

Record and Playback

For Java Software Watermarking

Project Report for COMPSCI780AC

by

Guanglun Yu

Dept of Computer Science

The University of Auckland

gyu005@ec.auckland.ac.nz

Supervised by

Prof. Clark Thomborson

Dept of Computer Science

The University of Auakland

cthombor@cs.auckland.ac.nz

15 Feb 2001

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 2

� Abstract

Record and playback tools are needed for performing simulations during software

regression test, for recording users’ operations and later playback during testing

time or software run-time. Java Software Watermarking is a process of embedding

marks into Java software and recognizing them later. It needs a tool to record and

replay the users’ operations during testing time and runtime. There are some

articles out there, but fewer of them discussing the comprehensive issues about

record and playback as a whole. Besides, Record and Playback has its specialties

in Java Software Watermarking. This report tries to address the various concepts

and effects in this area, discuss some new issues, especially for applying to Java

Software Watermarking.

� 1. Introduction

Java software programming is currently widely spread for its platform independent

feature, which makes the ease of decompiling Java byte code. Java software

watermarking is used for preventing illegally copying and tampering Java

programs. Watermarking to Java software is quite new, and is itself a challenge

because of this ease. There is a model proposed by Dr. C.Collberg and Prof.

C.Thomborson, which aims to provide resilient and stealthy watermarks[1][2] for

Java software.

For the process of Java software watermarking, Prof. Thomborson asks a tool to

record the inputs and then replay them, as assistance. This tool is also expected to

be generic to all Java programs and will at best degree keep the Java program

“doing once, run anywhere” feature.

Unfortunately, this mostly falls in the area of software testing, the one with more

difficulties than software programming, especially for Java software[4]. Besides,

Java’s security mechanism will enhance this difficulty.

In this report, I will inspect the current record/playback methods, discuss the

various aspects in this area, and analyze the specialty in applying to Java software

watermarking. Some new issues, such as the console input, will be raised in this

report. Some trial solutions will be given to these issues.

� 2. Basic Concepts and Definitions

� 2.1 Java Software Watermarking:

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 3

Java Software Watermarking consists of two processes. The embedding

process will embed a mark (watermark) into the target application (target),

while the retrieving process will be able to retrieve that watermark from the

target.

An implementation of such a Java software watermarking system is

Sandmark[3], which embeds the watermark into a target and retrieve the

watermark from the target. For embedding, the target is first annotated at

those inside points on which the watermark structure nodes will be later

created and reside. For retrieving, a state dump is made and from analyzing

that dump, the watermark is recognized.

The user’s input is critical for recognizing an embedded watermark. Only

correct series of input, e.g. keystrokes, can retrieve an embedded watermark.

During testing the watermarking or recognition of an embedded watermark, it

is important to record the inputs to the target and replay them to see if any

different results for same input series during watermarking process.

� 2.2 Basics of Record and Playback (Record/Playback)

There are three major types of record/playback tools. The first one (type 1)

offers the capability to automatically record and playback users’ manual

operations. The second one (type 2) allows users to use a script language to

simulate the required user operations to the target application. The third type

(type 3) is the combination of type 1 and type 2.

Most record/playback tools are used for software regression testing and are of

the type 2. This type of record/playback tool, by using a scripting language,

provides a “step-in” ability for users to programmatically simulate the required

user operations. The whole process is like the familiar “debugging” process.

Users can set up breakpoints in target applications and stop at these

breakpoints or other places by setting stopping conditions. The difference is,

by using scripting language, e.g. users can dynamically change the runtime

values of variables. More over, it provides record/playback functionality

(automation). Examples are ReplayJava in [6], JVerifier[8], Sun WorkShop

Visual Replay[10], etc. A tool of type 2 does not directly record users’

operation. Instead, it records the scripting steps for later playback during the

regression testing. The term automated testing often refers to the functionality

available in this type.

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 4

Type 1 is designed for easy record/playback functionality without user’s

scripting. So it only records the users’ operations and replays them. Run-time

internal state is not accessible by this type. For technique reason, scripting

language may be used internally, not available for users’ use, to record the

users’ steps and program internal states for later playback. The term input

record/playback specially refers to this type. Examples for this type are

Rebecca v1.0[25], Panorama for Java: JavaPlayback [9], etc.

