
Preprint version.  Authoritative version appears in Proc. KES 2005, LNCS 3683, pp. 
1065-71, http://dx.doi.org/10.1007/11553939_149.  

Securing Mobile Agents Control Flow using Opaque 
Predicates 

Anirban Majumdar and Clark Thomborson 

Department of Computer Science, The University of Auckland. 
Private Bag 92019, Auckland, New Zealand. 

{anirban, cthombor}@cs.auckland.ac.nz 

Abstract. Mobile agent technology is an evolving paradigm that combines the 
inherent characteristics of intelligent agents, namely, adaptability, reactivity and 
autonomy with mobility. These characteristics of mobile agents provide an 
excellent means of meeting the distributed and heterogeneous requirements for 
many electronic commerce applications involving low bandwidth and 
intermittently connected networks. However, the lack of security in the form of 
code confidentiality renders this paradigm unsuitable for commercial software. 
In this paper, we address the problem of mobile agent security by proposing a 
novel method of mobile agent obfuscation using the concept of opaque 
predicates to prevent adversaries from observing the control flow of agent code. 
We discuss about the efficiency of our proposed methodology by demonstrating 
that to an adversary, the problem of determining the outcome of such opaque 
predicates is often intractable. 

1 Introduction 

In the past few years, mobile agent systems have been brought up with the research 
and development of distributed computing. However, in spite of its tremendous 
potential, several technical requirements must be met in order to support the 
widespread transition of agent technology to the commercial domain. Confidentiality 
of agent code is of foremost concern. The countermeasures directed toward agent 
protection are radically different from those used for host protection. Host protection 
mechanisms are a direct evolution of traditional mechanisms employed by trusted 
hosts and traditional mechanisms are not devised to address threats originating on 
agents from the execution environment. Agents executing in electronic commerce 
applications cannot trust the platforms they are executing on and this problem stems 
from the inability to effectively extend the trusted environment of an agent’s host 
platform to other agent platforms visited by the agent.  

Previous works on provable mobile agent security have proposed cryptographic 
techniques [2] to protect agents from unauthorised code interception; however, since 
any information belonging to a mobile agent is completely available to its host 
system, it cannot possibly keep the cryptographic key secret from the system on 
which it is running. Moreover, the encrypted agents will become susceptible to 
attacks by the platform once they are decrypted into executable forms. In this paper, 
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we address the problem of agent security using obfuscation [1], which is a technique 
to obscure the agent code in such a way that an adversary will not be able to gain a 
complete understanding of its function (with respect to specification and data).  

Our work focuses on obfuscating agent behaviours by introducing opaque 
predicates to guard the control flow. We show that for an adversary to detect the 
outcome of such predicates, static analyses of the agent code have to be successfully 
performed and this problem is often intractable in the presence of aliased pointers and 
concurrency. We also outline the typical scenarios in which such pointer analyses will 
be difficult to perform. Our technique can be used in conjunction to other obfuscation 
techniques using aliasing.  

2 Mobile agent protection issues and related work 

The definition of what constitutes an attack depends on what assurances the agent 
owner needs in order to use a mobile agent. Hohl [3] classified different attack 
categories that could be mounted on mobile agents by adversaries. We illustrate 
Hohl’s analysis as an attack tree in figure 1. Using our model of protection, we 
specifically address attacks originating out of spying the control-flow. We achieve 
this branch confidentiality by obscuring the real control flow of behaviours behind 
irrelevant statements that do not contribute to the actual computations such that it is 
impossible for an adversary to find out the correct behaviour from mobile agent code 
by statically analysing it. An adversary with no semantic understanding of correct 
control-flow of the code will also find it hard to do purposeful manipulation of the 
code. 

Obfuscation for mobile agent code protection was first addressed by Sanders et al 
[2] in the form of ‘mobile cryptography’. This technique facilitated development of 
programs that could operate on encrypted data. However, [3][4] points out that this 
method is not applicable to generic agent codes since it has the restriction that agents 
can send cleartext data to only trusted hosts. Hohl [3] extended the concept of “black- 
box security” by incorporating time-limitedness. 

