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Abstract. We introduce a new dynamic technique for embedding robust
software watermarks into a software program using thread contention.
We show the technique to be resilient to many semantic-preserving trans-
formations that most existing proposals are susceptible to. We describe
the technique for encoding the watermark as a bit string and a scheme
for embedding and recognizing the watermark using thread contention.
Experimental results with Java bytecode indicate that thread based wa-
termarks have small impact on the size of applications and only a modest
effect on their speed.

1 Introduction

Software watermarking is a technique for embedding an identifier into a piece of
software in order to encode some identifying information about it. This identi-
fying information can be used to demonstrate ownership; and in cases of piracy,
may make it possible to trace software to the source of its illegal distribution.
Watermarking has received an increasing amount of interest from the research
community which has resulted in increasingly resilient techniques. However, no
single watermarking algorithm has emerged that is effective against all existing
and known attacks. In fact, it is generally agreed that it is not possible to de-
vise a watermark that some sufficiently determined attacker would not be able
to defeat. As a result, the goal of the watermarking community is to develop
techniques that are sufficiently robust that the resources required to defeat the
watermark are too expensive to be worth the attackers while.

In this paper, we propose a new technique for software watermarking, thread-
based watermarking, for embedding and detecting a watermark using thread
contention. Our premise is that multithreaded programs are inherently more
difficult to analyse and the difficulty of analysis increases with the number of
threads that are “live” concurrently [18].

Software watermarks can be used for different purposes and their desirable
properties vary depending on their use [15]. For software piracy the two prop-
erties that interest us are “robustness” and “invisibility”. “Robustness” ensures
that the watermark is difficult for an attacker to remove and thus the watermark
can act as a software intellectual property identifier. “Invisibility” means that
the watermarks are designed to be non-apparent to the end-user and thus do
not interfere with legitimate use of the program.

Our proposed technique embeds the watermark in the order and choice of
threads which execute different parts of an application. The embedding is a
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two step process. Firstly, we increase the number of possible paths through the
program by creating multiple threads of execution. The semantics of the old
program are maintained by introducing locks. Secondly, we add other locks to
ensure that only a small subset of the possible paths are in fact executed by
the watermarked program. The particular paths that are executed encode the
watermark.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the state-of-the-art in watermarking literature and other related work. In Sec-
tion 3, we give an overview of the basic idea behind thread based watermarks.
Section 4 describes how thread based watermarks can be implemented for Java
bytecode. Section 5 gives experimental evaluation of our technique. Finally, Sec-
tion 6 gives future directions and conclusions.

2 Related Work

There are several other published techniques for doing software watermarking,
static watermarks and dynamic watermarks. The earliest software watermarks
were static watermarks where the watermark was embedded in either the code
section (eg. in variable names, order of exectuable statements) or in the static
data sections (eg. in the strings, images, headers) of a program [8]. Moskowitz [14]
describes such a scheme in which the watermark is embedded in an image or
other digital media using any known media watermarking scheme. The image
is in turn embedded in the static data section of the program, and the water-
mark is extracted at runtime. This fragile watermark is necessary for program
correctness.

A more advanced kind of static code watermark was introduced by Davidson
and Myhrvold [7]. The technique involved statically encoding the watermark
in the ordering of basic blocks that constitute program. Another code water-
mark was introduced by Monden [13] which involved injecting dummy unexe-
cuted methods into the program. These dummy methods contain an encoding of
the watermark in the choice of opcodes and numerical operands. A comparable
spread spectrum technique was introduced by Stern et al. [22] for embedding a
watermark by modifying the frequencies of instructions in the program.

Instead of watermarking the code or data sections of a program, Sander and
Tschudin [20] introduce a technique for watermarking a function by embedding
information statically in the I/O interface between the client and the server.

Static watermarks are particularly susceptible to obfuscation attacks. Two
such attacks described by Collberg et al. [4] involve breaking and scattering all
strings and other static data around the program and/or replacing this static
data with code that generates the same data at runtime. Both these attacks are
extremely effective in making watermark detection impractical.

Perhaps the strongest known static watermark was introduced by Venkatesan
et al. [23] which involves modifying a program so that its control flow graph
encodes the watermark represented as a graph.



