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Abstract

The language Java was designed to be compiled into a platform independent

bytecode format. Much of the information contained in the source code remains

in the bytecode, which means that decompilation is easier than with traditional

native codes. As a result, software developers are taking seriously the threat

of competitors using reverse-engineering to extract proprietary algorithms from

compiled Java programs.

We examine several technical protection techniques that could be used to

hinder the reverse-engineering of software. We claim that code obfuscation is the

most suitable technical protection technique that can be applied to a portable

language like Java.

The technique of code obfuscation involves applying obfuscating transforma-

tions to a program. These transformations make the program more di�cult for a

reverse-engineer to understand but do not a�ect the functionality of the program.

We focus on a particular category of obfuscating transformations | control 
ow

obfuscation. Control 
ow obfuscations disguise the algorithms used by a program

by introducing new fake control 
ows, creating features at the object code level

which have no source code equivalent or altering the way in which statements are

grouped.

There are many practical aspects to be considered when applying obfuscating

transformations to Java programs. The fact that Java programs are portable and

are veri�ed before execution makes obfuscating transformations more di�cult

to apply. The veri�cation stage ensures that programs do not perform illegal

operations, such as corrupting a user's system.

Obfuscating transformations can be applied automatically to a program by

a tool called an obfuscator. In this thesis, we present one possible method of

implementing such an obfuscator. We �rst discuss the design decisions made

to address implementation problems. Then, we use the obfuscator on examples

of Java code and examine how e�ective the obfuscating transformations are in

impeding reverse-engineering.
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C H A P T E R 1

Introduction

\From small beginnings come great things."

{ Proverb

1.1 Reverse-Engineering

An extreme case of reverse-engineering is taking someone else's product apart to

determine how it functions (see Marciniak [35], pp. 1077{1084). More generally,

reverse-engineering involves analysing an existing system, regardless of ownership.

By itself, reverse-engineering is not illegal, and in fact it is commonly used to

improve one's own products. Reverse-engineering can reveal design 
aws that

are not otherwise obvious and detect redundancies in a system, which can then

be removed.

In the �eld of engineering, reverse-engineering takes a �nished product and

recreates the knowledge needed to reproduce it. Manufacturing processes and

tools are non-trivial to recreate, which contrasts with reproducing software |

all that is required is to copy the bytes that make up the program. Instead, the

di�culty with reverse-engineering software is in reconstructing enough knowledge

about a program to be able to modify it, reuse parts of it or interface to it.

The fact that it is so easy to reproduce software as compared to manufac-

tured goods means that a greater reliance must be placed on legal protection of

copyrights.

1



2 CHAPTER 1. INTRODUCTION

1.2 Reverse-Engineering Software

To reverse-engineer a software application it is necessary to �rst gain physical

access to it. Using disassemblers or decompilers [8], the reverse-engineer can

decompile it to source code, then analyse its control 
ow and data structures.

Additional tools such as program slicers may be used to perform this analy-

sis (see Marciniak [35], pp. 873{877).

One of the most important legitimate uses of software reverse-engineering is

recovering lost information about a system. Businesses are still using original

COBOL language programs for the sake of being able to access old records.

The source code for these programs may no longer be available in a readable

form, perhaps because they are stored in obsolete systems such as punch cards.

Hence a major reverse-engineering e�ort is needed to recover source code from

the compiled COBOL programs, such as warehouse inventory control systems.

These programs need to be modi�ed in order to eliminate the so-called Year 2000

problem.

Wholesale reverse-engineering of applications violates copyright law [44] but

this is not what worries developers. By extracting proprietary algorithms and

data structures from a rival's application, and incorporating these items into

their own, developers can dramatically reduce their software development cost

and time. It is more di�cult to prove that parts of an application have been

copied, as opposed to the entire application. Hence obtaining compensation for

lost revenue through the legal system is more di�cult. Small developers may not

be able to a�ord long legal battles against large corporations with substantial

resources [34].

Traditionally it has been di�cult to reverse-engineer applications because they

are large, monolithic and distributed as \stripped" object code. Stripping object

code of its symbol table removes information like variable names and obscures

references to library routines. For example, a call to the C language library

routine printf in the source code might appear in the stripped object code as a

procedure call to the memory address 35720. Thus, the job of a reverse-engineer

is made harder as she must perform housekeeping tasks such as memory location

to variable mapping, that are unnecessary with code that has not been stripped.

