
The Department of Computer Science

The University of Auckland

New Zealand

A Formal Security Modeling and

Analysis in B2B e-commerce

Han Zhang

July 2006

Supervisors:

Clark Thomborson and Gerald Weber

2

A thesis submitted in partial fulfillment of the

requirements of Doctor of Philosophy in Com-

puter Science

The University of Auckland

Thesis Consent Form

This thesis may be consulted for the purpose of research or private study provided that

due acknowledgement is made where appropriate and that the author’s permission is

obtained before any material from the thesis is published.

I agree that the University of Auckland Library may make a copy of this thesis for supply

to the collection of another prescribed library on request from that Library; and

1. I agree that this thesis may be photocopied for supply to any person in accordance

with the provisions of Section 56 of the Copyright Act 1994.

Or

2. This thesis may not be photocopied other than to supply a copy for the collection

of another prescribed library.

(Strike out 1 or 2)

Signed: .

Date: .

ii

Created: 5 July 2001

Last updated: 9 August 2001

Abstract

Despite the flourishing research on formal modeling and analysis of privacy and authen-

tication issues in E-commerce, little research concentrates on the possible security risk

due to business logic specification. In E-commerce systems, an aspect of this logic is to

promise fairness. As the feature ensuring parties conduct their business to their mutual

moral standards, fairness is one of the paramount features for E-commerce payment sys-

tems. In this case study of the AARN payment system, we apply form-oriented analysis

to formally model the simple business logic behind this way of arranging payment. The

model solves a fair exchange issue for security purposes at the business logic level, which

changes further design and implementation for the payment system. It is the first time

that Data Type Interchange Model diagram and other models in form-oriented analysis

method have been applied in security analysis. This form-oriented analysis method helps

designers not only on security analysis, but also on understanding and communication

between business experts and software designers.

iii

iv

Acknowledgement

First of all I would like to thank Barry Dowdeswell for without him I would not have had

the opportunity to work with AARN on this research topic. I have known Barry since

the summer school project in my postgraduate diploma study. He is a great tech director

and also a perfect team manager; as far as I know he was organizing serval projects at

the same time, meeting clients to expand the market, contacting the university for co-

operating the research projects; meanwhile he still had time to help me on my writing.

He works like a superman and I know he spent lots of his spare time for me and many

other students, but I do not know how to express my thanks for him – never more than

enough.

The greatest thanks for Professor Clark Thomborson and Dr Gerald Weber, my thesis

supervisors. They gave me thousands of ideas, suggestions and the most important,

encouragement. I learned not only academic research skill, but also attitudes for science

and technology from them. I credit them for teaching me a critical and logical thought,

a clear and strict description, and a modest as well as challenging attitude.

Also, I would like to thank William Zhu, Jasvir Nagra, Stephen Drape, Anirban Ma-

jumdar, and Barbara Thomborson. I had fun working with William and am also impressed

by his unbelievable productivity. William encouraged me on the submission of my first

paper and worked with me to solve the mathematical expression problems in the paper.

Jasvir helped me on the proof reading and also gave me useful comments. Furthermore,

without the thesis pattern he designed, I can not imagine how messy a style my thesis will

v

vi

be. Stephen helped me on constructing the mathematical equations and constraints, and

proof reading. Anirban discussed with me on many security issues which broadened my

insights. Barbara helped me modified a lot of grammar mistakes and wrong expressions.

I would also like to thank other members in our security systems group for their useful

hints and friendly discussions. I especially enjoyed the paper discussions in regular group

meetings.

Contents

1 Introduction 1

1.1 B2B E-commerce . 2

1.2 Fair Exchange in E-commerce . 4

1.3 Formal Analysis . 5

1.4 Motivation . 6

1.5 Related Works . 8

1.6 Organization of the Thesis . 9

2 B2B in E-commerce 11

2.1 Fairness and Fair Exchange . 11

2.1.1 Security is more than a technical issue 11

2.1.2 Fairness . 13

2.2 Trust in E-commerce . 15

2.3 AARN B2B Payment System . 16

2.4 Problem Setting . 18

2.5 Summary . 20

3 Language for Modeling Our Systems 21

3.1 The Evaluation of Modeling Language . 21

3.2 Unified Modeling Language . 22

vii

viii Contents

3.2.1 Object Constraint Language . 24

3.3 Communicating Sequential Processes . 25

3.4 Petri Nets . 26

3.5 Form-oriented Analysis . 27

3.5.1 DTIM . 28

3.5.2 UMM . 29

3.6 Summary . 33

4 Modeling the AARN Payment System 35

4.1 The Constraints . 35

4.2 The Payment Transfer Architecture . 37

4.2.1 The Simple Economic Model . 37

4.2.2 The Payment Transfer Architecture 38

4.3 Formalizing the Modeling: the Frame Contract 41

4.4 Analysis of the Modeling . 44

4.4.1 Simplifying the model . 45

4.4.2 Status of the Accounts . 45

4.4.3 Tracing the fraud by DTIM . 47

4.5 Risk Analysis . 48

4.6 Summary . 50

5 A New Design and its Security Analysis 53

5.1 Reasons for Updating the Model . 53

5.2 The Payment Transfer Architecture . 54

5.2.1 The Updated Simple Economic Model 55

5.2.2 The Payment Transfer architecture 56

5.2.3 The Banking Subsystem . 57

5.3 Analysis of the Modeling . 61

5.3.1 Status of the Accounts . 61

5.3.2 Tracing the Fraud by DTIM . 62

Contents ix

5.4 Solution of the Risks . 63

5.4.1 Solution for Risk 1 . 63

5.4.2 Solution for Risk 2 . 64

5.5 Evaluation of the Modeling . 67

5.6 Summary . 68

6 Conclusion 69

6.1 Risks in the Business Processes . 69

6.2 Formal Security Analysis . 70

6.3 Future Research . 72

x Contents

1
Introduction

Following the over 20% increase of e-commerce in North America, internet fraud has led

to around US$2.8 billion revenue lost in 2005 [11]. Though e-merchants have expensed

huge amounts on security, fraud is still a tough problem for e-commerce [25]. Difficulties

in anticipating novel frauds have made research in security measures very important for

e-commerce.

Security measures in e-commerce have various methods and strategies for different

purposes. Different methods are suitable for specific situations, but there is no overall

suitable method to foil all internet frauds for every situation. We define the possibility of

a fraud as a risk. In certain e-commerce-related areas, such as networking, data transfer

and data storage, researchers applied scanning and testing methods, modeling analysis

to detect potential risks. For example, the model of discretionary access control model,

Mandatory Access Control (MAC) model, Role-based Access Control (RBAC) model, and

Access control Tasks/Workflow are used to analyze the access control functions [22]. By

applying these models, designers can offer different features and describe the perspective

from different points of view to understand, clarify and solve the security problems.

However, despite sufficiently developed modeling in specific areas, more work is still

needed to improve the models for describing abstract business logic. Such models should

1

2 Introduction

not focus on the detail of the implementation technologies, but rather on business logic and

rules, or the relationship and interaction between the actors. As a new form of commerce,

e-commerce business logic differs in some ways from traditional thinking. Twenty years

ago, business people could not imagine building a business network without a lot of

physical support. Neither could they understand building a “good” business only by

registering to a powerful searching engine, such as Google. E-commerce has shown that

as long as information providers can attract a sufficient population, they can be extremely

successful. E-commerce can be lucrative in several areas, such as in advertising and

sharing profits from other service providers, and more e-commerce models are emerging.

As a result of this flourishing business, researchers of the security of e-commerce are

looking to improve their secure model to be suitable for the latest technological or business

development.

1.1 B2B E-commerce

E-commerce operates as either business to customer (B2C) or business to business (B2B).

Within B2C there is a special subset of customer to customer (C2C) auction business,

which we will not discuss in this thesis. Unlike the B2C e-commerce threats from huge

credit risk issues, B2B e-commerce has made exciting progress [26, 24]. This is par-

tially because B2B transactions occur between business people, who have chance to learn

each other’s trustworthiness – B2B makes customer relations even more important than

before [1].

In e-commerce, organizations and business parties solve their security issues through

various ways. Banks have built a credit-based risk assessment strategy and applied

electronic-funds clearance systems to manage their financial risk from e-commerce. Large

businesses employ specialists, such as IT auditors, to review their systems and advise on

best practice [2]. Consumers are managing their risk by slowing down their participation

in e-commerce, which makes previous expectations for the e-commerce look overly opti-

mistic. A survey in 2002 illustrated that internet shopping is more riskier than offline

1.1 B2B E-commerce 3

shopping [41]. The risk perceived by consumers negatively affected their online shopping,

except on low-value items such as books [2]. Other surveys present similar conclusions

that the low level of consumer trust is limiting the growth of e-commerce [36]. Online

retail sales are still a small part of total retail sales volume [44].

Small businesses may be in the most complex position of all. On the one hand,

they are not as trustworthy to customers as the big companies, especially in B2B e-

commerce, which means their business growth is quite small. On the other hand, as

long as small businesses can easily build up relations with their customers, they can

combine their advances on flexibility in business with the convenient and speedy features

of e-commerce. However, these business parties are the most likely to experience the

negative impact of the slow trade payment process and to look for more efficient payment

terms [7]. Unlike banks and larger business, small businesses cannot define proper e-

payment systems by which they minimize their risks. Unlike consumers, they may be

unable to afford to wait on the sidelines until mature e-commerce systems come out. They

will have a hard time on finding a profitable niche market in such a well-established online

marketplace [2]. Like large businesses, small businesses must maintain compatibility with

all their business parties, so they probably cannot use out of the box software [2]. Unlike

large businesses, however, small businesses have additional challenges in that they cannot

afford to hire a specialist to audit their semi-customized e-commerce systems, nor can

they afford the maintenance due to the changes in business requirements. For example, all

suppliers of Wal-Mart are required to comply with the recently developed Applicability

Statement 2 (AS2) for electronic data interchange (EDI) over the internet [6, 29]. A

typical small business party, as a Wal-Mart supplier, cannot suddenly transfer all its

EDI transactions of their e-business system to AS2. Such a switch would destroy their

existing business-partner relationship with those companies that do not simultaneously

adopt AS2. As a result, many of the smaller Wal-Mart suppliers may well continue to use

a Value Added Network (VAN) or accept both VAN and AS2, as a cost-effective way to

achieve compatibility with all EDI formats in use by their business parties [2].

Sufficient security analysis can help the business parties, especially the small busi-

4 Introduction

nesses, to represent the potential risks before they actually implement the security mea-

sures. Furthermore, a clear and rigidly accurate analysis can improve the understanding

of the business logic and rules.

1.2 Fair Exchange in E-commerce

As more business becomes involved in e-commerce, there are more concerns about the

execution on exchanging process [4]. A very basic question is how to ensure the correct

execution of the exchange. In a correct exchange, the execution must be ensured in

the terminal situation, when either both the business parties successfully approach their

goals, or both of the parties failed but both of them contain their items. For example in

an e-commerce scenario, party A is going to exchange his itema to party B’s itemb. In a

correct exchange, the final result is party A has itemb and party B has itema, or party

A still keeps itema and party B keeps itemb. In [3], Dr Asokan first defined fairness as

the feature which keeps the e-commerce exchange as a correct one.

A fair exchange is a necessary promise to the business parties, as people still doubt

the reliability of e-commerce. According to a survey by Cybersource, a majority of the

customers suspect that the items which they are interested could finally purchase [11].

A fair exchange can resolve the problem and ensure the exchange, therefore is attractive

to customers. B2C e-commerce has made progress on the fairness of the exchange. On-

line auction systems such as eBay and TradeMe have setup many policies to ensure the

purchases on their system are reliable for customers. Moreover, in online digital media

purchases, researchers apply the digital signatures method for providing fair exchange.

In B2B e-commerce, however, the parties have not paid enough attention to fairness of

the exchange. It might be because most of the business parties believe their contract can

protect their benefits in a legal environment. Despite the protection of the legal environ-

ment, in a fair B2B exchange, the process itself is limited as a fair process. Therefore even

if either of the parties is going to commit fraud in the process, the process will prevent

them from doing so. The business can stop the fraud even before the legal process starts.

1.3 Formal Analysis 5

As a result, honest parties benefit from a fair exchange.

Another reason for the low concern of fair B2B exchange is that most of the B2B

customers purchase large amounts of goods. This introduces in a delivery issue for the

fair exchange. However, if we avoid discussing the delivery process of the purchase but

focus on the payment process, we can apply fair exchange, particularly in the payment

process. To analyze the fair exchange process, we utilize formal analysis in the modeling

of the fair exchange.

1.3 Formal Analysis

Formal analysis uses mathematical representations of a concept to deduce and analyze

the concept. It is the basis of rigorous proofs in scientific research. Formal analysis can be

complex, as it must include adequate information to support the steps in the proof. In this

paper we describe a novel formal analysis method of a security model which is simple and

clear. We start by documenting the existing business logic of a set of business parties at

the message-passing (EDI) level of detail. The end result of this documentation is called

a Data Type Interchange Model, or DTIM, and a complementary User Message Model

or UMM [15]. We then categorize the final possible states of the model as being either

expected or unexpected, and either harmful or beneficial [12]. These determinations are

made relative to the business we are modeling. For example, making a net profit on a

business transaction is an expected-beneficial outcome in most situations. Not receiving

payment within a billing cycle for goods that have been shipped would be considered an

unexpected-harmful outcome [2].

After we have developed a DTIM/UMM model for all parties in a transaction, we

analyze it for any potential unexpected-harmful states. If we find any unexpected-harmful

states, in a final step of our method we diagnose the problem and suggest changes to the

business logic of the party(s) to minimize chances of reaching such a harmful state [2].

