
Trusted Computing:
Open, Closed, or Both?

Seminar to HP Labs
Bristol

Prof. Clark Thomborson

24th April 2006

Topical Outline

Three types of trust:
Hierarchical, bridging, peering

Three use cases:
Email, B2B e-commerce, DRM

Three OS development methodologies:
Open, closed, hybrid

Technical and non-technical
definitions of Trust
In security engineering, placing trust in a system is a last
resort.

It’s better to rely on an assurance (e.g. a proof, or a recourse
mechanism), than on a trusting belief that “she’ll be right”.

In non-technical circles, trust is a good thing: more trust is
generally considered to be better.
Trustworthiness (an assurance) implies that trust (a risk-
aware basis for a decision) is well-placed.

A completely trustworthy system (in hindsight) is one that has
never violated the trust placed in it by its users.
Just because some users trust a system, we cannot conclude that
the system is trustworthy.
A rational and well-informed person can estimate the
trustworthiness of a system.
Irrational or poorly-informed users will make poor decisions about
whether or not, and under what circumstances, to trust a system.

Privilege in a Hierarchy

Information flows
upwards, toward the
leading actor (at the
root) of a secret
society.
Commands and trust
flow downwards.
The King is the most
privileged.
The peons are the
most trusted.

King, President, Chief
Justice, Pope, or …

Peons, illegal immigrants, felons,
excommunicants, or …

Information flowing up is
“privileged”.
Information flowing down is
“trusted”.
Orange book TCSEC, e.g. LOCKix.

Trustworthiness in a Hierarchy

In a secret society,
information flows
upwards, toward the
most powerful actor.
Commands and trust
flow downwards.
Peons must be trusted
with some information!
If the peons are not
trustworthy, then the
system is not secure.

King, President, Chief
Justice, Pope, or …

Peons, illegal immigrants, felons,
excommunicants, or …

If the King does not show good
leadership (by issuing
appropriate commands), then
the system will not work well.
“Noblesse oblige”!

Email in a Hierarchy

Information flows
upwards, toward
the leading actor.

⇒ Actors can send
email to their
superiors.
Non-upwards email
traffic is trusted:

not allowed by
default;
should be filtered,
audited, …

King, President, Chief
Justice, Pope, or …

Peons, illegal immigrants, felons,
excommunicants, or …

Email up: “privileged” (allowed by default)
Email down: “trusted” (disallowed by
default, risk to confidentiality)
Email across: privileged & trusted routing

Email across Hierarchies

Q: How should we
handle email
between hierarchies?

Company X Company Y

Answers:
1. Merge
2. Subsume
3. Bridge

Merged X+Y

• Not often desirable or even feasible.
• Cryptography doesn’t protect X from Y,

because the CEO of the merged
company has the right to know all keys.

• Can a noble CEO(X+Y) be found?

Email across Hierarchies

Q: How can we
manage email
between
hierarchies?

Company X

Company Y
Answers:
1. Merge
2. Subsume
3. Bridge

Email across Hierarchies

Q: How can we
manage email
between
hierarchies?

Company X Company Y

Answers:
1. Merge
2. Subsume
3. Bridge! • Bridging connection: trusted

in both directions.

Bridging Trust

We make bridges
every time we send
personal email from
our work computer.
We make bridges
every time we send
work-related email
from our home
computer.
Even Kings can form
bridges.
However Kings are
most likely to use an
actual person, e.g.
their personal
secretary, rather than a
bridging persona.

Company X Hotmail

• Bridging connection: bidirectional trusted.
• Used for all communication among an

actor’s personae.
• C should encrypt all hotmail to avoid

revelations.

C, acting
as an
employee C, acting as

a hotmail
client

Personae, Actors, and Agents

I use “actor” to refer to
an agent (a human, or
a computer program),
pursuing a goal (risk
vs. reward),
subject to some
constraints (social,
technical, ethical, …)

In Freudian terms: ego,
id, superego.
Actors can act on behalf
of another actor:
“agency”.
In this part of the talk, we
are considering agency
relationships in a
hierarchy.

