
The Department of Computer Science

The University of Auckland

New Zealand

Form-Oriented Security Analysis of

The WrecDirect Web Application

Dong Zhang

July 2006

Supervisors:

Gerald Weber and Clark Thomborson

2

A dissertation submitted in partial fulfillment of

the requirements of Bachelor of Science (Hon-

ours)

Abstract

One area of web application security is application-level security, which refers to those

vulnerabilities that are inherited from an application itself and independent of platforms.

Conducting application-level security analysis for each web application individually can

be a complicated task. We approach this problem by building a Form-Oriented model. A

Form-Oriented model roughly consists of three parts—a dialog model (a.k.a formchart),

a layered data model, and dialog specifications. These integrated parts together define

the behaviors of a web application. We choose the WrecDirect registration module to

apply Form-Oriented modeling. With this Form-Oriented model, we investigate security

issues from three aspects: input validation, error handling and concurrent use. We have

found some artifacts in Form-Oriented modeling such as bipartite structure and model

refinement are of great value to the security analysis.

i

ii

Acknowledgement

With a deep sense of gratitude, I wish to express my sincere thanks to both of my su-

pervisors, Dr. Gerald Weber and Prof. Clark Thomborson, for their enthusiastic support

and guidance throughout the research. What I know today about the process of research,

I learned from Dr. Weber and Prof. Thomborson.

My sincere thanks are due to Mr. Barry Dowdeswell and Mr. Stephen McWilliams at

AARN ltd., for providing me constant encouragement and support. They have invested

a huge amount of their precious time in helping me understand WrecDirect application.

The episode of acknowledgement would not be complete without the mention of Bar-

bara Thomborson. Her timely help during my writing stage is truly unforgettable. I

enjoyed my work with the company of the SSG group members namely, Jasvir, Anirban,

William, Jinho , Jun, Teng, Lei and Han.

iii

iv

Contents

1 Introduction 1

1.1 Challenges in Web Security . 1

1.2 Need for a Web Model . 3

1.3 Benefits of Modeling Security . 4

1.4 Application Level Structure . 6

1.5 Related Work in Web Modeling . 8

1.6 Organization . 11

2 Form-Oriented Analysis 13

2.1 Form-Oriented Information System Model 13

2.2 An Abstraction of Web Application . 16

2.3 Model Decomposition . 18

2.4 Model Refinement . 19

3 Modeling WrecDirect Registration Module 21

3.1 WrecDirect On-line Tendering System . 21

3.2 Registration Module . 22

3.3 Formchart . 27

3.4 Layered Data Model and Dialog Specifications 28

3.5 User Message Model and Dialog Specifications 30

v

vi Contents

3.6 Summary . 38

4 Security Analysis 39

4.1 Input Validation . 39

4.2 Error Handling . 42

4.3 Multi-User Registration . 44

4.4 Summary . 45

5 Conclusion 47

5.1 Contributions to Security Modeling . 47

5.2 Limitations of Form-Oriented Security Analysis 48

5.3 Future Work . 49

1
Introduction

Security has widely been accepted as one of the major concerns in software developments.

Many efforts have been made to address security issues right from design phase through

to testing phase of the software development cycle. In the web application world, such

requirements are even stronger, because web applications are vulnerable to attacks in

the sense that all client/server interactions are across network. For example, unlike in a

normal software application, where user inputs are generated locally, the messages received

by web application servers are normally from a remote client site. Whether these messages

have been spoofed and modified is always worth a question mark. Such problems need to

be addressed since they do come up and cause damages in real life.

1.1 Challenges in Web Security

Successful intrusions into web sites may lead to various problems, such as unauthorized

modifications to web content or leaks of user information. These possible attacks may

adversely affect the day-to-day running of most on-line services, and they are even more

harmful when it comes to web sites of critical tasks. E-commerce web sites are of this

sort.

1

2 Introduction

An article entitled Security Hole Threatens British E-tailers was published on 25th

January, 2001 in a British newspaper. In this article, a “glitch” that may affect 40 percent

of UK’s e-commerce sites was found. [1] By exploiting this “glitch”, the journalist managed

to buy goods for less than intended prices. As the author rightly claimed this process

“does not require any particular technical skill”, what was involved in the attacks was

merely changing the downloaded HTML pages and loading them back into browsers. This

case is not unique. Internet Security System (ISS) has listed 10 shopping cart applications

that were and/or are still suffering from similar vulnerabilities [2].

Ranging from the above simple attack to the most sophisticated hacking plan, more

and more vulnerabilities in our cyberspace are disclosed every day. According to Bhasin [3],

seven different types of threats were identified. Each of these seven types contains a group

of techniques that can be used to compromise a variety of targets. Following up the at-

tacks, researcher have been able to summarize common security problems shared by most

web platforms [4].

Despite the vast range of vulnerabilities that reside on different levels of a system, the

focus of this dissertation is on so-called application-level web security. Application-level

web security, as defined by Scott and Sharp, refers to “vulnerabilities inherent in the

code of a web-application itself (irrespective of the technology in which it is implemented

or the security of the web-server/back-end database on which it is built).” [5] The fact

that this type of defects exist in business logic rather than the underlying technology,

makes the process of identifying such vulnerabilities varies from application to application.

Therefore, a specific investigation into a particular web application implementation is

required to carry out application-level security analysis.

On the other hand, it is not hard to see application-level web security holes are widely

recognized and damaging. In the Top Ten Most Critical Web Application Security Vul-

nerabilities published by OWASP community [6], seven of the ten vulnerabilities can be

application related. For example, the top one ”unvalidated input” is a potential security

hole created by careless input validation. A possible consequence, as we have seen at

the beginning, can result in unexpected loss in e-business transactions. In addition, a

1.2 Need for a Web Model 3

SQL-injection that exploits this problem may expose confidential information.

Besides identifying security vulnerabilities, another aspect of web security is auditing.

In a typical web application, clients’ behaviors and data are recorded in a log file, which

can be used for security analysis or recovery among other uses. If an attack or even an

attempt to attack is detected and recorded, we must record it in an understandable way.

In security auditing, a full understanding of the problem is necessary in order to close

security holes that may lead to similar attacks in the future. The difficulties arise with

the fact that more and more web applications tend to use dynamic content nowadays. In

these web applications, components on a page are generated on the fly based on server

states. So in order to render a transaction that happened some time ago, the sever state

at that point of time needs to be available to determine the action taken by the client.

Since both server state and server actions are domain specific, web application auditing

obviously involves application-level issues.

1.2 Need for a Web Model

Current industrial web application developments are still in an ad-hoc fashion. In the

design phase, designers and developers prototype web pages that they have in mind. A

brainstorm-like diagram (a.k.a page diagram) is constructed to show web pages and their

outlook. Such a diagram is neither formal nor precise. After this, arrows are added to

link up pages to present navigation paths. Because some old web applications mainly

contain static HTML pages, this approach can be considered as a fast and effective way

to present a design. Functions were merely jumping between web pages to display HTML

content. Quality assurance, in this case, is an unchallenging task. All it has to do is to

guarantee the use of well-formed HTML syntax.

Problems came along, though, when dealing with dynamic content and data submis-

sion. In dynamic web content scenario, a server action is invoked to generate replies.

This action may depend the state of the server and/or the data received from the client.

For example, in an on-line shopping application, when a customer requires the price of a

4 Introduction

certain product, a product ID is passed on to server where both the product ID and client

identity are taken into account to decide a discount rate and then the final price. This

transaction obviously can not be represented easily by a simple arrow in the prototype.

Another key feature that should be included in a design is the validation of messages

that are passed back and forth. The rationale for doing so is that clients’ inputs must

be consistent with other components of the system to make themselves understood. In

the above on-line shopping example, a product ID may have to be in a certain format to

match up a record in the product database. If the server starts processing the message

without a validation step, arbitrary inputs are allowed into queries, which may lead to

database exceptions, in the absence of an error handling mechanism.

Due to the lack of formalism and intention to detail, traditional approach generally

resulted in web applications of poor quality. The rise of scripting technology makes any

non-trivial applications have to be able to handle dynamic content. Current modeling

techniques, as argued before, are mainly focusing on static web content. So there is a

need for a state-of-the-art modeling technique in our on-line world.

1.3 Benefits of Modeling Security

From the previous discussion, we may conclude that a modeling technology for web appli-

cation is desirable and necessary to achieve efficient development. The outcome of such a

modeling process must be definitive, free-of-ambiguity as well as complete. More specif-

ically, a model should be able to “display significant features and characteristics of the

system, which one wishes to study, predict, modify, or control.” [7] On the other hand,

having an application-level model at the early stage of web development does not only

benefit development process [8], but also addresses some other important issues, such as

reliability and security.