Our method has a second use, of discovering security flaws before any business logic

is actually implemented by a business party. The precondition for this use is that the

6 Introduction

business logic of prospective business parties must be known to the DTIM level of detail

or abstraction [2].

The novelty of our methodology stems from its use of DTIMs as modeling abstraction.

Many other modeling abstractions are possible. A few have been explored extensively,

and we will survey them later in this paper. For now we note that comparing modeling

abstractions is like comparing apples and oranges in that the result of the comparison

depends on what you want. It might be easier, or harder, to capture an existing business

logic in another abstraction. Some abstractions will permit some forms of security anal-

ysis; and some abstractions will not support the type of state-analysis we have outlined

above. Some abstractions are at a high level of detail, and thus will support a very precise

analysis. It is generally more difficult to gain confidence in the accuracy of a high-detail

model than in a simple model, since a small error in one part of a complex model can

cause a very large change in its behavior [2].

1.4 Motivation

In this thesis, we use a case study to illustrate the function of our method, and to argue

that it is an appropriate way to analyze the business logic of a small enterprise, the AARN

Innovation Limited, on its application of B2B payment system. Business logic is the

thinking and rationales for making business decisions, especially concerning operations.

In our case study it concerns the essential steps of how the business is operated. Software

engineers must understand the business logic very well before designing the system. When

we discuss the business logic, the issues are in an early step of the requirement analysis

and functional specification or prototyping [37]. The method should allow the software

designers to communicate with the business experts and understand the functions of the

business without any misunderstanding by using this method. The method must be very

strict, formal and simple to understand for the business experts. The method also needs

to be flexible and easy to extend so that it can fit the requirements of describing various

business logic.

1.4 Motivation 7

Our case study has a simple four-party e-payment scheme involving a vendor, a buyer,

a trusted third-party intermediary, and a banking subsystem. Despite its apparent sim-

plicity, this scheme contains a harmful-unexpected state. We believe, and we invite readers

to test this for themselves when they learn the details of the scheme, that the security

flaw is not discoverable except by formal analysis or intense thought. Careful thought is,

of course, the hallmark of a competent security analyst or auditor. Most analysts will

want to frame and explain their thoughts in a convenient formalism or abstraction, if that

is possible. This is a third potential use for our method – as an expressive abstraction in

which analysts can document a non-trivial security bug so that competent programmers

can repair the bug [2].

In commerce systems, especially e-commerce applications, relatively little security

analysis is done at the business logic level. Most analysis at this level is focused on

detecting what we would call mistakes in the implementation of a set of business rules,

rather than detecting mistakes in their design. Examples of implementation error are

the improper configuration of a CGI server, or the choice of CGI as an implementation

language in the first place [31]. Examples of the business logic error are frauds in the busi-

ness process, such as unsuitable transactions and abuse for personal enrichment through

deliberate misuse or misapplication [45].

Once appropriate business logic is made clear, we are reasonably assured that all is well

– if the designer accurately understands the logic, and if the logic itself is not buggy. If

the logic is not formally specified, as is often the case, then we must observe the behavior

of the implemented system carefully, to determine whether or not the logic is doing what

we had expected. It is scary enough to undertake such a debugging-by-observation only

once, when a new business is launched. At that time we probably have many, and larger,

risks of complete business failure than the operational discovery of a catastrophic bug

in our business logic. However, even after our business is well established, some of our

software systems are changing monthly, if not daily. It is always possible that a seemingly

innocuous change in one part of a computing system will drive another part of the system

into an unexpected and harmful state [2, 12]. This line of reasoning pushes us either

8 Introduction

toward the use of a formal specification for business logic which can be analyzed and

verified, or toward the use of a context-based “business rules” framework [2].

1.5 Related Works

Previous researchers of business logic modeling and analysis have approached several ar-

eas of the e-commerce business analysis issue. A role and task-based security model

(R&T model) was applied to ensure a secure access to many different services through an

application-based security framework. It is used and implemented in a multi-functional

smartcard to ensure both the users’ need for application-based security and their right

to informed self-determination. The fundamental right of privacy is related to legal is-

sues [38].

Another model based on phases in business processes and roles and interactions in

each phase has a simple approach to understanding e-commerce business models. This

model categorizes several typical business models and then analyzes the specific security

requirements. It highlights potential threat scenarios and describes their solutions. This

is a decomposition approach for e-commerce business models and its application to the

systematic assessment of their security requirements [18].

Unified Modeling Language (UML) is also applied in security modeling processes.

Based on role-based access control with additional support of constraints on authorization,

UML provides a new direction for applications in specifying access control information

and modeling this security issue in the design of an application [27]. This information can

be used to automatically generate complete access control infrastructures. By applying

UML security modeling, the researchers can improve productivity during the development

of secure distributed systems and the quality of the resulting systems [27].

A set of business rules is an expression of business logic in a special-purpose pro-

gramming language. The business rule interpreter should be well-enough defined and

well-enough implemented such that a ruleset and its interpreter will always produce the

same business results despite changes made to other aspects of the software and hardware

1.6 Organization of the Thesis 9

platform. Microsoft’s BizTalk is a prominent example of this approach [2]. There are

many others, both in open-standard proposals and in proprietary languages. Most busi-

ness rule systems are aimed primarily at the proper implementation of a set of business

rules, rather than at the verification or proper design of the ruleset as a whole [2]. IBM’s

Business Rules Markup Language is a counterexample: it was designed to have clean

semantics, which are amenable to analysis by defeasible reasoning [33]. However it has

not found much acceptance in the business market, perhaps because few programmers or

analysts are willing to use a logic programming language to express their business rules [2].

1.6 Organization of the Thesis

In Chapter 1 we introduce some basic background knowledge on risk analysis in B2B e-

commerce, and give out our purpose for this research of security analysis on business logic

level. The next chapter concerns the fairness as an important aspect on the business logic

and the concepts defined for describing it. Also, we introduce briefly the AARN payment

system and announce the constraints of our case study. Then, in Chapter 3 we search

the formal analysis modelings and discuss them. We explain why we chose form-oriented

analysis as our method for modeling and analyzing the security.

Chapter 4 concerns the application of DTIM and UMM in the modeling. Here we

determine the formula for fairness and use it to check the states of the parties. Finally we

present the result and argue that the recourse process influences the records between TIP

and the vendor. In Chapter 5 the same method is applied to a new design. The analysis

locates two risks in the new design, and present the solution for the risks. Finally, Chapter

6 contains the summary of the results and achievement of this thesis and move forward

to future research in applying form-oriented analysis method in secure modeling and

developing practical form-oriented analysis tools.

10 Introduction

2
B2B in E-commerce

The related e-commerce concepts of fair exchange and fairness, trustworthiness and trust

form the basis of the application of the B2B payment system. Based on these concepts,

we explore the theoretical issues about security in e-commerce. The application asks for

security requirements, which we will analyze by our new modeling method in the later

chapters.

2.1 Fairness and Fair Exchange

In E-commerce systems, an aspect of business logic is to promise fairness. As the feature

ensuring parties conduct their business to their mutual moral standards, fairness is one of

the paramount features for e-commerce payment systems. Originally business people set

up their business as a fair one to attract customers. However, in many previous research,

keeping the feature of fairness was not a important security issue.

2.1.1 Security is more than a technical issue

Security is a technical issue, with important consequence for business. We can categorize

the concept of security in e-commerce by the goals. First of all, it has to ensure the

11

12 B2B in E-commerce

whole system is running correct, which we call its reliability feature for the system. For

example, when there are user inputs, the system has to do some data checking assignments.

After the system has reliable security, we can acquire more extended features, such as to

prevent the frauds or invasions during data transfer communication, which we call the

safety feature.

As the paramount consideration for security process, reliability ensure the correctness

of the execution of the process. In a reliable system, the business will run as expected,

and the actions of the business parties are predictable and responsible. The behaviors

of the parties are expected, harmful or harmless. In the situation of expected harmful

behaviors, the system should either have the solution to deny or execute the behaviors

and approach reasonable results. If the system is not reliable, the results of the execution

could be unpredictable and extremely strange. Every behavior can lead to a wrong result

as no trust between the business parties will exist.

On the other hand, safety of the security e-commerce system concerns protecting the

privacy and the data, including prevention of fraud and invasion. Safety in e-commerce

covers all of the computer security issues, e.g confidentiality, integrity, and availability.

Regarding e-commerce payment issues, the goal of security concerns not only prevent-

ing the system from malicious parties’ faking or attacking the transfer communication,

but also ensuring the correct execution of the transaction. Here the correct execution

means the parties of the e-commerce should behave according to their promise, e.g. their

legal contract. As we mentioned, the correct execution is a feature of reliability. However,

as the parties in e-commerce transact in an invisible environment, a fraud party may

cheat and benefit from the other parties’ honest behavior, which is not fair to the honest

parties. Therefore we can conclude that fairness is very important for reliability of the

security. This feature helps to protect the business.

2.1 Fairness and Fair Exchange 13

2.1.2 Fairness

When people talk about security of a business, they focus on the safety of the transfer

process, correctness of the number of items, or the authentication of the business parties,

and often ignore a basic rule that the parties should behave as they said. To avoid

behaviors of either business party that would aggrieve the other, the commerce must

involve the concept of fairness. Fairness answers the issues of misbehavior, not behaving

or overbehavior of the parties.

As a basic rule of transaction, fairness is an essential issue for commerce. In a business

activity, a goods seller exchanges his goods with a buyer for money, which in this thesis

will be called an exchange between the business parties. The customers are both expecting

their acquisition is worth what they paid. That is, as long as the exchange deals, what

they gain is equal to what they paid. They might continually purchase what they gain at

a higher value, which enables others to earn more profit, as long as they can find that new

party and make the transaction. But that will be another exchange and in that exchange

both of the parties will expect the same. In addition, in an exchange the parties expect

the result will be either successful, which means both parties receive what they want, or

canceled, which means both parties take back what they have without losing anything.

We follow the definition of fair exchange in [32]. “Assuming two parties A and B,

each of them starts with an item i and a description d of what that party would like

to receive in exchange for i.” The notation identify the items using subscripts, i.e. iA

is As item and dB is the related description of Bs desired item. Assume there exists a

verification function which takes an item and a description and returns the value true

only if the item matches the description. There are two possible termination states of the

protocol, either success or cancel. Both parties need to check whether and in which state

the protocol has terminated. Therefore we have a fair exchange protocol, if it implements

these requirements [3, 32].

Effectiveness is achieved if both parties behave according to the protocol, and both of

them do not want to cancel the exchange, and both items match the description, then when

14 B2B in E-commerce

the protocol is completed, A has iB and B has iA and both reach a success termination

state. Termination occurs when a party who behaves according to the protocol will

eventually reach either a success or a cancel termination state. The last in this string

of definitions is a preliminary definition of fairness: At least one party does not behave

according to the protocol or at least one item does not match the description, but no

honest participant wins or lose anything valuable, fairness has occurred.

As we can see, only when both of the parties check the terminated states can the

fairness of the exchange be verified. It is a strict verification for an exchange, as it can

protect the benefits of both parties. This strict fairness requirement for both parties is

called strong fairness [3, 32]. If the exchange process is long enough to separate the

verification of the parties, we have a weak fairness termination. It describes the situation

when the parties can only prove themselves if they behave correctly, such as when the

exchange verifications are asynchronized. For example, in a weak fairness termination, if

party A proved they followed the prescribed protocol, then it provided a fair exchange to

party B. But if B at this time can not prove their behaviors are correct, it is still accepted

as a weak fairness termination until later on party A proved party B’s behaviors were

incorrect.

A fair exchange is still termination-related. Fairness can not promise the exchange be

successful; it promises that even when the exchange failing, all the parties can get their

items back. A successful fair exchange is terminated at a success state, that is, both

parties receive the items from the other party. A failing fair exchange is terminated at a

cancel state, that is, both parties do not receive the items from each other.

The tough thing in the fairness verification is who will be in charge of judging the proof;

in most cases a court and a lawsuit are involved. However, it is unclear how acceptable

the proof is, and lawsuits are always expensive with an unpredictable outcome. To avoid

the complexity and expense of the lawsuit, either of the business parties may try to keep

the exchange in a zone of strong fairness. As Henning Pagnia et al have proved in [32],

a fair exchange has to involve a third party to judge the fitfulness of the exchange to the

fairness.

2.2 Trust in E-commerce 15

A third party working in the exchange transaction should be accepted by both of

the business parties. In other words, a third party should be trusted by both of the

business parties. There is a semi-trusted third party issue, which means the third party

may misbehave themselves, but does not conspire with either of the business parties.

According to the requirements from the payment system, in our B2B e-commerce model,

we are looking for correct behaving third party, so we won’t discuss the semi-trusted third

party in this thesis.

2.2 Trust in E-commerce

In fair exchange, a trusted third party can insure the exchange runs in an expected way.

Trust is usually considered as attitude and disposition of belief in competence, integrity

and predictability [23, 47]. If a member believes his partner has the capability to execute

his request and the willingness to do that, or if the member believes that his partner can

be relied on and his behaviors are consistent enough, or if a member believes that the

business will keep on going transparently to him and under his control, willingness or

expectation, we say the member trusts his partner [23]. The trustor either believe the

trustee, or he can predict the trustee’s behavior, or he can control the trustee. If the

trustee is worth enough for the trustor to take the risks of unbelievable, unpredictable

or uncontrollable things happening, and chooses to trust him, the turstee is trustworthy.

In practical commerce, trustworthiness usually gains from long term cooperation, good

business credits and formal legal contracts.