However, his method makes explicit assumption of synchronised global clock for 
token passing between untrusted servers and is therefore difficult to apply in mobile 
agent interaction scenario which is inherently distributed in nature. Moreover, his 
technique failed to correlate between the obfuscation techniques and the 
corresponding time-limitedness they guaranteed. Sakabe et al’s [4] attempt to 
obfuscate mobile agents using aliasing [6][7] is the only work that provides a 
theoretical basis for obfuscating mobile agents. Wang et al. [5] first proposed an 
obfuscation technique based on the difficulty of statically analysing aliased pointers in 
C programs. They manipulated branch targets using aliased pointers and established 
that the problem of precisely determining indirect branch targets is NP-hard. Sakabe’s 
obfuscation technique takes advantage of polymorphism and exception handling 
mechanism of Java and established that the problem of precisely determining if an 
instance of a class points-to an overloaded method during an execution of a program 
is NP-hard.  
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Fig. 1. The “attack tree”. Obfuscation using opaque predicates will attempt to prevent attacks 
marked with the dotted oval from taking place. 

3 Use of opaque predicates for mobile agents obfuscation 

Obfuscation is the technique of transforming a program into a form that is more 
difficult to understand for either a human adversary or for an automated one or both, 
depending upon the transformation applied [1]. An obfuscated program should have 
“identical” behaviours with respect to the original unobfuscated one. However, we 
relax this stringent form of restriction by allowing the obfuscated program to have 
side effects. In this section, we focus on a particular obfuscation class which obscures 
the control-flow of a program using opaque predicates.  

An opaque predicate is a conditional expression whose value is known to the 
obfuscator, but is difficult for the adversary to deduce. A predicate P is defined to be 
opaque at a certain program point p if its outcome is only known at obfuscation time 
[1]. We write PF

p (P
T

p) if predicate P always evaluates to False (True) at program 
point p. The opaqueness of such predicates determines the resilience of control-flow 
transformations. 

Mobile agent frameworks are instances of loosely-coupled message-passing 
distributed systems which have the property that communications incur latency and 
computations proceed at different speeds. Thus, agents do not have any predetermined 
scheduling policy. This intrinsic nature of mobile agents facilitates programmers to 
incorporate a large amount of concurrency between them.  

If the control-flow of agent P is to be obfuscated using opaque predicates, a 
certain number of guard agents belonging to the system are employed to achieve this 
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task. Since agents in mobile agent systems typically collaborate through message 
exchanges to achieve a particular task, the set of guard agents could be those that 
agent P frequently communicates with. The actual number of guard agents employed 
in protection of a single agent will depend dynamically on the availability of agents in 
the system. It then initialises a data structure such as circular linked-list with some 
initial pointers pointing on it. Agent P then sends a message, containing this data 
structure, to one of the guards. Each guard, when it receives the data structure, may 
change one of its pointers and will then try to send the data structure along to another 
guard or back to agent P. The message-passing pattern and pointer update by guards 
must maintain an invariant that holds on the data structure when it is sent back to P. 
We shall illustrate this protocol by a simple example as depicted in figure 2. Let four 
guard agents be dynamically spawned by P. We call these guards A, B, C, and D.  
Agent P initialises a circular linked-list and passes it randomly to a guard which 
initiates the message-passing between itself and other guards. Let the A be the initial 
guard agent and it updates pointer p. Similarly, guards B, C, and D manipulate 
pointers q, r, and s respectively. 

 

Fig. 2. The global dynamic data structure in the form of a circular linked-list shared by four 
guard agents A, B, C, and D and a simple pointer update protocol. 

During the initialisation process, P also embeds the linked-list update-invariants 
in each of the guard agents such as: 
 
− p and q are aliased. 
− r and s are aliased. 
− p and q never alias pointers r and s and vice-versa. 
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In figure 2(b), we have illustrated the communication pattern between agent P 
and guards with a simple ring protocol. In practical systems, however, more 
complicated communication patterns could be used. After updating its respective 
pointer, each guard agent passes on the data structure to its successor. Finally, agent P 
receives the data structure from guard D, after which, it proceeds to construct and 
check opaque predicates using aliased pointers p, q, r, and s as illustrated in the 
pseudo-code snippet of figure 3.  
 