A simulation model, as defined by Kellner [7], is a computerized model that can

represent the dynamic behaviors of a complex system. In the world of web application,

such a model can be handy. The difficulties on application-level web modeling is the web

1.3 Benefits of Modeling Security 5

content is dynamic and domain specific. Security issues arise when the dynamic behaviors

go out of control. A breach of confidentiality is a good example. Imagine a web page that

can display sensitive information to a particular user but not to any others, and this piece

of information is dynamic based on the client’s inputs and identity. In such a scenario,

the confidentiality and the risk of losing it can not be studied in any model which does

not capture the semantics of client identity. Meanwhile, web applications have been found

of a state-machine nature. The behaviors of a model are bounded by strict rules. Once a

user-system interaction is known, a prediction of its consequence is possible even before

examining the implementation code.

Application-level security concerns the vulnerabilities inherited from the application

itself and irrelevant to the underlying technology [9], which means the security analy-

sis done on one application is possibly applicable to others. The model is platform and

technology independent, so security holes identified on this level may also appear in an

implementation based on a different platform. For example, in the reported price modifi-

cation case at the beginning of this dissertation, the very same failure occurred in many

different e-commerce web sites. Our hope is that with the assistance of a model, vulnera-

bilities can be identified easily and have educational meanings with respect to the system

we have modeled but other similar systems.

There are roughly two opposite directions in building a model, namely forward and

backward engineering. In forward engineering, a model is built at first based on require-

ments, then issues like functionality and security get investigated according to the model.

After several cycles of refinement, the model becomes the master blueprint for imple-

mentation and deployment. In contrast, the backward approach, also known as reverse

engineering, is to abstract a model out of an existing implementation, and then analysis

is done over it. Although the forward direction is generally preferred in development,

for sake of minimizing rework effort, both approaches are valuable from security point of

view. If a model is developed before an implementation, we have a base to do our security

analysis at a very early stage. The advantages follow from the natural logic that the earlier

security holes are discovered, the better they can be avoided. On the other hand, once an

6 Introduction

implementation is done, it is also worth generating a corresponding security model, which

can be used for vulnerability analysis to give confidence in the product’s reliability (ie.

assurance). In comparison to a post-implementation blind quality-assurance test, where

arbitrary testing inputs are fed into the application, the abstraction can be expected to

lead us to potential defects more easily and rapidly.

1.4 Application Level Structure

In a web environment, security can be compromised at different levels. In an article

named Internet security: firewalls and beyond [10], investigations into three layers of the

TCP/IP protocol stack were carried out. Proposals have been made to build a firewall

that can protect the internet, transportation and application layer better. Surely if each

protocol layer can be successfully guarded, fewer attacks will happen. But in real life,

how much damage a malicious action can cause depends on the designs at all levels. Take

web spoofing for example. The research presented by Edward et al. [11] has shown this

traditional attacking method, although concentrating on stealing messages at protocol

level, is closely related to the application level logic. In their study, a form submitted

by a client can easily become a target. Possibilities were discussed, such as if messages

are routed through a middle machine, attackers can capture the form content and breach

client’s privacy. Furthermore, if the form content is carefully edited before being passed

on to the real server, the consequence may be server ends up in an unexpected state after

accepting this message, given that the client is trusted and spoofing has gone undetected.

It is fairly clear in the above situation, if a leak of confidential information is unavoidable,

the damage to the server can be eliminated or limited by putting some constraints on

incoming messages.

On the application level, a web system consist of two sides, the client and the server.

Distinguished from other software systems, a web application is featured by request/re-

sponse style transactions between these two sides. In a typical dynamic web application,

a client would firstly receive a page containing forms where inputs can be entered. After

1.4 Application Level Structure 7

a client submits a completed form to the server, it may take some actions to change its

own state and possibly generate new pages as replies to the client for the next cycle. In

the book “Form-Oriented Analysis” [12], such a transaction is abstracted as a single state

transition function:

stateTransitionFunction : message × state −→ state × listof(message)

From the above formulation, a web transaction can be represented by only three

components, client forms, server actions, and the messages being passed in between.

Client forms are designed and generated by the web server; server actions happen on the

sever side but may be dependent on incoming messages; and messages are created by either

side, depending on which direction they are traveling at. Since all three key components

can be tracked down to either client or server, we can take our abstraction further into

two groups: client pages and server actions. Client pages are forms displayed on the client

site and later submitted to a web server; server actions are transition functions executed

on the web server. Based on this idea, messages naturally come in as directed links

from client pages to server actions (or the other way around). This design was originally

proposed by Draheim et al., and notations used by them are illustrated in Figure 1.1.

The pattern of these interactions is a bipartite graph [14], in which all client pages belong

to one group and server actions belong to the other. As a result, in order to get another

web page from one page, a server action must be invoked.

From security aspect, this representation is very interesting, in the sense that serval

key features are well captured. Firstly, navigation is represented in detail. All possible web

Figure 1.1: Bipartite Structure in Web Applications. After [13].

8 Introduction

pages are included, though maybe with different content. A visiting flow is a directed path

along the links. Secondly, semantics are precisely defined. Even though client pages are

volatile, page changes are recorded in the form of data transmissions with the consequence

of server state changes. Thirdly, type information is introduced and control boundaries

are dawn out. In this bipartite diagram, every client page is decided by web server.

Therefore, we may assume the submitted data must be of a certain format (type), then

it is only the content left to be worried about. This mechanism can be considered as

a way to create an object-oriented metaphor, where commonalities among objects are

abstracted into types.

As argued before, simulation is crucial in web security assurance and application test-

ing. A bipartite structure emphasizes the server actions that are exactly missing in naive

page diagram. In a simulation process, we are able to observe the effects on the server

side, given any incoming messages. This is doable because we take web applications as

a state machine. On the other hand, analyzing server actions can lead us directly to

potential defects, instead of searching for them blindly.

1.5 Related Work in Web Modeling

Application-level web security issues have been a research topic for several years, but

most investigations have been feature-driven and technology focused. The concept of

application level security was raised by Scott and Sharp in 2002 [9], when they also

listed three common attacks as: form modification, SQL attacks and Cross-Site Scripting.

Meanwhile, they proposed a tool [15] to counter these attacks. Similar attacks were also

discussed by Huang et al [16]. In their writing, three types of security violations were

defined, such as integrity violation, access rights violation and confidentiality violation;

both static and runtime analysis were studied to detect security holes.

Another stream in this research area is focused on a particular domain of web applica-

tion use. Security issues of an on-line medical system has been addressed by Gritzalis et

al. [17]. Twelve threats were raised, which can all be characterized as well known attacks

1.5 Related Work in Web Modeling 9

such as access control, traffic spoofing and forged network address, although the architec-

ture and security requirements of their system are special. In e-commerce world, where

transactions take place over internet, five basic requirements were listed [18], which are

confidentiality, authentication, data integrity, nonrepudiation and selective application

of services. Vertical solutions from network to application level were offered to enhance

web transaction security. On the application level, HTTPS and SHTTP standards were

discussed as good candidates for securing HTTP transactions.

Orthogonal to domain specific research, some typical modules of web applications have

received intensive study. Access control is one good example. It is designed to be the

entrance guard of most web systems, and this fact makes it a well-known hot spot often

targeted by various attacks. Due to its special role, researchers have been putting effort

in creating formalized models. Role based access control [19] was born long ago and now

is increasingly used in web applications. In addition, discretionary and mandatory access

control models [20] were introduced to put more attention onto information assets.

In generic web application modeling, developments have given rise to a few tech-

niques. One group came out from UML camp, including OOHDM [21], OO-H [22], and

WEBML [23]. Perhaps for the reason that UML is arguably the most widely accepted

practice in traditional software modeling, quite a number of contributions can be found

in promoting UML extended approaches. For instance, a navigation model was built us-

ing OOHDM [24]; web services were attempted in UML standard [25]. Diversified from

the UML-based methodologies, another branch has appeared based on the widely used

Object Oriented modeling. In Gellersen and Gaedke’ article [26], WebComposition Com-

ponent Model was used as XML-based description to generate static HTML pages. Other

research outcomes include WebGraph [27], a language that only models HTML pages.

It is formal enough that even a model checking can be done. From our knowledge, the

closest model to the web application structure discussed in previous section, has come

from Baresi, Garzotto and Paolini. In their publication [28], the importance of capturing

semantic associations was highlighted. They also defined the user operations and system

operations in a web environment, which are comparable to our client pages and server

10 Introduction

actions, but in their design, system operations were not intensively investigated because

they argued those are implementation issues. With their goal of modeling functionality,

the static-link type of system operations could suffice.

In our reading of the literature on web and OO modeling, we found very few security

analysis. Most of these models lack detailed semantics, which would severely limit the

range of security analysis that could be conducted. For example, hypermedia models typ-

ically focus on just two aspects of the system, its data structures and its navigation paths.

