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ABSTRACT
In this paper, we propose a pinpoint-hide defense method,
which aims to improve the stealth of obfuscated code. In the
pinpointing process, we scan the obfuscated code in a few
small code fragment level and identify all surprising frag-
ments, that is, very unusual fragments which may draw the
attention of an attacker to the obfuscated code. In the hiding
process, we transform the pinpointed surprising fragments
into unsurprising ones while preserving semantics. The ob-
fuscated code transformed by our method consists only by
unsurprising code fragments, therefore is more difficult for
attackers to be distinguished from unobfuscated code than
the original. In the case study, we apply our pinpoint-hide
method to some programs transformed by well-known ob-
fuscation techniques. The result shows our method can pin-
point surprising fragments such as dummy code that does
not fit in the context of the program, and instructions used
in a complicated arithmetic expression. We also confirm that
instruction camouflage can make the pinpointed surprising
fragments unsurprising ones, and that it runs correctly.

Categories and Subject Descriptors
K.6.5 [Security and Protection]; D.2.8 [Metrics]

Keywords
Software Protection, Code Obfuscation, Program Analysis,
Code Stealth, N-gram
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1. INTRODUCTION
Code obfuscation techniques are widely used for protect-

ing software products against MATE (man-at-the-end) at-
tacks, that is, attacks by an end user who has access to soft-
ware itself and attempts to steal assets in the program. The
objective of code obfuscation is to make a program more dif-
ficult to understand for adversarial humans, while preserving
program semantics for its desired users. Many methods of
obfuscation have been proposed [8,9,15], and there are some
implementations, e.g. Tigress [6, 7] and DonQuixote [17].

In this paper, we view obfuscation as a defensive strategy.
We assume that a defender has obfuscated a program, in
order to mitigate the risk that an attacker could discover a
license key or other confidential property of the program. In
this security model, the defender wants to assess the strength
of their obfuscation. Informally, the strength of an obfus-
cation is any measure of the effort required for an adver-
sary to understand some security-critical aspect of the code
well enough to subvert it. License-checking code, any use
of cryptographic keys, or any use of cryptographic hashes,
are examples of security-critical aspects. In prior research,
various approaches have been taken to the measurement of
strength, such as evaluating standard metrics of code com-
plexity [9], queue-based mental simulation models [16], and
controlled experiments involving human subjects [5].

Defenders also want to measure the stealth of an obfus-
cation, that is, the degree to which obfuscated code can
be distinguished from unobfuscated code [8]. Obfuscations
with high stealth cannot be readily located by automated
means, thereby making these obfuscations more resilient to
a locate-alter-test attack (i.e., an attack which goes through
locating the protected part in the binary executable, alter-
ing the located part, and testing the result of the altered
code) – because such attacks must, in general, be narrowly
focused on small segments of code in order to be feasible.

We coin the phrase pinpoint-alter-test to describe an at-
tack in which just a few instructions are targeted for ad-
versarial modification on an experimental basis. We coin
the phrase pinpoint-hide to describe a defense strategy of
pinpointing all surprising fragments, then hiding these frag-



ments by transforming these (while preserving semantics)
into unsurprising ones.
In this paper, we propose a pinpoint-hide defense method,

which is based upon a formal definition of surprise and ulti-
mately upon an n-gram model of a large corpus of assembly-
language programs. Roughly speaking, a surprising code
fragment is any fragment which appears at most rarely in the
corpus. Because surprising fragments may draw the atten-
tion of an attacker to obfuscated code, it is in the defender’s
interest to use a method which produces only unsurprising
code.
In our case study, we first pinpoint the surprising frag-

ments in programs that were obfuscated by well-known ob-
fuscation techniques. We find that some of these techniques
are not stealthy with respect to our pinpointing method.
We then show how the surprising fragments in these ob-
fuscations can be hidden, using a method that is based on
instruction camouflage [13], thereby increasing their stealth.