3

Dynamic data structure watermarks were introduced by Collberg and Thom-
borson [2]. These watermarks alter the original program so that a data structure
that represents the watermark gets built whenever the program is run with the
correct input. In order to implement these dynamic data structure watermarks,
a system called SandMark [5] was designed jointly at the University of Auckland
and the University of Arizona. Sandmark provides a framework to watermark
Java programs by modifying the application bytecode to make it build a struc-
ture at runtime that encodes the watermark. This structure is recognized as the
watermark by dumping and analyzing the Java heap.

Historically, watermarking has not been the only technique used for protec-
tion of intellectual property of software. Other techniques include the use of a
registration database [9] [21], hardware cryptography [17], obfuscation [4] and
tamper-proofing [1]. Furthermore, research has been conducted into using “soft-
ware birthmarks”, which are preexisting properties of a piece of software, to
establish the authorship of a program [8] [11].

In Collberg et al. [5] the authors suggest using thread contention, but as a
possible technique for obfuscating the execution of a program, not for water-
marking. This paper gives the first practical method for software watermarking
using thread contention.

3 Thread Based Watermarks

¨ ¥
void run () {

blockA ();
blockB ();

}

§ ¦
a.

¨ ¥
boolean doneA = false;
boolean doneB = false;
Mutex mutex2 = new Mutex ();
Mutex mutex1 = new Mutex ();
void run () {
Thread t0 = new Thread () {

public void run () {
lock mutex1;
if ( ! doneA ) {

blockA (); doneA=true;
}
unlock mutex1;
lock mutex2;
if ( ! doneB ) {

blockB (); doneB=true;
}
unlock mutex2;

}
};
Thread t1 = new Thread (t0);
t1.start (); t0.start ();
t1.join (); t0.join ();
}§ ¦

b.

¨ ¥
boolean doneA = false;
boolean doneB = false;
Mutex mutex2 = new Mutex ();
Mutex mutex1 = new Mutex ();
void run () {
Thread t0 = new Thread () {

public void run () {
lock mutex1
if ( ! doneA ) {

blockA (); doneA=true;
}
lock mutex2;
unlock mutex1;
if ( ! doneB ) {

blockB (); doneB=true;
}
unlock mutex2;

}
};
Thread t1 = new Thread(t0);
t1.start (); t0.start ();
t1.join (); t0.join ();
}§ ¦

c.

Fig. 1. In a. we have the original program. b. shows a multithreaded but unconstrained
version of the original program. There are four different correct paths through this
program, all of which may be executed. c. shows a multithreaded and constrained
version of the original program. In this version, although both threads contend to
execute blockA which ever thread executes the first block also executes the second one
because of the order of locks.
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We describe a new watermarking algorithm, thread based watermarking, where
the basic idea is to embed the mark in the threading behavior of the program.
Our proposed technique relies on introducing new threads into single threaded
sections of a program. In an unsynchronized multithreaded program, two or
more threads may try to read or write to the same area of memory or try to use
resources simultaneously. This results in a race condition - a situation in which
two or more threads or processes are reading or writing some shared data, and
the final result depends on the timing of how the threads are scheduled.

One technique that allows threads to share resources in a controlled man-
ner is using a mutual exclusion object often called a mutex. A mutex has two
states, locked and unlocked. Before a thread can use a shared resource, it must
lock the corresponding mutex. Other threads attempting to lock a locked mu-
tex will block and wait until the original thread unlocks it. Once the mutex is
unlocked, the queued threads contend to acquire the lock on the mutex. The
thread that wins this contention is decided by priority, order of execution or by
some other algorithm. However, due to the nature of multithreaded execution
and the number of factors that can affect the timing of thread execution, the
particular thread that acquires the lock is difficult to predict and appears to be
largely random [18].

In order to embed our watermark, we take advantage of the fact that although
thread contention appears to be random, by carefully controlling the locks in a
program, we can force a partial ordering on the order in which some parts of the
program are executed.