Company X Hotmail

• When an agent takes on a secondary goal,
or accepts a different set of constraints,
they create an actor with a new “persona”.

• Bridging connection: bidirectional trusted,
models communication among an agent’s
personae.

C, acting
as an
employee C, acting as

a hotmail
client

Bridging Trust: B2B e-commerce

Use case:
employee C of X
purchasing
supplies through
employee V of Y.
Employee C
creates a hotmail
account for a
“purchasing”
persona.
Purchaser C
doesn’t know any
irrelevant
information.

Company X Company Y

• Most workflow systems have rigid
personae definitions (= role assignments).

• Current operating systems offer very little
support for bridges. Important future work!

C, acting
as an
employee C, acting as

a purchaser

Employee V

Why can’t we trust our leaders?

Commands and trust
flow upwards (by
majority vote, or by
consensus).
Information flows
downwards by default
(“privileged”).
Upward information flows
are “trusted” (filtered,
audited, etc.)
In a peerage, the leading
actors are trusted, have
minimal privilege, don’t
know very much, and
can safely act on
anything they know.

“Our leaders are but
trusted servants…”

Peers

By contrast, the King of a hierarchy
has an absolute right (“root” privilege)
to know everything, is not trusted,
and cannot act safely.

Turn the picture upside down!

Information flows
upwards by default
(“privileged”).
Commands and trust
flow downwards.
Downward
information flows are
“trusted” (filtered,
audited, etc.)
A peerage can be
modeled by Bell-La
Padula, because
there is a partial
order on the actors’
privileges.

Equality of privilege is the
default in a peerage, whereas
inequality of privilege is the
default in a hierarchy.

Facilitator, Moderator,
Democratic Leader, …

Peers, Group members, Citizens
of an ideal democracy, …

Peer trust vs. Hierarchical trust

Trusting decisions in a peerage are made by peers,
according to some fixed decision rule.

There is no single root of peer trust.
There are many possible decision rules, but simple majority
and consensus are the most common.
Weighted sums in a reputation scheme (e.g. eBay for goods,
Poblano for documents) are a calculus of peer trust -- but “we”
must all agree to abide by the scheme.
“First come, first serve” (e.g. Wiki) can be an appropriate
decision rule, if the cost per serving is sufficiently low.

Trusting decisions in a hierarchy are made by its most
powerful members.

Ultimately, all hierarchical trust is rooted in the King.

Legitimation and enforcement

Hierarchies have difficulty with legitimation.
Why should I swear fealty (give ultimate privilege) to this
would-be King?

Peerages have difficulty with enforcement.
How could the least privileged actor possibly be an effective
facilitator?

This isn’t Political Science 101!
I won’t argue whether ideal democracies are better than ideal
monarchies.
I will argue that hierarchical trust is quite different to peer
trust, that bridging trust is also distinct, and that all three
forms are important in our world.

My thesis: Because our applications software will help
us handle all three forms of trust, therefore our
operating systems should support all three forms.

1

Trust in DRM on home PCs

Let us assume
that user X is
has root
privilege on their
home PC.
User X can read
and write
anything stored
on their PC.
Anyone who
sells DRM
content to X’s
DRM purchasing
persona must
trust X’s root-
admin persona.

X, as PC root admin DRM vendor

1. The DRM vendor makes a trusting transfer of
information (sale of DRM content).

2. User X makes a trusting transfer of information
(storing DRM content on their PC) between their
purchasing persona and their using persona.

X, as
DRM user

X, as DRM
purchaser

2

3

DRM on a trusted PC
X has given root
privilege on their
PC to an OS
Admin Y.
The DRM
vendor must
trust Y not to
redistribute this
content.

Y, as root
of X’s PC

DRM vendor

1. A persona of a DRM vendor has a contractual agreement with an OS
Admin Y, under which Y is given privileges to a content-decryption key.