Business parties need to trust each other because they believe that trust can lower

their business risk [36]. In traditional commerce, if the parties trust each other enough,

it is not necessary that the exchange transaction always be fair; they can take the risk

that either party was assaulted in one exchange, to keep the business relationship alive

for further benefits in a long term. However, this does not work in e-commerce. In e-

commerce, the business parties may not be familiar with each other, or even not heard

each other before. In an e-commerce business, what the members are facing are all the

16 B2B in E-commerce

signals on the computer network instead of the real, physical entity. It is quite hard for

a member to feel that his partner is stable or trusted on the first deal. After all, any

information from the web could be faked [43]. It will extremely lower the effectiveness

of the business for the parties to run through the steps of checking and building trust, if

it is not impossible; it is much harder for people to check the abstract electronic signals

than the physical entities in every single business [43].

As a solution to building the trust more easily and lowering the risks, a model of the

trusted third party has been developed in the B2B e-commerce [42]. In this model, the

business parties exchange and deal through a third party which trust both of the parties

and is trusted by both of them as well. They trust the third party rather than each other.

They have built a stable and consistent relationship with the third partner individually

and can exchange through the trusted third party. The third party can support the trust

for the parties by the conventional ways already mentioned. After the parties make the

deal, the third party will look after the business, such as goods delivery, bill payment and

banking transfers business for the parties. As the third party trust both of the parties, it

guarantees the payment process to both of them. In this paper, we call this third party

as a trusted intermediate party (TIP).

Another important benefit for the parties is that the e-commerce service from a third

party can lower the high cost of development which is making proprietary or custom

hardware and software unattractive [48]. Therefore, more and more small business orga-

nizations are coming to buy a TIP service as their e-commerce solution. As the TIP is

acting in such a key role in the B2B e-commerce, we need to be concerned more with the

security of the TIP and the secure processing of its business logic.

2.3 AARN B2B Payment System

As a B2B payment service provider, AARN Innovation Limited provides an intermediate

e-commerce service to the business parties to reduce their cost on reconciliation. This is

the AARN payment system which used to be called as EDIS i-payment system. It has

2.3 AARN B2B Payment System 17

established a network for hundreds of small or medium-size companies and organizations in

New Zealand. These businesses have developed trust with AARN and have authenticated

AARN to manage their payment process from their bank account. As each of the parties

has its own bank account, it is very hard for the system to connect with each bank and

get the authority to transfer funding from the business parties account. The engineers of

AARN decided to build an architecture based on the TIP theory. In the architecture, we

will band the payment system to a unique bank as the intermediate bank; all the transfer

processes with the business parties are either started from this intermediate bank, or

terminated at the bank. The reason we involve an intermediate bank is, the internal

transfer processes between banks are mature and stable. Banks have found the way to do

this business and built the standard for transferring funds through different banks, even

oversea banks.

For our puropses, a business role is an organization which is willing to do some business

with other organizations. There are several kinds of business roles involved in our B2B

service, the vendor(s), the customer(s), the TIP and their banks. A vendor is a party

who is going to exchange his goods for some money. A customer is a party who is going

to exchange money for some goods he needs. A vendor and a customer are both called

business parties. The goods from the vendor and the money from the customer are their

items respectively. The TIP acts according to the definition in 2.2.

One transfer service includes three processes: the process of contract, the process

of delivery, and the process of payment. As we are only concerned with the payment

process, we describe only that process. A payment process includes many transactions.

A transaction is a set of behaviors by one or two parties, to provide a function, such

as storing data or removing records. All these functions together, provide the funding

transfer function of the TIP. To approach the transfer function, business provides two

kinds of payment method, Direct Debit payment (D/D) and Direct Credit payment (D/C).

In a D/D payment, the payee is authored to access a nominated customer account by the

agreement they made. The payee debits the payment directly from this nominated account

to his own account. If the payment proceeding from the observed way, we have a D/C

18 B2B in E-commerce

payment. In a D/C payment, the customer deposits the payment to the payee’s account.

In addition, to ensure benefit to the customer in a D/D payment and to predict the

abuse of the D/D payment by the payee, between the financial organizations whose finan-

cial service can help complete the payment, an agreement is in place where they provide

a recourse transaction after the D/D payment. Within a valid period, if the customer

applies for the recourse transaction, the financial organization forces the payment back

without any limitation from the payee. This valid period in New Zealand is 2 days.

Besides these definitions, in our case study, we set up the business using this business

logic: first, the vendor delivers his goods or service to the customer; after both of them

identify the delivery, the customer pays the vendor.

The initial purpose of our research was to help AARN build a formal model to ef-

fectively analyze the potential operational risks of the system. In this research, we are

concerned with the requirements on the business logic level such as recourse transaction.

By applying a form-based analysis method (see section 3.5), we proved that some require-

ments can partially conflict with the security requirement for the system. Meanwhile, we

used the form-based analysis with the security analysis area. It is fairly new for form-based

analysis method to be applied in this area.

2.4 Problem Setting

In our case, AARN works as a TIP but as we discussed in 2.3 it is still not a formal strong

fair exchange model, nor a weak one. In this case, the TIP can not promise the case

will a strong fair exchange, because it can not control anything of the delivery process.

The TIP can only work after the customer receives the items. By the time the payment

starts, the vendor has already provided its fair exchange to the customer. Therefore, we

are concerned only with the process of the payment transfer. The fairness of the transfer

process needs to be strong, because we have to make sure the customer also provides

its fair exchange. We define this as a semi-fair exchange, but it still promises fairness

during the payment transfer process, and protects all the parties’ benefit only during the

2.4 Problem Setting 19

payment process. Any problem in the delivery process should be argued by the business

parties, or involved in an authority organization as the trusted third party.

On the other hand, as a service provider, AARN would like the whole system to work

as safely as it can. Therefore, if the payment process of the fair exchange is particularly

strong, the risk of the TIP will be lowest. Although the risks of the business parties are

also limited, the service provider concern the TIP as a primary risk.

Additionally, service providers face the problem of illustrating the features and benefits

of their system to their potential customers – the business parties. As a requirement from

the market, the easiest diagrams and contents are the best way to illustrate the work

processes of the system to a customer who has no technical background but lots of interest

in how the system works.

Banks must consider both financial risk and operational risk in all their operations [5].

An operational risk is the risk of loss due to inadequate or failed internal processes, or

systems, human error or practice, or from external events [5]. A financial risk, on the other

hand, involves capital flow, including profit risk and liquidity risk. Vendors, customers,

and TIPs categorize their risks as either financial or operational ones.

As a business level analysis, our research greatly concerns financial risks. Also because

our case study studies the fairness of the payment, liquidity risk is not in our analysis.

We will focus only on profit risk. No business owner wants to risk losing money when

engaging in any transaction. The operational risk in the modeled e-payment system is

at an implementation level, below our level of analysis. Such risk is already fairly well

managed by well-known techniques in information security. For example, using crypto-

graphic hashes to ensure message integrity would make it very difficult for an adversary

to falsify a message. Using robust message-passing protocols, it is very rare for a message

to become “lost” or be misdelivered.

Therefore our purpose of the modeling is to formalize the case in a simple and un-

derstandable modeling so we approach a strong fair exchange model for the payment

processes. We expect our modeling can detect complex and serious fraud risks in the

business, but in our research we only focus on a simple case and try to detect the fraud

20 B2B in E-commerce

in this case. We assume the items have been accepted by the customer and the vendor is

waiting for the pay back. To transfer funding from the customer to the vendor, the TIP

should have the authority identified by the business parties on their bank accounts. Also,

the profits or benefits of the TIP are not included in this modeling, as it only concentrates

on the roles in the transfer processes.

2.5 Summary

In this chapter, we discussed a specified business environment, the fair exchange. In a fair

exchange, the business logic requires the business parties examine their terminal states.

Also we described the business logic for a fair exchange. In our case study, we are trying

to create a model for the real payment system, which fits the logic requirements of the

fair exchange. The concepts we defined in this chapter will direct the formal modeling in

the following chapters.

3
Language for Modeling Our Systems

To clearly describe the problems existing in the systems, we need to develop modeling

language. In the business logic analysis, we need the modeling language to be a strong

linguistic tool that presents meanings and descriptions of the business. In this chapter,

we introduce some modeling languages and methods which might fit our purposes for the

system.

3.1 The Evaluation of Modeling Language

Modeling languages, according to the definition from the Wiki Encyclopedia [46], enable

researchers to specify and clarify the requirements of an organizational system on the

business level. These languages are used to visually explain the system requirements

and clarify the functional specification and prototype in a way that management, user

groups, or other stake holders can understand, with a goal of eliciting feedback from these

groups. Several modeling languages are used in security related modeling, such as UML,

Communicating Sequential Processes (CSP), and Petri Nets. Every modeling language

has its own specification and syntax, to approach a specific purpose and solve one kind

of problem. As in business logic analysis, we should choose a proper modeling language

21

22 Language for Modeling Our Systems

for the case we study.

Our target of the case study is to find a formal modeling language that can:� Describe the business in a simple and comprehensive model with limited symbols

and constraints, so that our clients can easily understand and confirm our analysis.� Easily extend the semantics and syntax while keeping the constraints with the ex-

isted formal methods.� Be used in analyzing business logic, focusing on abstract functions for the security

issues of profit risk, and proving fairness.

We explored UML, CSP and Petri Nets for this purpose, and briefly discuss them in

the next few sections.

3.2 Unified Modeling Language

UML is the most popular modeling language for computer architecture, design, and anal-

ysis. Because of its object-oriented features, it has been successfully used in many appli-

cations [10, 13].

As applied in many areas, UML can also be used for security purposes by extending

specific characteristics. Within a formalized design model, UML can work for automatic

verification [17]. Currently there are couple of extensions of UML used for security pur-

poses.

SecureUML is an example of a security application of UML. By applying different

patterns related to access control infrastructures, it extends UML to support constraints

of authorization [17]. “SecureUML defines a set of stereotypes and uses them to au-

tomatically produce the code that controls how users can access the different parts of

the application. These stereotypes consider only the static parts of UML; dynamic ones

are part of the future work” [17]. SecureUML integrates access control information and

defines the security system by models and is constructed by these models [27]. As an

3.2 Unified Modeling Language 23

application of UML, SecureUML describes the business based on objects and does not

clearly define the process steps of the business logic. In the example of [27], it separates

the roles (e.g user), for the access control, but it does not define what is a proper process

for controlling a role. Instead, the objects in SecureUML are the majority on presenting

the security.

Another ambitious UML profile is UMLsec [17], which extends state charts and com-

ponent diagrams on the following applications: fair exchange, confidentiality, secure in-

formation flow, and secure communication link [20]. UMLsec extends formal semantics

based on Abstract State Machines (ASM) language to fit the analysis of model-driven

design. The purpose of UMLsec includes but is not limited to the following:� Evaluating the vulnerabilities in the model for the specifications of UML;� Encapsulating established rules of security engineering into the model;� Providing a general way for developers to check UML models in security;� Considering security from the application design level;� Effectively and economically modeling verification [17].

In UMLsec, common security requirements are designed as stereotypes with tags (se-

crecy, integrity, etc) [17]. UMLsec evaluates specifications and indicates possible vulner-

abilities by applying associated constraints [17]. It describes the static security require-

ments by giving security policy and the specification by which UML satisfies the defined

requirements [17]. As to the enforced requirements, such as secrecy and integrity, UMLsec

provides basic security stereotypes, and it allows analysis of different threat scenarios ac-

cording to the strengths of the attacker. Additionally, it allows integration of security

concepts such as access control and user authentication into general applications as com-

ponents, and it provides simple security features such as symmetric encryption. The main

goal of UMLsec is to “automatically check security properties on an extended UML model,

stored in XMI [abbreviation for XML Metadata Interchange] standard format so that a

24 Language for Modeling Our Systems

formal tool can detect the vulnerabilities in the model to verify security requirements”

[17].

UMLsec describes business logic better than SecureUML because it also covers the

work flow and the security issues in the work flow. But there is no analysis method nor

related constraints to enhance its capability for description. It constructs the implemen-

tation as classes and can be used to define the function for the classes. But the way it

describes the relation to the objects and the message exchanging is complex and messy,

which is hard for communication and explanation to clients.

3.2.1 Object Constraint Language

Object Constraint Language (OCL) is an associated constraint language in UML. OCL

provides a formal description of a framework for specifying constraints on a model; specif-

ically, it is designed for presenting additional constraint information. It can provide a

special set of annotations that impose additional restrictions on a model as the con-

straints [34]. As a textual constraint language, OCL defines declarative expressions which

are also free of side effects. In addition, OCL supports the notational style similar to

common object-oriented languages. Model designers can define specific constraints on an

abstract level as simple and clear concepts to help describe adequate information from

lower level implementation details.

As a textual language that allows specification of additional constraints, OCL usually

is combined with a UML model to enhance the language quality of description. Usually a

model itself provides the context for constraints as the description of the application [34].

As an example, let us assume a requirement in a UML diagram is that “all department

objects can not have a negative budget” [34]. As a data constraint of the UML, we have

context Department inv :

self.budget >= 0 [34].

By using OCL in UML diagrams, we add more information into the diagrams, which

helps the model describe things more correctly, especially in the security modeling. In

3.3 Communicating Sequential Processes 25

fact, OCL can help UMLsec on constraints.

3.3 Communicating Sequential Processes

Communicating Sequential Processes, or CSP, is “a simple programming language de-

signed for multiprocessor machines” [19]. It was developed based on the assumption that

every process has its own processor to execute on and only on a message passing through

the concurrent processes as the solution of communications between these processes [19].

The key feature of CSP is “its exclusive reliance on non-buffered message passing with

explicit naming of source and destination processes” [19]. For simulating the concurrent

processes, CSP uses guarded commands inside alternative commands to allow a process

to wait for messages coming from different sources [19].