For example consider Figure 1a which shows a simple snippet of a program
with a run() method that calls other methods blockA() and blockB(). We
could introduce new threads into the program to execute each of the statements
as show in Figure 1b. This version of the program remains correct and seman-
tically equivalent to the original, however, there a several paths of execution
with either t0 or t1 executing blockA() followed by either t0 or t1 executing
blockB(). In order to embed information into a program, we manipulate the
locks so that only a given subset of paths through the code is taken. In Fig-
ure 1c, we show one example of such manipulation. In this example, although
the two new threads race to acquire a lock on mutex1 like before, in this case
whichever thread locks this mutex is also guaranteed to lock mutex2 and thus
executes both blockA() and blockB(). We can detect this scenario as distinct
from the case where different threads execute blockA() and blockB() and thus
we can use it to embed a bit of information.

The advantage of allowing some thread contention to remain is that although
it allows a bit to be embedded, the actual path of execution still changes every
time the program is executed. This makes the attackers task of determining
which exact sequence embeds the mark more difficult. We discuss this resilience
to attack more in the Section 5.
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public class A {

 public void run () {
  piece1();
  piece2();
  piece3();
 }
}

public class A {

 public void run () {
  Object mutex_orig = new Object();

  WMThread t2 = new WMThread ();
  WMThread t3 = new WMThread ();

  WMThread t1 = new WMThread ();

public class A {

 public void run () {
  Object mutex_original = new Object();
  WMThread t1 = new WMThread ();
  WMThread t2 = new WMThread ();
  WMThread t3 = new WMThread ();
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Fig. 2. Overview of thread based watermarking

4 Watermarking Java Bytecode

We have implemented thread based watermarking for Java bytecode. This imple-
mentation consists of three stages. In the tracing phase, the dynamic behaviour
of the program is captured by tracing its execution on a secret input, I. In the
embedding phase, the watermark number W is selected by the user and embed-
ded in the input code by modifying the behavior of the program on the secret
input I. Finally, in the recognition phase, the program is traced again with input
I, and the watermark is extracted from the trace.

Figure 2 illustrates the watermarking process. In A© the original program is
annotated for tracing and executed with the secret input I that the user selects.
In B© the user selects a watermark string and encodes it using some encoding
scheme. In C© watermark code is inserted into the original program. When the
watermarked program is executed with the special input sequence in D©, the
resulting trace will contain the watermark.

4.1 Tracing

We begin the tracing phase by performing control flow analysis on the input
program to build up a control-flow graph. This graph represents the possible
paths through a program. The nodes of the graph represent basic blocks while
the directed edges represent jumps from one node to another. A basic block is a
piece of straight line code without any jumps or jump targets. We instrument the
input program to write a program trace to a file and execute the program with
the secret input I. The trace is a series of tuples (Bi, Ti) where Bi is the block
id of every basic block executed and Ti is the id of the thread that executed
Bi. The watermark is embedded in the execution behavior of input program
and as such we select input I such that for a given thread Tn, the sequence
T =< B0, B1, ..., Bn > is reproducible on different runs.



6

The program trace serves two purposes. Primarily it is used to find the basic
blocks that are executed by the input program when given the chosen input.
These basic blocks are potential blocks to embed bits of the watermark. Secon-
darily, the program trace counts how often each basic block gets executed and
thus helps identify tight loops, recursion and other program hotspots. There is a
computational and thread switching runtime cost associated with inserting new
threads into the program and to avoid excessive slow down, we avoid inserting
watermarks in to these hotspots.

The secret input I acts as the key and the watermark will be expressed when
this secret input is entered. Other inputs may express other watermarks. Keeping
this input a secret impedes an attacker who gains access to the recognizer from
mounting the so called Oracle attack [6] which can be used to create a non-
watermarked program when a watermark recognizer is available.

4.2 Embedding

The embedding phase modifies the input code so that the watermark W can
be extracted from a trace of basic blocks executed on the input sequence I, as
described in Section 4.1.

In our prototype design, we encode a 24-bit watermark string W into a 48-
bit string E, using a randomly chosen code. The extreme sparseness of this code
gives us a strong error-detection property which we will use in our recognition
step: if a 48-bit string is chosen uniformly at random from the set {0, 1}48, the
probability of this string being a legal codeword is only 2−24.

