possible to implement security-

relevant functionality separately, without being forced to redesign the entire application.
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4.4.2 Trusted Platform Module

The measurement of shared libraries in the ldyeandl, systems discussed for the TCG’s
Trusted Platform Module differs due to the implementations of attestation built by Marchesini
et al. and Sailer et al.

Our definition of attestation (definitign 2.5 on pgge 47) requires the attestation vector to
include the identities of all principal3; ., able to affect the state & The Trusted Computing
Group’s Trusted Platform Module v1.2 specification does not provide curtained memory. This
means that, as discussed in Secfion 2.3.4, any prinQ@alayer|; is capable of affecting the
state of a principaP in layerl, or layerl;. Any attestation vectofV for a principalP onp in
layerl, must include all principal®;: . that are able to affect the statefdf This is dependent
on the operating system controls and code loaded into layand their use of the functions

provided by the TPM in layéep.

Implementation of Sailer et al.

The implementation work carried out by Sailer et al.|[53] (see Seftion|3.2.7 or] ppge 66) was
done on a Redhat 9.0 system. Recall Tabl¢ 3.7 on pdge 74 that shows the integrity challenge
protocol. Step 5c. involves the verification of the Stored Measurement Log (SML). Each mea-
surementD(P) in the SML must be classified by the verifier, and a decision then made about
the integrity of the attesting platform. This implementation enables the use of shared libraries,
as all code used on Wy is identified in the SML. Any decision about the integrity oPdhat
depends on shared libraries for functional importance can be made knowing the integrity of
those shared libraries.

Work by Sailer et al.[[52] classified applications into five classes depending on their abil-
ity to affect the integrity of the system, shown in Taple|4.1. Sailer et al. classify only those
programs in th&knownset, and did not include in their discussion classification of measured
structured data with identifiable security semantics. TRble 4.1 has been extended with these
extra classifications. Structured data, typically a configuration file, known to enable possible

vulnerabilities in an associated program, reclassifies that program as either remotely or locally
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Class Explanation

Malicious Programs known to be malicious, such as versions of system tools
found in root kits, or those designed to attack the measuring system
directly.

Remote Vulnerabilities Programs that rely on unstructured data from the network, such as
e-mail or web browsers, with known vulnerabilities. Acceptable
programs configured with structured data known to cause remote
vulnerabilities.

Local Vulnerabilities Programs that rely on unstructured data from local input, and are
known to have vulnerabilities. Acceptable programs configured
with structured data known to cause local vulnerabilities.

Uncontrolled Programs that change the software stack, but have not been instru-
mented to measure and record the changes.
Acceptable Programs with no known vulnerabilities or malicious code that do

not enable the user to circumvent measurement system. Also struc-
tured (configuration) data associated with an acceptable program
that maintains that program’s integrity.

Unknown Unidentified programs and structured data.

Table 4.1: Integrity classes of software, adapted from [52].

vulnerable. Additionally, structured data known to configure an acceptable prdgiana
manner ensures the integrity Bfis classified as acceptable.

For the framework implementation described by Sailer et al. the known set of measurements
included “all Redhat 9.0 programs and libraries including updates, the fingerprints of our own
extensions for client policy control, acceptable kernels, and boot configurations” [52, 84.1].
This measurement process is known agarolment schemeSailer et al. enrolled the Redhat
9.0 platform into their classification by generating measuremié&nt®) for all programs and
structured data. Each measurement was classifiadaptableas defined in Table 4.1.

Establishing and implementing an enrolment scheme for a single, well-defined platform
(Redhat 9.0) and environment is trivial. The problem quickly becomes non-trivial as the en-
rolment scheme is scaled to include other platforms and software, and enrolment performed by
other parties. The issue of establishing a link between a code idéDtif) and a specified
applicationP are discussed in Sectipn #.3 on page| 106. The implementation of attestation pro-
posed by Sailer et al. mitigates those problems through defining a compiled set of applications

that are considered trusted.
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We introduce the notatiofiy and Ty to indicate a point in time at which an application
Q begins executingTg) and finishes executinglg). Consider an applicatioQ that starts
executing at timelg and finishes executing at ting. Consider also an applicatidp that
starts executing at tim&,, where< indicates ‘before’ andy < Tp < Ty. Recall the code ID
measurements of applicatioRsandQ are taken immediately befoiigy and T, respectively. An
attestation vectoAV prepared for applicatioR, denotedAV(P), attests to the identity d? at
time T,. However, the attestation vector itself is prepared digerNo assurance th& has not
affected the state d? during the periodl, — Ty can be given withouP executing in assured
curtained memory. The attestation veoi(P), to comply with definitior 2.5 on page 47, must
contain the code ID of all applicatioid; , able to affect the state &. This set of applications
includes all that executed at any point in time affgy including those that finished executing
beforeAV(P) is created.

This means that any attestation vector Fofrom p is required to include the identities of
all other principalsQ1.., on p. This obviously leads to a significant loss of privacy for any
user ofp, forcing them to include the identities (through the Stored Measurement Log) of all
applications on their computer. It also greatly increases the complexity of a decision by another
platform p’ to trust the software configuration pf Given the abilities of a general purpose
platform, as described in Sectipn 2.2, making a decision to trus¥/athat contains code IDs
of unknown applications may be impossible.

Consider a measurement verification policypdfthat considers the integrity qf to be
unsatisfactory if any application not considered acceptable is found in the SML. This results in
a service not being supplied Ipy, or in p’ not using a service provided lpy Recall that the
measurement system prwill invalidate the SML if it detects one of the cases in Tgblg 3.6 on
pageg 7B, requiring a reboot before any attestation will succegoextcutes anynacceptable
or unknownapplication before attempting an attestation it will fail, and require a rebopt of
before the attestation will succeed.

Given the prevalence of applications with known local or remote vulnerabilities, regular
reboots may be required. With the increased stability and functionality of modern operating

systems, this sort of user experience has long been considered unacceptable. Alternatively, a
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Issues

Establishing suitable enrolment scheme to move digests tidmownto
known

Managing movement of measurements fraceeptabldgo vulnerable

Reliance on PKI to distribute measurement lists.

Timing attacks used to exploit different versions of the classification list.
Classification of a program ascceptablemay not reflect its actual in-
tegrity or security properties.

Closed source programs can have measurements performed and signed by
authors.

User compilation of open source progrémesults in many distinct mea-
surements oP.

Table 4.2: Issues with enrolling and managing application measurements.

weaker policy could allow some quantity of vulnerable programs to be present in the SML.
However, user knowledge of these programs could lead to their use and installation purely to
exploit their vulnerabilities.

The implementation of a large scale enrolment scheme to generate and maintain correct clas-
sifications of programs and structured data raises a number of issues distinct to those discussed
in Sectior] 4.B. These issues are summarised in Table 4.2, and discussed briefly below.