2. PRELIMINARY

2.1 Code fragment and corpus
In this paper, we use code fragment (or simply fragment)

to mean a sequence of x86 assembly instructions. In our
prototype, we use only a few features of each instruction:
its opcode mnemonic and types of operands. We use IDA’s
operand classifier [11] shown in Table 1. For example, we
encode“mov eax, [ebp-10h]”as “mov14”because it has one
type-1 (register) operand and one type-4 (memory reference)
operand. Literal data and alignment pseudo-ops that appear
in the code sections are encoded as the pseudo-instructions
DATA and ALIGN, respectively.
We write inj to denote the sequence of features of a length-

n fragment which starts at j-th instruction of a program. We
call any length-n fragment an n-gram. When n=1, we omit
the superscript, writing ij for a single instruction.
The corpus we use as a basis for our model of surprise is

composed of the disassembled code sections (.text sections)
of 3,071 Windows executables written in PE (Portable Ex-
ecutable) format. We obtained these executables from the
applications in a recent Cygwin [1] distribution. The ap-
plications are of various types such as shells, editors, com-
pilers and games. Their size is highly variable, from 4KB
to 32.9MB. We used IDA v6.8 [11] to disassemble executa-
bles. There are approximately 1.30×108 instructions in our
corpus, when it is disassembled by IDA.

Table 1: Operand types classified by IDA.

Value (hex) Description
0 no operand
1 registers
2 direct memory data reference
3 memory reference using register contents
4 memory reference using register contents

(with displacement)
5 immediate value
6 immediate far address
7 immediate near address

8-D processor specific type

2.2 Fragment surprisal
To define surprise of an instruction, we focus on its prece-

dence instructions to capture its context so that the same
instruction in different contexts could have different surpris-
ing measures. We define the conditional surprisal S() of
the last instruction in fragment inj as this instruction’s self-
information with respect to our corpus:

S(inj ) = −log2P (ij+n−1|in−1
j ) bits (1)

A conditional probability P (ij+n−1|in−1
j ) of the last in-

struction in fragment inj is computed from the maximum

likelihood estimation c(inj )/c(i
n−1
j ), where c() maps n-grams

onto frequency counts in the corpus. In this notation, a 0-
gram is the starting-point of an instruction, that is, c(i0j )
represents the total number of instructions in the corpus.
We smooth the probabilities, so that any fragment which
does not occur in the corpus are assigned a very high (but
non-infinite) surprisal value. In our case study, we use Katz
smoothing which is implemented in the SRILM toolkit [2].

We compute a fragment surprisal s(inj ) by summing the
conditional surprisals of all prefixes, and by normalizing by
the length of the fragment:

s(inj ) =
∑

1≤m≤n

S(imj )/n bits (2)

The normalization allows us to compare surprisals for our n-
gram models. Intuitively, a fragment surprisal represents the
degree of the rarity or unusuality when the fragment occurs
in an unobfuscated program. For instance, based on our
corpus, s(mov14 test11 jz70) is calculated as 2.437, while
s(inc10 nop00 dec10) is calculated as 12.95. We can see
from these values that occurring the fragment inc10-nop00-
dec10 in an unobfuscated program is much more surprising
than occurring the fragment mov14-test11-jz70.

The surprisal of an obfuscated code is evaluated with re-
spect to a disassembled corpus, so its value will depend at
least slightly on the disassembler. The IDA disassembler
uses a recursive traversal to discover the reachable blocks in
the text segment of an executable file. Any code which is
not reached by the recursive traversal is disassembled into
DATA (with e.g. the db pseudo-op denoting a one-byte lit-
eral). The DATA pseudo-instruction rarely, if ever, follows
non-branching instructions in unobfuscated code. In our
case study, we confirmed that the anti-disassembly feature
of some obfuscations resulted in such 2-grams – which are
easily recognized as surprising because of their low proba-
bility of occurrence.
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Figure 1: Concept of pinpointing surprising frag-
ments.
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Figure 2: Histogram of 1-gram (single instruction) surprisals.

The artificiality, or overall probability of occurrence, of
an entire program is

∑
j S(i

n
j ). The sum is taken over all of

the fragments in the program, including the first few frag-
ments for which a lower-order model is required. In our
prior work [12], we found that some methods of obfuscation,
in particular code-encryption and inserting junk code, sig-
nificantly increase artificiality and thereby decrease stealth.
In this article we extend our prior work by the use of pin-
pointing and hiding, as described below.