We split our 48-bit string into six 8-bit bytes E =< E0, E1, ..., E5 >. Each
byte is embedded separately. For each byte, we select a thread Ti at random
and a subsequence of T < (B0, Ti), ..., (Bn, Ti) > - that is a set of n basic blocks
executed by Ti in the order of execution. To simplify embedding we ensure that
we select n distinct basic blocks - that is we select Bi such that ∀i, j : i 6= j →
Bi 6= Bj .

As mentioned earlier thread switching code is expensive in time. Basic blocks
that are executed repeatedly are poor candidates for embedding as slowing them
down will significantly deteriorate the overall performance of the program. Fur-
thermore we select some of the basic blocks that are input dependent to make
the value of the expressed watermark vary with I.

In order to embed our watermark we require our chosen thread to be able
to execute an arbitrary piece of code that it is passed. Thus we first extend the
java Thread class so that threads can be passed a closure to execute. A closure
is a data structure that contains an expression and an environment of variable
bindings in which the expression is to be evaluated. There is no direct support
for closures in Java. However, several techniques for implementing closures in
Java exist in literature. In particular, Pizza [16] describes two schemes for im-
plementing closures in Java. In our implementation a closure is translated into
a class that implements the Runnable interface. This interface contains a single
run() method. The body of the closure is inserted into the run() method of
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the new class while the call location is replaced with an instantiation of the new
class and an invocation of the run() method.

A closure allows the introduced threads to access and possibly alter the local
variables used by the basic block. Unfortunately, formal parameters in Java are
passed by value and we need some mechanism by which to pass updates out of
the function body. In our implementation we construct a Locals class for every
closure in which all variables used by the closure are captured. When the closure
is instantiated we pass this environment to it.

We insert into each basic block Bi code that causes the threads to switch in
such a way as to encode Ei. A simple implementation is shown in Figures 3 and
4.2.

In our implementation, a bit 0 is encoded as a sequence of three basic blocks
executed by three different threads. A bit 1 is encoded as a sequence of three basic
blocks, where the first and third basic blocks are executed by the same thread
and the second basic block is executed by a different thread. The advantage of
such an encoding scheme over one that explicitly uses named blocks and threads
is that it is more resilient to renaming attacks.

We use Java monitors to control the ordering of locks. The only mechanism
in the Java language for manipulating monitors is the synchronized statement
which acquires a lock on an object before executing a block and then releas-
ing it. The synchronized statement requires all lock and unlock calls to be fully
nested and is not sufficiently expressive for our purposes. Thus to we use the
macros monitor enter() and monitor exit() in the source code of our exam-
ples. These expand to monitor enter and monitor exit calls in Java bytecode,
and have the advantage that they cannot be decompiled to synchronized state-
ments in Java source. This provides some defense against decompilation attacks.

¨ ¥
WMThread t1;
WMThread t2;
WMThread t3;
int [] wm = { 1,0,1,1,1,0,1,0 };
...
for ( int i=0; i < wm.length ; i++ ) {

embedBit_macro ( t1 , t2 , t3,
Bit0_Closure );

} else {
embedBit_macro ( t1 , t2 , t3,
Bit1_Closure );

}

§ ¦
a.

¨ ¥
embedBit_macro ( t1 , t2 , t3 , body ) {

Object mutex_orig = new Object ();
t1.setBody ( body );
t2.setBody ( body );
t3.setBody ( body );
monitor_enter ( mutex_orig );

t1.start (); t2.start (); t3.start ();
while ( t1.isAlive () &&

t2.isAlive () &&
t3.isAlive () )

{ Thread.yield () }
monitor_exit ( mutex_orig );
t1.join (); t2.join (); t3.join ();

}§ ¦
b.

Fig. 3. Part a shows the code inserted to embed the bits 10111010. The
embed bit macro call is the macro that expands as shown in Part b. The setBody

method takes a closure as its argument.