CSP is applied in security areas, especially in parallel command execution [8], non-

interference between processes, and access control [9]. As its features have shown, CSP

describes the processes which can perform events. CSP conventions use the typological

conventions of upper case letters for processes, lower case letters for events, and a capital

initial letter for names of sets of events [9]. The ultimate unit in the behavior of a process

is an event. Events are regarded as instantaneous; if we wish to represent an activity

with duration, we must introduce two events to represent its start and finish so that

other events can occur in between [8]. CSP is “an abstract language designed specifically

for the description of communication patterns of concurrent systems components that

interact through message passing” [39]. Researchers have applied CSP to the analysis of

non-repudiation protocol for a weak fair exchange [28]. Here CSP is mainly involved in

describing the processes dealing with encryption and authentication of the receipt or stub.

Although it functions to describe the processes, it hardly has a clear abstract description

of processes in a specific application. The semantics of the simple symbols can not fully

express the requirement of the application, for example a key meaning message for a

specific commerce requirement like a D/D payment requirement.

CSP provides a very formal and precise way to describe the behavior of a collection

26 Language for Modeling Our Systems

of message-passing processes [40, 35]. Many properties of these processes are suitable

for analyzing, due to the restrictions in the language. However the very formality and

precision of this language seems to make it unattractive to most designers, and it is

certainly almost incomprehensible to anyone without a strong technical background in

computer science [2]. The proof process is strongly related to mathematic semantics,

which might be a challenge to the clients. All these reasons makes it unsuitable to be our

target modeling method.

3.4 Petri Nets

A Petri net is a very nice formalism for expressing token-passing systems [21]. It has been

extended to the modeling of message-passing systems, in several different ways.

In a very initial research paper [30], Murata gave out most of the initial concepts

and crucial constraints to which we refer as an illustration: As a specific kind of double-

directed graph, it contains a start state called the initial marking, or MO. The underlying

graph N of a Petri net is a directed, weighted, bipartite graph consisting of two kinds of

nodes, called places and transitions, where arcs are either from a place to a transition

or from a transition to a place. In graphical representation, places are drawn as circles,

transitions as bars or boxes. Arcs are labeled with their weights (positive integers), where

a k-weighted arc can be interpreted as the set of k parallel arcs. Labels for unity weight

are usually omitted. A marking (state) assigns to each place a nonnegative integer. If

a marking assigns to place p a nonnegative integer k, we say that p is marked with k

tokens. Pictorially, we place k black dots (tokens) in place p. A marking is denoted

by M, an m-vector, where m is the total number of places. The pth component of M,

denoted by M(p), is the number of tokens in place p. In modeling, using the concept of

conditions and events, places represent conditions, and transitions represent events. A

transition (an event) has a certain number of input and output places representing the

pre-conditions and post conditions of the event, respectively. The presence of a token

in a place is interpreted as holding the truth of the condition associated with the place.

3.5 Form-oriented Analysis 27

In another interpretation, k tokens are put in a place to indicate that k data items or

resources are available. There are some typical interpretations of transitions and their

input places and output places in [30]. A formal definition of a Petri net is also given

in [30]. An additional description is, ”A Petri net is a directed bipartite graph with nodes

called places, depicted as circles, and transitions, depicted as bars. The edges of the graph

are called arcs. A marking is an assignment of an integer to each place in the net that

represents the number of tokens, depicted as black dots, at that place” [16].

From the previous description, we can have the impression of Petri nets that it is a

state-based message-passing modeling tool. However, to express the business logic, the

constraints of the Petri nets are somehow weak, and its formal states descriptions can not

contain more information above the directions. Furthermore, its mathematical structure

is strict but not flexible enough. The analysis with Petri Nets is based on the status of

each point, and the result set of the analysis can have no relationship with the diagram.

Besides, as the number of points increases, the diagrams can be complex, but the symbols

of the diagrams still only describe the business abstractly.

3.5 Form-oriented Analysis

From our discussion in the previous sections, among the former modeling languages and

tools, UMLsec probably come closest to being our target modeling method. However,

as an abstract architect modeling tool, it is still too rough to describe all the required

information. Some important information such as the sequence of the processes must

be put in the comment. Meanwhile, it is hard to connect the process with the program

design; the automatic checking process can still not transfer it into the detail program

design level, such as activity diagrams or state diagrams. In addition, it defines tags of

start and stop, but the sequence diagram can not properly and clearly describe the whole

application in considering the objects and roles. Therefore we choose to use a simpler but

more abstract and compact modeling language for our simple business logic description,

and we find form-oriented analysis.

28 Language for Modeling Our Systems

Form-oriented analysis approaches to the modeling of certain general issues with a

submit/response interaction paradigm [14]. Submit/response style applications are the

applications wherein the user exchanges information by a bundle of data; then the system

replies with the result of the data execution. In addition, the reply may include a further

step for the information exchange. Originally, form-oriented analysis worked for well-

known form-based applications ranging from typical internet shops through supply chain

management to flight reservation systems [14]. However, we can apply this modeling in a

model of interaction between different actors, our so-called parties.

3.5.1 DTIM

Form-oriented analysis can be applied to different models. In this paper we discuss the

application for modeling communications between automated systems, which in our case

are the communications between the payment system, the business parties’ Enterprise

Resource Planning system (ERP) and the banking transfer system. The communications

are generally based on messages. The form-oriented analysis method uses Data Type

Interchange Models (DTIM) to represent the involved types of messages and systems [15].

Figure 3.1: A DTIM and its equivalent DFD.

A DTIM is similar to a Data Flow Diagram (DFD). DFD is usually used to explain

the basic logic of the application. It is simple and convenient, but has less information,

3.5 Form-oriented Analysis 29

especially no timing. DTIM can reconstruct DFD into a formal model. As an example,

Figure 3.1 illustrates a DTIM and its equivalent DFD which describe the same business

logic respectively.

A wonderful feature of DTIM is that it allows the extension on diagram signals. As a

business logic modeling method, DTIM does not limit its semantics. By adding customer-

defined signals, it can express specific business logic under the special requirement. Also,

we can compose some associate modeling language on DTIM, such as UMM.

3.5.2 UMM

UMM is a strict subset of OCL 3.2.1. It describes only messages exchanged between the

parties. The messages are usually determinative in a specific system, so that a type, or

we call it a class, can adequately describe the message. As UMM is a class model, the

instances of the model form strict hierarchical structures, and they can build complex

messages by the composition of the UMM associations [15].

In form-oriented analysis, UMM has two parts – the UMM data structure and the

business constraints. The data structure defines the types of the messages in the transac-

tions. The business constraints define the messages exchanged between the transactions.

In a business constraint, there is a source transaction and a target transaction. The out-

put specification expresses constraints to the message that is output to the target. A

“flow condition” expresses the condition under which the message is sent; it is usually

a “select” condition or “if” condition. The business constraints also have methods to

support business behavior. For example, target.tp.add(source.tx) means the message tx

from the source transaction will be added into the message tp of the target transaction.

To illustrate the work for DTIM and UMM, we use the following scenario.

There is a very simple search engine for the library online system with two parts

of data for the search function, the local database and the remote database. Here the

local database is the storage for the books and documents in the library, and the remote

database is a larger online storage which provides the library service. To make the example

30 Language for Modeling Our Systems

simple, we assume the search cover only the title of a book. The business logic of this

scenario is in the following steps:

1) The system starts searching by a name of title, and deals with the title including

trimming it and analyzing the literature, and sends the searching key words to the

database search engine.

2) The database search engine looks through the data in local database and replies

with the result(s).

3) If the engine found the book(s) named by the querying title, it lists its(their) bibli-

ography with abstracts.

4) After the list, the system also provides an extending search on the remote database.

It sends the searching key words to the remote database.

5) The remote search engine looks through the data in the remote database.

6) The remote search engine collect all the results from the remote database, and sends

them back to the local.

7) The system lists all the results from remote database.

The diagram in Figure 3.2 illustrates the process and its business logic. In this DTIM

diagram, we restrict several kinds of symbols to different kind of descriptions. For these

descriptions we define different types of circles shown in Figure 3.2: a double-circle is a

starting point for a transfer process; a bold circle is an ending point; and a regular-width

circle is a mid-point in a transaction (every system diagram can have many regular-width

circles).

To extend the formal description of this diagram, we define the data structure of the

messages transfer between the transactions as follows:

3.5 Form-oriented Analysis 31

Transaction > A

title: String 1..1

Transaction > B

title: String 1..1

Transaction > C

title: String 1..1

Transaction > D

title: String 1..1

list: bibliography 0..n

Transaction > E

title: String 1..1

Transaction > F

title: String 1..1

list: bibliography 0..n

Transaction > G

title: String 1..1

list: bibliography 0..n

Here in this UMM data structure, transaction A is the start transaction that the

search engine receives the title of a book from the client. Transaction B is searching the

books in local database and sends the title to transactions C and D. Transaction C starts

a search on the remote database and obtains the title from transaction B, then sends it

to the remote. Transaction D receives the search result – a bibliography list. Transaction

E receives the title through the network, starts the search, and sends it to transaction F.

Transaction F then receives the search result (another bibliography list) and sends both

the title and the result back to the local. Lastly, transaction G receives the title and the

bibliography list and presents them.

In Transaction A, there is one message, the title of the aiming book. Similarly, in

Figure 3.2: An example for a book search engine.

32 Language for Modeling Our Systems

Transactions B, C, E we also need the title message. On the other hand, in Transactions

D, F, G, a bibliography list is also needed.

Therefore, according to the business logic, the UMM constraints for the DTIM diagram

are:

1) A to B: Output: target.title = source.title

// this equation expresses the message exchanges between the transactions.

//An output explains the direction of the exchange and the content of the message.

2) B to C: Output: target.title = source.title

//the search engine looks through all the data in the local storage

B to D: Output: target.title = source.title Flow: source.title = B → allinstances() →

select(title).title

//A flow expresses a selection or a searching behavior.

//select(title).title expresses selecting the list by the condition of title.

Output: target.list.add(source.title)

//This output adds the result records into a list.

3) C to E: Output: target.title = source.title //the search engine looks through all

the data in the remote storage

4) E to F: Output: target.title = source.title

Flow: source.total = B → allinstances() → select(title).title

Output: target.list.add(source.title)

5) F to G: Output: target.title = source.title

target.list = source.list

From the DTIM diagram and UMM constraints above we can see, as a formal de-

scription method, form-oriented analysis works well to describe the business logic of the

example as formal modeling. This formal modeling for the business logic can be used for

the basic discussion for the application from business logic level.

3.6 Summary 33

3.6 Summary

We can see this feature of modeling language description: there is no unique answer for

the modeling language to represent the real questions. However, there are limitations of

the requirements which can influence the performance of the modeling langauge. Even for

the same business question, we choose different modeling languages or combinations of

them under different requirements. As an example, in the case of our B2B fair exchange

modeling, we are more focused on the business logic content description and its external

information. Meanwhile, considering the requirement of formal language design, we choose

to apply the form-oriented modeling for the case study. However, this does not mean all

the other languages are not fit for the model. In addition, many of the modeling languages

are improving the semantics and symbols to extend the application area. Therefore, there

maybe other modeling languages suitable for this case study, but we just choose the best

one we could see. Form-oriented analysis modeling seems to be a promising and novel

approach to model the business logic of applications. We choose it as the method of

modeling the business logic of the AARN payment system in the next chapter.

34 Language for Modeling Our Systems

4
Modeling the AARN Payment System

In this chapter we discuss the modeling of our case, the AARN payment system. We

illustrate how to use the DTIM as the measure of form-based analysis for the formal

presentation of the structure of the B2B e-payment system using a trusted intermediate

party (TIP). There are five parties in this system: a vendor, a customer, the TIP, customer

bank bankC, and vendor bank bankV.. First we setup some specific constraints for our

DTIM diagrams, then we model the current existing payment system and analyze the

model.

4.1 The Constraints

A DTIM diagram can represent messages, types of messages, and the relationship between

parties and the subsystem in the whole system. Despite the simplicity of the basic DTIM

diagram symbols, it allows users to extend their own symbol types which have to be

compatible with the basic symbols as a sub-class with specific meaning, as we mentioned

in 3.5.1. In our case, based on the definition of fair exchange, the semantics of our DTIM

diagram must include a “start” point and an “end” point. We use the definitions for the

double-circle, bold circle and regular-width circle, mentioned in Chapter 3. For additional

35

36 Modeling the AARN Payment System

expressiveness we define different types of symbols shown in Figure 4.1: labels on nodes

indicate message types as identifiers. We require that all messages in a DTIM have

different nodes so that DTIMs have similar semantics to an object-oriented programming

language, where a DTIM system type is analogous to a class and a DTIM message is

analogous to a method call. Multiple instances of a single system are possible, but in this

thesis we will analyze one instance only for each system type.

Dotted lines in our DTIMs connect comment boxes to circles, as seen in the following

Figure 4.2. On Step 6, BankC sends either a “Cancel Payment” message to the TIP, or a

“success” message to BankV. We also use dotted lines to connect comment boxes to arcs,

or to pairs of arcs, to indicate special semantics as with the “XOR” messaging in Steps 4

and 6. Furthermore we use ranges, such as the “0..1” near the in-arc of transaction I in

the TIP, to indicate a variable number of outgoing messages represented by an arc. In the

case of node I, it may not be invoked at all or only once. Finally, we use a straight line

to express the relation of proviso between two independent transactions in a time-based

consequence. For example, in Figure 4.3, after transaction E happens, the transaction

L may happen (or not; we use the range “0..1” to express this) later on, but L is not

directed by E. In fact, L is another start transaction for a parallel process.

Figure 4.1: Custom signals.