1.3 The Threat to Java

Since the advent of Java [18], the threat of reverse-engineering is being taken

more seriously. The language was designed to be compiled into a platform inde-

pendent bytecode format. A lot of the information contained in the source code

remains in the bytecode, making decompilation easier [41]. Heavy use is made of

standard library routines, so applications tend to be small, which aids reverse-

engineering. All of these factors intensify the threat of reverse-engineering to
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developers writing applications in Java.

We will argue that the only feasible form of technical protection of mobile

code such as Java bytecodes is code obfuscation [9]. We will examine how this

technique can be applied to Java bytecodes in practice and how e�ectively they

impede malicious reverse-engineering attacks.

1.4 Related Work

Existing Java obfuscators like Crema [50] and Jobe [29] change the names of

identi�ers in Java programs to less meaningful ones. This is a form of layout

transformation (Section 3.3.1). These kinds of transformations make the Java

program more di�cult to understand but do not hide control 
ow. In addition to

identi�er scrambling, the Java obfuscator written by Aggarwal [1] performs the

layout transformation of removing debugging information.

Obfuscators have been written for languages other than Java. The C Shroud

system is a source code obfuscator for the language C. It performs layout trans-

formations like removing comments and indentation, and scrambling identi�ers.

Also, it converts the control structures for, while, do/while, if/else and

switch into if/goto structures. Changing the control structures helps to dis-

guise the control 
ow of the program (Section 3.3.3).

On a personal computer (PC), software is completely accessible for observa-

tion and modi�cation by the user. This is a similar problem with which Java

bytecodes are faced. The issue of protecting software on PC platforms has been

addressed by Aucsmith [3]. This scheme uses a self-modifying, self-decrypting

and installation unique segment of code (Integrity Veri�cation Kernel). The code

segment communicates with other such code segments to create an Interlocking

Trust model. The code segments verify each others integrity. Unfortunately this

technique cannot be applied directly to Java, since it requires the ability to access

and dynamically alter code (for decryption and encryption) while the program is

executing.

1.5 Organisation of this Thesis

In this chapter we have outlined the threat reverse-engineering poses to software

developers. Legal protection in the form of copyright laws is insu�cient for small

software developers, who do not have the resources available to �ght lengthy legal

battles. We assert that the only feasible form of technical protection for mobile

codes such as Java is code obfuscation. The remaining chapters are arranged as

follows:
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Chapter 2 compares and contrasts several technical protection techniques for

software: client-server models, encryption, signed native code and code obfusca-

tion.

Chapter 3 examines the technical protection technique of code obfuscation in

detail. We discuss the obfuscating transformation classi�cation and evaluation

scheme which is presented in Collberg et al. [9].

Chapter 4 focuses on control 
ow obfuscation, a particular category of code

obfuscation which hides the real control 
ow in a program. Many control 
ow

obfuscations rely on the existence of opaque constructs. We de�ne what opaque

constructs are and present some methods to create such opaque constructs.

Chapter 5 addresses the issues involved in applying code obfuscation to Java

bytecodes. We examine the Java run-time environment, the class �le format, the

bytecode instruction set and veri�er.

Chapter 6 provides an overview of the architecture of our Java obfuscator. We

describe the options provided by our Java obfuscator and examine the advantages

and disadvantages of the implementation language. We also provide a high-level

description of the steps involved in obfuscating a program.

Chapter 7 presents detail about the actual implementation of our Java obfus-

cator. We describe the algorithms used, the various design decisions made and

the problems encountered.

Chapter 8 evaluates our obfuscator on concrete examples of Java code. We

gauge the e�ectiveness of the transformations used by examining the e�ect they

have on selected software complexity metrics.

Chapter 9 discusses the cost of obfuscation, deobfuscation techniques and pos-

sible directions for future research.

Appendix B explains the structure of a predicate library. It presents the simple

and graph predicate libraries as examples.

Appendix A explains the structure of an obfuscating transformation module.

It presents the insert bogus branch transformation as an example.

Appendix C presents the Java source code for the Set abstract data type (ADT).

The Graph ADT, which is de�ned in Chapter 4, uses the Set ADT.



C H A P T E R 2

Technical Protection Techniques

\A lock only ever stopped an honest man."