The problem with the simple implementation of Figures 3 and 4.2 is that
the inserted threads do not in fact perform any computation and as such are
conspicuous as well as easily removed. In order to tamperproof the watermark
we use the new threads to perform the computation that was originally occur-
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¨ ¥
boolean doneA , doneB , doneC , doneD;
doneA=doneB=doneC=doneD=false;
Object mutex0 = new Object ();
Object mutex1 = new Object ();
monitor_enter ( mutex0 );
if ( ! doneA ) {

doneA = ! doneA;
monitor_enter ( mutex1 );
monitor_exit ( mutex0 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ( ! doneB ) {

doneB = ! doneB;
monitor_exit ( mutex0 );
monitor_enter ( mutex1 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ((!doneC && opaque true) ||

(( doneC && opaque false) ||
(doneD && opaque false )) ) {

doneC = ! doneC;
if ( doneD )

monitor_exit ( mutex1 );
else {

monitor exit ( mutex1 );
doneD = ! doneD;

}
} else {

doneC = ! doneC;
monitor exit ( mutex0 );

}§ ¦

¨ ¥
boolean doneA , doneB , doneC , doneD;
doneA=doneB=doneC=doneD=false;
Object mutex0 = new Object ();
Object mutex1 = new Object ();
monitor_enter ( mutex0 );
if ( ! doneA ) {

doneA = ! doneA;
monitor_enter ( mutex1 );
monitor_exit ( mutex0 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ( ! doneB ) {

doneB = ! doneB;
monitor_exit ( mutex0 );
monitor_enter ( mutex1 );
monitor_enter ( mutex_orig );
monitor_exit ( mutex_orig );

}
if ((!doneC && opaque false) ||

((doneC && opaque true) ||
(doneD && opaque true) ) {

doneC = ! doneC;
if ( doneD )

monitor_exit ( mutex1 );
else {

monitor exit ( mutex0 );
doneD = ! doneD;

}
} else {

doneC = ! doneC;
monitor exit ( mutex1 );

}§ ¦

Fig. 4. Implementation of Bit0 Closure(left) and Bit1 Closure(right). The only dif-
ferences between the implementations have been highlighted.

ring in the basic block. Firstly we divide the selected basic block into three
pieces, piece1(), piece2() and piece3() with each piece containing zero or
more instructions and construct a closure around them. We then pass these new
closures along with those that implement the watermarks to the new threads for
execution as shown in our final implementation at Figure 5 and Figure 6.

In Figure 5 we embed a bit 0. The original thread Torig locks mutexorig then
forks of three new threads T0, T1 and T2 which are executing identical closures.
It then waits for these threads to terminate. The three new threads contend for
mutex0 and the winner proceeds to execute LA1 as shown in Figure 5. This
causes piece1() to be executed by the winner while the other threads wait. The
body of the threads are identical and because the cases are symmetric, let us
assume T0 wins the lock. T0 proceeds to execute LA1 and lock mutex1, unlock
mutex0 then blocks waiting for mutexorig which is owned by Torig. Threads T1

and T2 now contend for the freed mutex0 and one of them wins the lock.
Once again the cases are symmetric and we assume T1 locks mutex0. T1

now executes LB1 and thus T1 executes piece2(), unlocks mutex0 and blocks
waiting for mutex1 owned by T0. At this point T0 is still waiting on mutexorig.
Finally, T2 locks mutex0, executes piece3() unlocks mutex0 and exits. At this
point, Torig is able to wake and unlock mutexorig allowing either T1 or T2 to wake
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LA0 LA1

LB1LB0

if ( doneD )

mutex1
unlock

doneD=!doneD

piece3()
doneC=!doneC

piece1()
doneA=!doneA
lock mutex1
unlock mutex0
lock mutexorig
unlock mutexorig

piece2()
doneB=!doneB
unlock mutex0
lock mutex1
lock mutexorig
unlock mutexorig

if ( doneB )

T0.join(); T1.join(); T2.join()
unlock mutexorig

while ( isAlive(T0,T1,T2) ) { Thread.yield() }

Torig

lock mutexorig

start(T0,T1,T2); T0

doneC=!doneC

lock mutex0
if ( doneA )

unlock mutex0

if ( doneC || doneD )

unlock mutex1

Fig. 5. Embedding a bit 0: A control flow
diagram of Torig and the three threads
T0, T1 and T2 executing an identical body.
The threads T1 and T2 are identical to T0

and are not shown. One possible path of
execution of these threads is that T0 ex-
ecutes LA1 and LB0; T1 executes LA0 and
LB1; and T2 executes LA0 and LB0. Contin-
uing this path T2 will execute piece3().