4.2 The Payment Transfer Architecture 37

4.2 The Payment Transfer Architecture

As the computer architecture for a business, the model for the payment transfer has

to be reliable and secure. As the transaction will be either successful transfer or failing

possibilities, the concern is to prove the transfer is a fair exchange to avoid profit risk. Also,

the model should provide evidence for the security issue that there is no other unexpected

events in the transfer. In our case, we model the architecture and re-construct it out of

concern for events of recourse transaction. In the first architecture, we are not modeling

the intermediate bank we mentioned in 2.3. The discussion about the intermediate bank

will be on the next chapter.

4.2.1 The Simple Economic Model

The AARN payment system concerns transferring payment between business parties. A

payment transfer process involves a vendor, a customer, their banks, and a TIP. This

simple scenario illustrates the process: the payment transfer process starts after the cus-

tomer receives the items from the vendor. The TIP first receives an invoice of sale from

the vendor and then asks the customer to approve the invoice. The customer accepts the

invoice and replies to the TIP with confirming the TIP contacts bankC to request sending

funds to bankV. The scenario describes the fundamental steps of the payment process.

According to the scenario, we describe the transfer steps as following business logic:� Step 1 The vendor sends an invoice to the TIP, [GOTO Step 2];� Step 2 The TIP forwards the invoice to the customer and records it as a log record,

[GOTO Step 3];� Step 3 The customer accepts the invoice, and sends out a payment instruction to

the TIP, [GOTO Step 4];� Step 4 The TIP records the payment instruction and checks it with the invoice

record; if they match, the TIP will send payment instructions to bankC, [GOTO

Step 6]; otherwise it will mark the payment as failed, [GOTO Step 5];

38 Modeling the AARN Payment System� Step 5 The TIP rejects the failed payment instruction and notifies both parties

[STOP];� Step 6 BankC transfers the funds to bankV on the order of the TIP; if the transfer

is successful, the process is finished [STOP]; otherwise, bankC will send a failure

notice to the AARN payment system [GOTO Step 7];� Step 7 The TIP sends a failure notice to both of the parties [STOP].

This business logic describes a business transfer process in a simple situation. Our

research is based on this simple economic model and explores the security under different

possible situations.

4.2.2 The Payment Transfer Architecture

In a form oriented analysis, we say that the types of the messages sent between the systems

are collected in a UMM that complements the DTIM diagram. In our case, the UMM

data structure looks as follows:

Transaction > A

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > B

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > C

total: Integer 1..1

paymentID: payment 1..1

Transaction > D

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

bankAccountID1: 1..1

bankAccountID2: 1..1

Transaction > G

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

Transaction > H1

total: Integer 1..1

paymentID

Transaction > H2

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > I

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

4.2 The Payment Transfer Architecture 39

Transaction > E

total: Integer 1..1

bankAccountID1: 1..1

bankAccountID2: 1..1

Transaction > F

Transaction > K1

total: Integer 1..1

paymentID: payment 1..1

Transaction > K2

total: Integer 1..1

invoiceID: invoice 1..1

According to the business logic in 4.2.1, we setup the UMM constraints for this architec-

ture as:

Step 1 A to B: Output: target.total = source.total //the amount of money from the

invoice recorded into the sytem

target.invoiceID = source.invoiceID

Step 2 B to C: Output: target.total = source.total //the amount of the invoice equals

the money the buyer will pay

Step 3 C to D: Output: target.total = source.total

target.paymentID = source.paymentID

Step 4 D to E: Flow: source.total = B → allinstances() → select(invoiceID).total

Output: target.total = source.total

target.bankAccountID1 =source.bankAccountID1

target.bankAccountID2 =source.bankAccountID2

D to I: Flow: else Output: Fail message

Step 5 I to K1: Output: target.invoiceID =source.invoiceID

message(fail)

I to K2: Output: target.paymentID =source.paymentID

message(fail)

Step 6 E to F: Success message

E to G: Output: target.total = source.total

40 Modeling the AARN Payment System

Step 7 G to H1: Output: target.invoiceID =source.invoiceID

message(fail)

G to H2: Output: target.paymentID =source.paymentID

message(fail)

A diagram of the payment transfer architecture in the DTIM diagram is shown in Fig-

ure 4.2. As an extended feature, all the transactions are automatically logged as records

by this system. This feature relates to the details such as the implementation of the

system.

Figure 4.2: The Payment Transfer architecture in DTIM.

4.3 Formalizing the Modeling: the Frame Contract 41

4.3 Formalizing the Modeling: the Frame Contract

Our fundamental constraint is based on the simple economic model just mentioned. Let

us assume a pair of business parties are going to trade within this system applying the

concept of fair exchange. The vendor has a set of goods that the customer wants to buy;

the customer has the amount of money and asks for the goods. From a point of view of

commerce, they are both expecting the value of their properties to grow after the trading.

Therefore they both agree to keep the value of the goods as equal to the amount of the

money for exchange during the transaction of transfer as a part of their contract. This

agreement is a frame contract and is more general than the particular contract. By

formalizing it, we present this frame contract as having the following constraints.

We set� Time t ∈ {Begin, A, B, C, D, E, F, G, H1, H2, I, K1, K2, End} as the point in time

after the named certain transaction;

Within set Time, we describe two time points: Begin is before transaction A, and

End is after F, H1, H2, K1 or K2. They are the terminal points of the process.� Item i: Goods to be transferred;� Actor a ∈ {Customer, V endor, T IP};� Cash c(a, t): Integer (in dollars) which is the cash that actor a has at time t;� Property p(a, t): The total value of the properties that actor a has at time t;� Value v(i): Maps an item onto an integer value (in dollars);� Define Net Fortune n(a, t): n(a, t) = c(a, t) + p(a, t).

From a commercial point of view, the customer and the vendor are probably both

expecting to benefit from the trade. That is, in the end they expect the value of their

fortune to grow through the trade, or at least to stay stable. Thus we obtain

42 Modeling the AARN Payment System

Constraint 1(Actors do not lose net fortune at the terminal position.)

∀a, n(a, End) ≥ n(a, Begin)

We are more interested in fraud than in changes in net fortune due to different valuations

of goods. We have modeled the value of the goods v(i) as not time dependent. Indeed

the value of the goods can change after the trading and the transfer of the money, but

the value changes can be considered as another commercial process which is independent

from this trade and insignificant to our purposes. Also we do not consider fees of TIP.

Another important assumption of our model is that it is a closed model, in which we

have a conservation of cash and goods. That is, the cycling of the transfer is closed and

the sum value of the cash and goods is a conservation of value. We do not consider the

consistency of the transfer, which means no cash or goods can be lost during the transfer

– all transactions should promise the items either in the hand of the source party or in

the hand of the target party. We model this as:

Constraint 2 (Conservation of cash and goods)

∑

a

c(a, Begin) =
∑

a

c(a, End)

∑

a

p(a, Begin) =
∑

a

p(a, End)

From this follows a conservation of the sum of Net Fortune:

∑

a

n(a, Begin) =
∑

a

n(a, End)

Both constraints can only be fulfilled if the fortune of all actors after the transaction

is the same as before the transaction. Therefore we have the proposition

Proposition 1

From Constraint 1 and Constraint 2, it follows that

∀a, n(a, End) = n(a, Begin).

4.3 Formalizing the Modeling: the Frame Contract 43

Proof

If no net fortune of a party has a decreasing value, then the conservation of the sum

of net fortune demands that no net value of a party has an increasing value.

Some explanation is needed here. From 4.2.1 we have F, H1, H2, K1 and K2 before

the time point End. Among them only transaction F describes the successful transfer. By

all the other transactions, n(Customer, End) = n(Customer, A)> n(Customer, Begin)

and n(V endor, End) = n(V endor, A)< n(V endor, Begin) because the vendor delivers his

items after the time point Begin. To attach a constraint to Proposition 1, we assume in

the case of a failing transfer, there will be another transfer after time point End. That can

be another payment transfer start from transaction A again, or a return shipment in which

the customer returns the items to the vendor. In this case we regard n(a, End) = n(a, A)

as a specific situation for Proposition 1.

Since this proposition underlies assumptions of all the parties involved, this agreement

is seen as a frame contract under the conditions of a conservation model and is less

specific than the particular contract but contains a vital interest of the parties involved.

If this contract is violated, then there is a risk of fraud.

As we set the value of the vendor’s items as v(i), we have the other group of equations

under a successful fair exchange:

n(Customer, Begin) = c(Customer, Begin) + p(Customer, Begin),

n(Customer, End) = c(Customer, End) + p(Customer, Begin) + v(i),

and similarly

n(V endor, Begin) = c(V endor, Begin) + p(V endor, Begin),

n(V endor, End) = c(V endor, End) + p(V endor, Begin) − v(i).

Therefore because of Proposition 1, we have

c(Customer, Begin) − c(Customer, End) = v(i),

c(V endor, End) − c(V endor, Begin) = v(i).

Under these equations are assumptions that (1) both business parties have to agree

that the cash exchanged in the transfer process reflects the value of the items and (2)

they are equal to each other in a fair exchange.

44 Modeling the AARN Payment System

Therefore we have the following corollary:

Corollary 1 of Proposition 1

In a fair exchange, the business parties agree that the cash transferred equals the value

of the items.

c(Customer, Begin)−c(Customer, End) = v(i) = c(V endor, End)−c(V endor, Begin)

On the other hand, because the parties are involved in the transfer process, their

net fortune must be changed in some steps of the process. Therefore n(a, t) fluctuates

during the process and returns to the value at the beginning. According to the profit risk

mentioned in Section 2.4, we have the following proposition:

Proposition 2

∀t, risks exist if n(a, t) < n(a, Begin).

It is obvious that Proposition 2 fulfils Constraint 1. Also we can tell in our

economic model, because vendors deliver goods first, they are always under risk before

they finally get the funds.

In addition, according to the frame contract agreement, we make the following decla-

ration:

Declaration 1

In a close model, a fair exchange exists as long as n(a, Begin) = n(a, End).

Also we have another corollary:

Corollary 2 of Proposition 2

If n(a, Begin) <> n(a, End), a fraud exists in the transfer process that breaks the

fair exchange.

To ensure the fair exchange, we need to detect any possibility of n(a, Begin) <>

n(a, End).

4.4 Analysis of the Modeling

Our analysis strategy is to trace all the possible roads of the transfer process. If we find

in any road terminal, a result n(a, Begin) <> n(a, End) exists, then we can declare a

4.4 Analysis of the Modeling 45

risk of fraud.

4.4.1 Simplifying the model

To trace the possible roads in the transfer process, we test our constraints from the last

section against the DTIM diagram. For the sake of simplicity we base the analysis on a

couple of natural assumptions.

p(Customer, Begin) = 0,

c(TIP, Begin) = 0, p(TIP, Begin) = 0,

c(V endor, Begin) = 0 and p(V endor, Begin) = v(i).

We observe

n(Customer, Begin)=c(Customer, Begin) = v(i),

n(TIP, Begin) = 0, n(V endor, Begin) = v(i);

We would like to find

n(Customer, End) = p(Customer, End) = v(i),

n(TIP, End) = 0,

n(V endor, End)=c(V endor, End) = v(i).

According to 4.3, a fraud exists in a succeeding road if n(TIP, End) <> 0 or

n(Customer, End) <> v(i) or n(V endor, End) <> v(i); or it exists in a failing road if

n(TIP, End) <> 0 or n(Customer, End) <> 2v(i) or n(V endor, End) <> 0.

4.4.2 Status of the Accounts

In every transaction, there are different operation behaviors. To design the system and

implement the business logic within each transaction, we express parties’ behaviors in a

formula. Also, in the formula the input from former transactions is seen as a variable. To

illustrate, assuming in an imaginary transaction X, the customer has two behaviors : 1)

obtain the incoming data from a former transaction; and 2) add an asset to the source data.

We use a variable transaction former to describe the transaction one step before X. In a

formula we can describe it as X : n(Customer, X) = asset+n(Customer, former). Once

46 Modeling the AARN Payment System

the business logic is decided, the stable behaviors in each transaction can be expressed

in a formula in which the source data and output are variables. Therefore we can list

all the formula for all the parties at all the time points of the process. Also, there is a

formal relationship between the frame contract and the UMM: at a point in time Begin,

all the parties have an initial state. We can calculate their account states at each time

point according to the transactions formula. The states at terminal time point End are

paramount for the analysis. In conclusion, the sequence of the transactions decide the

terminal states of the parties. We list all the formula according to the UMM constraints.

(1) Begin: n(Customer, Begin) = v(i), n(TIP, Begin) = 0,

n(V endor, Begin) = v(i);

(2) A : n(Customer, A) = n(Customer, former)+v(i), n(TIP, A) = n(TIP, former),

n(V endor, A) = n(V endor, former) − v(i);

(3) B : n(Customer, B) = n(Customer, former), n(TIP, B) = n(TIP, former),

n(V endor, B) = n(V endor, former);

(4) C : n(Customer, C) = n(Customer, former), n(TIP, C) = n(TIP, former),

n(V endor, C) = n(V endor, former);

(5) D : n(Customer, D) = n(Customer, former), n(TIP, D) = n(TIP, former),

n(V endor, D) = n(V endor, former);

(6) E : n(Customer, E) = n(Customer, former), n(TIP, E) = n(TIP, former),

n(V endor, E) = n(V endor, former);

(7) F : n(Customer, F) = n(Customer, former)−v(i), n(TIP, F) = n(TIP, former),

n(V endor, F) = n(V endor, former) + v(i);

(8) G : n(Customer, G) = n(Customer, former), n(TIP, G) = n(TIP, former),

n(V endor, G) = n(V endor, former);

(9) H1 : n(Customer, H1) = n(Customer, former), n(TIP, H1) = n(TIP, former),

n(V endor, H1) = n(V endor, former);

4.4 Analysis of the Modeling 47

(10) H2 : n(Customer, H2) = n(Customer, former), n(TIP, H2) = n(TIP, former),

n(V endor, H2) = n(V endor, former);

(11) I : n(Customer, I) = n(Customer, former), n(TIP, I) = n(TIP, former),

n(V endor, I) = n(V endor, former);

(12) K1 : n(Customer, K1) = n(Customer, former), n(TIP, K1) = n(TIP, former),

n(V endor, K1) = n(V endor, former);

(13) K2 : n(Customer, K2) = n(Customer, former), n(TIP, K2) = n(TIP, former),

n(V endor, K2) = n(V endor, former);

From the above formula we can see that these transactions in the business process

mainly exchange the information, but only transactions E, F, and G were involved in

the funding transfer. As we will not consider the security of the information exchange

process, we focus on these funding transfer transactions.