3. PINPOINTING AND HIDING SURPRIS-
ING FRAGMENTS

3.1 Pinpointing surprising fragments
Pinpointing is the process of identifying all surprising frag-

ments in a program. In this process, we first obtain each
length-n fragment in the program, for a given value of n.
Specifically, if the program is composed of instructions ik1 ,
we obtain k − n+ 1 fragments, in1 , i

n
2 , . . ., i

n
k−n+1. We then

compute the fragment surprisals of each fragment, and any
fragment whose surprisal is the threshold value or more is
considered to be surprising fragment. Figure 1 illustrates
a concept of pinpointing surprising fragments. In this ex-
ample, the five length-3 fragments are obtained from the
program which has seven instructions, and the fragment sur-
prisals of each fragment are computed. Assuming that the
threshold values of surprisal is 10.00, the fragment cmp11-

nop00-jmp70 is considered to be surprising fragment because
its surprisal is above the threshold. Our purpose in the pin-
pointing process is to scan an obfuscated program in a few
small code fragment level in order to pinpoint the exact part

that may cause to decrease the stealth. For this reason, n is
varied from 1 to 3 in our case study.

Next, we explain how to determine the threshold values of
surprisal. We first sort the unique fragments in our corpus,
in order of decreasing surprisal with respect to an n-gram
model of the corpus. We then plot the cumulative proba-
bility distributions. For example, Figure 2 shows the his-
togram of instruction frequencies (1-grams) in our corpus.
The horizontal axis represents the fragment surprisal, while
the vertical axes plot the fragment count and the cumulative
probability. Some example fragments are also shown at each
bin.

The frequency distribution of n-grams in our corpus is
very skewed. As indicated by the shaded bars in Figure 2,
two instructions (mov14, mov41) have surprisal in the range
3.0 to 3.5 bits; one instruction (call70) with surprisal in
the range [3.5,4.0); ... fifteen instructions with surprisal in
the range [15.0, 15.5); ... and twenty-nine instructions with
surprisal in the range [26.5, 27.0). The vertical dotted line
is at the 99.9% point in the cumulative-probability line.

In our case study, we use θ = 0.999 as the threshold of our
surprisal detector. The false-positive rate of our pinpoint-
detector is thus approximately 1 − θ = 0.1%. Note: the
false-positive rate of our pinpoint detector is likely to be
somewhat higher, if it were evaluated against a different
corpus of unobfuscated code than the one it was trained
on. The robust estimation of a false-positive rate for our
proposed pinpoint detector is outside the scope of this pa-
per – our goal is to define a plausibly-accurate method of
pinpoint-detection, and to perform an initial estimate of its
accuracy and feasibility.



Table 2: Information about the fragments and surprisals in the corpus (where θ=0.999).
n = 1 n = 2 n = 3

# of fragment patterns 641 6412 6413

The most frequently-observed fragments mov14 mov31-call70 pop10-pop10-pop10

Threshold value of surprisal tn0.999 15.342 11.125 8.9523
% of fragment patterns below threshold 35.4% 3.48% 0.131%
Example fragment corresponding to tn0.999 inc30 and15-fldB3 movsx14-cwde10-mov12

Table 2 presents some additional information about the
fragments and surprisals in our corpus, where n=1,2,3. In
particular, we observed 641 unique 1-grams in our corpus.
Slightly more than one-third of these 1-grams occur in θ =
99.9% of the instructions in our corpus. The other 64.6%
of the 1-grams have an above-threshold surprisal of t1θ =
15.342 bits or more. Here we have introduced the notation tnθ
to denote the surprisal, in bits, of the minimally-surprising
fragment in an n-gram model with detection threshold θ.
The “long right tail” skew is even more pronounced in our
2-gram and 3-gram models. Only approximately 344,000
(0.131%) of the 6413 ≈ 263 million 3-grams in our 3-gram
model are unsurprising.

3.2 Hiding surprising fragments
Hiding is the process of replacing a surprising fragment

by one or more non-surprising fragments, while preserving
program semantics. In our case study, we use an itera-
tive and heuristic hiding process of selecting a semantically-
equivalent replacement imj for a first surprising fragment inj ,
re-evaluating surprisals starting at inj−n+1, then hiding all
subsequent surprises. Note that we may replace a fragment
of length n by a fragment of length m ̸= n.
A re-evaluation of immediately-preceding fragments is nec-

essary in our hiding method, because any change to the first
instruction in a fragment will modify the suffix of the n-1
preceding fragments in an n-gram model. Because of these
re-evaluations, our heuristic method may fail to make for-
ward progress on some codes. However, we have not ob-
served such pathological behavior in our case study. The
development of an efficient hiding algorithm is outside the
scope of the article. Instead, we focus on establishing its
desirability and plausibility as a method for increasing the
stealth of an obfuscated code.
Hiding is not a novel concept. Specific hiding methods

have been called “instruction camouflage” [13] and “replac-
ing with fundamental instructions” [14] in prior work on ob-
fuscation. Hiding has also been studied in the context of
steganography, where binary code has been used as a cover-
text for a secret message [3]. To our knowledge, the earliest
academic reference to what we are calling a hiding transform
are Wayner’s “mimic functions” [19]. We believe we are the
first to use a precise method (“pinpointing”) to identify spe-
cific fragments which should be hidden.