The enrolment scheme must ensure that only acceptable programs, i.e. those without any
known vulnerability, are classified as acceptable. Doing this in a distributed environment re-
quires trust in third parties to correctly analyse a program and make a statement about its ac-
ceptability, as well as a PKI to distribute those statements securely. An appli€atiat has
been enrolled and classified, in some manneacasptablanay become considered vulnerable
at some later point in time. Both the initial enrolment and any later reclassification of an accept-
able program as vulnerable must ensure that programs are truly vulnerable. An attacker should
not be able to force an acceptable program to be wrongly classified as vulnerable. Any deci-
sion about the integrity of a platform will require an evaluation of the cost of false rejections or
false acceptances. Preventing malicious classification of programs as vulnerable requires care-
ful administration of the enrolment scheme, and it may not be possible to achieve a completely

correct classification.
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All verifications of an SML log must be performed against the most recent classification
list, to prevent attackers from exploiting the time period between updates to a locally-cached
list from a central repository. The classification of an applicatioacagptablanerely indicates
that it isthoughtto not be vulnerable to attacks that allow the subversion of the integrity of the
platform it executes on. An operating system distributor, such as Redhat, can perform and
distribute measurements of their product for inclusion in the classification lists. For individual
software applications released as binaries, measurements may be obtained from the author. The
compilation of open source software by users may result in considerable numbers of programs
in an SML to be considerednknown(see Sectiop 4]3 on pafe 106). A solution to the issues
listed in Tablg 4.2, and discussed above, that result from a classification scheme (Tjable 4.1)
being used to make decisions about the integrity of a remote platform, is an open problem.

There are two other important points to note about the implementation described by Sailer
et al. One of these is the partially-ordered nature of the SML, and the other is the vulnerability
of the system to Time Of Check to Time Of Use (TOCTOU) class attacks.

Recall that repeated executions of a progRado not result in repeated additionslBf(P) to
the Stored Measurement Log (SML, Secfion 3.2.7 on pape 66). Consider an interaction between
two distinct program#$ andQ, that exposes a vulnerability whéhis executed befor®. In
notation introduced above, this can be stated@ias Ty, whereTy is the point in time wher®
is executed. Consider an SML log indicating the executio@ beforeP (Tq < Tp). Given that
repeated executions Qfare not recorded, this statement shows that an execution sedigence
Tp < T, resulting in the vulnerability exposed by < Tq, may have occurred. The measurement
system, as currently designed, is not intended to expose such execution sequencdfhen
measurement system was designed like this to keep the size of the SML to a minimum, so that
it could be easily transmitted @. While every execution could be recorded in the SML, long-
lived execution opp may result in the size of the SML increasing beyond the storage capacity
of p.

The attestation vector does not assure the integrityg af any point in time after it has
been generated, so Sailer et al.|[53] intend attestation to occur twice for any trangaction

— immediately befor® and immediately afte®. We propose the following attack, where a



4.4 Shared Libraries 116

platformp is compromised after a valid attestation ve@drhas been generated and transmitted
to p’, who verifies the integrity op as suitable.

Consider a platfornp responding to an attestation challenge, intended to agsuhe in-
tegrity ofp is suitable for some transacti@to occur. There is some non-trivial tirdebetween
the generation of the attestation vecR¥ on p and the beginning of the transacti@on p.

This timeA is made up of a number of components:

1. The transmission oV from p to p'.
2. The verification ofAV on p’

3. The transmission o® from p’ to p.

Of the three components &, p’ is only able to affect the first and third. The attackermn
wishes to delay the start of the transact@®until he can compromise. He must therefore not
act suspiciously untip’ has verified the SML and issu&@l There are many possible ways this
could be done. As an examplecould compromise the integrity of the network link causing
repeated re-transmission ®fby p'.

In general, the attesting platforpncan delay the start @ on p, by maliciously extending
A, until they are able to compromise the integritypofThe delayed® would then be processed
onp in a state that would cause an attestation challenge to fail. The second attestation challenge
from p’, intended to occur immediately after the completior®pfcould be ignored bp. The
challenging party’ would be left uncertain as to whethehad been subverted by a malicious
attacker, or simply suffered from hardware or network failure.

This observation implies that an attestation vector must guarantee integptjoofsome
non-trivial period of time into the future. Otherwise, any conclusion drawmp’bgbout the
integrity of p for a transactior® is reduced to simply trusting the local administrator to not

delay® and compromise as described here.

Implementation of Marchesini et al.

The attestation protocol implemented by Marchesini et al. [40] (see S¢ction 3.2.7 dn page 66)

exposed limitations of both their implementation and the TCG specification. One of these was
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the ability of a root or superuser, known as an administrative user in our threat model (see

Sectior] 1.P), to modify the memory space of other applications [39, p.11]:

... asimple test on Linux shows that, without further countermeasures, the root user

can manipulate the memory space of other processes with a debugger.

This vulnerability, well documented when discussing curtained memory in Séction 2.3.4,
leads to a possible TOCTOU attack on their system. The code IDs of the long-lived and
medium-lived software are generated directly before they are loaded. The inability to secure
the code base from the root user leads to the possibility of the AIK and SK keys being released
to the SSL web server, after which a malicious administrative user uses a debugger to modify
the executing code. Marchesini et al. also consider the possibility of hardware based attacks,
possible even if the root user can be prevented from modifying the memory address space of
other programs. Such an attack involve some internal bus, perhaps an IEEE1394 OHCI Firewire
bus, being used to write directly via DMA to some procEssaddress space, aftdd (P) has
been generated.

As discussed in Sectign 3.2.7 on pagé 66, Marchesini et al. integrated the NSA's LinuxSE
mandatory-access control system into their framework to attompartmented attestation
While the integration itself was successful, defining a usable security policy was non-trivial,
and in one instance resulted in a system that required a complete re-installation. In addition, it
is not clear that the information about the defined SELinux security poliqy @yuired to be
sent top’ does not result in equivalent privacy concerns as an attestation vector attesting to all

programs orp. Marchesini et al. describe the usability of SELinux as less than satisfactory:

The policy language is robust and expressive, but is also cumbersome to learn and
use. It is not always clear how to state the security goals of the system and then

build a policy which accomplishes those goals.

Their attempted implementation concerned only one program, with only one associated
security goal. The difficulty for specifying a security policy in SELinux for a general purpose

computing platform, with many programs, perhaps with conflicting security goals, would be
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Requirements of attestation protocol Marchesinietal. Sailer et al.

1. Withstand software attacks. . *
2. Mitigate TOCTAU-class attacks. *

Requirements of attestation vector
3. Mitigate losses of privacy.

Table 4.3: Features of attestation implementations by Marchesini et al. and Sailer et al. A star (%) indicates the
feature is present.

exponentially more difficult. An implementation of the framework proposed by Marchesini
et al. [40] for a general purpose computing platform (Sedtioh 2.2 on[pgge 20) would severely
restrict its usability. Integrating shared libraries into the access policy could, in theory, be done
securely. An attestation vector from the framework proposed by Marchesini et al. could include
those software compartments that contained the shared libraries.

The design of a powerful, robust mandatory access policy language that allows developers
and end users to succinctly specify their security goals is still an open problem in the field of

trusted and secure computing research.