4.4.3 Tracing the fraud by DTIM

From the features of the DTIM diagram, it is obvious that a “sequence” exists between

the transaction steps. A sequence means a set of transactions, based on time and related

to each other. Steps are the message exchanges between transactions. A sequence is

also based on the order of the steps. A previous step in the sequence will finish before its

following step (it is represented by the arrow line in the DTIM diagram) starts; the source

of the previous step goes ahead of the target of the following step. If we trace the steps,

we find that with this logic this transfer process consists of different “roads” of sequences.

To explain this, we setup a series of sequences for the transfer process. For example,

in Figure 4.2 as Step2 : B− > C is the previous step of Step3 : C− > D. Then the source

transaction of Step 2 (which is B) is ahead of the target transaction of Step 3 (which is

D). In a sequence Z, we describe this as seqZ = B− > C− > D. In addition, as the

different conditions lead to a different sequence, we can build a set of sequences to cover

all the situations in the application.

48 Modeling the AARN Payment System

Therefore the original application can be expressed as SetA{Seq1, Seq2, Seq3}, in

which

Seq1 = Begin− > A − B− > C− > D− > I− > K1(K2)− > End

Seq2 = Begin− > A − B− > C− > D− > E− > F− > End

Seq3 = Begin− > A − B− > C− > D− > E − G− > H1(H2)− > End

In each transaction, the transaction behaviors of funding are fixed, as described

in 4.4.2. Also because we have the initial states of the parties, we can calculate the

result of each sequence, and we can check whether the results of the sequence obey fair-

ness rule 4.3.

To illustrate, assume P is the set of fair exchange result

P= {(n(Customer, End) = v(i), n(TIP, End) = 0, n(V endor, End) = v(i)),

(n(Customer, End) = 2v(i), n(TIP, End) = 0, n(V endor, End) = 0)}

We use Result(i) to express the result of sequence i. Because the start states in our case

are: Begin: n(Customer, Begin) = v(i), n(TIP, Begin) = 0, n(V endor, Begin) = v(i),

after calculating the sequence we have Result(i) ∈ P, i ∈ SetA.

4.5 Risk Analysis

In considering the profit risk, one of the security concerns is recourse. A recourse provides

a chance for observing the transfer direction. By the end of the process, if the customer

requires a recourse on bankC, he can receive a payment back. As any transaction working

on the transfer is changing the states of the parties, the transaction for a recourse should

be included in the risk analysis. Therefore the business logic extends to a new step:� Step 8 the bankC sends a recourse notice to the bankV [STOP].

Adding the recourse transaction into the DTIM diagram, we have a new payment

transfer architecture, as shown in Figure 4.3.

Also we extend the UMM constraints and the formalization as follows:

Transaction > L

4.5 Risk Analysis 49

Figure 4.3: The Payment Transfer Architecture in DTIM–extended.

total:Integer 1..1

account1: account 1..1

Transaction > Recourse

total:Integer 1..1

account2: account 1..1

Step 8 L to Recourse: Output: target.total = source.total

SideEffect: account1.net = account1.net + total

SideEffect: account2.net = account2.net − total� Time t ∈ {Begin, A, B, C, D, E, F, G, H1, H2, I, K1, K2, End} as the point in time

after the named certain transaction;

50 Modeling the AARN Payment System

We add a new sequence into SetA as SetA′ = {Seq1, Seq2, Seq3, Seq4}, in which we

have:

Seq4 = Begin− > A− > B− > C− > D− > E− > F − L− > Recourse− > End

Obviously, from Seq4 we can calculate the n(V endor, End) = 0 and n(V endor, Begin) >

n(V endor, End), which is still risky for the vendor. Although Result(Seq4) ∈ P , from the

DTIM diagram, the recourse transaction happens when the customer requires it, but the

transaction does not work with TIP or the vendor. This makes the recourse transaction

out of the control of TIP, and neither the payment system nor the vendor can notice it

on time. The worst thing is, for the vendor, the account record information from TIP

may differ from bankV’s records. From the DTIM diagram we can see that no message

exchange keeps them synchronized.

From this analysis, we can say that the recourse transaction may give an unlimited

right to the customer, by which he can receive a refund without the TIP or the vendor

taking notice. Although this recourse transaction may not break the fairness of the

transfer, it can still make bankV’s account information conflict with the information

provided by TIP.

4.6 Summary

In this chapter, we modeled the current system and analyzed the modeling. We set up

the constraints and the context of the model as the applicable conditions so that the

model can be critically defined and formalized. As shown in the resulting model, all the

end states are in the set of “fair” results. Therefore, we prove that the current system

works as a fair exchange system. However, the recourse transaction is not included in

the mechanism of TIP. By applying the recourse transaction, the customer can keep the

items from the vendor longer than he should and thus puts the vendor in a profit risk.

Also, from the analysis as shown in the DTIM diagram, the recourse transaction does not

relate to TIP, which means no message is sent to TIP. It can cause a conflict between

the information from bankV’s account and the information provided by TIP. In the next

4.6 Summary 51

chapter, we address these problems with a new model that updates the funding transfer

function, and we analyze the updated model with our form-oriented analysis method.

52 Modeling the AARN Payment System

5
A New Design and its Security Analysis

In the last chapter we have formally modeled the current payment system and presented

our security issues of this system. In this chapter we discuss applying form-oriented

analysis on a future design as a tool for predicting and describing the security issue from

business logic.

5.1 Reasons for Updating the Model

As we mentioned in the last chapter, the current AARN payment system works mostly

for information exchange. The security issue for the current system is rarely at the

business level and often on the implementation level. Moreover, recourse transaction is

excluded in the current payment transfer, which not only confuses the account record of

the vendor but also blocks the response of TIP for notifying the failing transfer to both of

the business parties. Besides these, a more important problem of the effectiveness of the

system emerges when the number of business parties increases. Strictly speaking, it is not

a security issue but a problem of implementation. The system has the authority for using

the parties’ bank accounts to manage the payment process. As the parties have their own

bank accounts respectively, it is very hard for the AARN system to connect with a variety

53

54 A New Design and its Security Analysis

of different banks in order to get authorization to transfer funding from the account of

a business partner. If we translate this condition in our model, according to the form

oriented analysis feature, the model can be seen as one example for multi-instances. The

multi-business parties can have multiple banks, but TIP can not support all the banks

from a practical point of view.

Therefore, we can re-build the architecture with a banking subsystem. We include the

recourse transaction into this subsystem because it is also working on funding exchange. In

the banking subsystem, a bank account of TIP (called bankTIP) is in charge of contacting

the various banks. According to the order of the TIP, the bankTIP first takes a direct

debit payment from a bankC, then transfers the funding to the bankV through a direct

credit payment.

5.2 The Payment Transfer Architecture

In this section we describe the updated design of the payment system. In the new design,

the scenario of the business is still the same as in Chapter 4. We use the same constraints

defined in Chapter 4 as well. But we define a bankTIP as the bank account of TIP to

help the TIP manage the funding. BankTIP is in an intermediate bank which is in charge

of all the connections to the various banks for the different business parties. This star

topology architecture utilizes the existing banking network to transfer payment in the

new system.

During the design process, the intermediate bank requires a new feature for the pay-

ment system for marketing purposes. The payment must be live to the business parties.

That is, the transfer process will have no delays after the funding comes from bankC.

Then funding should be transferred right after the direct debit payment so that the whole

system works more efficiently and provides real-time payment records to the business

parties.

5.2 The Payment Transfer Architecture 55

5.2.1 The Updated Simple Economic Model

In the updated model, a payment transfer process involves a vendor, a customer, a TIP,

and their banks respectively. Like the scenario in Chapter 4, TIP first receives a invoice

from the vendor and then he asks the customer to approve the invoice. The customer

accepts the invoice and replies to TIP with confirmation information. TIP then contacts

the banking subsystem in charge of moving the funding between banks. The banking

subsystem receives the order of payment from the TIP and executes the order; if there is

an error message, the banking subsystem forwards it to the TIP. Here is a description of

the transfer steps:� Step 1 The vendor sends an invoice to the TIP, [GOTO Step 2];� Step 2 The TIP forwards the invoice to the customer and records it as a log record,

[GOTO Step 3];� Step 3 The customer accepts the invoice and sends out a payment instruction to

the TIP, [GOTO Step 4];� Step 4 The TIP records the payment instruction and checks it with the invoice

record. If they match, TIP will send the payment instruction to the intermediate

bank, [GOTO Step 6]; otherwise it will mark the payment as failed, [GOTO Step

5];� Step 5 The TIP rejects this failed payment instruction and notifies both parties

[STOP].� Step 6 The intermediate bank executes the banking processing subsystem (see

Figure 5.3) to transfer the funds from the customer’s bank to the vendor’s bank

through the TIP account. If it is successfully conducted, the process is finished

[STOP]; otherwise, the intermediate bank will send a failure notice to the AARN

payment system, [GOTO Step 7];� Step 7 The TIP sends a failure notice to both of the parties [STOP].

56 A New Design and its Security Analysis

5.2.2 The Payment Transfer architecture

As in Chapter 4, first we setup UMM structures according to the economic model, as this:

Transaction > A

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > B

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > C

total: Integer 1..1

paymentID: payment 1..1

Transaction > D

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

bankAccountID1: 1..1

bankAccountID2: 1..1

Transaction > E

total: Integer 1..1

bankAccountID1: 1..1

bankAccountID2: 1..1

Transaction > F

Transaction > G

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

Transaction > H1

total: Integer 1..1

paymentID

Transaction > H2

total: Integer 1..1

invoiceID: invoice 1..1

Transaction > I

total: Integer 1..1

invoiceID: invoice 1..1

paymentID: payment 1..1

Transaction > K1

total: Integer 1..1

paymentID: payment 1..1

Transaction > K2

total: Integer 1..1

invoiceID: invoice 1..1

According to the business logic described in 5.2.1, we setup the UMM constraints for

the new architecture as:

Step 1 A to B: Output: target.total = source.total

//the amount of money from the invoice recorded into the system

target.invoiceID = source.invoiceID

Step 2 B to C: Output: target.total = source.total

//the amount of the invoice equals the money the buyer will pay

Step 3 C to D: Output: target.total = source.total

5.2 The Payment Transfer Architecture 57

target.paymentID = source.paymentID

Step 4 D to E: Flow: source.total = B → allinstances() → select(invoiceID).total

Output: target.total = source.total

target.bankAccountID1 =source.bankAccountID1

target.bankAccountID2 =source.bankAccountID2

D to I: Flow: else Output: Fail message

Step 5 I to K1: Output: target.invoiceID =source.invoiceID

message(fail)

I to K2: Output: target.paymentID =source.paymentID

message(fail)

Step 6 E to F: Success message

E to G: Output: target.total = source.total

Step 7 G to H1: Output: target.invoiceID =source.invoiceID

message(fail)

G to H2: Output: target.paymentID =source.paymentID

message(fail)

The DTIM diagram is shown in Figure 5.1.

From the above models and diagram we can see that most steps of the new architecture

are identical to the current system. As we have discussed the current architecture, we

know that these steps work for information exchange, and the states of these transactions

are reliable. On the other hand, the banking subsystem is working on transferring funds

as the most important part in the security analysis business logic.

5.2.3 The Banking Subsystem

As the banking processing subsystem is a key point in the architecture, from now on we

consider this subsystem with especial focus on the working steps of the funding transfer

58 A New Design and its Security Analysis

Figure 5.1: The Payment Transfer architecture in DTIM.

process within the subsystem. Also, as mentioned in 5.1, we include the recourse process

into the subsystem. The business logic for the subsystem is:

Step E1 The intermediate bank sends a request of D/D instruction to the customer’s bank,

[GOTO Step E2];

Step E2 The customer’s bank accepts it and responds with a D/D payment instruction

[GOTO Step E3] with the proviso that within the next two days it may ask for

a recourse [GOTO Step E5]; or the customer’s bank rejects this request and the

intermediate bank records the exceptional condition [Stop];

Step E3 The intermediate bank sends a request of D/C instruction to the vendor’s bank

[GOTO Step E4];

Step E4 The vendor’s bank confirms the request [Stop]; otherwise it rejects the requirement

and the intermediate bank records the exceptional condition [Stop].

5.2 The Payment Transfer Architecture 59

Step E5 The customer’s bank asks for a recourse and the intermediate bank accepts the

requirement [Stop].

Figure 5.2: The banking processing subsystem.

The recourse option of Step E2 requires further discussion. For all D/D payments, the

banking industry allows the payer (the customer in this instance) to retain a right of

recourse for up to two days. Therefore, if any problem arises with the later stages of the

financial transaction, the customer’s bank can reverse the D/D instruction – if it acts

rapidly enough.