The tool of type 3 not only provides the recording user operation ability, but

also “step-in” ability. Fewer tools are in this type. It is most flexible and

powerful. An example for this type is Mercury Interactive’s WinRunner

[22][23].

The focus in this report is not limited on type 1, but also type 2 and type 3

because the need for the input record/playback also to apply to the regression

testing for Java software watermarking, and the desire for the input

record/playback to be a generic.

So, in this report, the term record/playback will be used for general purpose,

input record/playback for the specialty of recording the actual users input.

There are several major issues for record/playback. What input types will it

deal with? For each input being captured, what is the relevant context

(internal machine state) to be recorded as well? How to playback?

� 2.3 Concept of User Interface Types of Target Application

A user interface provides the ability for users to interact with the target

application. For this aspect, an application can be categorized into three types:

the graphic user interface (GUI) application, text user interface (text UI, also

called console interface) and none user interface (none UI) application.

Text UI was the only approach for users to interact with application before GUI

technology was developed. Today, applications rarely provide text UI. They

provide GUI instead.

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 5

Besides, there is a fact which can not be omitted, that in some cases, e.g. a

server application probably does not have any interface, neither text UI or

GUI, because it does not need users to interact with it.

There was/is a common understanding that testing GUI software is more

difficult than testing console interface software [5]. As a rule, automated

testing on console interface software can be readily accomplished by the

assistance of I/O redirection. This lets the input from file instead of keyboard,

output to file instead of screen. This ease is true for type 2 of record/playback

on native applications. But for type 1 of record/playback, the I/O redirection

simply does not work because the users’ true input is needed.

Today, nearly all record/playback tools are for GUI applications [6], [9], [20],

[21], [22], [24]. For Java GUI application, implementing such a

record/playback tool seems to be easier than for console interface application

instead. By using GUI’s event mechanism, any true user input for type 1

record/playback and simulated input for type 2 record/playback can be

captured through this event mechanism. An example for type 1 is Rebecca

v1.0 [20], which provides real-time recording schema and record the users’

keystrokes and mouse actions through events to GUI components. An example

for type 2 is ReplayJava [6], which uses a scripting language JTcl (JACL) [7] to

perform automated testing, also through events to GUI components.

But for console inputs in Java applications, no available approaches to use

such event mechanism for capturing these console inputs unless new solutions

achieved. This will discussed later.

No one specially mentioned the issues for none-UI target applications. The

type 2 record/playback tool may apply to this application, but only for input

simulation during software testing. No type 1 record/playback tools could apply

to this none-UI application because this application does not need and does not

have user input operation at all. But for the watermarking process provided in

[1][2], there is really a need to get users input, like a series of keystrokes to

retrieve the embedded watermark. In this case, the record/playback tool would

be integrated with a watermark recognizer to retrieve that embedded

watermark. According to the resilience and stealth features required for

watermarking [1][2], this watermarking process will not insert extra GUI

components which are used as the receivers of the inputs which will activate

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 6

the watermark recognition and retrieve the embedded watermark. but some

console stream variables as the input receiver; this watermarking process will

insert other means to receive users inputs, such as a console stream variable.

So for the none-UI target application, console inputs need to be considered

under the same condition as text UI application (console application).

Further more, there is another problem with console application or none-UI

application. An user operation input to a GUI component can happen and

captured at any time during the execution of that GUI application, which

means that for capturing a GUI component input, the application does not

need to wait at special point until the input is finished. Unlike GUI components,

for capturing console inputs, program must wait at special point until this

console input is completed. So the problem is, for a console application or a

none-UI application, how to activate the receiver in the program to capture the

user inputs for watermarking recognition? This problem might fall into the area

of watermarking recognition, but it is indeed one aspect of record/playback.