A dynamic web application has another dimension: operation, which represents the state

of a session. Although this feature has been included into modular scope modeling (e.g.

access control), cases where it is incorporated at generic level are still rarely seen. One

example is UMLsec, which has come close to what we will be doing. UMLsec features

mostly-used security requirements; it uses associated constraints to evaluate specifications

and indicate possible vulnerabilities; it ensures that stated security requirements enforce

given security policy and that UML specification satisfies the defined requirements. In

UMLsec, formal semantics are represented by a combination of activity diagrams, state-

charts, sequence diagrams, static structure diagrams, deployment diagrams, and subsys-

tems [29]. The use of these diagrams was illustrated in several publications in assistance

to security analysis. [30] [31] [32]

To summarize, a large proportion of current web modeling research has an emphasis on

static content modeling. These techniques are represented by OOHDM, OO-H, WEBML.

Formalism has been successfully achieved in this area, but an essential limitation has

prevented them from being widely used in web security analysis. This limitation is that

due to the lack of semantics, dynamic web systems can hardly be incorporated into mod-

els. The above argument is particularly true when most latest web applications contain

dynamic content. A few techniques such as UMLsec have been suggested to complement

them. In UMLsec, implementation levels issues like encryption and physical security are

mandatory requirements. In our work with Form-Oriented modeling, we try to offer a

pure application level security analysis.

1.6 Organization 11

1.6 Organization

Chapter two will give a background introduction of Form-Oriented Analysis. Chapter

three will introduce the application itself and model this application in formcharts, data

model and dialog specifications. The writing style follows the actual process of modeling,

which means the model will get refined several times before being finalized. Chapter

four will discuss the Form-Oriented model with respect to security issues. Meanwhile,

proposals will be made to improve its security. Chapter five will conclude this research

and indicate future work. Readers who are familiar with Form-Oriented modeling may

want to start from Chapter Three to get a taste of the actual model.

12 Introduction

2
Form-Oriented Analysis

After surveying quite a number of modeling standards, Form-Oriented Analysis was chosen

to conduct this research. In this chapter we will give a general introduction to Form-

Oriented Analysis and its applications.

2.1 Form-Oriented Information System Model

As Form-Oriented analysis can cope with many distinct types of systems and can be

used for different purposes, we need to pick the most appropriate Form-Oriented model

to serve our use. Our target application is a dynamic web application. In other words,

it is a submit/response style system interface related to a layered data model. In Form-

Oriented modeling, information system model [12] comes closest to our requirement. An

information system model has a bipartite typed state machine and layered data model.

For each of these two key components, there are several subelements that are used to

detail a complete operating environment. See figure 2.1

Also as known as formchart, the dialog model is a user interface model. It includes

client pages, server actions and navigation paths. Following the notations used by Dra-

heim and Weber, we depicte client pages by ellipses, server actions by rectangles and a

13

14 Form-Oriented Analysis

client/server transition by an arrow between an ellipse and a rectangle. Since formchart

elements are allowed to carry the same names to depict same model elements, a dia-

log model can be repainted by different formcharts for readability purpose. As a result,

the formcharts that come from one dialog model are in a weak isomorphic relationship

with each other. Then the questions come down only to which one is tidier and more

readable from presentation perspective. In our modeling, only one formchat is produced.

Readability is no problem, for the number of elements is very limited.

Naming conventions were also suggested [12]. In our modeling, most of these conven-

tions are strictly followed. It is worth mentioning that default transition names were used

for simplicity. This can be explained in figure 2.2 The notations above the line precisely

name a transition without ambiguity. Thus these notations can then be omitted on the

formchart diagram to give tidiness. For instance, using the name P TO A can point us

to the exact arcs by default, as shown in the graph.

Under the dialog model, there is a layered data model, which is made up of user mes-

sage model, opaque identity model and information model. User message model defines

the messages that are transferred between client pages and server actions. These mes-

Figure 2.1: The information system model of form-oriented analysis. [12]

2.1 Form-Oriented Information System Model 15

sages are structural data that form a hierarchical tree structure. One good example can

be web registration forms, where individual fields such as address, contacts and names are

entered on a client page. All parameters belong to one user, which can be taken as a top

level object. This property can let us define strong typed user/system objects, similar to

the concept “class” in object-oriented design. Since message exchanges happen on links,

directions at which they are traveling must be specified. We use two key words ”source”

and ”target” to indicate wether messages we are using reside at the beginning or the end

of an arrow.

In a web environment, server state is crucial in determining how server actions behave.

Therefore the information model is introduced to define the updateable portion of server

state. This portion comprises persistent data and session data. In our research, we

followed the advice in Draheim and Weber’s book to neglect the distinction between these

two. Opaque identity model came in as a mapping facility that bridges user message model

and information model. This tool, in the simplest words, is to help a client page object

communicate with its correspondence in information model. The the third part is called

shared model, where types can be defined. These types are supposed to be used by both

user message model and information model. Throughout our modeling, a textual notation

system was used to build the data model. In the notation, entities are represented by

classes with attributes, navigated associations and multiplicities.

Once we have a navigation model and a data model, we can define user/system in-

teractions using dialog specifications. In this specification, user capabilities and server

Figure 2.2: Formchart naming conventions . [12]

16 Form-Oriented Analysis

reactions are written with respect to Dialog Model and data model. Researchers have

generalized seven key elements: Flow conditions, Server output specifications, Client in-

put constraint, Enabling conditions, Client output constraints, Server input constraints

and Side effect specifications (definitions in [12]). It is not hard to see that some of

these specifications are only associated with certain dialog components while other may

be applied at global level. Obviously, Flow conditions can be put only on transitions from

server action to client page and side effect must belong to a particular server action. This

finding is justified in our modeling experience.

Notation wise, a graphical representation is used for dialog model, which contains

ellipses, rectangles and directed links in between. In the diagram, a strict bipartite is

formed if all ellipses are taken into one group and rectangles are taken into the other. In

the data model, textural class-like format is used to capture the system’s data model. For

dialog specifications, DCL, an extension to Object Constraint Language OCL was chosen.

2.2 An Abstraction of Web Application

The scope of Form-Oriented is clarified in two dimensions. Horizontally, Form-Oriented

information system model allow partial modeling, with the support of model decomposi-

tion. Vertically, only pure application level information is collected into a model. This

section is devoted to explaining how the scope is defined vertically and what bits in a web

application actually come into the model.

From user perspective, a web page in real applications depends on many different

environments. For example, the look-and-feel of a button may be related to browser

and/or displaying device. Characters may be in different languages based on individual

machine settings. All these can be considered as low level issues, and thus not included

in our model. In fact, what we are really interested in is the navigation and the actual

information that is delivered. In our Form-Oriented model, web pages become part of

our formchart, where only their names are recorded as IDs. When a form is submitted,

regardless wether triggered by a button or a link, a server action is executed in our model,

as a transition from a client page to a server action. Similarly, no matter what language

2.2 An Abstraction of Web Application 17

a form content is entered in, our user message model will capture and format it to be

understood by the system.

On the server side, activities are described by dialog specifications. In an access control

module, a user name and password pair is passed to the server to execute a check. It

may be the case that password is encrypted and server must at first run a decryption

routine before doing a look-up in database. This detail is ignored in our model, because

it is an implementation strategy to improve the security of data transfer. Similar cases

can also be found in constraint design. In some technologies, user control constraints are

automatically enforced. While in others, developers have to manually conduct constraint

check in their code. But the Form-Oriented model again overlook the implementation of

constraint checkings.

Since data are depicted in information models, the underlying data storage also be-

comes irrelevant. In a typical relational database, an entity may have attributes and

relations to other entities. In order to successfully render this data table, we can create

a class in the information model and then add attributes and multiplicities in associa-

tions with other entities. Although this abstraction makes the data independent from the

underlying database, we still allow SQL commands to appear in dialog specifications for

the convenience of usage. Departing away from real implementations, we then need to

define primitive types in Form-Oriented Model. The most common ones include string,

number, date etc. These basic units are at the bottom of type hierarchy and used across

data models and dialog specifications.

This vertical abstraction with no doubt has the benefit of limiting our focus to ap-

plication level issues only, but in security analysis, the room is restrained. For example,

SQL injection, a well-known application level attack, exploits the lack of forethought in

input validation. In our model, we can put a requirements in server input constraint to

ensure a client input is valid. But how these requirements are met have gone missing.

18 Form-Oriented Analysis

2.3 Model Decomposition

The demand for model decomposition comes from the need for partial modeling. In

most situations, an entire web application is too big or too complex to be modeled at

once. This is particularly true when considering our model as a suite of formacharts,

data models and associated specifications. All these components must co-exist to cover

compulsory aspects of a system. If our interest is only in one module or one functional

unit of the whole web application, it is highly desirable that only this part is modeled,

while completeness, consistency and definitiveness are still maintained.

The discussion about Feature-Driven approach has brought into our sight interaction

capabilities. An interaction capability “is offered similarly on different occasions, in dif-

ferent contexts , by several client pages consists of a set of typically loosely coupled or

even uncoupled model states and transitions” [12]. It means in a web application, there

may exist some parts that are independent from the rest of the system. One example

would be the registration module. This functional unit can be found in a wide range of

web applications like on-line enrollment, forum, payroll system etc. The design and im-

plementation of this feature is not closely attached to its domain-specific host application.