Only a D/D payment has a right of recourse. A fund transfer by D/C payment to the

vendor’s account is irrevocable, so it can be withdrawn by the owner of the account as

soon as their bank has accepted the D/C request.

60 A New Design and its Security Analysis

The UMM data structure for this business logic is:

Transaction > J

total:Integer 1..1

account1: account 1..1

account2: account 1..1

Transaction > K

total:Integer 1..1

account1: account 1..1

Transaction > M

total:Integer 1..1

Transaction > N

total:Integer 1..1

account2: account 1..1

Information > Account

net:Integer 1..1

Transaction > F

Transaction > Cancel

total:Integer 1..1

Transaction > L

total:Integer 1..1

account1: account 1..1

Transaction > Recourse

total:Integer 1..1

According to the business logic, we setup the UMM constraints for the subsystem as:

Step E1 J to K: Output: target.total = source.total

Step E2 K to M : Output: target.total = source.total

SideEffect: account1.net = account1.net − total

K to Cancel: Output: message(failed)

Step E3 M to N : Output: target.total = source.total

Step E4 N to F : Output: target.total = source.total

SideEffect: account2.net = account2.net + total

N to Cancel: Output: message(fail)

Step E5 L to Recourse: Output: target.total = source.total

SideEffect: account1.net = account1.net + total

In an early stage in the design of the AARN payment system, the intermediate bank

suggested an option of providing a more attractive feature to the business parties. The

5.3 Analysis of the Modeling 61

bank would transfer the funds to the vendor’s account as soon as it receives the D/D

payment from the customer, without any delay in the TIP account. The benefit is that the

transfer process will become more efficient and therefore more attractive to the vendors.

As we have mentioned, the vendors are taking the bigger risk in the credit transfer, so

obviously the vendors would welcome this feature. However, we can prove that this feature

creates a financial risk to the TIP.

5.3 Analysis of the Modeling

Analysis of the modeling requires formalizing it as in Chapter 4. However, as the con-

straints of the scenario change little and the formalization of the model follows the same

steps as Chapter 4, we do not repeat it here. All the constraints and propositions are

presented in Chapter 4. Now we start the analysis for the subsystem.

5.3.1 Status of the Accounts

Listed the below is the formula for the banking subsystem.

(1) Begin: n(Customer, Begin) = v(i), n(TIP, Begin) = 0,

n(V endor, Begin) = v(i);

(2) J : n(Customer, J) = n(Customer, former) + v(i),

n(TIP, J) = n(TIP, former), n(V endor, J) = n(V endor, former) − v(i);

(3) K : n(Customer, K) = n(Customer, former),

n(TIP, K) = n(TIP, former), n(V endor, K) = n(V endor, former);

(4) M : n(Customer, M) = n(Customer, former) − v(i),

n(TIP, M) = n(TIP, former) + v(i),

n(V endor, M) = n(V endor, former);

(5) N : n(Customer, N) = n(Customer, former),

n(TIP, N) = n(TIP, former) − v(i),

62 A New Design and its Security Analysis

n(V endor, N) = n(V endor, former) + v(i);

(6) F : n(Customer, F) = n(Customer, former),

n(TIP, F) = n(TIP, former), n(V endor, F) = n(V endor, former);

(7) Cancel : n(Customer, Cancel) = n(Customer, former),

n(TIP, Cancel) = n(TIP, former), n(V endor, Cancel) = n(V endor, former);

(8) L : n(Customer, L) = n(Customer, former),

n(TIP, L) = n(TIP, former), n(V endor, L) = n(V endor, former);

(9) Recourse : n(Customer, Recourse) = n(Customer, former) + v(i),

n(TIP, Recourse) = n(TIP, former) − v(i),

n(V endor, Recourse) = n(V endor, former);

5.3.2 Tracing the Fraud by DTIM

As the requirements for the application changed, the sequence of the steps changes. In

addition, we may also create new steps and transactions or remove existing ones. In

our case, the new requirement asks to change the sequence of StepE3 running right after

StepE2, so we can build a new set of sequences, SetB, for the new transaction steps.

SetB{Seq5, Seq6, Seq7, Seq8}

Seq5 = Begin− > J− > K− > M− > N− > F− > End

Seq6 = Begin− > J− > K− > Cancel− > End

Seq7 = Begin− > J− > K− > M− > N− > Cancel− > End

Seq8 = Begin− > J− > K− > M− > N − L− > Recourse− > End

Seq8 implement the requirement of running StepE3 exactly after StepE2.

Assume P is the set of fair exchange result,

P= {(n(Customer, End) = v(i), n(TIP, End) = 0, n(V endor, End) = v(i)),

(n(Customer, End) = 2v(i), n(TIP, End) = 0, n(V endor, End) = 0)}

We use Result(i) to express the result of sequence i, for example Result(Seq5) =

n(a, F), Result(Seq7) = n(a, Cancel), a ∈ {Customer, V endor, T IP}. Because the

5.4 Solution of the Risks 63

start states in our case are: Begin: n(Customer, Begin) = v(i), n(TIP, Begin) = 0,

n(V endor, Begin) = v(i), after calculating the sequence we have Result(Seq7)not ∈ P ,

Result(Seq8)not ∈ P . According to Proposition 2 and its Corollary 2, there are risks in

these sequences. We call the sequences ending in a fair exchange result as correct roads,

those not ending in a fair exchange result as risky roads. In our case we call the risks in

Seq7 and Seq8 as Risk 1 and Risk 2 respectively. We will discuss the solution to these

risks in the next section.

5.4 Solution of the Risks

To locate the risks, we set the states of the transactions in a correct road as correct

states. If a correct road and a risky road start from the same point, we find the furthest

transaction on a risky road, which has the same states as the correct states. Then the

risk exists as a result of the business logic problem between this transaction and the next

transaction, otherwise the correct states can not ensure the road is correct. For example,

Seq5 and Seq7 share the same route until transaction N , then the Risk 1 should result

in N and Cancel. For Risk 2, as Seq5 and Seq8 share the same route until N , we can

say Risk 2 is because of the sequencing between N and L.

5.4.1 Solution for Risk 1

In the design process, it is harder to locate the risks than find out what the risk is. As

for Risk 1, the behaviors of transaction Cancel do not fit the business logic after transac-

tion N . The current transaction Cancel: n(Customer, Cancel) = n(Customer, former),

n(TIP, Cancel) = n(TIP, former), n(V endor, Cancel) = n(V endor, former) is for can-

celing the operations of transaction K. After transaction N , as the “former” behaviors

changed, the behaviors of Cancel should be changed as well. Therefore, in these two

situations we need different Cancel transactions. As a result, we separate the Cancel

as Cancel − D/D, Cancel − D/C. Within them, Cancel − D/D is for canceling the

D/D payment resulting from the behaviors of K; Cancel − D/C is for canceling the

64 A New Design and its Security Analysis

D/C payment resulting from the behaviors of N . The UMM model change for this is:

Transaction > Cancel-D/D

total:Integer 1..1

Transaction > Cancel-D/C

total:Integer 1..1

Also we change the constraints of the UMM but do not present them here to avoid

repeating – they are similar to the previous constraints except the name of the transaction.

5.4.2 Solution for Risk 2

After analyzing Risk 2, we can see the problem is that L happens after N . The sequence

of M following N is the requirement from the clients to the system, but the business logic

shows that it conflicts with the mechanism of recourse.

Our solution for Risk 2 is a simple one. We ignore the new unavailable requirement

and set the constraint that L must start before N , then Seq8 = Begin− > J− > K− >

M − L− > Recourse− > End

According to this, we designed a timer system to handle the recourse process. A timer

pauses the transfer for a period before a recourse expires. After the TIP’s bank receives

the funding from the customer, the transfer is paused temporally before the expiry time.

We call this period the timing period. Within this period, if a recourse requirement from

the customer’s bank is sent to the TIP’s bank, the timer records this requirement for the

specific transfer. After the timing period, the timer checks the record of the transfer. If

there is a recourse requirement, it notifies the TIP’s bank to cancel the transfer because

of the recourse request. Otherwise, after the timing, the timer notifies the TIP’s bank to

continue the transfer process.

The User Message Model for this logic is:

5.4 Solution of the Risks 65

Figure 5.3: The banking processing subsystem–Recourse &Timer.

Transaction > J

total:Integer 1..1

account1: account 1..1

account2: account 1..1

Transaction > K

total:Integer 1..1

account1: account 1..1

Transaction > M

total:Integer 1..1

Transaction > N

total:Integer 1..1

account2: account 1..1

Information > Account

net:Integer 1..1

Transaction > F

Transaction > O

net:Integer 1..1

Transaction > Q

net:Integer 1..1

Transaction > R

net:Integer 1..1

account1: account 1..1

66 A New Design and its Security Analysis

Transaction > Cancel-D/D

total:Integer 1..1

Transaction > Cancel-D/C

total:Integer 1..1

Transaction > L

total:Integer 1..1

account1: account 1..1

Transaction > Recourse

total:Integer 1..1

According to the business logic, we setup the UMM constraints for the subsystem as:

Step E1’ J to K: Output: target.total = source.total

Step E2’ K to M : Output: target.total = source.total

SideEffect: account1.net = account1.net − total

K to Cancel − D/D: Output: message(failed)

Step E3’ M to O: Output: target.total = source.total

Step E4’ O to Q: Output: target.total = source.total

Step E5’ L to Recourse: Output: target.total = source.total

SideEffect: account1.net = account1.net + total

Step E6’ M to Q: Output: target.total = source.total

Step E7’ Q to R: Output: target.total = source.total

Q to Cancel − D/D: Output: message(fail)

Step E8’ R to N : Output: target.total = source.total

Step E9’ N to F : Output: target.total = source.total

SideEffect: account2.net = account2.net + total

N to Cancel − D/C: Output: message(fail)

5.5 Evaluation of the Modeling 67

There are some other solutions which, by applying our method, we can also analyze.

We will not discuss them in our case study but leave them for future works. These

solutions may be:

(1) Changing the object of recourse and the mechanism of recourse, adding in the

recourse for direct credit payment. In this case the vendor will take the risk of

recourse.

(2) Building credit through the TIP, or asking the business parties to leave a deposit

on the TIP. This will change the Begin states of all the parties and thus change the

model.

(3) Changing the business logic constraints, the vendor stopping delivery of items first.

This would change the transactions, constraints, and Begin states of the model,

and thus change the model.

5.5 Evaluation of the Modeling

Our formal modeling is limited in constraints and conditions of the model change. Al-

though the model changes, or new models are created, we can apply this method to predict

the business risks.

Our formal modeling is the first time involving form-oriented analysis in business logic

analysis and also the first used in security analysis. There was business security analysis

from a commerce point of view, but they are mostly work flow diagrams. Our modeling

can formalize the business and be extended to UML as well as work for the future system

design.

However, automatic form-oriented analysis tools are needed for drawing figures and

converting the DTIM object symbols into detailed UML objects. It also should provide the

detection of business logic. Business logic can be setup for different analysis. For example,

in our case, we setup fairness n(a,Begin)=n(a,End) under a model of conservation on net

fortune, as a constraint for the security analysis. Other features of security (confidentiality,

68 A New Design and its Security Analysis

identifiability) can have other propositions and constraints. As the symbols are formal,

it is not necessary to define data sets or other structures. With the design tools we can

check them while we are drawing the diagram, so that the designers do not need to know

the process of proof or inferential reasoning. The tools should provide auto-detection for

the diagram while designing, so that risky designs can not be generated.

5.6 Summary

This chapter concerns a modified model for the AARN payment system. In this modified

model, we try to solve the risk created by the independent action of the customer. We

separate the banking transfer function as a subsystem and focus on the influence of the

recourse process to this subsystem. Applying the same steps of form-oriented analysis

as in Chapter 4, we find two risks in the modified model. The first risk is that, under

the current recourse process, the TIP’s bank can not transfer funding directly from the

customer to the vendor without putting itself in a risky situation. The second risk is that

the Cancel transactions act in different conditions, have different behaviors, and therefore

we should define different transactions to describe them. Otherwise the semantics can not

stay consistent on the predicate while keeping fairness on the logic.

6
Conclusion

In this chapter, we summarize the risk analysis in the business logic and, as the target

of our analysis, we conclude our form-oriented analysis method. Next, we briefly discuss

the result of the analysis in the case study of AARN payment system. Lastly, we give out

projections on future research for form-oriented analysis in security.

6.1 Risks in the Business Processes

In any application design, risks are an attendant problem for the security of the applica-

tion. Compared to the risk analysis in the system architecture processes, the risk analysis

in the business logic is a very rare concern. After lessons from case to case, software engi-

neers realized that even in the requirements from senior fellows in the mature industries

conflicts and potential frauds can still exist. The reason for this is that human actions

sometime automatically avoid the negative possibilities in a business, for example, no-

body would pay -10 dollars. The staff can personally setup business rules to handle the

conflicts. Unfortunately, the ones providing the business logic sometimes forget to specify

what kind of business rules are in it. Computer software has not yet advanced so that it

works like humans who can learn business and understand the risks through experience.

69

70 Conclusion

The risks in a logic level can not be found in the architecture or the implementation

process, as they are on a different abstract level. It is impossible to clearly integrate the

concepts in different levels into a single description using the predicate. Therefore, the

response of computer scientists is to analyze and understand the risks hidden in business

logic.

As the former chapters have illustrated, we work on the security analysis for business

logic. In our case study, we explored the recourse process in a fair exchange environment

and detected the risks in the fairness. As a result of the proof, we announce the risks for

the recourse process which can challenge the business. These risks can lead to changes in

business patterns.