Summary

The two attestation procedures discussed here both fail to fulfil all of the requirements of an
attestation procedure discussed in Se¢tion P.3.5, Tahle 2.5.[Taple 4.2 summarises those elements
of Table[2.5 that either implementation fails to provide. Marchesini et al. fail to sgciroem

an administrative user. Their integration of SELinux results in a difficult and cumbersome

to manage system that is non-trivial to reconcile with the requirements of a general purpose
computing platform, discussed in Sectfon]|2.2. However, it does allow an attestation vector to
give some guarantee of the integritypinto the future. Itis not clear that attesting the presence

of a SELinux-enabled kernel, along with only a specific software compartment’s security policy,
properly assurep’ of the integrity of that compartment. The entire security policypahay

need to be attested, resulting in privacy concerns.

Sailer et al. do succeed in protecting from the administrative user, by non-intrusively causing
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future attestations to fail if a possibly malicious situation occurs. However, they do nothing to
reduce the privacy implications of the SML. Protection from TOCTOU attacks is limited, only
succeeding in assuring a challenging platf@nthat a platformp could be trusted throughout

a transaction when it is not compromised. A compromised system can falil to report its status,
leaving p’ unsure of the final status of the transaction. In addition, with heterogeneous soft-
ware distributions o in layersl; andl,, enrolling and maintaining the list of acceptable and
unacceptable programs is non-trivial. It also appears to preclude a user compiling their own
software, as such software appearuagknown Any reasonable security policy gui would

require an unknown entry in the SML to caysdo distrust the integrity op.

4.5 Resistance to Software Attacks

The threat model for trusted computing, discussed in Seftidn 1.2, requires a framework to be
resistant to all forms of software attack. This section analyses both the Trusted Computing

Group’s TPM specification and Microsoft's NGSCB from this perspective.

45.1 Trusted Platform Module

Recall that the Trusted Software Stack (TSS) in ldyésee Sectiop 3.2.1 on pagg 52) enforces
synchronised access to the Trusted Platform Module in lgy8@the TSS works in conjunction

with a TPM Device Driver([6]7, p.16]:

The TPM Device driver is typically provide by the TPM manufacture and incorpo-
rates code that has understanding of the specific behavior of the TPM. This code is
expected to be loaded and function in Kernel Mode... The TSS exclusively opens
the TPM device driver; the driver does not allow any applications to have an addi-

tional connection to the TPM device besides the TSS.

Given the location of the TSS outside the Trusted Computing Base, it is vulnerable to soft-
ware attacks, and cannot be assured to operate correctly. It executes as a kernel-mode driver,

operating in layety. It is vulnerable to attacks by other code in layer A simple attack in-
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volves another principaD in layerl; issuing commands to the TPM, thereby invalidating an
existing session through whidhis issuing commands to the TPM. A princifdl executing

in layerl; or above is unable to be guaranteed exclusive access to the TPM irlday@ur
analysis concludes that this construction, coupled with the TPM’s lack of curtained memory,
allows a possiblénsertion attackto occur, shown in Figure 4.2, as well as a denial of service
vulnerability.

As discussed in Sectidn 3.2.2 on page 57, a measurement (see definitibir] @®) on
53) of a code IDID(R) is taken of an applicatiof® before it begins executing in layés.

If Ris of a length greater than 64 bytes, the measurement requires at least 3 commands to
be issued by the measuring principal, in this cBseThe computation of a SHA-1 hash of

R of lengthR.length> 64 is ann-tuple set of commandglL, 2,3,...,n), wheren > 2 and ap-
proximatesR.lengthmodulo the maximum data size specified Th¥_SHA1Start. The first
command,i = 1, is TPM_SHAIStart. The last command, = n, iS TPM_SHA1Complete Of
TPM_SHA1CompleteExtend. The middle commands,< i < n, areTPM_SHAlUpdate.

Our attack, proposed below, assumes that a prin€pel layer |1 is able to monitor the
commandd< in layerl; issues to the TPM. It can do this in at least two ways. The first is by
preventingP from using a session to ensure the confidentiality and integrity of its commands,
by consuming all available sessions with the TPM itself. It is then able to issue commands, as
discussed below, without invalidatifis interaction with the TPM.

The alternative is through monitoririgjs execution. The Trusted Computing Group’s v1.2
specification discussed here does not include provisions for assured curtained memory. This
means that a principal at layér is able to view and modify the memory space of another
principal in layerl,, and in layer1. When the calleP sets up the session, a shared secret is
established betwedn and the TPM. This shared secret is used to provide confidentiality and
integrity. A rolling nonce is used to prevent replay and man-in-the-middle attacks. With no
assurance of memory confidentiality or integrity, the secret values shared bédwedayer
I> or I, and the TPM are able to be viewed and modified by any prin€el layerl;. The
following attack assumes either of the two methods for inserting TPM commands described

here are possible.



4 5 Resistance to Software Attacks 121
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Figure 4.2: An insertion attack being used by Q to force P to generate a measurement of an application R before
R begins executing. The program R’ is shown with d inserted into its measured image.

Figure[4.2 shows this attack. Consider the issuing of-tuple command sequence intended
to measure an applicatid® beforeR begins executing in laydy. The operating systef on
the left calculates a measurement of an applica&dhrough issuing multiplepM_SHA1Update
commands, each one passing the TPM a range of bytesRrdrhe operating syste cannot
be assured that another princigalin layer|; will not maliciously issue arPM_SHA1Update
sometime betweeR’s issuing of the first command and the last.

An attackerQ, on the right, issues arrM_SHA1Update command, specifying some arbitrary
datad. The value ofd is not important, as it is only used to cause the TPM to generate an
incorrect measuremetd (R), such thalD(R) # ID(R). The result, wher® finishes issuing
all its TPM_SHA1Update commands and finally calleeM_SHA1CompleteExtend, IS an incorrect
calculation of code identity (measurement) of the applicaRoMhe operating syster then
allowsRto start executing, with an incorreldd (R') stored in the Stored Measurement Log and
PCR register. There is no way fBrto test the validity of the returned measurement, except for

re-computing it either using the TPM, or through an implementation in softwai@.idfable
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to control the ordering of the maliciou$M_sHA1Update call, relative toP’'s TPM_SHA1Update
calls, the same incorrect measurement will be obtained for &lsofepeated computations of
ID(R).

The specific attack described above can be generalised. We refer to insedion attack
An attackerQ in layer |, is able to insert arbitrary TPM commands into a TPM command
sequence issued by applicatiBnin layerls or I,. We refer to TPM commands that require the
issuing of am-tuple command sequence to use as stateful commands. An at@kable to
modify the output of stateful commands by inserting TPM commands, as appropriate, into the
n-tuple sequence issued By

A general solution to this vulnerability involves virtualising the TPM at lalyanside the
TCB, so that principal® andQ are assured of interacting with logically distinct TPMs. A lim-
ited solution is modifying the function signatures of tte_SHA1Update, TPM_SHA1Complete,
and TPM_SHA1CompleteExtend commands. Their function return signatures could either in-
clude the number of bytes processed so far, or the number of timveSHA1Update has been
called sincerpM_sHAlstart. Either would allow a principaP to discover if another principal
Q had issued maliciousPM_SHA1Update calls as described above. This solution would pre-
vent an attack based on the second of the two possible methods for maliciously inserting TPM
commands described above. These solutions are discussed further in Chapter 5.