Regardless of where it appears, normally several web pages are used to offer an interface

where user name/password pairs can be entered, and some database tables on the server

side get involved to conduct authentication and authorization. Because of the indepen-

dence and self-containment, it not difficult to isolate this module out from the other parts

of the system. Some publications have already picked it out [33]. In our Form-Oriented

modeling research, we restrict our focus with a submodel on this particular functional

unit.

As stated before, we allow two nodes in different formcharts to point to one element in

a model by using a same name. To decompose a formchart, we would just simply duplicate

the nodes at boundaries and display them in splitted submodels with same names. This

convention makes the composition and decomposition intuitive. As an example, figure

2.3 has decomposed a page-server-page transition into two subgraphs. Sine the server

2.4 Model Refinement 19

action A is at the boundary, it is duplicated in each of the submodels but still point to

the same element.

As formcharts are divided into subgraphs, the associated data model and dialog spec-

ifications can also be made local. In user message model, client pages and server actions

are global signatures, but it doesn’t harm if they reappear with their associated nodes in

submodels, as long as they have the same definitions. For dialog specifications, most of

their constraints are applied on transitions or server actions. Since these two elements

have already been made local on formcharts, separating their specifications is a natural

process.

2.4 Model Refinement

Three types of Form-Oriented models have been defined, [12], namely: ”signature model”,

”server input declared model/server input safe model” and ”multi-user safe model”. In

practice, we found the later two have been proved of great value from security perspective.

Server input constraints are the tricky bits in Form-Oriented analysis. In server input

declared model, input constraints are specified as the conditions on incoming messages.

Since the client end is not under system’s control, these conditions may be violated by

incorrect user inputs. An immediate question then, is to ask what will follow up if server

input constraints are not satisfied. Basic error handling mechanism include redirections

to a general error page, or simply the session is shut down. No matter what mechanism

is used, server input constraints should be replaced. In a server input safe model, these

Figure 2.3: Formchart Decompositon

20 Form-Oriented Analysis

constraints are removed. Instead, error handling will come into play when invalid inputs

are received.

Another situation that we sometimes face is, in a multi-user environment, we keep

different user views separated in the model as long as they don’t affect each other. We

achieve this with model decomposition. Each client then has its own instance of server

state machine. Since many clients may be acting on the same data model simultaneously,

the changes made into data model by one client may in turn adversely affect another

ongoing session. In multi-user safe model, transitions and their flow conditions are created

to redirect navigation in case of this type of exceptions . This model explicitly targets

at the cases where operations are valid at the beginning of a session, but become invalid

towards the end, due to impacts from other clients to server states. In our experience, this

could happen when a transaction is not atomic. We have found a good example in our

model to further explain this point. Please refer to Chapter Five’s multi-user registration

security analysis.

3
Modeling WrecDirect Registration

Module

In this chapter, we present the WrecDirect registration module, and its Form-Oriented

information systems model. Our aim here is to illustrate how Form-Oriented modeling is

conducted in practice. The discussion starts from the background of WrecDirect applica-

tion. Then a model is built upon its raw implementation. In the process of building our

Form-Oriented information system model, a reverse engineering approach was undertaken

in general. The web application that was chosen to be modeled is the registration module

of an on-line bidding system called WrecDirect. The model still got updated a few times

in parallel with development progress. To the time when this dissertation is written, the

implementation is in testing phase.

3.1 WrecDirect On-line Tendering System

WrecDirect is an on-line trading application targeted at damaged vehicle market. Like

other tendering systems, it allows participants to list their inventories as well as bid for a

stock. The payment transaction is not included in the system, which means after a tender

is closed, trading parties need to seek for another channel to arrange actual payment. At

21

22 Modeling WrecDirect Registration Module

prototype phase, there are basically two types of players in the system: buyers and sellers.

Registered sellers are able to list their vehicles, while buyer are able to browse, search and

bid for vehicles. Vehicle details are also provided along the way, including its type, photo,

statistics and condition. In terms of workflow, a buyer normally experiences browsing,

bidding, winning and payment to finish a deal, and a vehicle is archived only after payment

is confirmed from seller.

WrecDirect is special in two ways. First, it heavily uses non-web communication

channels. For example, user registration is confirmed via email; payments are confirmed

back to the system via email and winner is notified via email once a tender is closed. The

existence of external communications makes defining our model scope rather important.

From security viewpoint, it may not be appropriate to give assurance on channels that

are excluded from our model. The second one is its operational environment that has an

impact on security measurement. At registration step, all potential clients register their

interests, but they don’t get access to the system immediately. Instead, a manual process

would come in to make decisions about who can become legitimate users. Passwords are

generated once a potential client is granted access, and sent over through email. This

logic has created a confidence interval in which users are more or less trusted, if we only

choose clients from a closed community. The only open gate left to strangers is the initial

registration step where people can freely register their interests. For whatever components

hidden behind this gate, the likelihood of application level attacks (e.g. flood attack) will

presumably reduce. Based on this assumption, we have chosen the registration module

to exercise Form-Oriented modeling and security analysis.

3.2 Registration Module

WrecDirect Registration Module consists of five web pages, and a well defined process that

a successful registration must go through. These five pages are explained as following, in

the sequence they should be visited.� WelcomePage: /WrecDirect/Default.aspx On the welcome page, a link to regis-

3.2 Registration Module 23

Figure 3.1: WelcomePage

Figure 3.2: BasicInfoPage

tration is provided. This is the entrance to registration process.� BasicInfoPage: /WrecDirect/Registration.aspx This the first page where users can

input their address, contact and user type.� PreferencePage: /WrecDirect/Registration.aspx The third page let users select

their interested vehicles and regions. They will get notified once a match is found

in the tender list.� PaymentPage: /WrecDirect/BuyerNotification.aspx Users are able to select their

preferred payment methods on this page.� ConfirmationPage: /WrecDirect/RegistrationComplete.aspx A successful regis-

tration is confirmed on this page.

24 Modeling WrecDirect Registration Module

Figure 3.3: PreferencePage

Figure 3.4: PaymentPage

The WelcomePage is rendered in figure 3.1. The main window has two fields which

registered users can input their username and passwords to login. For our interest, the

“Register” link on the top can lead into registration process. Figure 3.2 is the first page of

registration process, where information such as Logon name, address, contact and email

can be collected. Business rules enforced here are: 1. logon name cannot be empty. 2.

Figure 3.5: ConfirmationPage

3.2 Registration Module 25

name cannot be empty. 3. Email must not be empty. 4. For the reason that a drop down

list is used, a registration must be of either buyer or seller type. If there is nothing wrong

at this step, the “next” link can let us proceed to the PreferencePage (See figure 3.3).

Here, the two drop down lists control the selection of interested regions and makes. Users

are also allowed to add preferences by clicking the “Add” button. Finally, a user may

choose none, one or both of the payment options.(figure 3.4) The “next” button on this

page will try to complete the registration process. If everything goes well, a confirmation

message is displayed to the user as in figure 3.5. There is a branch from BasicInfoPage

for user type “seller”. If seller is selected from the user type combo box, “next” button

will lead to the final ConfirmationPage.

On the server side, operations are managed in parallel with client actions. Starting

from BasicInfoPage, user inputs are passed back and forth to simulate a session. For

example, the information collected at BasicInfoPage will be passed back to client for

PreferencePage (but not displayed) and resubmitted by client with additional fields from

this page (in this case would be the preferred region and make). More intuitively, a new

user credential is like ball being passed between client and server, with bits and pieces

added at each stage, and a complete profile is constructed at final stage. In some of the web

pages, user input validation are carried out, and in case of a violation, an error message is

displayed. By clicking browsers’ back button, the last page can still be retrieved based on

the message passing mechanism described before (last step is recaptured from server side

incomplete user information). On most of the pages, there is a “back” link, used to point

backwards to the previous page. This is equivalent to the back button on most browsers.

On this event, inputs on current page are discarded, and will be populated later on when

this page is revisited and inputs are reentered. The entire user information is attempted

to be written into database only on clicking the “next” button of PaymentOptionPgae.

In other words, if this page or any previous page is closed before finishing, all the inputs

before that step will be lost. There is no session storage maintained on server side.

The data structure that is relevant to registration task is revealed by figure 3.6. Every

user in our system must be of buyer or seller user type. If the same person acts both as a

26 Modeling WrecDirect Registration Module

Figure 3.6: The database schema relevant to Registration module

buyer and a seller, two different accounts are then created for this same person and they

are considered as totally unrelated users of the system. The User entity has many-to-many

relationships with Region, Make and Payment. Therefore, intermediate entities are cre-

ated to follow ERD standard. Among all these entities, Region, Make and PaymentOption

have predefined values and they remain unchanged. When a ConfirmationPage is gener-

ated, a new record is inserted into User table, and possibly its associations are created

in UserPreferredRegion, UserPreferredMake and UserPaymentOption tables. The data

types of the attributes in each of these entities will be defined later in our Form-Oriented

data model.