� 2.4 Source Code Access Modes – Intrusive Mode, Non-Intrusive Mode and

Invasive Mode

In this report, I assume that we hold the source code of the target application

if necessary. For software testing, or the task to check if the watermark is

embedded correctly and effectively before the vendor ships their product

(target application), this assumption is ok.

Keeping the target source code clean and unchanged is ideal when applying

record/playback tool. There are often the times that the source code needs to

be changed at some degree to achieve some restrictive purpose. Otherwise,

there is no way to do that.

At a normal sense, intrusive mode means that source code will be accessed

and changed during the time of applying record/playback tool. Non-intrusive

mode means that no source code needs to be changed.

There is another mode existing there, called invasive mode[8]. This mode

currently is specially invented for Java application. Use that mode, private

attributes of a Java class can be accessed without change the Java source

code.

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 7

The first choice of cause is to apply Non-intrusive mode because any changes

(even a very tiny change) will actually make the fact that tested version is not

the same version as released. That would always be an implicit trend for

producing bugs.

But there are often the cases that Non-intrusive mode doesn’t help for

achieving restricted attributes. At this moment we need apply intrusive mode

to make some changes to target source code.

� 2.5 Scripting Language

A scripting language works on the basis of function calls in a shell

environment. The big difference from a programming language is that, after

one function call finishes, the process control will return back to the scripting

shell and the current program run-time context is stored in that shell

environment.

This concept has two meanings. Scripting languages have two types. One is

“outside type” and the other is interactive type. The outside type can only call

the whole target application, e.g. a Java application, from outside the program

environment. It has no ability to call individual internal method in the target.

This type of script language is used normally to record a series of black

testing. The interactive type provides the ability to access each attribute

(variables or methods) and interact with them. By using this type of script,

users or testers can interactively step-in Java program, stop at a specific point

of the target application, assign variable values, etc.

To achieve interaction, the scripting language must have the ability to

recognize Java class, class method and class member and the ability to

internally control the running of Java program.

JTcl (JACL)[7] is such a scripting language which is even written in Java and

fully portable. With the shell it provides, a record/playback tool can be

implemented to be able to stop at any point of running target application,

access the run time values of variables, invoke the method calls of classes,

simulate the users’ operations. An example of using JTcl(JACL) is J.

Newmarch’s package described in [14]. The benefit of using JTcl is that the

implemented tool is totally compatible with the Java target application and is

portable.

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 8

But most record/playback tools use their own specific scripting language, like

JVerifier[8] which provides invasive access mode, etc.

� 3. Taxonomy of Input

To a Java application, it could be a Keystroke input to a component

accompanied by a KeyEvent, a mouse input to a component accompanied by a

MouseEvent or a console input to a variable.

Besides, there is a specialty in Java software watermarking. There are often

situations that a Java server application, even with an embedded watermark,

does not have any GUI interface. But it does have some inputs in the form of

InputStream from socket created port.

Currently most Java applications are of GUI applications. Nearly all resources

of articles and testing tools are dealing with GUI component input. For an old

type console input, which is in the form of InputStream, no articles discuss

how to record/playback it.

� 3.1 What is an Input

I define that an input to a program is any data flow coming from outside of

that program. So a Java application would have input like a console input from

console stream (standard console), a GUI component key input to a GUI

component accompanied by a KeyEvent or a GUI component mouse input to a

GUI component

accompanied by a

MouseEvent, or a

socket stream input in

the form of an

InputStream etc.

� 3.2 Taxonomy of Input

∇ I propose the

taxonomy of input as the following, which is shown in Figure 1 diagram.

� An input is either an event input which is a input accompanied with a

event and corresponds to one form of InputEvent, or a stream input in

the form of InputStream.

Figure 1.

Stream Input

Event Input

Input

GUI Component Input

Socket Stream Input

Console Input

Other Device InputTaxonomy of Input

File Stream Input

Key Input

Mouse Input

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 9

� A GUI component input is an input to a GUI component accompanied

by an event and is either a key input or a mouse input.

� A console input is a stream input which comes from standard console.

� A socket stream input is a stream input which comes from a socket

created InputStream.

� A file stream input is a stream input which comes from file I/O stream

� An other device input is a stream input which comes from other device.