Guard Agent: 
 … 

//initialisation 
receive <update_rule, Agent(P)> 
//perform update 
while (true) { 

  receive <data_structure, Agent(ID)>; 
  update (pointer);  
  send <data_structure, Agent(ID)>; 
 … 

} 
  
Obfuscated Agent P: 

… 
initialise (data_structure); 
send <data_structure, Agent(A)>; 
… 
 
//receive the data structure from Guard Agent D 
while (!receive <data_structure, Agent(D)>) { 

           wait; 
     } 

//send the data structure for another round of updates 
send <data_structure, Agent(A)>; 
//initiate testing on pointer invariants 
 
if (data_structure.p == data_structure.r &&   

data_structure.q == data_structure.s)   
{ // Opaquely-False Predicate 

  // perform dummy behaviour 
}  
else { 

  //perform real behaviour 
} 
if (data_structure.p == data_structure.q && 

data_structure.r == data_structure.s)   
{ // Opaquely-True Predicate 

  // perform real behaviour 
}  
else { 

  //perform dummy behaviour 
} 

Fig. 3. Pseudo-code showing sample guard agent pointer update action and obfuscation of 
control-flow in P using the aliased opaque predicates. 

The branch obfuscated using opaque predicate [(p==q) && (r==s)] only 
evaluates to true; whereas, branches obfuscated using any other combination evaluate 
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to false. Before checking for the outcome of opaque predicates, the obfuscated agent 
P waits for the data structure from guard agent D. After receiving the data structure, it 
then sends it around for another pointer update round. These data structure passing 
messages could be tagged with a special value to distinguish from other messages. 

In order to statically analyse the obfuscated code, the adversary must depend on a 
static slicer to find those parts of a program which could affect the value of opaque 
predicates at points of interest (namely, at locations where behaviours are obfuscated). 
The slicing of distributed programs is a major challenge due to the timing related 
interdependencies among processes. Moreover, to find the slicing criterion of the 
slicer, the analyser must rely on alias analysis [6][7][8] to determine what kind of 
structure the pointers point to at runtime, and if the pointer corresponding to the 
variables used in the construction of opaque predicate may/must refer to the same 
dynamic object in the guard agents at some program location (where the opaque 
predicates are used in P). Two pointers referencing the same memory location are 
called aliases. Therefore, the static analyser must use inter-process escape alias 
analysis to determine the objects that can be referenced by pointers in processes other 
than the processes in which they are allocated. 

Though numerous works on intra- as well as inter-procedural alias analysis and 
inter-procedural thread escape analysis [9][10] have been done throughout the last 
few decades, we have not come across a method that can perform alias analysis by 
considering asynchronous message-passing of distributed processes as escape points. 
We believe the reason why this problem has not yet been addressed by the program 
analysis community is because we still do not have efficient, precise and scalable 
algorithms for performing simpler cases of alias analysis in sequential multi-threaded 
programs and hence are unsure how to go about solving this problem which is much 
more complex in nature. 

4 Conclusion  

In this paper, we have addressed the problem of mobile agent code obfuscation using 
opaque predicates, which are structures inserted at program control points to 
obfuscate the branching of agent behaviours. Obfuscation using opaque predicates 
that use the inherent concurrency associated with mobile agent systems and aliasing 
are resilient against well known static analysis attacks. We have demonstrated that it 
will be very difficult for an adversary to understand the dynamic structure of the 
predicate and mount attacks that could statically analyse the associated values for 
each of the terms present in the predicate. The predicate structure can also be made 
arbitrarily complex by incorporating numerous guard agents dynamically and this 
demonstrates the flexibility of our technique. Moreover, in an already existing 
message-passing scenario between agents, the messages exchanged between the 
obfuscated agents and the guards will contribute to a negligible amount of extra 
overhead. The technique also does not depend of any particular language feature and 
is therefore applicable to generic mobile agent platforms.  

We note that our technique is not an alternative to the one proposed by Sakabe et 
al. Obfuscation using method aliasing as a standalone technique may not be 
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sufficiently resilient since the smaller size of agent programs compared to that of 
commercial Java software may result in a fewer number of methods to be considered 
for overloading in Sakabe’s technique.  Hence, using our technique in conjunction to 
the one already proposed by Sakabe et al will substantially strengthen the resilience of 
obfuscated agents. 

In this contribution, we make the assumption that an adversary is only able to 
statically manipulate an agent executing on a platform but not its guards. By imposing 
this restriction, we prevent the adversary from getting a complete understanding of 
data structure passing and pointer update rules. Future work will be concentrated on 
investigating the classes of resilient opaque predicates that demonstrate provable 
resistance against well known static analysis attacks as well as dynamic analysis 
attacks including dynamic message interception attacks.  
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