We carefully selected the registration module for many reasons. Firstly, the business

rules and data set involved are fairly simple. Business roles can be understood with-

out knowing domain background. Only five basic data entities are used in this module,

3.3 Formchart 27

Figure 3.7: Dialog Model (Formchart) of WrectDirect registration module

and they are clearly associated. Secondly, the registration task is not specific to on-line

trading system only. Similar functional units can be found in various applications, where

registration is open. The study on this particular module may hopefully bring meaningful

outcomes to other systems. Although this unit is simple in many aspects, it can still offer

enough features in Form-Oriented security analysis. As one of the few hotspots that are

exposed to public, the registration component likely becomes the target of many kinds

of attacks. On the other hand, based on its implementation, the construction of a model

can easily take the advantages of the strength in Form-Oriented technology.

3.3 Formchart

Our first step was to produce dialog model. The entire formchart is built upon web

interfaces. (see figure 3.7). Web pages are indicated by ellipse and server actions by

28 Modeling WrecDirect Registration Module

rectangles. Each of the ProceedFromBasicInfoLink, ProceedFromPreferenceLink and Reg-

istrationAction is triggered by the next link in its upstream web page. The back hy-

perlinks on PreferencePage and PaymentPage are represented by BackFromPreference

and BackFromPayment respectively. From the screen shots of BasicInfoPage and Con-

firmationPage, we can find Home links, they both point to the initial WelcomePage and

indicated by a path through HomeLink server action.

From the formchart, we can clearly see the registration process is a closed loop with

no dummy outgoing arcs left. The only connection with the rest of the system is a

branch from initial WelcomePage, where a legitimate user can input their username and

password to login and go down a separate path. With model decomposition, when the

logon component is to be modeled, we can just simply reuse the WelcomePage with an

arc to LogonAction. In this way, the registration model we have constructed can easily

fit into a bigger picture when it is required.

3.4 Layered Data Model and Dialog Specifications

Before putting forward the data model, it is worthwhile to restate the most frequently used

labeling mechanisms in Form-Oriented standards. Further explanations of the following

notions can be found in [12].

ServerAction : Server actions of user message model

ClientPage : Client pages of user message model

Information : Types in information model (drawn from database here)

Signature : Types in the shared model used by both user message and information

Model

We start from defining information model. Drawn from the database schema, five top level

entities can be found.(see Figure 3.8) This description is incorrect for the reason of missing

associations, and implementations details are undesirably included (e.g. userTypeID as a

3.4 Layered Data Model and Dialog Specifications 29

Information > User

userName: String 1..1

name: String 1..1

street: String 1..1

suburb: String 1..1

city: String 1..1

postCode: Number 1..1

phone: Number 1..1

fax: Number 1..1

email: String 1..1

uerTypeID: Number 1..1

Information > UserType

typeID: Number 1..1

typeName: String 1..1

Information > Region

regionID: Number 1..1

regionName: String 1..1

Information > Make

makeID: Number 1..1

makeName: String 1..1

Information > PaymentOption

optionID: Number 1..1

optionName: String 1..1

Figure 3.8: Information Model From Database Schema

foreign key). However, it is still listed here to demonstrate the process of abstraction. A

cleaner and better information model would look like the following.

Information > User

name: String 1..1

street: String 1..1

suburb: String 1..1

city: String 1..1

postCode: Number 1..1

phone: Number 1..1

fax: Number 1..1

email: String 1..1

uerType: UserType 1..1

preference: Preference 1..*

paymentOption: PaymentOption 1..2

Signature > UserType

typeID: Number 1..1

typeName: String 1..1

Signature > Preference

preferredRegion: String 1..1

preferredMake: String 1..1

Signature > PaymentOption

optionID: Number 1..1

optionName: String 1..1

Apparently, several changes have been made here. A Signature namespace is added to

create a shared model. In this shared model, we define three types, UserType, Preference,

and PaymentOption. Theses three types are also valid in user message model, since they

are exactly the objects submitted in BasicInfoPage, PreferencePage and PaymentPage

respectively. Consequently, we merged the preferredRegion and preferredMake into Pref-

erence type to explicitly emphasis that they are submitted as pairs in PreferencePage.

The only object left in information model then is user. With multiple associations to

30 Modeling WrecDirect Registration Module

userType, preference and paymentOption, our task in registration becomes solely putting

a user object into persistent storage. Therefore, this conceptual simplicity makes the

model not only tidy but sensible.

3.5 User Message Model and Dialog Specifications

User message model is described in two groups: ClientPage and ServerAction. The dialog

specifications include seven categories that cover all aspects of system behavior. For a

summary of these seven elements, please refer to book [12]. In this section, We decompose

the formchart into subgraphs and discuss them individually. In this way, readability is

optimized and details of the application can be digested.

ClientPage > WelcomePage

defaultUserName: String 1..1

defaultPassword: String 1..1

SeverAction > RegistrationLink

WelcomePage > RegistrationLink

RegistrationLink TO BasicInfoPage

serverOutput:

target.defaultUserInfo.type = "buyer"

Warming up with the above submodel, we capture the initial transactions needed to

enter the registration process. The WelcomePage is able to take two inputs: user name

and password. These two fields are used for logging on, so they do not appear in our dialog

specifications. The server action RegistrationLink does not require any processing, so a

3.5 User Message Model and Dialog Specifications 31

simple static link like this is modeled without any specifications. In subsequent modeling

such links will be omitted. On the other half of this transaction, is our BasicInfoPage.

Based on the implementation the drop down list for user type, a server output constraint

must be added to give a default selection when the page is rendered. The definition of

BasicInfoPage is deferred to the next step to avoid repetition.

ClientPage > BasicInfoPage

defaultUserInfo: BasicInformation 1..1

Signature > BasicInformation:

logonName: String 1..1

name: String 1..1

street: String 1..1

suburb: String 1..1

city: String 1..1

postCode: Number 1..1

phone: Number 1..1

mobile: Number 1..1

fax: Number 1..1

email: String 1..1

type: UserType 1..1

ServerAction > ProceedFromBasicInfoLink

userInfo: BasicInformation 1..1

serverInput:User->allInstances ->

select(basicInformation.userName = source.logonName)-> isEmpty

32 Modeling WrecDirect Registration Module

BasicInfoPage TO ProceedFromBasicInfoLink

clientOutput: not target.userInfo.logonName -> isEmpty

and not target.userInfo.name -> isEmpty

and not target.userInfo.email -> isEmpty

and (target.userInfo.type.typeName="buyer"

or target.userInfo.type.typeName="seller")

ProceedFromBasicInfoLink TO PreferencePage

flow: source.userInfo.type="buyer"

and User->allInstances ->

select(basicInformation.userName = source.logonName)

-> isEmpty

serverOutput: target.carriedUserBasicInfo->isClone(source.userInfo)

and (target.defaultPreference.make = "Toyota"

or target.defaultPreference.region = "Auckland")

ProceedFromBasicInfoLink TO ConfirmationPage

flow: source.userInfo.type="seller"

sideEffect:

insert User x

x.basicInformation.logonName=source.userBasicInfo.logonName

x.basicInformation.name=source.userBasicInfo.name

x.basicInformation.street=source.userBasicInfo.street

x.basicInformation.suburb=source.userBasicInfo.suburb

x.basicInformation.city=source.userBasicInfo.city

x.basicInformation.postcode=source.userBasicInfo.postcode

x.basicInformation.phone=source.userBasicInfo.phone

x.basicInformation.fax=source.userBasicInfo.fax

x.basicInformation.email=source.userBasicInfo.email

ServerAction > BackFromPreference

oldUserInfo: BasicInformation 1..1

3.5 User Message Model and Dialog Specifications 33

BackFromPreference TO BasicInfoPage

serverOutput: target.defaultUserInfo->isClone(source.oldUserInfo)

For this part, we modeled BasicInfoPage, PreferencePage, ProceedFromBasicInfoLink,

BackFromPreference and surrounding transitions. The mechanism used in this implemen-

tation requires a second level object created for BasicInfoPage. In BasicInfoPage, only a

partial user object (in the absence of payment and Region/Make attributes) is created,

but the following steps need to carry this incomplete information along, till the end of reg-

istration. Without this second level object, we need to copy each field from BasicInfoPage

into PreferencePage, which is a tedious process. Thus was born the “BasicInformation” in

our shared model. With the help of “BasicInformation”, both BasicInfoPage and Proceed-

FromBasicInfoLink server actions are simplified into with only one attribute of BasicInfor-

mation type. In the ProceedFromBasicInfoLink, we need to make sure the provided logon

name is unique since it serves as an identifier of a user. This checking is represented by

a server input constraint. The first-letter capitalized “User” means Information model is

searched. On the transitions, from BasicInfoPage to ProceedFromBasicInfoLink, several

fields are checked to be non-empty. This is done via client side scripts. And user type

selection is limited by drop down list. From this server action to the next web page Pref-

erencePage, whatever entered before is carried on as a BasicInformation object. Of course

this object will not get displayed or modified in the PreferencePage. The BasicInfoPage

can also be visited through a back link from PreferencePage. This server action is simply

reloading the basic user information specified before. In case of a seller registration, the

flow condition will lead the navigation to the last page, and seller information is written

into database through side effect. Again, the PreferencePage is postponed to next step.