2. OS Admin Y writes a key into X’s kernel. This is a privileged transfer.
3. DRM vendor makes a trusting sale of encrypted DRM content.
4. User X makes a trusting storage of DRM-protected content

(http://www.e.govt.nz/policy/trust-security/).
5. User X plays the decrypted content in an OS partition under Y’s control.

X, as DRM
installer X, as DRM purchaser

4

OS Administrator Y
11

2

X, as DRM
user

5

3

5

kk
k

k Ck

Ck

CkC

Peer administration of trusted PCs

Information flows upwards by
default (“privileged”).
Commands and trust flow
downwards.
Downward information flows
are “trusted” (filtered,
audited, etc.)
The users must refrain from
reading the state of the key
generator: this is an
enforcement problem.
Peerages have enforcement
problems, and hierarchies
have legitimation problems.
Enforcement problems are
manageable if no single
infraction causes much
damage, and if the cost of
detection & response is
small.

Disclaimer: this is vapourware.
Some components are available.
How could this system gain the trust
of a major corporation? (Let’s look at
our use cases….)

Cryptographic Key
Distributor

Users (a community with peer trust)

Malware
Blocker

Spam
Blocker

Trusted email

When a hierarchical organisation receives email, the
first question is “who is it from?”

The answer to this question determines the privilege level of
the incoming data.
Email from a privileged persona is confidential – it can be
delivered only to an actor
Email from an unprivileged persona can be read by anyone
in the hierarchy.

When a hierarchy sends email, the first question is
whether it is low-high (privileged), high-low (trusted),
or incomparable (cross-hierarchy: low-high-low).

Trusted email should be filtered and audited.
The first questions can be answered accurately if the
hierarchy can reliably associate personae with their
cryptographic key(s).

Public Key Infrastructures

Cryptographic keys can be associated with user-ids,
using a “digital certificate” in a Public Key
Infrastructure (PKI).
Verisign issues certificates linked to credit card
numbers.

These are suitable for e-commerce, but not for email (except
in wealthy communities).

Some PKIs issue certificates linked to email
addresses.

It is far from clear how we can maintain a secure associations
between an email address and a persona.
The Web of Trust issues digital certificates using a peer-trust
model, however these certificates have not met widespread
acceptance (perhaps because we don’t yet use personae!).
Important future work!

E-commerce

Corporations use idiosyncratic databases to identify their
customers.
Federated networks (e.g. Liberty Alliance) offer a compatibility
layer (involving cryptographic keys) to organizations who agree to
correlate their identity databases.

“Single sign-on”: (Employee X of Company Y) == (Customer W of
Company Z)
(Shopping persona of X) == (Credit-card possessing persona of X)
This allows organizations to model bridging trust!

Nothing (other than a lack of trust) prevents peerages from
sharing keys with hierarchical organisations, in a federated identity
network.
Corporate organizations rely on financial and legal structures

to legitimate their hierarchies of privilege, and
to enforce obedience to hierarchical commands (trust).

Peerages will need financial and legal support, especially for
enforcement, before they would be trusted by corporates. This is
conceivable: “identity theft” is popularly understood to be a crime.

Peer-trust DRM

A peerage could establish a good reputation for “fair
trading” in DRM objects.
Such a peerage would have to self-enforce a
widely-accepted set of DRM rules.
iTunes is an interesting test case

• It is easy to bypass DRM restrictions in iTunes, implying
that users have privileged access to their DRM stores, and
that they are trusted by the DRM vendor not to abuse this
privilege.

iTunes is hierarchical, but a peer-trust system might
be able to enforce similar rules.

• An important leadership role in a peer-trust system is to
evict peers who don’t follow the rules.

DRM for Baby Books

Grandparents, parents, child are the Guardians of
a Baby Book.

They collectively control access rights.
They may decide to add (or delete) Guardians.
They must trust each other to “do the right thing” when
in physical possession of the Baby Book.
Guardians may allow others to read the Book, if this will
not be inappropriate (as judged by other Guardians).
At most one Guardian can write, at any given time.
The Book should not be lost or damaged.

Can an online Baby Book meet these
requirements?