{ Ancient Egyptian Proverb

2.1 Introduction

The idea behind the technical protection of software secrets is to make reverse-

engineering economically impractical, if not impossible. Some early attempts at

technical protection are described in Suhler et al. [47] and Gosler [17]. However,

all the techniques discussed by these authors rely on system speci�c hardware

features. A common technique in the 1980's was to distribute software on spe-

cially formatted 
oppy disks, which standard system �le copy routines fail to

duplicate correctly. The point of platform independent codes such as Java byte-

codes is that only one version of an application needs to be written, which can

be executed on \any" platform. Development and support costs will be reduced

since there is no need to maintain di�erent versions of the application for dif-

ferent platforms. Making the software rely on special hardware features defeats

the purpose of using a portable language. Thus, technical protection must be

incorporated into software and be hardware independent if it is to be of any use

in a mobile code environment. We discuss the technical protection techniques

of client-server models, encryption, signed native code and code obfuscation, as

described in Collberg et al. [9].

5



6 CHAPTER 2. TECHNICAL PROTECTION TECHNIQUES

2.2 Protection by Server-Side Execution

The �rst step in reverse-engineering an application involves gaining physical ac-

cess to the code. By preventing physical access to the application, the problem

of reverse-engineering is nipped in the bud.

Much research has been performed in the �eld of client-server mechanisms, for

example Distributed Systems [37]. In Figure 2.1(a), the application that requires

protection is placed on a server and its services are provided to users over a remote

connection. Thus, access to the application code is prevented. There are two

major disadvantages of full server-side execution as compared to an application

running entirely on a local machine:

� Network bandwidth and latency are limited, so the performance of the

application is decreased because of communication overhead.

� If the network fails to operate correctly, the user will be unable to use the

application.

(a)

Client

Object
Code

Server

Source

Executer

Compile

Response

Request

(b)

Client

Object
Code

Server

Bread
and

Butter
Code

Treasured
Code

Executer

Object
Code

Executer

Source

Response

Source

Bread
and

Butter
Code

Compile

Decompile
Request

Figure 2.1. Protection by (a) Server-side and (b) Partial Server-side execution.

Only some parts of the application may be regarded as proprietary by the

developer. It may thus be unnecessary to protect the entire application. The rest
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of the application merely uses these proprietary parts and is of no real interest

to a competitor, so-called \bread-and-butter-code". In this case full server-side

execution of the whole application is an excessive amount of protection. Instead,

the application can be broken into a private part, which executes on the server,

and a public part, which runs locally on the user's site. Figure 2.1(b) shows how

this scheme operates.

Partial server-side execution enjoys the bene�ts of full server-side execution,

in that the proprietary parts of the application are not available for inspection by

the user. Care must be taken in separating the server-side and client-side parts

of the application to avoid frequent communication.

2.3 Protection by Encryption

In order to eliminate the performance penalties associated with the client-server

models of execution mentioned in the previous section, we must examine methods

that protect code that is executed wholly on a client machine. Encrypting the

distributed code is one method of defeating decompilation (Figure 2.2). Unless

decryption takes place in hardware, it will be possible to intercept and decrypt

compiled code. Hardware decryption systems have been described in Herzberg

and Pinter [22] and Wilhelm [52]. The idea is to have a co-processor (cryptochip)

which decrypts instructions before they are executed by the main processor. The

decrypted code is never stored in user accessible memory, so the degree of security

depends on the scheme used to encrypt the code. Additionally, software can be

designed to execute only if the correct cryptochip is present in a system. This

means that to produce copies of the software that will execute on any machine,

a reverse-engineer must break the encryption scheme and alter the code so that

it does not require the presence of a cryptochip.

Server

Client

Source

Executer

Source

Encrypted
Object Code

Object
Code Object

Code

Encrypted
Object Code

Decrypt

Encrypt

Compile

Decompile

Figure 2.2. Protection by Encryption.
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The problem with the cryptochip system is that di�erent kinds of processors

need di�erent interfacing circuitry to communicate with the cryptochip. Encryp-

tion performed in hardware is thus unsuitable as a software protection technique

if there is a wide range of platforms on which an application must execute.

Adding a cryptochip to a system would force end-users to pay extra money,

just so that software developers can protect their products. This is unlikely to

be popular amongst end-users, so it is doubtful that hardware encryption will be

employed widely as a software protection method.

2.4 Protection through Signed Native Code

Java bytecodes are executed by a Java virtual machine, which is normally imple-

mented by an interpreter, rather than being directly executed by the processor.

This means that Java programs execute an order of magnitude slower than tradi-

tional compiled languages like C programs. However, Java bytecodes are portable,

while compiled C programs are limited to a particular operating system. To ad-

dress the performance issue of Java programs, just-in-time (JIT) compilers have

been developed to translate Java bytecode into native code at run-time. The

native code is then executed in lieu of the original bytecodes. There are several

JIT compilers available for a variety of operating systems. Several companies

have included JIT compilers in their Java development kits, for example, Bor-

land's JBuilder [26], Symantec's Caf�e [14] and Microsoft's Visual J++ [27].