With the addition of a BasicInformation type in shared model, we must update related

types in the information model to accommodate this change (From Figure 3.8).

Information > User

basicInformation: BasicInformation 1..1

preference: Preference 1..*

paymentOption: PaymentOption 1..2

34 Modeling WrecDirect Registration Module

The above new definition replaces the older user type, and is used in ProceedFrom-

BasicInfoLink, where logon names are checked for uniqueness. In real environment, the

server input constraint may be violated, which means a user inputs an existing logon

name. The dialog specification has pointed out this identifier must be unique by did

not tell what would happen if client attempts otherwise. With model refinement in next

chapter, we replace this server output constraints with two flow conditions as implemen-

tation suggested: one to the PreferencePage in case user name is ok, and one back to

BasicInfoPage if it is not.

ProceedFromBasicInfoLink TO PreferencePage

flow:source.userInfo.type="buyer"

User->allInstances ->

select(basicInformation.userName = source.logonName)

-> isEmpty

serverOutput: target.carriedUserBasicInfo->isClone(source.userInfo)

and (target.defaultPreference.make = "Toyota"

or target.defaultPreference.region = "Auckland")

ProceedFromBasicInfoLink TO BasicInfoPage

flow: not User->allInstances ->

select(basicInformation.userName = source.logonName)-> isEmpty

serverOutput: target.defaultUserInfo.type = "buyer"

The next part consists of the preference page and its transitions.

3.5 User Message Model and Dialog Specifications 35

ClientPage>PreferencePage

carriedUserBasicInfo: BasicUserInformation 1..1

defaultPreference: Preference 1..1

ServerAction > ProceedFromPreferenceLink

carriedUserBasicInfo: BasicUserInformation 1..1

preferences: Preference 1..*

ClientPage > PaymentPage

carriedUserBasicInfo: BasicUserInformation 1..1

carriedPreferenceOption: Preference 1..*

defaultPaymentOption: 0..2

PreferencePage TO ProceedFromPreferenceLink

clientOutput: target.preferences.forAll(

(region = "Auckland"

or region="Waikato"

or region = "Manukau")

and (make= "Toyota"

or make = "Ford"

or make = "BMW"

}

}

and target.carriedUserBasicInfo

-> isClone(source.carriedUserBasicInfo)

PreferencePage TO BackFromPreference

clientOutput: target.oldUserInfo

-> isClone(source.carriedUserBasicInfo)

36 Modeling WrecDirect Registration Module

ProceedFromPreferenceLink TO PaymentPage

serverOutput: target.defaultPayment -> set{0}

and target.carriedUserBasicInfo

-> isClone(source.carriedUserBasicInfo)

and target.carriedPreference

-> isClone(source.Preferences)

ServerAction > BackFromPayment

carriedPreference: Preference 1..*

This part has nothing special comparing to last step. The preferences will be se-

lected from drop down list, so client output constraints are specified in PreferencePage 7→

ProceedFromPreferenceLink transition to give a selection base. On the preference page,

multiple selections are allowed, so multiplicity was used with the mark *. The basic user

information entered in last step is still carried forward to payment page, or backward to

basic user information page when the back link is clinked.

ServerAction>RegistrationAction

userBasicInfo: BasicUserInformation 1..1

preference: Preference 1..*

paymentOption: PaymentOption 0..2

ClientPage>PaymentPage

carriedUserBasicInfo: BasicUserInformation 1..1

carriedPreference: Preference 1..*

paymentOption: paymentOption 0..2

ClientPage>ConfirmationPage

3.5 User Message Model and Dialog Specifications 37

PaymentPage TO RegistrationAction

clientOutput:

target.userBasicInfo -> isClone(source.carriedUserBasicInfo)

and target.preference -> isClone(source.carriedPreference)

and (target.paymentOption.optionName = "credit card"

or target.paymentOption.optionName = "direct debit"

)

RegistrationAction TO ConfirmationPage

sideEffect:

insert User x

x.basicInformation.logonName=source.userBasicInfo.logonName

x.basicInformation.name=source.userBasicInfo.name

x.basicInformation.street=source.userBasicInfo.street

x.basicInformation.suburb=source.userBasicInfo.suburb

x.basicInformation.city=source.userBasicInfo.city

x.basicInformation.postcode=source.userBasicInfo.postcode

x.basicInformation.phone=source.userBasicInfo.phone

x.basicInformation.fax=source.userBasicInfo.fax

x.basicInformation.email=source.userBasicInfo.email

x.preference -> isClone(source.carriedPreference)

x.paymentOption -> isClone (source.paymentOption)

This last part writes all the user information collected in previous steps into database.

This database insertion is included in the side effect of transition from RegistrationAction

to ConfirmationPage. Implementation details are hidden with the use of deep copying

“isClone”. Individual fields are explicitly populated with user attributes because they are

the actual attributes of user table in database. However, for creating new associations

from a user to his preferred regions and makes and his payment options, we need to

insert new records into intermediate tables. This is way too complicated and not included

in application level modeling. We want the above side effect pseudo-code to have the

following meaning: if the server action RegistrationAction is left via the transition to the

page ConfirmationPage, a new information object x of type User is generated. This new

38 Modeling WrecDirect Registration Module

object has the data gathered by RegistrationAction as attribute values.

To wrap up our specifications, it may be better to include static hyper links for com-

pleteness reason.
ServerAction>HomeLink

3.6 Summary

The completed Form-Oriented Information System model is generated for registration

module of WrecDirect. The walkthrough has revealed how the modeling went about from

initial database rendering to conceptual objects, from server input constraints to refined

flow conditions. Although small in size, this module has involved almost all aspects of

Form-Oriented technology. On the other hand, implementation is complicated enough to

produce fruitful results in security analysis later on. WrecDirect does not have a formal

development document coming with it. The presented result is mainly based on oral

communications between the modeler and developer.

4
Security Analysis

In the previous chapter, a Form-Oriented information system model was built for WrecDi-

rect registration module. In this chapter, we will discuss some of the security concerns

reflected from our model and how they can be possibly resolved.

4.1 Input Validation

The text fields in web pages allow input to hold anything. However, in real applications,

business rules enforce constraints on these textual inputs, when a user is expected to enter

data of a particular format, for instance, a number, a string of limited length, or an email

address. Failures in input validations may leave security holes to various attacks. SQL

injection [34] is one such example. It has been found that “this injection typically occurs

through a web form and associated CGI script that does not perform appropriate input

validation” [35]. In such attacks, user information can be extracted from a database, or

even more seriously, data tables can be altered.

To fix such vulnerabilities, it is commonly accepted that input must be checked before

actually being used. Client side validations can be implemented in many technologies,

such as Javascript [36]. In Client side validation, the checking routines are executed locally

39

40 Security Analysis

by browser before a form is submitted to the web server. Most of these programs validate

input formats through techniques like regular expressions. Conducting validations on

client side instead of server side has several benefits. First, it moves the heavy workload

from server to client, as a server may handle multiple clients at the same time. Second,

in case an invalid input is detected, client can get notified immediately, rather than wait

for the error message to loop back from web servers. Network traffic is also saved in this

situation. Finally, server side validation requires programming checking functions into

application code, which can be a tedious task.

Client side validation also has significant downside. The use of this mechanism means

developers implicitly put trust onto client softwares. These softwares, such as browsers,

are trusted to enforce whatever input validation policies that come with each web page.

Unfortunately, this is not always guaranteed. In the case described at the beginning of

this writing, only a simple text editor was involved to tamper the constraint policy. As

a consequence, text fields are no longer restricted as they are designed to be. To protect

against this type of attacks, server side validation must exit. Server side validation means

the validation policies are enforced in server processes, which a client has no way to

influence. One may argue the problems can of course be avoided by employing sever side

checking alone. In this way, all the inputs are transferred to web server and validation

is carried out there. Considering the pre-listed benefits of client-side validation, however,

we probably want to double check an input on both client and server. With this design, a

genuine mistake is detected and handled in the client’s browser and server does not have

to deal with it. In case of malicious attempt, when an unexpected input can actually

come out from client, the server invokes it error handling routines to avoid damages

and optionally, this attempt may be logged with client information for security auditing

purpose.

In Form-Oriented modeling, whether an error is actually handled by server-side or

client-side processing can be considered as too low level from analysis point of view.