4. CASE STUDY

4.1 Target programs
We conducted a case study to pinpoint and hide surpris-

ing fragments in obfuscated programs. Figure 3 presents the
C-language source of our case-study program Po . This pro-
gram consists of a single function which returns a 0/1 value
to indicate whether or not a license is valid. If the license has

int checklicense(void) {
time_t current_time;
int code;
time(&current_time); /* set current time */
if (current_time > mktime(&EXPIRE_TIME)) {
printf("Your license is expired.\n");
printf("Enter activation code: ");
scanf("%d", &code);
if(code == ACTIVATION_CODE) {
renewlicense();

} else {
printf("Wrong code.\n");
return -1; /* failure */

}
}
return 0; /* success */

}

Figure 3: Po: Original program.

expired, the console user is prompted to enter an activation
code. In its present form, this function implements a “Mag-
inot license” because it is readily bypassed by an attacker
who disassembles it in order to discover which byte encodes
its literal -1, then modifies this byte so that it encodes 0.
However, if this function and its callsites are stealthily obfus-
cated, the attacker must allocate some additional resource
to pinpoint its critical opcodes and operands.

We obfuscated Po in five different ways, obtaining Popaq ,
Pvir , Pflat , Penca , and Pencd . The obfuscating transforms are
described briefly below. To avoid introducing bias from a
manual obfuscation, and to have a reproducible experimen-
tal result, we used Version 2.0 of the Tigress obfuscation
tool [6,7]. We first compiled the obfuscated code into an ex-
ecutable using GCC, then we disassembled the target func-
tion portion using IDA. All of the programs were compiled
without optimization, because the optimizer may reverse the
applied obfuscation. The target programs and some exper-
imental data used in this case study are available from our
website1.

Popaq : Insertion of opaque predicates
An opaque predicate [10] is a conditional branch on a
condition whose truth-value is obscure to the attacker.
Popaq has ten opaque predicates which preserve the
control-flow of Po while rendering it more difficult for
an attacker to understand.

Pvir : Function virtualization
Function virtualization is the transformation of code
into an obscurely-defined bytecode. The text segment
of Pvir is a bytecode interpreter which takes the form of

1http://www.hi.kumamoto-nct.ac.jp/˜kanzaki/stealth/
PPREW5/



int ACTIVATION_CODE = 1848620654U;
:

if(code == (int )(-1492092953 * ACTIVATION_CODE -
3283795736U))
:

Figure 4: Obfuscated equality test of code with an
encoded ACTIVATION_CODE.

a switch statement that is executed for each bytecode
in the data segment of Pvir .

Pflat : Control-flow flattening
Control-flow flattening is the replacement of normal
control-flow structures (e.g. nested loops, if-then-else
nests) by a switch statement in an indefinite loop. The
switch in Pflat has eleven cases.

Penca : Encoding arithmetic
Integer arithmetic can be obscurely recoded into more
complex expressions. In Penca , the conditions of the
if statements are transformed by methods explained
in a popular book on programming tricks and tech-
niques [18].

Pencd : Encoding data
The values stored in integer variables can be encoded
so that their meaning is obscured. In Pencd , the integer
literal ACTIVATION_CODE (see Figure 3) is encoded. It
is decoded before equality-testing with code, using the
code shown in Figure 4.

We note that encoding data is not a strong obfusca-
tion for Po , unless additional obfuscating transforms
are effectively obscuring the uses of its literals ACTI-

VATION_CODE, 0, and -1.