T0.join(); T1.join(); T2.join()

while ( isAlive(T0,T1,T2) ) { Thread.yield() }
unlock mutexorig

Torig
start(T0,T1,T2);
lock mutexorig

unlock mutex0

if ( doneD )

mutex1
unlock

doneD=!doneD

piece3()
doneC=!doneC

piece2()
doneB=!doneB
unlock mutex0
lock mutex1
lock mutexorig
unlock mutexorig

if ( doneB )

piece1()
doneA=!doneA
lock mutex1
unlock mutex0
lock mutexorig
unlock mutexorig

T0

LA0’

LB1’LB0’

LA1’

doneC=!doneC

if ( doneA )
lock mutex0

unlock mutex1

if ( !doneC )

Fig. 6. Embedding a bit 1: A control
flow diagram of Torig and the three new
threads T0, T1 and T2. To execute LA1’
and LB0’, T1 executes LA0’ and T2 exe-
cutes LA0’ and LB0’ Continuing this path
T0 will execute piece3(). This figure is
identical to Figure 5 except where shown
in reverseface .

up, release their locks and exit. Finally, Torig waits until all three threads T0,
T1 and T2 have exited before continuing execution. As a result of this execution,
three distinct threads have executed the three pieces thus embedding a bit 0.

In Figure 6 we embed a bit 1. The behavior of the threads is identical to em-
bedding bit 0 until T2 evaluates the third conditional marked p!doneCq. In this
case, T2 skips evaluating piece3() and instead unlocks mutex0 and exits. As a
result, Torig unlocks mutexorig and T0 acquires it. T0 then executes piece3()
and exits allowing T1 to also release its locks and exit. As a result of this exe-
cution, the same thread executes piece1() and piece3() while a different one
executes piece2() thus embedding a bit 1.

The introduced code is carefully constructed so that the only differences
between the embedding of bit 0 and bit 1 are the arguments to unlock and the
third conditional as shown in Figure 6.

The first of these differences, the arguments to unlock is obscure to an at-
tacker because in Java monitor enter and monitor exit are stack operations.
Thus it is not possible to statically pattern match on the code to determine if
a 0 or a 1 bit is being embedded. Furthermore, it is difficult given the stack
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operations to determine purely statically which object mutex0 or mutex1 will
be on top of the stack when unlock is called.

The second of these differences may allow an attacker to pattern match on
the conditional statements (p!doneCq versus p(doneC || doneD)q to distinguish
between an embedding of 0 and an embedding of 1. To prevent this, we use
opaque predicates to fold the two different expressions into one. An opaque pred-
icate [3,4] is an expression whose value is known to the watermarker at time of
watermarking but which is difficult for the attacker to deduce.

An opaque false predicate is an opaque predicate which is always false whilst
an opaque true predicate is one which is always true. We are able to construct a
single expression of the form: p(!doneC && Xopaque ) || ((doneC && Yopaque)
|| (doneD && Zopaque))q

To embed bit 0 as shown in Figure 4a, we set X to be opaquely true and Y and
Z to be opaquely false, thus reducing the expression to p(!doneC)q. Alternately,
to embed bit 1 as shown in Figure 4b, we set X to be opaquely false and Y
and Z to be opaquely true thus reducing the expression to (doneC || doneD) as
required.

The opaque predicates can be selected from a large library of opaque predi-
cates such as described by Collberg et. al. [4] which makes pattern matching or
static analysis of this expression useless in distinguishing between an embedding
of bit 0 or bit 1.

4.3 Recognition

Watermark recognition involves identifying our original watermark in a possibly
tampered piece of code. As discussed in Section 3, in our scheme using dynamic
watermarking, recognition involves replaying the watermarked program with key
input and decoding the watermark from the threading behaviour of the applica-
tion.

Watermark recognizers can be broadly classified as “detectors” - those that
merely report the presence of a watermark and “extractors” - those that return
the encoded value of the watermark. We can build a detector for our watermark
by the following method.

First, we extract information about the threading behaviour of the water-
marked program. We begin by collecting a trace of its execution on secret input
I, using a technique similar the one described in Section 4.1. During detection,
we are only interested in the transition from one thread to the next. Therefore
given two consecutive tuples in the trace, (Bi, Ti), (Bi+1, Tj), we only record a
thread ID, Ti if i 6= j. This results in T =< T0, T1, ..., Tm > which is a list of
thread IDs in basic block execution order.