However, the distinctions are accommodated through using client output constraints and

server input constraints. For example, in the BasicInfoPage of client pages, the input for

4.1 Input Validation 41

logon name, name and email must be non-empty, and the use of drop down list implicitly

restricts the user type field must be either buyer or seller. These rules appeared as client

output constraints. In testing the actual implementation, we captured the HTTP packages

and manually modified them to put arbitrary content into some of the restrained fields.

We intentionally changed this HTTP POST message to have “userType=5” and left out

name field. As result, a record is created in user table with empty name, and a database

exception is thrown when a user type association was attempted in intermediate data

table. Apparently, in this implementation, we rely on client side checking and give things

a window to go wrong. Therefore, in addition to the client side validation, we propose a

server side validation as following. (Client side validation is modeled in BasicInfoPage

TO ProceedFromBasicInfoLink)

ServerAction > ProceedFromBasicInfoLink

userInfo: BasicInformation 1..1

serverInput:User->allInstances ->

select(basicInformation.userName = source.logonName)-> isEmpty

and userInfo.logonName->notEmpty

and userInfo.name->notEmpty

and userInfo.email->notEmpty

and (userInfo.userType.name="buyer"

or userInfo.userType.name="seller"

)

In practice, we suggest double checking input at both client side and server side.

Some programming languages have already added facilities to achieve this goal. One

way, for example, is to create corresponding server-side validation routine when a client

validation is programmed by developers.(ASP 2.0 [37]) Being platform independent, our

Form-Oriented modeling is able to present this feature no matter what it is built on. For

the WrecDirect registration module, the same practice is suggested for preference page

and payment option page.

42 Security Analysis

4.2 Error Handling

In chapter two, we mentioned model refinement and argued server input constraints have

to be replaced in later stages by branches from their server states. Failing to do so, may

result in meaningless messages getting displayed to clients, depending on implementation

platforms.

In testing the implementation, we have found violations to server input constraints lead

clients to ASP exception page. For example, in the above DCL, user inputs are checked

in server-side code, but how the errors are handled is missing. The implementation goes

through each of these inputs, and when an unacceptable field is encountered, an exception

is thrown. Since database is not written until the end, one may argue this is not so much

a security issue. We believe otherwise, for: A. When a non-technical user sees confusing

exception messages, he or she may take unpredictable actions such as trying out different

URLs or reattempt the same registration process. This may cause performance penalty

to our server. B. Stack trace may reveal sensitive implementation details that can lead to

more serious attacks. Therefore, we need to at least hide the exception stack trace.

One obvious and delegant solution is to create error message/page in error handling

branch. Based on this idea, we improve our formchart to be the following.

ClientPage>ErrorPage

errorMessage: String 1..1

4.2 Error Handling 43

ProceedFromBasicInfoLink > missingLogonName > ErrorPage

flow: source.userInfo.logonName->isEmpty

serverOutput:target.errorMessage="Missing logon name!"

ProceedFromBasicInfoLink > missingName > ErrorPage

flow: source.userInfo.name->isEmpty

serverOutput: target.errorMessage="Missing name!"

ProceedFromBasicInfoLink > missingEmail > ErrorPage

flow: source.userInfo.email->isEmpty

serverOutput: target.errorMessage="Missing email!"

ProceedFromBasicInfoLink > typeCorrupted > ErrorPage

flow: userInfo.userType.name="buyer"

or userInfo.userType.name="seller"

serverOutput: target.errorMessage="Data corrupted, maybe malicious attempt!"

ProceedFromBasicInfoLink > missingEmail > ErrorPage

flow: User->allInstances ->

select(basicInformation.userName

= source.logonName)-> notEmpty

serverOutput: target.errorMessage="Logon already existed!"

ServerAction > redirectLink

We have added five transitions to a newly created error page; each delivers an error

message. This replacement has left ProceedFromBasicInfoLink with virtually no server

input constraints. Whenever the validation fails, an informative error message is displayed

to the user on the error page. Similarly, the same design should be applied to wherever

there is a chance of error occurrence. Towards the end, we should ideally get a server

input safe model without any server input constraints.

44 Security Analysis

4.3 Multi-User Registration

One special and important fact that we have not touched much yet is that WrecDirect

registration module operates in a multi-user environment. It is possible that more than

one client is trying to go through the registration process at the same time. Therefore,

we have to consider many clients acting on the same data model. Each client has its

own instance of the server state machine, and these instances only interact via data

model. These interactions are presented in our model as the registration action’s side

effect, where user data get written into database. Throughout the registration process,

constraints imposed on data are pretty much unrelated between clients, except for the

logon name. The logon name serves as a unique identifier for a user account. The creation

of a logon name in database may invalidate another ongoing session. Imagine two users

are trying to register at the same time. User A has managed to specify a logon name

at BasicInfoPage and then get to PreferencePage. User B initializes its own registration

process at this point of time and coincidentally specified the same logon name as user

A did. Assume after a few steps, user B managed to finish the process before user A.

Therefore, this logon name is eventually held by user B, and persisted into database. The

problem is that user A is completely unaware of the existence of user B and the logon

name clash. When user A reaches the actual registration action at last page, the logon

name is not rechecked and will be inserted into user tabel. In practice, we have found in

such an incident, a SQL exception would be thrown out.

The above demonstration is fairly easy to see from our model, because the logon name

is checked for uniqueness only once at the BasicInfoPage. However, if two concurrent

registrations with same logon name are attempted, the system should not run into an

undefined state. Thus, we improve our model into multi-user safe model. Multi-user

safe model requires new transitions from occurring multi-user exceptions. We direct this

transition to the standard error page with appropriate message.

4.4 Summary 45

RegistrationAction TO ErrorPage

flow: User->allInstances ->

select(basicInformation.userName = source.logonName)-> notEmpty

serverOutput: target.errorMessage="Logon already existed!"

Here, we recheck the logon name at RegistrationAction, and redirect to error page in

case the logon name already exists in user table.

4.4 Summary

In this chapter, we have exercised security analysis on WrecDirect registration Form-

Oriented model from three aspects. We recognize server side validations are necessary. In

our model, we ensure these validations are not forgotten, by matching up client output

constraints and server input constraints. Even with server input constraints in place, we

still want a proper, meaningful and safe error page, in case these constraints are violated.

So we have refined our model into server input safe model. Since the registration process

takes several steps and allows concurrent sessions, multi-user management is a security

concern. We have made recommendations to refine our model into multi-user safe model.

46 Security Analysis

5
Conclusion

The WrecDirect registration module is a small application unit easily described in our

model, yet rich and complicated enough to raise security questions. We believe this func-

tional unit gives a good coverage in representing today’s web applications. The registra-

tion process concerns input validation, page navigation, database access, and concurrent

usage. Every one of these elements can become a target in an attack. The Form-Oriented

model that we have delivered successfully captured these characteristics from an abstract

viewpoint. Our work was greatly benefited by the new artifacts introduced by Form-

Oriented analysis, namely formcharts, data models, and dialog specifications.

5.1 Contributions to Security Modeling

The aim of this project was to produce a working model for WrecDirect registration

module on which to perform security analysis. We have found certain features in Form-

Oriented modeling are of tremendous help.

Bipartite Structure. As we all understand, web applications are different from

traditional softwares in the sense that they have two relatively decoupled components —

the client and the server. Normally, servers can expect client behaviors but do not have

47

48 Conclusion

control over them. This fact makes client ends somewhat untrustworthy. In the bipartite

structure, we clearly draw a line that separates out client pages. Then we can carefully

examine all the client-server transitions and add all necessary constraints on the server

side to repeat client side validations.

Architecture. Previously, researchers have tried to model GUI, hyper text, naviga-

tion and data individually. Imagine we have our user interface in page diagrams, hyper

text in WebML, navigation in UML and data model in ER diagram. Establishing refer-

ences and maintaining consistency between these models is doubtlessly a tough job, let

alone doing a thorough analysis. In Form-Oriented modeling, we put all the elements of a

web system into one architecture. They exist under one global name space and seamlessly

integrate with each other.

Model Decomposition. Model decomposition has helped us twice in our model-

ing. Firstly, it allows us to separate the registration module from the rest of the system

without damaging local completeness. Because the motivation was to test the safety of

registration module, other parts of the system are more or less irrelevant. Having a small

complete model has enabled us to focus on limited number of objects. For the second

time, we created submodels each containing one or two major server actions. In this way,

discussions became compact and informative.

Application Level. The Form-Oriented modeling and analysis work on an abstrac-

tion level that is decoupled from underlying implementation. Our models can be viewed

as being executed on a virtual business machine. As a result, the vulnerabilities found in

our models are related to the business logic of the system and are platform independent.

5.2 Limitations of Form-Oriented Security Analysis

As one can see, the security analysis done on the Form-Oriented model heavily depends

on the application itself and its underlying data structure. Unlike some of the other work

done in the same area [38], we do not claim a universal solution that can automatically

be deployed on all applications, for the reason that most features are specific to their

5.3 Future Work 49

host applications. Admittedly, the registration module was chosen to represent some

commonalities, but the values of these commonalities can not be directly transferred.