The complaint of Marchesini et al. about the complexity of SELinux (Segtion]4.4.2 on
page[ 11]1) seems equally applicable to the TCG’s TPM specification, and the difficulties in
assuring correct usage of the security primitives it provides. Specifically, the complexity of the
AIK creation procedure through a Trusted Third Party (Sedtion[3.2.4 on[page 61), caused con-
cern. When coupled with the additional requirements of creating a storage bound to the identity

specified in the attestation identity key Marchesini et al. stated [39, p.14]:

The complexity of this process troubles us. In security, one should be careful about
trusting something that is too big to fit into one’s head. It takes a long time to find
the right combination of commands and properties from the specification. What

other combinations are present? Are there any combinations that enable function-
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ality that the designers did not intend?

Their implementation experience was done with v1.1b of the TPM specification. The spec-
ification discussed in this thesis is version 1.2. It should be noted that the latest version of the
TPM specification discussed here does include support for Direct Anonymous Attestation [21].
With this, a Trusted Platform Module is able to anonymously attest to a challenger, without
requiring the indirection of a trusted third party.

However, no other complexity has been removed between versions. This issue does not
affect the functionality or features provided by the TPM, but it does impact the ability of ap-
plication developers to interact with the device, correctly leveraging the security primitives it
provides. Without a trusted, standardised software kernel to interface with, developers writing
code to run in layet, may face considerable difficulties in validating the security properties
of their code’s interaction with the TPM. The TCG specification requires lengthy sequences of
commands to be issued by an applicatibto implement some security function. This require-
ment, coupled with the insertion attack described above, leads us to conclude that the SHA-1
sequence of commands may not be the only sequence that allows an attacker to successfully
subvert an applicatioR.

Standardising an interface for the TPM, inside the Trusted Computing Base, that allows
applications to atomically execute commands yet also retain the power and flexibility of a com-

prehensive API, is an open problem in trusted computing research.

452 NGSCB

Recall that Microsoft's Next-Generation Secure Computing Base (S€ctior) 3.3.1 oh page 76)
implements weak curtained memory, as defined in definjtion 2.4 on[page 41. This partitions
system memory into two, with secure Right Hand Side (RHS) software running with increased
privileges in order to address the curtained memory.

NGSCB uses a secure kernel, called the Nexus, to manage applications that execute on the
RHS. Figurg 43 shows a Nexus Computing Agent (NCA) in ldyarequesting theunseal

operation be performed on some data by the Nexus in layar the TPM in layetg. An NCA
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Figure 4.3: Access control model showing Nexus Computing Agent (NCA) attempt to unseal a file through the
Nexus secure kernel.

relies on the Nexus to service all its access requests. The assurance that an NCA executing
on the RHS executes correctly relies on the nexus itself to be correct. Also, an NCA relies on
the nexus to correctly implement the trusted computing primitives sealed storage and curtained
memory. The Nexus enforces memory separation, in software only, between differing NCAs on
the RHS.

An NCA is unable to verify the identity of the Nexus under which it is running, and so
must trust it axiomatically. Microsoft will include with the NGSCB system an official Nexus,
distributed as a compiled binary. The source code of Microsoft's nexus kernel will be kept
closed. It may eventually be made available to certified individuals and corporations for code
review — an attempt by Microsoft to engender trust in what is otherwise a closed system [48].
This process of only allowing certain individuals and groups to view the source code does not
meet the definition obpengiven in Sectiof 2]1 on pa@é 7.

As discussed in Sectign 2.8.1 on page 25, in general any prirRipahyer|; relies on the
operating system or kern€l in layerl; to be non-malicious to ensure the correct operation of
P. This equally applies to an NCA in layerand the Nexus in laydy.

The software and hardware stack that is included in the attestation vector is shown in Fig-
ure[3.3 on pagk 80. The code IDs of the Nexus and the NCA, as well as credentials proving
the validity of NGSCB hardware platform itself are used to attest to a remote challenger. An
important consideration is that there is no similar concept for ‘local’ attestation. Specifically,
although the nexus is able to generate a code ID for any NCAs it is hosting, through use of the
Quote function, an NCA is not able to securely identify the nexus within which it is executing.

This implies that an NCA’ mustperform an attestation to be assured of the validity of the

platformp and NexudQ it is operating on and under. After an attestation procedure, in which
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a remote party trusted by verifies the identities op andQ to be suitable folP, P can be
supplied with some data expected to be kept confidential. It is able to skads described in
Sectior{ 3.3.2 on page 79, under thgP), ID(Q) andp.

This holds for any principa? in layerl, that relies on the integrity & in layerl; for correct
operation. Beford generates or obtains data intended to be kept secure and confidential from
other principals in layel, or |1, as well as the local user or administrator, it must first perform
an attestation with some trusted remote party to verify the integrityaridQ. AssuringP of
the correctness @ andQ, without relying on a trusted third party, is currently an open problem

in trusted computing research.



There is one safeguard known generally to the wise, which is
an advantage and security to all, but especially to democracies
as against despots. What is it?

Distrust.

Demosthenes

Architectural Improvements
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5.1 Introduction

This chapter proposes additions and modifications to the Trusted Computing Group’s Trusted
Platform Module v1.2 specification, through modifying and integrating the XOM CPU archi-
tecture.

Section 5.P discusses the proposed modifications and additions. Section 5.3 summarises
some motivations for using the TCG specification as a base, as well as the issues and threats our

proposed design attempts to mitigate.

5.2 Modifications

The modification of the XOM architecture discussed here is referred to as TPM/XOM. Briefly,
the compartmented execution model of XOM is modified and added to the TCG specification,
enabling selected principals arnto execute in curtained memory. The distribution and pack-
aging model of XOM, discussed in Section 3]7.2 on gade 93, is removed. Intended to prevent
the unauthorised execution of applications, it is not required to obtain curtained execution. The
TPM is modified to include compartment-specific state, allowing each compartment to interact
with a logically separate TPM.

Section 5.2]1 discusses modifications to the application loading mechanism of the XOM
and TPM architectures. Sectipn 5]2.2 discusses compartment-specific state inside the TPM.
Section 5.2.3 discusses hardware modifications. Selction 5.2.4 discusses modifications to the
cryptographic algorithms proposed by Lie et al./[37] to improve performance. Séctioh 5.2.5

discusses the use of shared libraries.

5.2.1 XOM Compartments

The XOM architecture ensures the integrityfofrom its packaging by a distribut@ through
encryptingP. One of the characteristics of the attestation method of the trusted computing
frameworks built on top of the TCG’s TPM (Sectidns|3.2 on gdadge 51 and 3.3 o page 76) is the

importance of the integrity d? only after ID(P) has been measured and recorded. The decision



5.2 Modifications 128

Step Action

1. X Loadx(P)

2a. X: generatdD(P)
2b. x: performE(Ks, P)
3a. x: performD(Ks, P)
3b. x: execute?