Trust, for Baby Books

G1 G2 G3

W

R2

R1

• Guardian G3 is in a bridge-trust
relationship with Writer W.

• W is trusted by (G1, G2, G3)
not to abuse the write-privilege.

• G3 is in a peer-trust
relationship with (G1, G2).

• G3 is trusted by (G1, G2) to
take good care of the Book.

• Reader personae (R1, R2) are
not currently animated.

• Actions of all these personae
must be subject to review by
(G1, G2, G3): auditable, non-
repudiable, and confidential.

• The Book must be confidential,
have integrity, and be available.

Open vs. Closed source

Closed-source methodology is hierarchical.
• Only personae with sufficiently high privilege can read the

source.
• An obfuscated OS kernel can hold, and manipulate,

cryptographic keys for a remote, trusted, OS administrator.
• A trusted computer base (TCB) can offer additional

security through hardware (TPM) enforcement of privilege.

Open-source development is based on peer trust.
• The OS kernel can’t hold any secrets if it is open source.
• A trusted computer base (TCB) can hold keys in privileged

(closed) hardware.

More vapourware

Closed-source methodology is appropriate for
designing hierarchical systems.

• These systems have trouble with legitimation.
• Why should a user trust that the system designers (and

administrators) won’t abuse their privilege?
Open-source methodology is appropriate for
designing peerage systems.

• These systems have trouble with enforcement.
• Why should anyone trust a user not to abuse their

privilege?
Real-world peerages can legitimise hierarchies, and
hierarchies can enforce peerages.

• Why shouldn’t our next-generation OS use this design
pattern?

A Legitimised Hierarchy

Auditor

IG2IG1

OS Root Administrator

Users

Chair of User Assurance
Group

Inspector-General
(an elected officer)

• Each assurance group
may want its own Audit
(different scope,
objectives, Trust, …).

• The OS Administrator
may refuse to accept an
Auditor.

• The OS Administrator
makes a Trusting
appointment when
granting auditor-level
Privilege to a nominee.

• Assurance
organizations may be
hierarchical, e.g. if the
Users are governmental
agencies or corporate
divisions.

Review & Future Work

Three types of trust: hierarchical, bridging, peering.
Information flows are either trusted or privileged.

Hierarchical trust has been explored thoroughly in the Bell-La Padula model.
A subordinate actor is trusted to act appropriately, if a superior actor delegates some
privileges.
Bell-La Padula, when the hierarchy is mostly concerned about confidentiality.
Biba, when the hierarchy is mostly concerned about integrity.
A general purpose OS must support all concerns of a hierarchy.

Actors have multiple personae.
Bridging trust connects all an actors’ personae.
A general purpose OS must support personae.

Peering trust is a shared decision to trust an actor who is inferior to the peers.
Peerages have trouble with enforcement; hierarchies have trouble with legitimation.
A trusted OS must be a legitimate enforcement agent!

We are starting to develop a dynamic theory of trust.
When we accept a subordinate role in a hierarchy or in a peerage, we make a
trusting decision.
“Subordination trust” is required when installing a trusted OS.
Dynamic trust is also required to model changes in membership of a peerage.
Dynamic trust/distrust is required to create/destroy an arc in our diagrams. …

Acknowledgements & Sources

Privilege, trust: Richard O'Brien, Clyde Rogers, “Developing
Applications on LOCK”, 1991.
Personae: Jihong Li, “A Fifth Generation Messaging System”,
2002; and Shelly Mutu-Grigg, “Examining Fifth Generation
Messaging Systems”, 2003.
Reputation systems: Benjamin Lai, Trust in Online Trading
Systems, 2004.
Trusted OS, use cases: Matt Barrett, “Towards an Open Trusted
Computing Framework”, 2005; and “Using NGSCB to Mitigate
Existing Software Threats”.
Use cases: Qiang Dong, “Workflow Simulation for International
Trade”, 2002.
Use cases: WTC, Telecom NZ, ADLS, SOEI, Microsoft.
I want to find more NZ corporate partners with an interest in
trusted computing.
I want to find overseas collaborators/contributors to this research.