4.2 Result of pinpointing surprising fragments
We pinpointed surprising fragments of each target pro-

gram described in Section 4.1. We set the detection thresh-
old θ to 0.999, and n was varied from 1 to 3.
Table 3 shows the number of instructions, basic blocks,

and pinpointed surprising fragments of each program. We
note that Po , Pflat , and Pencd have no surprising fragments.
Pvir has two surprising fragments for n=3; we consider

this to be an inadequately-strong detection signal by the
following argument. This code has 318 instructions. Our
detector has a false-positive rate of approximately 1 − θ =
0.001, so an unobfuscated code of this length with 318 in-
structions would have (by a Poisson approximation) two

Table 3: The number of surprising fragments.

name
# of # of # of
insts. basic blocks surprising fragments

n = 1 n = 2 n = 3
Po 33 6 0 0 0
Popaq 108 29 0 4 10
Pvir 318 60 0 0 2
Pflat 157 44 0 0 0
Penca 101 6 4 0 5
Pencd 36 6 0 0 0
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Po: Original, n=2
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Po: Original, n=3

Figure 5: Distribution of surprisal of each fragment
in the original version Po for n=1, 2, 3.

or more pinpoint-detections with probability approximately
1− e−.318(1+ 0.318) = 0.04. Any particular adversary may,
or may not, be motivated to investigate a detection signal
that has a 4% false-positive rate. In our case study, we have
somewhat arbitrarily aimed for 99.9% accuracy, so we do not
consider the two surprising fragments of Pvir to be a reliable
detection of an obfuscated code.

Popaq and Penca have 10 and 5 (resp.) surprising frag-
ments for n=3. These obfuscated programs are reliably de-
tected (with confidence > 99.9%) by our n=3 model, when
we use a Poisson approximation to estimate the frequency
of false-positive surprises in these programs. Popaq is also
surprising for n=2, and Penca is surprising for n=1. To de-
termine the success of our pinpointing method, we compare
the surprisals of all fragments of Po , Popaq , and Penca .

Our visualizations of the surprisals of Po , Popaq , and Penca

are shown in Figure 5, Figure 6, and Figure 7, respectively.
The horizontal axis represents the instruction number, while
the vertical axis plots the fragment surprisal. The horizontal
solid line shows the threshold value of surprisal tn0.999, and
the vertical dotted lines represent the boundaries of basic
blocks. Crosses indicate fragments which appear in Po(i.e.
are unobfuscated), circles indicate fragments that have been
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Popaq: Insertion of opaque predicates, n=1 inserted replaced unchanged
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Popaq: Insertion of opaque predicates, n=2
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Popaq: Insertion of opaque predicates, n=3

Figure 6: Distribution of surprisal of each fragment in Popaq (insertion of opaque predicates) for n=1, 2, 3.
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Penca: Encoding arithmetic, n=1 inserted replaced unchanged
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Penca: Encoding arithmetic, n=2
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Penca: Encoding arithmetic, n=3

Figure 7: Distribution of surprisal of each fragment in Penca (encoding arithmetic) for n=1, 2, 3.



if ((int )((unsigned long )(((((current_time -
tmp) & - (current_time >= tmp)) + ((
current_time - tmp) & - (current_time >= tmp
))) & (((current_time - tmp) & - (
current_time >= tmp)) >> 63L)) - ((
current_time - tmp) & - (current_time >= tmp
))) >> 63UL)) {

:
}

Figure 8: Source-code obfuscation of an if state-
ment in Penca .

inserted by an obfuscation, and squares are fragments which
have been replaced by an obfuscation.
Surprising obfuscations are filled circles or squares – these

are true-positive detections. Surprising unobfuscated code
fragments are bold-faced crosses – these are false-positive
detections. Unsurprising obfuscations are unfilled circles
or squares – these are false-negatives. Unsurprising unob-
fuscated fragments are non-bold crosses – these are true-
negatives.
We observed no false-positives in Po , Popaq , or Pvir , for

any of our models (n=1, n=2, n=3). We observed many
false-negatives in Popaq and Pvir . Apparently, most of the
code inserted or modified by these obfuscations resembles
some reasonably-common code sequences in our corpus.
From Figure 6, we can see that Popaq has quite a few

surprising n-grams. At instructions 98-102 of the top plot
(for our 1-gram model), we see that the original code Po

had a sequence mov15, jmp70, and that the obfuscated code
Popaq inserts a series of instructions rol45, inc10, mov11

immediately after that sequence. None of these insertions is
very surprising in a 1-gram model, as their surprisals are all
below our detection threshold. However the 2-gram rol45-