Table 5.1: Modified load and measure procedure of TPM/XOM.

of whether to trust the prografidentified byID (P) is left up to the challenging party in the
attestation protocol.

The TPM/XOM architecture leverages the curtained execution provided by the XOM CPU
to ensure thaP, identified byl D (P) remains unmodified throughout its execution. Table[3.11
gives the outline of the steps involved with loading an applicafothat will execute in a
compartment. The abstract commanddx (P) instructs the TPM/XOM CPU to loaB. The
LoadX command is distinct from a normabad command used to begin the execution of a
non-compartmented program. The commanddXx signifies that the program to be loaded is
to execute in its own compartment. It is loaded into memory, and its code idéD{iB) is
generated and stored in a XOM compartment table.

The initial generation of the code I (P) of P is vulnerable to the types of attacks de-
scribed in Sectiop 4.5.1, Figure #.2 on page|121. Under the threat model established in Section
[1.7, all classes of software-only attacks are possible. Our TPM/XOM model thedzfesanot
rely on a trusted software stack, executing outside the TCB, to correctly load and measure
The TPM's Trusted Software Stack (TSS) specification, in comparison, is required to ensure
exclusive, controlled access to the TPM itself.

The TPM/XOM architecture does not prevent these insertion attacks, but renders them inef-
fectual. The load and measureRfdone by the untrusted operating system in ldyeresults
in two distinct cryptographic operations occurring in the TPM for eamin SHA1Update call.

The first is the generation of the SHAL digestRyfas in the unmodified TPM. The second is
the encryption oP, and the storage of the res#dtk, P) into main memory for later execution.

Initialisation of the required state in the XOM CPU also occurs at this point. Encryption and
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protection against replay, spoofing, and splicing attacks are discussed in more detail in Section
5.2.4.

We introduce the notatioR — P’ to denote the modification-€) of P to P’. Our attack,
outlined in Sectiof 4.5]1 on pafe 119, perforis: P’ during the measurement Bf This is
denotedD (P — P’), which results in a measurement equal@gP’).

Recall thatP is loaded from untrusted storage. The integrity and confidentialiB/lméfore
it is loaded is not assured in any way. An attack that perfdit(® — P’) for the generation
of ID(P) (step 2a, Tabl.l) is equivalent to an atté&cks P’ beforeLoadx is called. The
TPM/XOM architecture duplicates any malicious modificativr> P’ during the generation of
ID(P), to the executing image &f. The use olD(P) in the access control decision of sealed
storage, and its inclusion in the attestation vector generated during attestation, remains the same
in TPM/XOM.

Recall that the XOM CPU architecture [37] performs the decryption of code retrieved from
main memory at the L2/main memory boundary. As code is brought in for execution, it is
decrypted from main memory into an L2 cache line. For this reason, the data block size used by
TPM/XOM to encryptP is the same as the L2 cache line. The payload of @aghsHA1Update
command must be encrypted in blocks of this size. The update command itself is specified to
take multiples of 64 byte blocks; the L2 cache line in the original XOM architecture is 128
bytes long. The TPM/XOMHA1Update command must be modified to take multiples of the
L2 cache line size, specific to the platform it is on.

A code block ofP, denotedP;, is encrypted by the TPM. It must then be stored in main
memory for later retrieval, decryption, and execution by the XOM CPU. This storage can occur

in two ways. The code blocR; can be:

e Returned from the TPM to the XOM CPU, where the untrusted operating system in layer

|1 copies it to the appropriate location in memory; or
e copied directly into main memory by the TPM through Direct-Memory Access (DMA).

Copying from the TPM to the XOM CPU results in considerable wasted processing; data

must be decrypted by the XOM CPU, stored in the cache, then ejected and encrypted again
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TPM/XOM Key Table
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Memory Hash
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Figure 5.1: Contents and design of TPM/XOM key tables, maintained inside the XOM CPU, adapted from [37].

before storage in main memory. Copying directly from the TPM to main memory via Direct-
Memory Access (DMA) is also possible, and decreases the time taken to load an application
considerably. As in the original XOM architecture (Sectjon 3.7 on page 92), despite being
encrypted, the untrusted operating system in ldyestill manages virtual memory fdP in
layerls.

A malicious operating system can give the TPM an incorrect memory address range to copy
encrypted blocks dP to. This does not result in the loss of integrity or confidentialitPpbut
does allow a loss of availability — meaning such behaviour by the operating system results in
a Denial of Service (DoS) attack.

The original XOM architecture [37] described two key tables stored inside the CPU. The

first of these was theompartment key tabldt is used to hold the symmetric key used to:
e decrypt the applicatioR, and
e encrypt and decry@®’s reads and writes to memory.

The second key table was thegister key tableused to encrypt the register contents of an

executing principal when it is interrupted by the operating system. The TPM/XOM table archi-
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tecture can be seen in Figlre]5.1. This key table design is adapted from work by Lié et al. [37].
The XOM ID Register indexes into the register key table, and specifies the register key of the
currently executing principal. The register key table in turn indexes into the compartment table,
specifying the compartment anb (P) of the currently executing principal. Each register key
in the register key table points to one compartment in the compartment table.

The manner in which TPM/XOM enforces the separation of principals executing in separate
compartments is the same as the original XOM architecture. This procedure is described in

Sectior] 3. on pade P2 and will not be repeated here.

5.2.2 TPM Virtualisation

Recall our attack discussed in Section 4.5.1, Figure 4.2 on[page 121. In general, in the TCG’s
TPM specification, a principd cannot be assured that a set of TPM commd@dC,, ...,Cp)
will not be interleaved with a command, or set of commands, from a malicious prir@ipal
Such interleaving of commands renders the resuR®tommands incorrect.
Our proposed TPM/XOM architecture prevents attacks of this type. Commands issued by
a principalP executing in a compartmenbn x are handled by a virtualised TPM, through the
use ofcompartment-specific staitgside the TPM. The notatidi® is used to indicate a principal
P executing in compartmeitwherei > 0. The notatiorP indicates thaP is executing in the
null compartment.
Each command that a princip® issues to the TPM acts on state inside the TPM exclusive
to the compartmerit It should be noted that some TPM commands (see Table 3.2 oifi page 56)
are stateless, i.e. they do not affect state in the TPM. There are a number of stateful commands,
however. For example, the commands used to generate a SHA-1 digest of data involve an
initialisation command and a finalisation command, both of which affect state in the TPM.
When a principalP issues a TPM command, the TPM queries the XOM CPU for the com-
partment ID of the active principal. The XOM CPU responds with the compartment number
i, wherei > 0, ori = 0 to indicateP is in the null compartment. The TPM device maintains

the required state for each compartmeséparately. This assures a princiffathat no other
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TCG’s TPM architecture. TPM/XOM architecture.