Therefore, given the task of doing Form-Oriented security analysis on distinct systems,

one may have to model them one by one, although it is the same principles that should

be followed.

The Form-Oriented modeling systematically addresses security issues mainly through

model refinement. We do not explicitly work against particular attacking models, but

defend them by improving our own system. We can of course avoid a large number of

typical application design defects by running through the model, but it is no easy task to

keep our application away from new dangers. From example, the Form-Oriented model

refinement tackles two type of problems — missing error handling and concurrent use.

With server input constraint, we enforce server side validation. Despite these well-known

attacks, there is still risk of more customized and sophisticated attacks, that the model

may not easily see. Therefore, Form-Oriented analysis achieves security confidence only

to a certain level.

Security sometimes should be considered in the big picture. Once a single point of

defense is compromised by an intrusion, the damage may propagate to a large area.

Application level modeling apparently can limit our focus to certain types of high-level

problems, but when talking about vulnerabilities, we must put them in context with other

layers. For example, if the traffic is spoofed, or a cookie is stolen [19], what impact will it

have on our application? How much damage can it cause? To include these considerations,

we need to offer a way that our Form-Oriented model can be used to interact with other

layers. How we can do this to let our application level model work with other levels on

security analysis remains a question to be answered.

5.3 Future Work

There are tools in Form-Oriented modeling that can help development and analysis.

JSPick [39] is a reverse engineering tool that can automatically recover web signatures

50 Conclusion

and form types from Java Server Pages. Angie [40] is a forward engineering tool for the

type-safe specification of web presentation layers and the subsequent generation of an ex-

ecutable interface prototype. We note model refinement is a pretty well-defined process.

Including model refinement into these tools would benefit security analyzers.

Furthermore, since the use of patterns in object-oriented programming has been widely

accepted as a good practice, an introduction of patterns into Form-Oriented model may

be of value as well. We support this argument because Form-Oriented model is strictly

defined and does not contain ambiguity. Therefore, if patterns are helpful in object-

oriented design, they may be also useful in Form-Oriented models. The client-server

double field validations can be considered as one good pattern. Wether object-oriented

patterns such as singleton can be migrated into Form-Oriented modeling demands serious

investigation.

Bibliography

[1] S. Goodley, Security hole threatens british e-tailers, The Daily Telegraph Newspaper

(UK). 25th January (2001).

[2] I. S. Systems, Form tampering vulnerabilities in several web-based shopping cart

applications, 2000, At http://xforce.iss.net/xforce/alerts/id/advise42.php.

[3] S. Bhasin, Web Security Basics, Premier Press, 2003.

[4] A. Rubin and D. Geer Jr, A survey of Web security, Computer 31, 34 (1998).

[5] D. Scott and R. Sharp, Specifying and enforcing application-level web security poli-

cies, IEEE Transactions on Knowledge and Data Engineering 15, 771 (2003).

[6] O. T. T. Project, The Top Ten Most Critical Web Application Security Vulnerabili-

ties, 2004.

[7] D. M. R. Marc I. Kellner, Raymond J. Madachy, Software Process Modeling and

Simulation: Why? What? How?, Journal of Systems and Software 46 (1999).

[8] L. Bouillon, J. Vanderdonckt, and J. Eisenstein, Model-Based Approaches to Reengi-

neering Web Pages, International Workshop on Task Model and Diagrams for user

interface design, TAMODIA (2002).

[9] D. Scott and R. Sharp, Abstracting application-level web security, Proceedings of the

eleventh international conference on World Wide Web , 396 (2002).

51

52 BIBLIOGRAPHY

[10] R. Oppliger, Internet security: firewalls and beyond, Communications of the ACM

40, 92 (1997).

[11] E. Felten, D. Balfanz, D. Dean, and D. Wallach, Web spoofing: An Internet con

game, Software World 28, 6 (1997).

[12] D. Draheim and G. Weber, Form-Oriented Analysis-A New Methodology to Model

Form-Based Applications, Springer Verlag, 2004.

[13] D. Draheim and G. Weber, Modeling Submit/Response Style Systems with Form

Charts and Dialogue Constraints, Proceedings of the Workshop on Human Computer

Interface for Semantic Web and Web Applications, LNCS 2889 (2003).

[14] D. Draheim and G. Weber, Modelling form-based interfaces with bipartite state ma-

chines, Interacting with Computers 17, 207 (2005).

[15] D. Scott and R. Sharp, Developing secure Web applications, Internet Computing,

IEEE 6, 38 (2002).

[16] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo, Securing web

application code by static analysis and runtime protection, in WWW ’04: Proceedings

of the 13th international conference on World Wide Web, pages 40–52, New York,

NY, USA, 2004, ACM Press.

[17] S. GRITZALIS, Developing secure Web-based medical applications, Medical Infor-

matics and the Internet in Medicine 24, 75 (1999).

[18] A. Bhimani, Securing the commercial Internet, Communications of the ACM 39, 29

(1996).

[19] J. Park, R. Sandhu, and G. Ahn, Role-based access control on the web, ACM Trans-

actions on Information and System Security 4, 37 (2001).

[20] J. Joshi, W. Aref, A. Ghafoor, and E. Spafford, Security models for web-based appli-

cations, Communications of the ACM 44, 38 (2001).

BIBLIOGRAPHY 53

[21] D. Schwabe, G. Rossi, and S. Barbosa, Systematic hypermedia application design

with OOHDM, Proceedings of the the seventh ACM conference on Hypertext , 116

(1996).

[22] J. Gomez, C. Cachero, and O. Pastor, Extending a Conceptual Modelling Approach

to Web Application Design, CAiSE00 , 79 (2000).

[23] P. F. Stefano Ceri and A. Bongio, Web modeling language (WebML): a modeling

language for designing web sites, in 9th international World Wide Web conference on

Computer networks : the international journal of computer and telecommunications

netowrking, pages 137–157, North-Holland Publishing Co., 2000.

[24] D. Schwabe, L. Esmeraldo, G. Rossi, and F. Lyardet, Engineering Web applications

for reuse, Multimedia, IEEE 8, 20 (2001).

[25] R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik, Model-driven Web services de-

velopment, e-Technology, e-Commerce and e-Service, 2004. EEE’04. 2004 IEEE In-

ternational Conference on , 42 (2004).

[26] H. Gellersen and M. Gaedke, Object-oriented Web application development, Internet

Computing, IEEE 3, 60 (1999).

[27] L. de Alfaro, Model checking the world wide web, Computer Aided Verification 2102,

337 (2001).

[28] L. Baresi, F. Garzotto, and P. Paolini, From Web Sites to Web Applications: New

Issues for Conceptual Modeling, ER Workshops , 89 (2000).

[29] J. Jurjens, UMLsec: Extending UML for secure systems development, UML , 412

(2002).

[30] J. Jürjens and P. Shabalin, Automated Verification of UMLsec Models for Security

Requirements, UML , 412 (2004).

54 BIBLIOGRAPHY

[31] J. Jurjens and S. Houmb, RISK-DRIVEN DEVELOPMENT OF SECURITY-

CRITICAL SYSTEMS USING UMLSEC.

[32] J. J. Houmb, S.H., Developing secure networked Web-based systems using model-

based risk assessment and UMLsec, in Software Engineering Conference, 2003, pages

488– 497, 2003.

[33] D. Ferraiolo, J. Barkley, and D. Kuhn, A role-based access control model and reference

implementation within a corporate intranet, ACM Transactions on Information and

System Security (TISSEC) 2, 34 (1999).

[34] C. VU, Vulnerability Note VU# 282403, AdCycle does not adequately validate user

input thereby allowing for SQL injection at http://www. kb. cert. org/vuls/id/282403

(2002).

[35] S. Boyd and A. Keromytis, SQLrand: Preventing SQL Injection Attacks, Proceedings

of the 2nd Applied Cryptography and Network Security (ACNS) Conference , 292

(2004).

[36] J. Sinclair, Revisiting Java technology on the client, Develop Works 3 (2001).

[37] M. Volodarsky, Are You Protected? Design and Deploy Secure Web Apps with

ASP.NET 2.0 and IIS 6.0, MSDN Magazine (2005).

[38] D. Scott and R. Sharp, Specifying and Enforcing Application-Level Web Security

Policies, IEEE Transactions on Knowledge and Data Engineering 15, 771 (2003).

[39] D. Draheim, E. Fehr, and G. Weber, JSPick-a server pages design recovery tool, Soft-

ware Maintenance and Reengineering, 2003. Proceedings. Seventh European Confer-

ence on , 230 (2003).

[40] D. Draheim, C. Lutteroth, and G. Weber, A Source Code Independent Reverse En-

gineering Tool for Dynamic Web Sites, 9th European Conference on Software Main-

tenance and Reengineering .