inc10 is very surprising, as are the 3-grams mov15-jmp70-

rol45, jmp70-rol45-inc10, and rol45-inc10-mov11. We
tentatively identify the fragments at 8-13 and 100-105 as
unstealthy opaque predicates. We disassembled these se-
quences by hand, determining that they are indeed opaque
predicates, and that they include some dummy code to pre-
vent disassembly. A part of the dummy code is left undis-
assembled at 104-105 as DATA-DATA. This 2-gram is not sur-
prising when it occurs in the text segment of a code in our
corpus. From the bottom plot, we see that the DATA-DATA

fragment is surprising if it immediately follows an add15

instruction. We tentatively conclude that surprising anti-
disassembly insertions will impede automated disassembly,
but will aid pinpointing unless they are hidden by a subse-
quent pass through an obfuscating process.
In Figure 7, we note that Penca contains four occurrences

of the surprising 1-gram setnl10 (set byte if not less). This
instruction is being used in a series of bitwise-AND oper-
ations, in the obfuscated if statement of Figure 8. In the
bottom plot (for n=3), we see four occurrences of the 3-gram
setnl10-movzx11-neg10; this is apparently a signature of
the data-encoding method as implemented in Tigress, al-
lowing us to pinpoint its use. We note that this is not a
very distinctive signature, for it is barely above the 8.95-bit
threshold of our n=3 model at sensitivity θ=0.999. We no-
ticed that compiling this code at a low level of optimization
(gcc -O1) improves the stealthiness of this code by avoid-
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Figure 9: Example of hiding surprising fragments.
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Figure 10: Hiding surprising fragments by instruc-
tion camouflage.

ing the setnl opcode. However, the level-1 optimizations of
GCC also simplify the boolean expression in the guard of
the if statement, so they decrease the strength of this ob-
fuscation. In the following section, we show how to improve
the stealth of this obfuscation without affecting its strength.

4.3 Example of hiding surprising fragments
In this section, we briefly discuss our feasibility study of

the hiding process. We have not attempted to automate
this process. Instead, we have manually identified surprising
fragments, replaced them with unsurprising fragments of the
same length, then repeated the process until there are no
more surprising fragments. Somewhat to our surprise, we
always made forward progress with our substitutions, that
is, we never created any new surprising fragments by our
code-modifications.



We implemented our hiding by an instruction camouflage [13],
whereby dummy instructions are inserted in the static code,
and are replaced dynamically at runtime with the original
instructions. This greatly simplifies our hiding, as we have a
free choice of dummy instructions. In particular, we can re-
place a surprising n-gram by any unsurprising continuation
of its unsurprising (n-1)-gram prefix.
We illustrate this process for the surprising fragments at

instructions 98-105 of Popaq . Please see Figure 9. We re-
placed these instructions by a few “restoring routines” and a
“hidden target”. The restoring routines defined in [13] turn
out to be unsurprising with respect to our models. One
of the restoring routines is shown in dashed lines in Fig-
ure 9 (b). The others are scattered around the program.
Each restoring routine consists of a few instructions, and
could be just an inline insertion of a single mov instruction.
In our experimentation, all of the restoring routines were
unsurprising.
The hidden target would be unstealthy if it were merely a

copy of the surprising instructions in the original code. Ac-
cordingly, we modified the suffix rol45 of the first surprising
fragment (substituting an unsurprising mov14), re-evaluated
surprisals; then we scanned to the next surprising fragment,
which ends with inc10. We replaced that suffix with the
unsurprising mov14, and we also replaced the following 2-
gram DATA-DATA with the 1-gram lea14 (which is of the
same length, in bytes). See Figure 10.
Our restoring routine therefore modified only a few in-

structions of the hidden target, with this modification being
completed before the execution (inline) of the hidden tar-
get. We confirmed that the modified program Popaqh had no
surprising fragments, and that it ran correctly.