Figure 5.2: Thick black borders indicate devices expected to not act maliciously, known as Trusted Building Blocks
(TBB), adapted from [71]. Thick red borders indicate devices inside the Trusted Computing Base
(TCB), containing shielded storage and protected functionalities.

principal!Q, wherei # |, is capable of inserting malicious commands into a stateful command
sequence ofP. This attack was described in Fig4.2 on 121. The query and response
of the active compartment ID is carried out entirely in laler

The loading procedure &, shown in Tablé 5]1, resets the compartment stat¢he TPM.
This allows the re-use of compartment IDs, and ensures that no information is left befind by
when it finishes, fotQ to obtain.

Principals that execute in the nufl)(compartment all share the same state. The TPM does
not make any attempt to prevent the interleaving of stateful commands from principals in the
null compartment. Additionally, no princip& in layerls is required to enforce synchronised

access to the TPM, as is the case with the TCG’s TPM specification.

5.2.3 Hardware Modifications

The original XOM design made significant changes to the internal architecture of the CPU. The
CPU was required to be able to perform asymmetric decryption of the program header with a
unique key pair, as well as perform symmetric encryption and decryption with that key. XOM
key tables were maintained inside the CPU. Cryptographic hash operations were also required

to ensure the integrity of data stored to main memory. In the XOM architecture, only the CPU
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was considered to be part of the Trusted Computing Base (TCB).

The Trusted Platform Module was the only entity considered to be within the TCB in the
TCG specification. It supports advanced cryptographic functionality and secure internal storage
as describe in Sectign 3.2. The TCB of the TPM/XOM architecture is seen in Higure 5.2,
outlined in red. The Trusted Building Blocks (TBB) of the TPM and TPM/XOM architectures
are shown outlined in black. A TBB is a hardware component not considered to be inside the
TCB itself, but is relied upon to perform correctly in order for the TPM to operate as expected.
It is these devices that are not designed or expected to with stand hardware attacks as described
in Sectior 1.P.

The TPM/XOM architecture keeps the Trusted Platform Module v1.2, and includes the
XOM CPU inside the TCB, as seen in Figdre 5.2(b). The TPM/XOM CPU is still required
to perform asymmetric cryptography, and its symmetric encryption routines are simplified as
described in Section 5.2.4. It is not required to contain a unique asymmetric key pair. The
XOM CPU and the TPM communicate over a shared bus, which is not protected from hardware

snooping attacks.

5.2.4 Cryptographic Algorithms

Initial discussion of the XOM architecture by Lie et al. [37) 64] encrydeadith a symmetric
block cipher such as Triple DES, with the key generated by the distriButdihe execution of
a principalP in our TPM/XOM system begins witR being loaded, measured, and encrypted by
the TPM. Our encryption routine must ensure both the confidentiality and integityvben it
is stored in main memory. Work by Suh, Clarke, Gassend, van Dijk and Devadas [63] propose
modifications to the XOM architecture to use One-Time Pad (OTP) encryption to speed up
memory read and write accesses. Yang, Zhang and Gao [73] propose the use of OTP encryption
to encrypt the instruction stream as well.

Suh et al.[[68] propose the use of the AES decryption function (AfE® generate a suit-
able OTP key, where as Yang et al.[[73] implement their OTP encryption scheme with the DES

encryption function. Adapted from Yang et al. the encryption and decryption of data to and
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from memory appears as equatiops](5.1) (5.2) respectively. pleenotes plain text;
denotes cipher texs,denotes the seeld denotes a random key, aniddenotes the exclusive-or

(XOR) operation.

p @ AESHs) — ¢ (5.1)

c® AES}(s) — p (5.2)

A cryptanalysis of this scheme is outside the scope of this thesis. Suh et al. claim schemes of

this general form to be secure [63, p.6]:

The conventional one-time-pad scheme is proven to be secure [17]. Our scheme is
an instantiation of a counter-mode encrypt scheme, and can easily be proven to be

secure, given a good encryption algorithm that is non-malleable [38].

Our one-time pad encryption scheme is considered to be secure as long as thésseakr
repeated with the same kiy

We propose two possible OTP seed generation functions appropriate for the TPM/XOM
architecture. One is for the once-only encryptionPoitself, and another generates unique
OTPs to allow repeated encryption of data to the same virtual address.

The Random Number Generator (RNG) in the TPM is used to obtain a 128 Wit keyiv-
alent to the symmetric key generated by the distribDtoHowever, a different key is generated
and used for each execution®f

We require a 128 bit seesl Suh et al.[[63] state that for performance reasons the XOM
CPU should be able to generaeso as to compute Alq‘{é(s), beforec is retrieved from main
memory. This allows a 1-cycle XOR operation to obtgifrom c, whenc arrives. Equation
(5.3) shows the seed generated for the once-only encryptiBnAfs the 64 bit virtual address
of the 128 bit block being encrypted. It is concatenated with the low-order 64 bit3 (&%),
denotedD(P)(,... 63-

A[[ID(P)p,.63 = S (5.3)

s = 128
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Equation|[(5.4) shows the seed generated for the encryption of data gener&eatlaypted
from the one proposed by Suh et al.[[63]. The random vactisrgenerated by the TPM during
the initial encryption ofP. The time stampl S ensures that each cache line stored in main
memory is encrypted with a unique OTP. The time stangds a monotonic counter, increased
each time a cache line is evicted from memory. Suh et al. require the re-encryption of all blocks
in memory with a newly generated kéywhen their time stamp reaches its maximum value.
They use a time stamp of 32 bits. A 64 bit time stamp allof’scache evictions before a new
key would need to be generated. HoweveiT 8is initialised equal to zero, an attacker may
guess its value through monitoring cache eviction counts. If there is no random Veased,
the seed depends on a non-randé®and an easily obtained addre&s It should be noted
that the time stam Sused to encrypt a cache line must be stored in main memory for later

decryption of that cache line.

AV|TS = s (5.4)

sl = 128

Recall the initial encryption oP is performed inside the TPM, and that all decryptiorPof
occurs inside the XOM CPU. The TPM must send thelkapd the D (P) to the XOM CPU for
storage in the compartment table. It should be noted that the transmissimoof the TPM to
the XOM CPU occurs unencrypted along a bus vulnerable to hardware snooping. The general
trusted computing threat model does not include hardware attacks. However the generation of a
new keyk for every principal that executes in a compartment means a compromised key is only
valid for one execution oP. For simplicity in the design of the XOM CPU, the random vector
V is also generated inside the TPM and sent to the CPU. However, this is not required and could
be generated inside the XOM CPU, preventing a hardware attack from revealing thewector

The above OTP encryption scheme ensures the confidentiaftyaofd the data it generates,
but not the integrity. Lie et al. propose the use of a reversible hash to lower the computational

cost associated with each store and load to and from main memory [37, p.175]:

We can exploit the fact that a MAC provides much more functionality than we re-
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quire. AMAC is able to provide authentication for messages that are not encrypted,
by using a hash that is difficult to reverse. Since the cache lines are encrypted, we

are free to use a reversible hash for redundancy.

A reversible hash, such as a CRC, is generated from the L2 cache line before it is encrypted.
The generated hash is stored in a separate page to the encrypted data.