∇ Our interest

Currently, I will only discuss GUI component input and console input.

Others go beyond the scope of this report.

∇ Explanations

� A GUI component input is either a component key input or a

component mouse input both associates with a GUI component

accompanied with an event.

� A console input has such a feature that when it happens it will never

return the program control back to the program until stipulated bytes

have been read or it meets a “new line” input.

� A GUI component input can be arbitrarily redirected to any other

suitable and visible component that has the current “focus”.

� Currently, there is no chance to transfer data from one Java process to

another Java process without using socket stream or file stream. If one

day, there is a chance there, one semantic event created by a

JavaBean component for example, could be transferred to a JavaBean

component in another Java process, that semantic event could thus be

an input to the second Java process (program). So we could possibly

have, under the Event Input branch, another input called semantic

input for that situation.

� 4. User Input Capturing Level

The user input refers to user’s operations to the target application. This

applies only to type 1 or type 3 record/playback. We can capture a user input

at three different levels. The lowest is at hardware level, second is at

operating system (OS) level and the highest level is at process level.

� 4.1 Hardware Level

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 10

This is by using hardware devices to record users’ keystrokes and mouse

actions. The main reason for choosing this hardware solution is for the

security. The hardware device can catch the first level keystrokes to monitor

the usage of the underlying computer or encrypt the key scan-code to prevent

spying made by harmful malicious low level code.

An example of keystroke encryption device is called PC Pay(R)[15], which

encrypt critical keystroke information like password and credit card number.

An example of keystroke monitor device is KeyGhost[16], which is a tiny

(hardware) device that records every keystroke typed on any PC computer.

Obviously, this capturing level does not apply to the record/playback discussed

in this report.

� 4.2 Operating System (OS) Level

On this level, the capture tool is implemented by software solution. It uses the

OS APIs that are normally in native code form. It can not recognize and access

Java objects. Using this solution is mainly for providing OS scripting recording

for repeating OS level scripting works, monitoring keystrokes at OS level, etc.

An example of OS scripting recording on this level is Keyboard Express[17]

which records a serial keystrokes which can be assigned to one key-shortcut

to perform batch or macro command effect.

An example of monitoring users’ keystrokes on this level is Windows

Keylogger[18] which spies and record all keystrokes at OS level.

It may works on this level to perform the record/playback function to Java

programs. But I should avoid to discuss or use this level to Java program

because Java object can not be fully recognized at this level, and the fact that

using native code will not let it portable.

� 4.3 Process Level

The concept of process level refers to catching all input to a specific process.

Generally, the record/playback tool on this level could be written in native

languages like C++ or Java language. In fact, most record/playback tools to

the applications other than written in Java language are on process level. They

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 11

do have the ability to record input to a specific process (a native application)

but only for GUI native application by extracting input from OS provided input

stream or input queue for GUI components. The reason for define it on the

process level is that it can distinguish the inputs to a specific process (a native

process) from each other. A tool example of this type is QC/Replay[14], which

is implemented in native code and provides the function of record/playback

input to GUI X Window application. As mentioned in previous section, this

native solution is not portable.

For Java program, it is different as a Java process is on the creation of one

Java Virtual Machine (JVM). A Java process is different from a native process.

Using native solution can not fully recognize Java objects because a Java

object is wrapped via the JVM (but a Java GUI component may have a global

ID which may be recognized at OS level). User input is not limited only to a

GUI component. So, implementing a record/playback tool by using native

solution can not correctly catch the inputs to a Java process. For Java target

application, the best solution is to use Java language at process level to apply

the record/playback solution.

An example is ReplayJava in [6] which uses the Java language and JTcl – JACL

(also of Java language) to implement this tool with the ability to fully

recognize Java objects and full portable feature.

� 5. Capturing User Inputs

Although several input types have been defined, I am currently interested in

console input and GUI component input.

Even if only Java language is used on the process level to capture the user

input, it is still hard to do it for console input. The reason is that it is difficult to

decide which object (as the input receiver) will receive that console input and

when it happens. It is can be done to blindly record all console input by

inspecting the input stream at OS level, but without knowing what variable or

object will receive that console input.