4.4 Discussion

4.4.1 Discussion of the pinpointing method
Our case study indicates that our pinpointing method is a

promising way to detect some obfuscations, such as dummy
code insertions and data encoding, because they introduce
“surprising” sequences of instructions into the obfuscated
code. Our pinpointing method is unlikely to detect other ob-
fuscations, such as control-flow flattening and function virtu-
alization, because they compile into“unsurprising”code such
as switch statements and bytecode interpreters. We imag-
ine that every obfuscating transform produces some charac-
teristic signature whose features are, at least in principle,
detectable. For example, a control-flow flattening obfusca-
tion may produce code with surprisingly-long functions. A
function virtualizer may produce an executable with a sin-
gle, rather short, bytecode interpreter in its text segment,
accompanied by a very long data segment. It is not rea-
sonable to expect any pinpointing method to detect a very
wide range of obfuscations. However we believe it is reason-
able to expect any obfuscation to be stealthy with respect
to a low-order n-gram model, because (as we have shown)
surprising n-grams allow the pinpointing of the obfuscated
code. In future work, we intend to investigate other features
of obfuscated code which may allow it to be pinpointed, or
at least to be detected.
In our case study, we considered only a single value of the

detection threshold, θ = 0.999. At this level of sensitivity,
any fragment is considered to be surprising unless it occurs
in our corpus at a frequency of at least 0.1%. In future work,

we intend to characterize the sensitivity-specificity tradeoff
in our obfuscation pinpointer, by producing“receiver operat-
ing characteristic” (ROC) curves for n = 1, 2, 3 on datasets
containing obfuscations for which our detector is potent. For
such datasets, there should be some correct detections (true
positives) as well as many correct non-detections (true neg-
atives). The rate of true positives is the “sensitivity” of the
detection system, and will generally increase with θ. The
rate of true negatives is the “specificity” of the detection
system, and will generally decrease with θ. By convention
in signal processing, the ROC curve is a plot of sensitiv-
ity as a function of the false-positive rate (= 1− specificity).
We also intend to experiment with higher-order models, and
with the size of the corpus. We expect the detection per-
formance (the area under the ROC curve) to increase with
n, if the corpus is large enough to produce a stable n-gram
model.

4.4.2 Discussion of the hiding method
In our case study, we illustrated a method for hiding sur-

prising fragments that is based on the instruction-camouflage
technique. Using this method, we were able to hide the sur-
prising fragments we had pinpointed. This suggests that
a hiding transform might be applied after the last stage of
an obfuscating compiler, to ensure that its obfuscations are
stealthy without affecting their strength. However we note
that the instruction-camouflage technique has a recognizable
feature: it is self-modifying code, which could be pinpointed
either by a static points-to analysis, or by a dynamic analysis
which identifies the modified instructions. A stealthier hid-
ing transform could, we expect, be developed by adjusting
the replacement-using-fundamental-instructions [14] obfus-
cation to ensure that it is creating only stealthy sequences.

5. RELATED WORK
Other publications describe alternative approaches to mea-

suring the strength of an obfuscation. Examples include
evaluating standard metrics of code complexity [9], queue-
based mental simulation models [16], and controlled exper-
iments involving human subjects [5]. There is also a study
which proposes objective measure of obfuscation resilience
against automated attacks using symbolic execution [4].

We are not aware of any prior quantitative measures of the
the stealth of an obfuscation, aside from our recent measure
of artificiality [12]. Our pinpointing metric is an extension of
the artificiality metric. Both are based on an n-gram model.
However artificiality is a property of an entire executable,
whereas “surprise” (as defined in this paper) is a property of
a short sequence of instructions.

6. CONCLUSION
In this paper, we proposed a pinpoint-hide method for im-

proving the stealth of obfuscated code. In the pinpointing
process, we scan short sequences of instructions in the ob-
fuscated code, looking for surprising fragments – that is, for
very unusual fragments which may draw the attention of an
attacker to the obfuscated code. In the hiding process, we
transform the surprising fragments into unsurprising ones,
while preserving semantics. Because the obfuscated code
transformed by our method consists only by unsurprising
code fragments, it is more difficult for attackers to deter-



mine which (if any) fragments of an unknown executable
have been obfuscated.
In the case study, we tested our pinpoint-hide method on a

short program that had been transformed by five well-known
obfuscation techniques. We found that our method can pin-
point surprising fragments, such as dummy code that does
not fit in the context of the program, and also the instruc-
tions used in a complicated arithmetic expression that was
introduced by an obfuscator. We confirmed that a method
known as instruction camouflaging can be applied to the
surprising fragments in the obfuscated code, resulting in a
stealthier code which runs correctly and which has the same
obfuscatory strength.
Our target program was intended to illustrate a prototyp-