Suh et al.[[68] proposed a novebg Hashalgorithm. A discussion of its implementation
Is outside the scope of this thesis. However, it ensures integrity of data generdedithyan
increase in the required storage space of only 6.25%.

Our proposed cryptographic algorithms, briefly discussed here, provide protection against
replay, splicing, and spoof attacks for data generate@ dyd stored in memory. Replay attacks
on data generated IBy/during a single execution are prevented through the use of the monotonic
time stamprl Sin the seed. A replay attack with data generated from a previous executyn of
whereT Scould be expected to repeat in value, is prevented through the use of a different key
for each execution. Splicing attacks, where encrypted code or data are copied from elsewhere
in memory to form new contiguous blocks, are prevented through the use of the address in the
seed. And spoofing attacks, where data is generated by an attacker and copied over memory
of P, are prevented through the use of the keynd the random vectdf, being kept from

software-class attacks.

5.2.5 Shared Libraries

Recall in the original XOM architecture, shared libraries had to be statically compiled into the
application by the distributor. Layér andl, implementations on top of the TCG’s TPM spec-
ification took two general approaches. They either required the entire software stack of the
platformp to be included in the attestation vector (Sailer et all [53]), or they implemented soft-
ware compartmentalisation to provide curtained memory (Marchesini &t al. [40]). The former
design allows the use of dynamically linked libraries, as each library used was present in the
Stored Measurement Log. The latter design did not properly consider the use of shared libraries.

Microsoft's NGSCB platform precluded the use of shared libraries, requiring code that wished
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to run on the secure RHS to be rewritten.

Our proposed TPM/XOM architecture allows principals that execute in the null compart-
ment to use shared libraries as in a normal operating system. Programs that execute in a com-
partment communicate, as in the original XOM architecture (Se€tidn 3.7 on[page 92), with
the operating system and other applications through the null compartment. The original XOM

architecture requires the use ofaller-savecalling convention[[37, p.185]:

..recall that in a callee-save calling convention, the dynamic library subroutines are
expected to push the caller’s registers on the stack. However, since the subroutine
IS not in the same compartment as the XOM code calling it, it will not have the
ability to access those values. Thus, the caller, rather than the callee, must save all
secure registers. In addition, before calling the subroutine, the calling XOM code
must first move, as necessary, [required] register values... to the null compartment

so that the callee can access them.

A principal P can call shared libraries that it does not functionally depend on (see Sec-
tion[2.3.2 on page 28), such as certain I/O routines, by making an insecure call through the null
compartment, with a caller-save convention. This functionality is described in Section 3.7.2 on
page 9B. A principaP can also make use of shared libraries that it does functionally depend
on, and still have the platform generate an attestation vector that meaningfully identifies the
functionality of P (see Sectioph 2.3.2 on page 28).

Shared libraries, specified IB; are dynamically linked while the operating system is load-
ing P. The TPM/XOM architecture enables applications to specify two classes of shared li-
braries: unidentifiedandidentified Unidentified shared libraries are linked as in a standard
operating system.

Consider a principdP that wishes to call an identified shared libraryDuring the loading
of P, the operating system performs.@dx (L), as described in Sectipn 5.P.1, for each shared
library specified byP as identified. This results ib being loaded, measured, and encrypted
with the same kek and seed asP, i.e. the seed used to generate the OTR.fdoes not come

in part fromID(L). The code IDID(L) is stored, along withD (P), in the XOM compartment
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table in the XOM CPU.
In the TPM/XOM architecture, a principRlis protected during execution through the use of
compartments, as described above. For this reason, an attestationAxeaed only include
the identity ofP itself, and the identities of any identified librarieg Lo, ..., L, thatP considers
itself to be functionally dependent on.
Consider a principaP executing in compartment denoted P, on a platformp, where
| # 0. The attestation protocol has the same structure as described iff Table 3.7 pn|page 74. Itis
the generation and contents of the attestation ve®tahat differ in our proposed TPM/XOM
architecture.
For'P, the attestation vector includes a statement by the TPM indicatingtisaxecuting
in a compartment # 0. This allows a challenging party’ to be assured of the curtained
memory protection implemented @gn The code IDID(P), generated during the loading Bf
Is retrieved from the compartment table in the XOM CPU and include®VvinThe code IDs
of any identified librariesD(L;),ID(L>2),...,ID(Ly), are also retrieved from the XOM CPU.
Additionally, becaus® executes in a compartment and interacts with a virtualised TPban
be assured that, if properly instrumentB, measurement of any structured data with integrity-
semantics (Sectign 4.3 on pdge [L06) has not been subverted or modified by an attacker.
Access control decisions made by the TPM, such as when performing a seal or unseal func-
tion for P, that were previously dependent dh(P), now depend on a concatenated code ID,

denotedD(P) || ¥ ID(L), shown in equatior] (5]5).
ID(P) || > ID(L) = {ID(P)[[ID(La) [[ID(L2)]| .. [1D(Ln)} (5.5)

The TPM/XOM architecture described above allows a prindital rely on shared libraries
L, and have them included in a statement made about its functionality. However, those shared
libraries may still be upgraded or modified by another princi@ain p or by the user. Such
modificationy ID(L — L") may not be malicious, but will result in any data sealed under
ID(P) | ¥ ID(L) no longer being unsealable unless separate copiesacé retained omp. It

also means that, during executionffany shared libraries used IByare stored in memory
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Issue

Privacy concerns.

Non-intrusive architecture easier to implement, but requires invalidation
of the SML log.

An intrusive, or prohibitive, system is non-trivial to implement.

Difficulties with establishing a suitable enrolment scheme for application
identities.

Making trust decisions based on SML with unknown or known-vulnerable
applications non-trivial.

Invalidation of SML prohibits long-lived execution scenarios.

Attestation vector has no meaning for any duration of time after its gener-
ation.

Shared libraries are easy to implement.

Table 5.2: Issues arising from attestation of entire platform.

for the exclusive use dP. Multiple principals, that both specify a shared librdryas being

identified, result in two copies df being stored in memaory.

5.3 Motivation and Benefits

We propose additions and changes to the TCG specification specifically for a number of reasons.
It is the most complete Trusted Computing Framework specification available, and is currently
shipping in a number of products. Our analysis of implementations based upon it revealed a
number of open problems and vulnerabilities that an integration with the XOM architecture
could possibly solve.

The lack of curtained memory in the TCG specification means that either an attestation
vector is required to include the identities of all principals on the system, or a secure kernel in
layerls is required it implement software compartments, through mandatory access control.

A number of issues that arise from attesting the state of the entire plgtfare;summarised
in Table[5.2. The non-intrusive architecture proposed by Sailer et al. [53] does not intend
to prevent an administrative user from carrying out actions that result in compromises to the
integrity of the platform. Instead, it merely invalidates the Stored Measurement Log (SML),

preventing any future attestation from succeeding. This allows peculiar usage by developers
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Issues

Mandatory access systems implemented with strongly typed sys-
tems are difficult to implement correctly.

Restricts general usability of the platform.