� 5.1 Capturing GUI Component Input

Today, most applications are of GUI applications. Most record/playback tools

are also designed to capture GUI component input. For native application, the

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 12

input can be peeked or taken from OS level input queue because every GUI

component has a unique global identification at OS level.

For Java application, the capture could be done by inspecting the EventQueue

object in the JVM. Java currently has two types of GUI components, AWT and

Swing. Any GUI component input, key input or mouse input, correspond to an

event called KeyEvent or MouseEvent which is in the EventQueue when the

key input or mouse input happens. Another good thing is an event will always

be accompanied by an event source – for KeyEvent and MouseEvent the event

source is exactly the input receiver. So, to capture the input and get its

receiver component, there is no need to change any source code.

� 5.2 Console Input Capturing

Up to now, no any resource has been found for discussing console input to

Java application. Although most of Java application use GUI interface, I must

consider some special applications like a server that has no GUI interface. For

embedding a resilient and stealthy watermark[1][2] into such an application,

GUI components should be avoided to use for receiving input for recognizing

that watermark, thus console input will be chosen.

Capturing console input is not easy. A console input is a stream input. When a

console input is being processed, the program control will never return back

until the designated length of bytes have been read or a new-line input has

been met – I call this as the “console input is finished or completed”.

I propose a trial solution by applying event mechanism to console input object

for Java application. First create a wrapping class EventConsoleInput, then

every System.in object at any place of the program will be replaced by this

EventConsoleInput.

public class EventConsoleInput extends InputStream {

InputStream in = System.in;

InputEvent event;

ConsoleInputStore store;

Playback playback;

public EventConsoleInput(InputEvent consoleInputEvent,

ConsoleInputStore store,

Playback playback) {

super();

event = consoleInputEvent;

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 13

this.store = store;

this.playback = playback;

}

public int read() throws IOException {

int input;

if (playback.isConsolePlayback() &&

store.hasReplayElement()) {

input =((Integer)store.nextPlaybackElement()).intValue();

} else {

event.dispatchPre(); // before input event

input = in.read();

// broadcast console input finished

event.dispatchPost(new ConsoleInputEvent(), input);

}

return input;

}

.. ..

}

Figure 2. Class EventConsoleInput

The proposed solution for console input

In Figure 2, the class ConsoleInputStore will catch the ConsoleInputEvent

dispatched by the function call event.dispatchPost(ConsoleInputEvent, input)

and store the console input value, “input” in this case.

In this proposed trial solution, any Java presentation of a console input –

System.in object will be wrapped to a new EventConsoleInput object which

can dispatch one pre-event before console input happens and dispatch one

post-event after that console input finishes.

This is actually an intrusive access mode because it changes the source code.

This may be a solution, but it has at least two problems. One is the event can

only be dispatched after the console input is finished. Another problem is if the

target application contains the code that redirects the System.in object with

other stream input by calling System.setIn() method, this solution will actually

capture the wrong input source.

This solution is too rough to express its correctness and accuracy. But here I

am trying to show an idea that the console input may be captured with events,

and thus can stored on the same mechanism – event mechanism – with the

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 14

GUI component input. In this solution, console input playback is also possible

because the read method in Figure 2 will actually first check if it is playback

mode or capture mode. If it is in playback mode, stored value will be send to

the original input receiver.

� 6. Input Simulation

The above discussion for user input are all for type 1 record/playback. For

type 2 record/playback, the input is provided by the input simulation using

scripting language. This is well described at other place. Here an example

(from [6]) is used for illustration as shown in Figure 3:

set frame [frames frame0]
set contentPane [$frame getContentPane]
set components [$contentPane getComponents]
set comp [$components get 0]
set btn [java::cast javax.swing.JButton $comp]
mousePressed $btn
sleep 500
mouseReleased $btn
mouseClicked $btn

Figure 3. Using scripting language to provide input simulation

Some features are shown in this illustration for simulation.

� A variable in a target application can be accessed, e.g.

set fram [frames frome0].

� A class method can be invoked from the scripting shell level, e.g.