We select every combination of three distinct thread IDs that occur in T
and form a subsequence with just these threads. Note that if there are 4 thread
IDs, then we form

(
4
3

)
= 4 subsequences. In general, we form

(
m
3

)
= O(k3)

subsequences from a trace T containing m thread IDs. From these subsequences,
we then reconstruct all possible 8-bit watermark bytes by extracting all thread-
transition sequences of length 24; recall that we embed each bit of an 8-bit
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watermark code byte as a sequence of three thread-transitions. Our final step is
to construct all possible 6-byte sequences, testing whether each of these is a legal
codeword. We can quickly test whether each codeword is valid by hash-lookup of
a 48-bit possibly-valid code in a table with approximately 16 million (224) valid
48-bit codes E. The appropriate 24-bit watermark signal W is stored with each
valid code.

Two of our three benchmarks are single-threaded, so our extraction process
is quite straightforward. During the extraction process on these benchmarks,
almost all thread-transitions are due to our watermark, so our error-detection
code is not heavily used. Our JFig benchmark is multi-threaded, however, with
7 threads and 47 thread-transitions when it is run on our secret input before
watermarking. After watermarking, JFig has a total of 25 threads, because we
add three threads for each byte in our 6-byte encoded watermark E. There are(
25
3

)
= 2300 different ways to select three threads from twenty-five threads; only

six of these thread-choices will reveal a valid byte from our encoded watermark.
All other choices will give spurious signals, and most of these signals cannot be
properly sequenced with five other bytes Ei to form a 48-bit possibly-correct
codeword E. In our preliminary experimentation (although we are not confident
of the correctness of our implementation) our reconstruction process generates
less than 100 possible 48-bit codewords E for our watermarked JFig. This is
well within the error-detection capacity of our encoding process: we’d estimate a
false-extraction error rate of less than 100/224 under the reasonable assumption,
which has yet to be experimentally verified, that the spurious codewords are
uncorrelated with our randomly-chosen encoding scheme.

4.4 Experimental Results

Experiments were performed on three pieces of software: TTT, a trivial tic-tac-
toe program; JFig, a figure editor; and SciMark, a java benchmark. This latter
benchmark is a composite benchmark consisting of five computational kernels
used for measuring the performance of numerical codes occurring in scientific
and engineering applications. The programs were selected for experimentation
because they categorize different types of Java programs that may be water-
marked. TTT is a small GUI program (64 lines) with one major loop and all but
4 of the lines in the program are executed on our sample input. JFig is a much
larger GUI program (≈ 23000 lines) with most lines of code never being exe-
cuted. The SciMark benchmark (≈ 1300 lines) is a non-GUI application that
consists of many tight loops optimized for numerical computations. A significant
number of lines (5%) are run more than 50, 000 times.

The two GUI programs have no bounds on running time and for our ex-
periments were run for a fixed input. For TTT this consisted of two games of
tic-tac-toe while for JFig it was the time taken to draw a simple figure. Table 1
summarizes the characteristics of these programs.

We measured the impact of embedding bits of a watermark on the running
time of an application. SciMark performs no IO operations after it was started,
hence it required no special timing harness.
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Execution Frequency Average Running Time
TTT 4 lines never run 30s
(64 lines) 34 lines run 1 time

0 lines run > 100 times
0 lines run > 50, 000 times

JFig 18678 lines never run 600s
(22,779 lines) 0 lines run 1 time

0 lines run > 100 time
0 lines run > 50, 000 times

SciMark 224 lines never run 26s
(1,279 lines) 105 lines run 1 time

146 lines run > 100 times
61 lines run > 50, 000 times

Table 1. Characteristics of benchmark programs measured on a Pentium(R) 4 - M
CPU 2.40GHz running GNU/Linux Java HotSpot(TM) Client VM (build 1.4.2-beta-
b19, mixed mode)

For the two GUI applications, we used xnee, an X event recorder to record the
X events sent to an application. After watermarking the application we replayed
the X events and timed the entire procedure.