Entire security policy may need to included in attestation vector.
Shared libraries require complex security policies to work cor-
rectly.

Attestation vector makes some statement about application state
for a non-trivial period of time into the future.

Table 5.3: Issues arising from curtained memory being implemented in software.

and hackers to occur, not restricting or limiting the usability or functionality of the system for
them. Indeed, designing and implementing an intrusive system that prohibits a user from taking
actions that compromise the integrity of the system is an open problem in operating system
security research.

Issues that arise from implementing curtained memory in software, in a security kernel in
layerly, are summarised in Taljle 5.3. The LinuxSE system was noted by Marchesini et al. [40]
as being cumbersome to work with, and a security policy that properly protects an application
from interference may require a restriction in usability for the rest of the system. Additionally,
the entire security policy may need to be included in the attestation vector, removing any pri-
vacy gains from compartmented attestation. A properly implemented mandatory access control
system can prevent an administrative user from taking actions that would compromise the in-
tegrity of the platform. This allows an attestation vector to guarantee the state of the platform
for some period of time into the future, mitigating Time of Check to Time of Use class attacks.

Both implementations, summarised above, also mean that an appli€atiarst attest to
a third party to ensure the correctness of the secure kernel in llgyas described in Sec-
tion[4.5.2 on page 123. Our proposed TPM/XOM architecture attempts to mitigate these threats
by implementing curtained memory in layky; and enforcing curtained memory on specific
principals in layet;, wherei > 0, from layerlp.

The insertion attack described in Sectjon 4.5.1, Figure 4.2 on[page 121, results from TPM

commands issued by two principdsandQ working on the same state inside the TPM. Gen-
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erally this can be considered virtualisation of the TBMsidethe TCB. There are a number of
issues that arise from this. As shown, insertion attacks are possible, resulting in incorrect results
being produced foP. Additionally, naive denial of service attacks are possible. Our proposed
TPM/XOM architecture implements virtualisation of the TiMdidethe TCB, mitigating these

sorts of issues.



I don’t have all the answers, but I am beginning to ask the right

questions.

Lee Lorenz

Conclusion and Future Work
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6.1 Conclusion

This thesis investigated the requirements of an open, general purpose, trusted computing frame-
work. In Chaptef R, we defined the terragenandgeneral purpose Our definition of open
proposed characteristics of an open-source community-developed framework that would allow
it to form a social root of trust for naive users. It was compared with a closed, proprietary
trusted computing framework that was intended to act as a root of trust for those same users.

Our definition of general purpose defined certain aspects of usability and functionality that
a general purpose computing platform allows. We proposed a measurement of the usefulness
of a trusted computing framework to be its ability to assure certain security properties, without
restricting a general purpose platform to a single or special-purpose one.

We gave formal definitions of each of the four security primitives of trusted computing:
curtained memory, attestation, sealed storage, and secure I/O. Each was placed in a historical
context, and shown to be an evolution of a previous security feature. We discussed the concept
of a cryptographic code identity used to make statements about program functionality.

We outlined the difficulties in generating a meaningful statement about a program that de-
pended on shared libraries for functionality. Including shared libraries in code identities, for
all programs that rely on them, results in updates to any one shared library invaliding many
different code identities at once. Alternatively, the code identity of a program that uses shared
libraries, made without including those libraries, will not reflect changes in functionality that
arise through changes to shared libraries. We highlighted the reliance that applications exe-
cuting in layerl, have on a secure kernel, executing in laljerAssurance about the correct
enforcement and operation of any trusted computing primitives that the secure kernel manages
rely on the kernel being valid. We showed that current implementations of trusted comput-
ing frameworks require an application to attest to a remote, trusted third party, to assure the
operating system and platform that they were executing on was considered trustworthy.

Chaptef B surveyed implementations of trusted computing frameworks. Complete frame-
work implementations from the Trusted Computing Group and Microsoft were discussed, as

well as implementations discussed in academic literature. The LOCK system, that assured
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all trusted computing primitives except attestation, was described. This illustrated that those
primitives could be constructed purely in software, and had in fact been implemented in earlier
research.

Chaptef # discussed the framework implementations surveyed in Chapter 3. We showed
that the implementation of Sailer et l. [53], discussed in Seftion|4.4.2 or{ page 116, requires
an enrolment scheme to manage classifications of software integrity. We also showed that any
reasonable security policy for their system would require attestations to fail when the remote
platform had an unknown program executing on it.

The system proposed by Marchesini et al.| [40], discussed in S¢ction 4.4.2, implemented
curtained memory in software, and protected those compartments from modification from the
local administrator as well. This allowed their system to give some assurance about the integrity
of a compartment for some non-trivial period of time after the generation of an attestation vector.
The system proposed by Sailer et al. did not provide these assurances, remaining vulnerable to
Time of Check to Time of Use (TOCTOU) class attacks. We concluded that any attempt to
mitigate TOCTOU attacks would require curtained memory that ensured the integrity of an
application.

We proposed an insertion attack on the Trusted Computing Group’s Trusted Platform Mod-
ule, made possible by the expected virtualisation of the Trusted Platform Module outside the
Trusted Computing Base. Motivated by this observation, we proposed architectural changes to
the Trusted Platform Module. We removed the software distribution process of Execute Only
Memory (XOM), so that it ensured integrity and confidentiality of an application, through its use
of compartments, only after it had started executing on a platform. We mitigated the vulnerabil-
ity of a specific insertion attack on our system, by making the measurement and encryption of
an application atomic. This ensured that there could be no differences between the application
that was measured to derive its code identity, and the application that was loaded into memory
and executed. We mitigated the vulnerability to general insertion attacks, by virtualising the
Trusted Platform Module on a per-compartment basis.

Our proposed architecture enabled the selective use of shared libraries, including those Ii-

braries in any statement about the functionality of a program. These statements of functionality
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were used in the attestation and sealed storage primitives implement by our architecture.

6.2 Future Work

This thesis has outlined a number of open problems in trusted computing research. Many of
these need to be solved before an open, general purpose, trusted computing platform, as defined
in Chaptef , is possible.

An examination of the statistical model described in Segtioh 4.3 on[page 106 is of interest.
If our assumptions are correct, it would allow many different compilation environments, giving
distinct code identitie$D (P) for the same source code Bf to be compared. If so, a com-
munity may able to generate statement$dfP), that are known to have been obtained from
unmodified versions dP, without requiring a prescribed compilation environment to be used
for all compilations ofP.

The proposed integration of XOM and the Trusted Computing Group’s Trusted Platform
Module specification is another avenue for future research. The XOM architecture has been
implemented in software, and recently a Trusted Platform Module software emulator [11] has
been released. Integrating the TPM emulator and XOM system in software would allow for
analysis of performance, as well as formal verification of the security model.

Research into the implementation of curtained memory in software is considered. Specifi-
cally, research that attempts to assure separation of programs during execution with a simple,
expressive, mandatory access control language that does not severely restrict the usability of
the platform as a whole. Additionally, the ability to attest that assurance without requiring a

statement about the integrity of the platform as a whole would reduce privacy concerns.
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