To avoid incurring the overhead of compilation every time Java bytecodes

are executed, it is possible to store the compiled native codes. This is known

as way-ahead-of-time (WAT) compilation. Several WAT compilers are under

development, such as Toba [40] and NET [25].

We can use JIT or WAT compilers to transform Java bytecodes into native

codes, which are more di�cult to decompile. The program requiring distribution

is �rst compiled into Java bytecodes and stored on a server. Users identify their

architecture/operating system combination to the server, which then provides the

appropriate native code version of the application.

Only having access to native code hinders but does not stop reverse-engineering.

For example, there are decompilers to translate 80x86 machine code into C source

code [8]. So using native codes for distribution does not provide the same level of

security as hardware encryption devices. Additionally, a JIT or WAT compiler

is required to translate the Java bytecodes into the native code of each archi-

tecture/operating system that is likely to be encountered. This means that the

portability of the application is reduced to the systems that the server supports.

There is a further problem with transmitting only native code. Unlike Java

bytecodes, native code is not subject to bytecode veri�cation before execution [32].

So native code cannot be run with a guarantee that it will execute without per-

forming illegal actions such as corrupting a user's �les [5]. This is not a problem
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if the developer is a trusted member of the community | the user may accept

assurances by the developer that the application is safe. To avoid tampering, the

developer has to digitally sign [43] the code as it is transmitted, proving to the

user that the code is the original one provided by the developer (Figure 2.3).

Server

Source Client

Source

Executer

Verify that
Code is from
trusted host

Request
x86 Code

Signed
x86 Code

Native Sparc
Code

Native x86
Code

Signed Native
Code

DecompileSigned Native
Code

Compile

Sign

Figure 2.3. Protection through Signed Native Code.

2.5 Protection through Code Obfuscation

The �nal idea that we will consider is code obfuscation. The idea is to transform

an application so that it is functionally identical to the original but is much more

di�cult to understand. The software developer uses a utility called an obfuscator

to protect her application (Figure 2.4). However, unlike server-side execution,

code obfuscation cannot fully protect an application against a malicious reverse-

engineering attack. Given enough time and e�ort, it will be possible to retrieve

important algorithms and data structures. A utility called a deobfuscator may

be used to undo any transformations applied to the application.

The level of security provided by an obfuscator against reverse-engineering

depends on:

1. The sophistication of the transformations used by the obfuscator.

2. The power of the deobfuscation algorithms.

3. The amount of resources (time and space) available to the deobfuscator.

Code obfuscation makes code more di�cult to understand, yet preserves plat-

form independence. It would be pointless to make a transformed application rely

on system speci�c hardware features if it is written in a portable language. Un-

like server-side execution, an obfuscated application does not su�er from delays

due to network limitations. It does not require the hardware needed for secure

encryption and decryption of code. The Java bytecode veri�er guarantees that a
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Client

Server

Source

Object
Code

Obfuscated
Object Code

Obfuscated
Object Code

Source

Object
Code

Decompile

Deobfuscate

Executer

Obfuscate

Compile

Figure 2.4. Protection through Code Obfuscation.

Java application will not perform illegal actions such as erasing a user's �les. So

unlike native codes, there is no need to digitally sign a Java application to verify

that it is \safe" code from a trusted source.

2.6 Discussion

We claim that code obfuscation is superior to the other three techniques pre-

sented in this chapter, when protecting portable mobile programs. There may be

situations where the other techniques are better, such as when the source code

contains extremely valuable trade secrets, or when run-time performance is crit-

ical. The transformations employed by an obfuscator may not provide a high

enough level of protection, or have adverse e�ects on performance.

The server-side execution model su�ers from network bandwidth and latency

limitations. While partial server-side execution reduces delays due to limited

network performance, it does not eliminate them. We must therefore examine

techniques that protect code that executes wholly on a client machine.

Encryption fails to be e�ective without specialised hardware and specialised

hardware places restrictions on portability. This is unacceptable for a language

like Java, which is meant to be executed on a variety of hardware platforms. The

use of specialised hardware also incurs higher cost to the end-user. So we must

look at hardware-independent means of protecting client executed applications.