Set contentPane [$frame getContentPane]

� A customized method at shell level can be mix used with objects in

target appplication, eg.

MousePressed $btn

� Program control can be fully controlled by the scripting language

� 7. Recording and Recording Schema

Recording schema denotes how to record the context or program internal state

when capturing an underlying input.

There are two types of recording schemas, real time and widget.

� 7.1 Real Time Schema

With real time, the key input and mouse input are replayed exactly as

recorded[11]. This type is the simplest recording schema. But the downside is

that it is easy to apply an inconsistent playback when the target application

responds to events with different timing.

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 15

An example of this tool is Rebbeca 1.0[20], which uses real time recording

schema to store the input context and playback.

� 7.2 Widget Schema

The widget schema is actually for object level. Besides it records the input

value, it also records its widget information. Using widget schema, a minimum

set of test cases can be recorded. A widget is actually a GUI component. So a

widget schema refers to record an input and its correspondent GUI

component, which is the receiver, by sequence.

If the previously mentioned trial solution to capture console input is correct,

the widget schema will not only limit to GUI components and will extend to

any Java component with event mechanism. So a widget schema could be

defined to record an input and its correspondent receiver object.

The downside of this schema is that exact time delays between events may be

important for replay consistency.

Most record/playback tools use this schema, like QC/Replay[14], XRunner[21],

Rational Visual Test[24], etc.

� 8. Playback

The simplest way to replay the recorded input data is to replay at the restart

of the target application. Often the case, this will bring overhead. The ideal is

to start the playback at a desired execution point.

For GUI application, it is not a problem. Any GUI component input is to the

GUI component which has current focus. This focus can be transferred and

controlled by the program. So it is easy to set focus to a desired GUI

component and dispatch the KeyEvent or MouseEvent back to the EventQueue

with the desired GUI component focus.

For application with console input, first it is hard to locate the starting point for

starting playback; second, the recorded data must be retrieved from storage

to its receiver – i.e. i/o redirection is needed for all console input receivers[5].

The solution in Figure 2 shows this idea. It’s better to start the playback at the

point of restarting the target application. But if we have GUI input playback as

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 16

the first, then no need to start the playback from the very beginning of the

whole program.

The above solution is for non-interactive playback (record/playback type 1) –

playback without user’s interruption. If with integration with other testing tools

or to have the ability to inspect internal state of the program during the

playback, the target application needs to stop at a specific point during that

playback (record/playback type 2). In that case, a scripting language like

JTcl[7] is definitely needed with that scripting shell environment.

� 9. Conclusion

This report aimed to discuss comprehensive issues for record/playback to Java

application, including for the process of Java software watermarking. But it did

not intend to provide a full discussion or a concrete solution to implement such

a record/playback tool.

There are several definitions proposed in this report, such as the three types

of record/playback(s); the taxonomy of input including console input, socket

stream input etc; the three types of target applications – GUI application, text

UI application and none-UI application; and three user input capturing levels –

hardware level, OS level and process level.

This report proposed a trial solution for capturing console input; raised a

specific question for console or none-UI Java application (specially for Java

software watermarking) of how to activate an input receiver for beginning to

receive the user inputs; discussed the recording schema – real time and

widget.

� 10. Acknowledgement

Thanks to Dr. C.Collberg who showed me the first entry point for this project,

otherwise I would hesitate for a while without getting the point. Special thanks

to my supervisor, Prof. C.Thomborson, who guided me performing this

research project; and gave the helps of showing me how Java software

watermarking works with inputs, of how to analyze issues raised in

record/playback, of keeping a good format to a technical report.