ical cracking target. The callsite of this “Maginot protection
function” could be easily modified, as soon as its functional-
ity is identified. In future work, we intend to examine addi-
tional examples of security-sensitive code which has been ob-
fuscated in a variety of ways, in order to determine whether
our pinpointing method is sufficiently sensitive and selective
to be of adversarial use. We will also determine whether a
simple hiding technique, such as the one described in this
paper, would improve the stealth of these security-sensitive
codes.
We are intrigued by the possibility of applying a pinpoint-

ing method to dynamic traces of a code, given a test suite
for its secure kernel or for some secure operation (such as
license verification) which is a likely target for adversarial at-
tack. Even if these routines are obfuscated with a function
virtualizer, it would be possible to pinpoint any obfuscated
operations with highly surprising traces.

Acknowledgment
This work was supported in part by Japan Society for the
Promotion of Science (JSPS) under grant number 26330094.

7. REFERENCES
[1] The Cygwin project. http://www.cygwin.com/.

(accessed: Sep. 2015).

[2] SRILM – the SRI language modeling toolkit.
http://www.speech.sri.com/projects/srilm/. (accessed:
Sep. 2015).

[3] B. Anckaert, B. De Sutter, D. Chanet, and
K. De Bosschere. Steganography for executables and
code transformation signatures. In Proceedings of the
7th International Conference on Information Security
and Cryptology, ICISC’04, pages 425–439, Berlin,
Heidelberg, 2005. Springer-Verlag.

[4] S. Banescu, M. Ochoa, and A. Pretschner. A
framework for measuring software obfuscation
resilience against automated attacks. In Proc.
IEEE/ACM 1st International Workshop on Software
Protection (SPRO2015), pages 45–51, May 2015.

[5] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin,
F. Ricca, M. Torchiano, and P. Tonella. Towards
experimental evaluation of code obfuscation
techniques. In Proc. the 4th ACM Workshop on
Quality of Protection, pages 39–46, Alexandria,
Virginia, USA, 2008.

[6] C. Collberg. The Tigress C diversifier/obfuscator.
http://tigress.cs.arizona.edu/. (accessed: Sep. 2015).

[7] C. Collberg, S. Martin, J. Myers, and J. Nagra.
Distributed application tamper detection via
continuous software updates. In Proc. 28th Annual
Computer Security Applications Conference, pages
319–328, Orlando, Florida, Dec. 2012.

[8] C. Collberg and J. Nagra. Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Program Protection. Addison-Wesley Professional,
2009.

[9] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
Report 148, Technical Report of Dept. of Computer
Science, University of Auckland, New Zealand, 1997.

[10] C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages(POPL98),
pages 184–196, San Diego, California, Jan. 1998.

[11] Hex-Rays. IDA support.
https://www.hex-rays.com/products/ida/support/.
(accessed: Sep. 2015).

[12] Y. Kanzaki, A. Monden, and C. Collberg. Code
artificiality: A metric for the code stealth based on an
n-gram model. In Proc. IEEE/ACM 1st International
Workshop on Software Protection (SPRO2015), pages
31–37, May 2015.

[13] Y. Kanzaki, A. Monden, M. Nakamura, and
K. Matsumoto. Exploiting self-modification
mechanism for program protection. In Proc. 27th
IEEE Computer Software and Applications
Conference, pages 170–179, Dallas, USA, Nov. 2003.

[14] M. Mambo, T. Murayama, and E. Okamoto. A
tentative approach to constructing tamper-resistant
software. In Proc. 1997 New Security Paradigm
Workshop, pages 23–33, Sep. 1997.

[15] N. Mavrogiannopoulos, N. Kisserli, and B. Preneel. A
taxonomy of self-modifying code for obfuscation.
Computers & Security, 30(8):679–691, 2011.

[16] M. Nakamura, A. Monden, T. Itoh, K. Matsumoto,
Y. Kanzaki, and H. Satoh. Queue-based cost
evaluation of mental simulation process in program
comprehension. In Proc. 9th IEEE International
Software Metrics Symposium (METRICS2003), pages
351–360, Sep. 2003.

[17] H. Tamada. Donquixote: A software obfuscation tool
for Java programs. http://se-naist.jp/DonQuixote/.
(accessed: Sep. 2015).

[18] H. S. Warren. Hacker’s Delight (2nd Edition).
Addison-Wesley Professional, 2012.

[19] P. Wayner. Mimic functions. Cryptologia,
XVI(3):193–214, 1992.