6.2 Formal Security Analysis

In this thesis, we discussed the security analysis in business logic. Analysis in business

logic actually is based on the theory of software engineering to reduce the risk on the

implementation process of an application system. The security analysis in business logic

level aims to understand the business for both the designers and the clients for security

purposes. This analysis is working on the early stage of the functional specification and

prototype to avoid further harm to the implementation. An effective security analysis can

avoid wasting capital, time, and concentration. Our security analysis method mentioned

in Chapters 4 and 5 is form-oriented analysis in which we applied the DTIM/UMM

modeling language. The basic steps of our form-oriented analysis method are:

(1) define the business logic applied in the analysis;

(2) build constraints, propositions and other rules based on this business logic as the

frame contract;

(3) formalize the state of all the transactions;

(4) examine every constraint, proposition or specific rule of the frame contract into the

transactions;

6.2 Formal Security Analysis 71

(5) find out any conflict between the states of the parties and the frame contract.

In our case study, we define the fairness feature as a frame contract to the system.

After the mathematical inference is clarified, the final constraints can be used to keep

the fairness feature of the business. We set the initial state of each party in the Begin

transaction, and we can determine the behaviors of each transaction. Therefore as long

as we can decide the order of the transactions, we can calculate all the states of all the

parties in each transaction.

As shown in Chapters 4 and 5, the sequence of the transactions can finally describe

the route of the business logic. Different roads in the route of logic demonstrate different

choices for the execution. If we can check the validity of the roads by the results of

execution, we can tell that every state of the parties on the road obeys the frame contract.

For those roads which are unavailable because of the conflict with the frame contract, we

can trace the sequence and finally locate the risk transaction. In the case study in Chapter

5, the method not only detects the risk on the recourse process, it also locates the duplex

meaning for transaction Cancel, and then stops a risky design before a further step of

implementation started. According to the rules of software engineering, it is especially

beneficial to find out the risks in a design as early as possible.

All in all, we carried out the analysis to find the risk transaction and explore the busi-

ness logic under the specific conditions. We applied the form-oriented diagrams (DTIM),

data structures and constraints (UMM)in this analysis and developed the formal proof

for the analysis.

Our method of form-oriented analysis on security is a promising and novel for the

security analysis on business logic. It detects the risks on the business logic level by

checking the constraints on the sequences of transactions. The method works on the se-

curity analysis because form-oriented analysis is based on the request/response style, and

the semantics of the method are simple but clear to formally describe the business. Under-

lying the method, the DTIM diagrams are most important for illustrating the sequences

of transactions. The UMM data constraints are for formally defining the transactions.

72 Conclusion

The frame contracts are the conditions for the security analysis. This formal modeling

for the business logic can be used as a basic discussion for the application from business

logic level.

6.3 Future Research

Our aims in research on the business logic level were to present the business logic in a

simple but clear method which is easy to understand and works for the communication

between the clients and application designers. In DTIM diagrams we use simple symbols

so that the clients can understand the abstract issues of the business; the benefit of the

simple symbol is it enables the clients to avoid confusing the meaning of various kind of

symbols, so that they can focus on the business logic itself. However, we have not tried

the method in a real meeting with the clients, so the effectiveness of the method is still

hypothetical. Only after it is used in different applications can we survey and statistic

the effectiveness of this method.

In our case study, we did the security analysis only on the business logic level. Future

security analysis projects would need a full security analysis including the architecture

and the implementation processes. Implementing the secure design for the EDI data

structures and standard (such as AS2) and analyzing the detail for transactions would

enable construction of a formal security model for the payment system.

The work we have done provides a new direction for applying for form-oriented anal-

ysis. Form-oriented analysis works on diagrams and data structure definition for security

purposes. It is tough design work, especially when the business logic becomes complex.

Currently there is no specific design tool to facilitate such work for designers. In our case

study, we used Microsoft Visio to create the DTIM diagram, but we can not integrate the

UMM constraints into the diagram. We have to describe them separately, which may lead

to confusion and misunderstanding for readers. A proper tool would provide two benefits:

first, designers could setup the frame contract before starting the design. Then during the

process of designing for business logic, the tool could help detect conflicts to the frame

6.3 Future Research 73

contract on the design. The other benefit is reusing the frame contract. The constraints

and concepts could be used in other case for the same security concern. When changes

happens to business conditions, the concept patterns facilitate the security analysis by

avoiding the repetition of the steps in this analysis.

The overall importance of the research is the novel exploration for the form-oriented

analysis method on security issues. Using form-oriented analysis in an e-commerce security

context is novel. In our case study, we use form-oriented analysis to detect the profit risks

in a fair exchange. With this tool, we were surprised to learn that under the conditions for

fairness, an improper requirement on the recourse transaction can lead to risky business.

In the future, by adding into the other business logic such as legal issues, this case study

can be extended to a whole new possible research area for B2B e-commerce.

74 Conclusion

Index

AARN, 6, 16

AS2, 3

ASM, 23

B2B, 2

B2C, 2

Business logic, 6

business parties, 17

business role, 17

C2C, 2

CSP, 21, 25

customer, 17

D/C payment, 18

D/D payment, 17

DFD, 28

DTIM, 28

EDI, 3

failing fair exchange, 14

Fair Exchange, 4

fair exchange, 13

financial risk, 19

Formal Analysis, 5

frame contract, 41, 43

MAC, 1

OCL, 24

operational risk, 19

Petri net, 26

RBAC, 1

recourse, 18

Risk, 1

SecureUML, 22

sequence, 47

strong fairness, 14

successful fair exchange, 14

TIP, 16

trust, 15

UML, 8

UMLsec, 23

VAN, 3

vendor, 17

75

76 INDEX

weak fairness, 14

Bibliography

[1] January 2001 b2b: Quest for profitability. Wired-whats next now, 2001. Available

on http://www.whatsnextnow.com/special_sections/9.01_b2b/jan.b2b.html,

last update: 03/02/2001.

[2] Han Zhang William Zhu Gerald Weber Clark Thomborson. B2b e-commerce secu-

rity modeling: A case study. Submitted to CIS06, Computational Intelligence and

Security, November 3-6, 2006, Guangzhou, China., 2006.

[3] N. Asokan. Fairness in electronic commerce. PhD thesis, Waterloo, Ont., Canada,

Canada, 1998.

[4] Shoup V. Waidner M Asokan, N. Optimistic fair exchange of digital signatures.

Selected Areas in Communications, IEEE Journal, 18(4):593–610, 2000.

[5] Basel Committee on Banking Supervision. Basel II: International Convergence of

Capital Measurement and Capital Standards: a Revised Framework. Bank for Inter-

national Settlements, 2005. Available on http://www.bis.org/publ/bcbs118.htm,

last update: November, 2005.

[6] Ann Bednarz. The art of balancing e-commerce processes, February 2005. Avail-

able on http://www.networkworld.com/news/2005/020705specialfocus.html,

last update:07/02/05.

77

78 BIBLIOGRAPHY

[7] Dun & Bradstreet. Trade payment analysis–australian trade payments continue to

worsen, 2006. Available on http://www.dnb.com.au/pdfs/general/TPA_2006_AU.

pdf, last update: 30/03/06.

[8] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. J. ACM, 31(3):560–599, 1984.

[9] Jery Bryans. Reasoning about xacml policies using csp. In SWS ’05: Proceedings of

the 2005 workshop on Secure web services, pages 28–35, New York, NY, USA, 2005.

ACM Press.

[10] Jim Conallen. Modeling web application architectures with uml. Commun. ACM,

42(10):63–70, 1999.

[11] Cybersource Corporation. 7th annual online fraud report–online payment

fraud trends merchant practices & benchmarks, February 2006. Available

on http://www.cybersource.com/resources/collateral/Resource_Center/

whitepa%pers_and_reports/CYBS_2006_Fraud_Report.pdf.

[12] Bart De Decker. Introduction to computer security. In State of the Art in Applied

Cryptography, pages 377–393, 1997.

[13] Thuong Doan, Steven A. Demurjian, T. C. Ting, and Andreas Ketterl. Mac and uml

for secure software design. In FMSE, pages 75–85, 2004.

[14] Dirk Draheim and Gerald Weber. Modeling submit/response style systems with form

charts and dialogue constraints. pages 267–278, 2003.

[15] Dirk Draheim and Gerald Weber. Form-Oriented Analysis-A New Methodology to

Model Form-Based Applications. Springer Verlag, 2004.

[16] Matthew B. Dwyer, Lori A. Clarke, and Kari A. Nies. A compact petri net repre-

sentation for concurrent programs. In ICSE, pages 147–157, 1995.

BIBLIOGRAPHY 79

[17] Paolo Falcarin and Maurizio Morisio. Developing Secure Software and Systems.

IEC Network Security: Technology Advances, Strategies, and ChangeDrivers, 2004.

Available on http://softeng.polito.it/falcarin/docs/sec-report04.pdf.

[18] Manfred Hauswirth, Mehdi Jazayeri, and Markus Schneider II. A phase model for

e-commerce business models and its application to security assessment. In HICSS,

2001.

[19] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–

677, 1978.

[20] Jurjens J Houmb, S.H. Developing secure networked web-based systems using model-

based risk assessment and umlsec. In Software Engineering Conference, 2003, pages

488– 497, Dec 2003.

[21] Werner B. Joerg. A subclass of Petri nets as design abstraction for parallel architec-

tures. SIGARCH Comput. Archit. News, 18(4):67–77, 1990.

[22] James Joshi, Walid G. Aref, Arif Ghafoor, and Eugene H. Spafford. Security models

for web-based applications. Commun. ACM, 44(2):38–44, 2001.

[23] Sherrie Xiao Komiak and Izak Benbasat. Understanding customer trust in agent-

mediated electronic commerce, web-mediated electronic commerce, and traditional

commerce. Inf. Tech. and Management, 5(1-2):181–207, 2004.

[24] Nir Kshetri and Nikhilesh Dholakia. Determinants of the global diffusion of b2b

e-commerce. Electronic Markets, 12(2), 2002.

[25] Susan Kuchinskas. Fraud chewing e-commerce profits, November 2005. Available on

http://www.internetnews.com/ec-news/article.php/3563061.

[26] Vincent S. Lai and Bo K. Wong. Business types, e-strategies, and performance.

Commun. ACM, 48(5):80–85, 2005.

80 BIBLIOGRAPHY

[27] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. Secureuml: A uml-based

modeling language for model-driven security. In UML, pages 426–441, 2002.

[28] Panagiotis Louridas. Some guidelines for non-repudiation protocols. SIGCOMM

Comput. Commun. Rev, 30(5):29–38, 2000.

[29] D. Moberg and R. Drummond. MIME-based secure peer-to-peer business data inter-

change using HTTP, Applicability Statement 2 (AS2). Technical Report RFC 4130,

IETF, July 2005.

[30] T Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, 1989.

[31] Faisal Nabi. Secure business application logic for e-commerce systems. Computers

& Security, 24(3):208–217, 2005.

[32] Henning Pagnia, Holger Vogt, and Felix C. Gärtner. Fair exchange. Comput. J,

46(1):55–75, 2003.

[33] Daniel M. Reeves, Benjamin N. Grosof, Michael Wellman, and Hoi Y. Chan. Toward

a declarative language for negotiating executable contracts. Technical Report RC

21476 (96914), IBM, May 1999.

[34] Mark Richters and Martin Gogolla. Ocl: Syntax, semantics, and tools. In Object

Modeling with the OCL, pages 42–68, 2002.

[35] Peter Ryan, Steven Schneider, et al. Modelling and Analysis of Security Protocols.

Addison-Wesley, 2001.

[36] Al Farooq Salam, Lakshmi S. Iyer, Prashant Palvia, and Rahul Singh. Trust in

e-commerce. Commun. ACM, 48(2):72–77, 2005.

[37] W. Scacchi. Process models in software engineering. In Encyclopedia of Software

Engineering, 2nd, pages 993–1005. Wiley, 2002. Available on http://citeseer.

ist.psu.edu/scacchi02process.html.

BIBLIOGRAPHY 81

[38] Kathrin Schier. Multifunctional smart cards for electronic commerce-application of

the role and task-based security model. In ACSAC, pages 147–154, 1998.

[39] S Schneider. Formal analysis of a non-repudiation protocol. In Computer Security

Foundations Workshop, 1998. Proceedings. 11th IEEE, pages 54–65, Washington,

DC, USA, 1998. IEEE Computer Society.

[40] Steve Schneider. Security properties and csp. In IEEE Symposium on Security and

Privacy, pages 174–187, 1996.

[41] B-C Su. Risk behavior of internet shopping: comparison of college students’ versus

non-student adults’. In ICEC ’03: Proceedings of the 5th international conference on

Electronic commerce, pages 181–185, New York, NY, USA, 2003. ACM Press.

[42] Yao-Hua Tan and Walter Thoen. Formal aspects of a generic model of trust for

electronic commerce. Decision Support Systems, 33(3):233–246, 2002.

[43] Theodosios Tsiakis and George Stephanides. The concept of security and trust in

electronic payments. Computers & Security, 24(1):10–15, 2005.

[44] U.S. Census Bureau. Quarterly retail e-commerce sales - 4th quarter 2005, February

2006. Available on http://www.census.gov/mrts/www/data/html/05Q4.html.

[45] Joseph T Wells. Corporate fraud handbook : prevention and detection. Hoboken,

N.J., 2004.

[46] Wikipedia. Modeling languages, June 2006. Available on http://en.wikipedia.

org/wiki/Modelling_languages, last update:20/06/06.

[47] Daoxi Xiu and Zhaoyu Liu. A formal definition for trust in distributed systems. In

ISC, pages 482–489, 2005.

[48] John Yesberg and Marie Henderson. Applications of trusted review to information

security. In ACISP, pages 305–319, 2001.