� 11. Reference

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 17

1. Christian Collberg, Clark Thomborson. Software Watermarking: Models and

Dynamic Embeddings. In Principles of Programming Languages 1999, POPL’99,

San Antonio, TX, January 1999. Available at

http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson99a/index.html,

Feb 2001

2. Christian Collberg, Clark Thomborson. Watermarking, Tamper-Proofing, and

Obfuscation – Tools for Software Protection. Presented at the DIMACS

Workshop on Management of Digital Intellectual Property, April 2000, Rutgers

University (NJ, USA). Submitted to IEEE Transactions on Software Engineering,

July 2000. Available at

http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson2000a/index.html,

8 Feb 2001

3. Christian Collberg. Tool: SandMark. Software Watermarking for Java – The

Sandmark home. Available at

http://www.cs.arizona.edu/sandmark/, 8 Feb 2001

4. Testing Java Application. Available at

http://www.byte.com/art/9711/sec17/art4.htm, 8 Feb 2001

5. Alan Walworth. Automated testing is as problematic as it is essential. Java GUI

Testing. Dr. Dobb's Journal February 1997. Available at

 http://www.ddj.com/articles/1997/9702/9702c/9702c.htm?topic=java, 8 Feb 2001

6. J.D. Newmarch. Testing Java swing-Based Applications. Proceedings of the

31st International Conference on Technology of Object-Oriented Language and

Systems. Available at

http://pandonia.canberra.edu.au/java/replayjava/paper.html, 8 Feb 2001

7. Scriptics Tcl Resource Center. Available at

http://www.scriptics.com/java, 8 Feb 2001

8. Krishnan Rangaraajan. How Can I Test Java Classes? Dr.Dobb's Journal, July

1999, pp. 107-110. Available at

http://www.ddj.com/articles/1999/9907/9907k/9907k.htm?topic=java, 8 Feb 2001

Jverifier™ -- Java class/API testing tool. Available at

http://www.mmsindia.com/JVerify.html, 8 Feb 2001

9. Panorama for Java: JavaPlayback. Available at

http://www.softwareautomation.com/panojava/webman/playback.htm, 8 Feb 2001

10. Sun WorkShop Visual Replay. Available at

http://docs.sun.com/htmlcoll/coll.82.5/iso-8859-1/SWVISUG/Replay.html, 8 Feb 2001

11. Software Research, Inc. Capture/Playback Modes. Available at

http://www.soft.com/AppNotes/capmodes.html, 8 Feb 2001

12. Kerry Zallar. Automated Software Testing – A Perspective. Available at

http://www.scs.ubbcluj.ro/~pd27936/diploma/perspective.html, 8 Feb 2001

 Project 415.780AC Report Record and Playback for Java Software Watermarking

 Guanglun Yu 15 Feb 2001 page 18

13. Linda J. McAlpine. Automated Testing: A Hat That Fits? Comm Central

June/July 1996. Available at http://www.prairienet.org/cil_stc/cc2-5.html, 8 Feb 2001

14. Software: QC/Replay. Available at

http://www.centerline.com/productline/qcreplay/qcreplay.html, 8 Feb 2001

15. PC Pay(R) Device. Available at

http://www.innovonics.com/endtoend.html, and

http://www.innovonics.com/pcpay/pcpayhome.html, 8 Feb 2001

16. KeyGhost ™ device. Available at http://www.keyghost.com/

or for introduction http://www.keyghost.com/kgpro.htm, 8 Feb 2001

17. Software: Keyboard Express. Available at http://www.keyboardexpress.com/, 8 Feb

2001

18. Software: Windows KeyLogger. Available at http://www.littlesister.de/, 8 Feb 2001

19. Brad Myers. Input Models. March, 1999. Available at

http://www.cs.cmu.edu/~bam/uicourse/1999spring/lecture12input.html, 8 Feb 2001

20. Bob Dugan. Tool: Rebecca 1.0 home page.

Available at http://www.cs.rpi.edu/~dugan/rebecca.html, 8 Feb 2001

21. XRunner home. Available at http://www-heva.mercuryinteractive.com/products/xrunner/,

8 Feb 2001

22. Mercury Interactive. Tool: WinRunner home.

Available at http://www-svca.mercuryinteractive.com/products/winrunner/, 8 Feb 2001

23. HalloGram. WinRunner Introduction.

Available at http://www.hallogram.com/winrunner/, 8 Feb, 2001

24. Rational. Tool: Rational Visual Test.

Available at http://www.rational.com/products/visual_test/index.jsp, 8 Feb 2001