The original applications were timed 10 times and averaged to calculate initial
speed. Following this they were watermarked and run ten times again to record
how much they slowed down. The left-hand plot of Figure 7 shows the average
slow down that results from embedding a watermark. In each of our ten timed
tests the location at which the watermarks are embedded is selected randomly
from the basic block trace which is produced during the trace step. It should be
noted that although inserting a 48-bit watermark in SciMark results in a very
significant slow down with a factor of ≈ 8, real world applications like TTT and
JFig which have a GUI and wait for user interaction were observed to have very
few time critical loops. For these applications, the resulting slow down was much
less noticeable.

We also measured the size overhead of embedding our thread based water-
mark. The most significant contribution to the increased size of the application
was the creation of closures. The right-hand plot of Figure 7 shows that thread
based watermarks have a significant impact on the size of the small input appli-
cation. Each embedding of a watermark bit caused the code size to increase by
about 1.2 kilobytes.

5 Attacks

A software pirate attempting to steal a watermarked program may carry out
several different attacks to prevent a watermark from remaining recognizable. To
evaluate the resilience of our watermarking scheme we must know how resilient
it is to these attacks.

5.1 Obfuscation Attacks

The simplest static attack that may remove a watermark is obfuscations that
rename all variables and methods in a program, reorder blocks of code, or re-
structure data [2]. A more advanced obfuscation technique which attempts to
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Fig. 7. Slow down of program execution, and Increase in the code size (in kilobytes),
as a function of number of watermark bits embedded.

obscure the identity of variables or methods is “inlining” or “outlining”. Inlining
is a common compiler optimization technique that involves replacing a method
call with an instance of the method’s body. Similarly, outlining is where a set of
instructions is replaced with a call to a method containing those instructions.

Our proposed technique is completely resilient to all of these attacks. This is
because the recognition relies on the executed behavior of the program and not
on its static structure - and this executed behaviour is preserved by these static
attacks.

5.2 Decompilation/Recompilation Attack

An advanced attack is one where the watermarked program is decompiled then
recompiled. Decompilation of programs that contain our watermark is difficult
because although the watermarked code is legal Java bytecode, the improperly
nested monitor calls mean that it cannot be directly expressed in the Java lan-
guage. In particular, it was found that of the three decompilers tried Jad [10],
Homebrew [19] and Dava [12], only Dava successfully handled unnested monitor
calls correctly. It uses a library that emulated Java monitors in pure Java. Unfor-
tunately, other errors prevented it from correctly decompiling our watermarked
program. Even if an attacker is given a decompiler able to handle unnested
monitors, we believe the proposed technique will survive a decompilation attack
because the watermark is embedded in the order of execution of threads. This
will be maintained by any semantic preserving decompile-recompile transforma-
tion. The decompilation attack can be made even more difficult by obfuscating
the watermarked program using additional thread switches that are not used for
watermark encoding, but which are necessary for program correctness. This can
be easily done by introducing straight-line code where one of the two threads
executes a subtly different and buggy version of each statement in the original
code.
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5.3 Additive attacks

The most potent attack against the proposed technique is one where the attacker
succeeds in inserting random thread switches within a watermark piece. Note it
is not enough for the attacker to simply insert new threads, or for him to insert
new basic blocks such that an existing thread executes it. These types of errors
are successfully corrected during our decoding process.

For an attacker to successfully destroy the watermark, they will need to
cause at least two of the three threads involved in embedding a bit in a piece to
switch. Such an attack need not be stealthy and thus can be achieved simply by
inserting a Thread.yield() inside a basic block. However, the attacker cannot
modify a large number of basic blocks in this way, because this may result in
a large slowdown of the program. Alternately, unless an attacker can identify
which thread switches are encoding watermarks, they will not know where to
insert thread switches.

6 Conclusion

This paper has shown a novel technique for embedding watermarks using mul-
tiple threads, locks and thread contention. In particular, we showed how to
encode the watermark in preparation for embedding, how to embed a single-bit
and multi-bit watermark, and how to recognize the watermark.

Experimental results using an implementation to watermark Java bytecode
indicate that the cost of watermarking is relatively small for real world applica-
tions. In addition, we looked at several classes of attacks against thread based
watermarks, and we have proposed techniques for minimizing the effectiveness
of these attacks.
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