The use of signed native code also places restrictions on portability, since it

depends on the server to provide Java bytecode to native code translators for

many architectures. The server would probably only support the most common

architectures. Decompilation of native code is still possible, although it is more

di�cult to achieve than with Java bytecodes. We must therefore try to make it

more di�cult to understand any source code that is obtained by decompilation.
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Code obfuscation attempts to make decompiled source code more di�cult to

understand. However, given enough time and e�ort, it is possible to retrieve

important algorithms and data structures from such obfuscated code. The aim

is to increase the time and e�ort required so that it is economically infeasible for

a company to reverse-engineer a rival's application.

However, these protection techniques are not mutually exclusive. Code ob-

fuscation can be applied to bytecodes, which are JIT compiled to native code.

We can then encrypt and digitally sign this native code.

bytecode bytecode
code
native

encrypted
native code

signed
encrypted
obfuscated
native code

sign

source
obfuscatecompile WAT

encrypt

Reverse-engineering the resulting code is more di�cult, since there are many

more steps to be undone to recover the source code.

2.7 Summary

In this chapter, we have discussed several technical code protection techniques.

We examined their advantages and disadvantages, and concluded that code ob-

fuscation is the most suitable method for protecting portable codes like Java. In

the following chapter we will examine code obfuscation in more detail. We will

distinguish di�erent categories of code obfuscation and will provide an evaluation

scheme to determine the quality of a code obfuscation.
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Code Obfuscation

\You can fool all of the people some of the time, and some of the people all of the

time, but you can't fool all of the people all of the time."

{ attributed to Abraham Lincoln

3.1 Introduction

Code obfuscation does not provide an application with absolute protection against

a malicious reverse-engineering attack. The level of security depends on the

sophistication of the transformations used by the obfuscator and the power, tools

and resources available to the reverse-engineer.

Obfuscating transformations are the basis of code obfuscation. In this chapter,

we discuss the obfuscating transformation classi�cation and evaluation scheme

which is presented in Collberg et al. [9].

3.2 Obfuscating Transformations

An obfuscator is a program used to transform program code. The output of an

obfuscator is program code that is more di�cult to understand but is functionally

equivalent to the original. In order to achieve this, the obfuscator applies obfus-

cating transformations to the program code. Existing obfuscators like Crema [50]

assume that the original and obfuscated programs must have identical behaviour.

In this thesis we assume that it is possible to relax this constraint under certain

circumstances. This means that the transformed program can be slower or larger

13
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than the original, or even have side-e�ects such as creating �les. However, the

observable behaviour (the behaviour as experienced by the user) of the two pro-

grams must be identical. Hence, we need to de�ne the notion of an obfuscating

transformation:

Definition 1 (Obfuscating Transformation) Let P
T
�! P 0 be a trans-

formation of a source program P into a target program P 0.

P
T
�! P 0 is an obfuscating transformation, if P and P 0 have the same observ-

able behaviour. More precisely, in order for P
T
�! P 0 to be a legal obfuscating

transformation the following conditions must hold:

� If P fails to terminate or terminates with an error condition, then P 0 may

or may not terminate.

� Otherwise, P 0 must terminate and produce the same output as P .

2

3.3 Classi�cation

We classify obfuscating transformations according to what kind of information

they target and how they a�ect their target. The kinds of information a�ected

can be seen in Figure 3.1.

TransformationObfuscation
Layout Data

Obfuscation
Preventive

Obfuscation

Transformation Target

Control Flow

Figure 3.1. Information targeted by an obfuscating transformation.

We describe each of the above target categories in the following sections. Note

that some of the code obfuscations discussed are traditional compiler optimisa-

tions | we just use these optimisations for a di�erent purpose. Array and loop

reordering, and procedure inlining are examples of such optimisations [4].

3.3.1 Layout obfuscation

Layout obfuscations a�ect the information in the program code that is unnec-

essary to its execution. These obfuscations are typically trivial and reduce the

amount of information available to a human reader. Examples include scrambling

identi�er names and removing comments and debugging information.
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3.3.2 Data obfuscation

Data obfuscations operate on the data structures used in the program. We can

further classify them according to what operation they perform on the data struc-

tures (Figure 3.2).

Data Obfuscation

AggregationStorage & Encoding Ordering

Figure 3.2. Data obfuscation categories.

Data storage obfuscations a�ect how data is stored in memory. An example

is converting a local variable into a global one. Data encoding obfuscations

a�ect how the stored data is interpreted, for example replacing an integer variable

i by the expression 8 * i + 3. Source code would be transformed in the manner

of Figure 3.3.

int i=1;

while (i < 1000) f
: : : A[i] : : :;

i++;

g

T
)

int i=11;

while (i<8003) f
: : : A[(i-3)/8] : : :;

i+=8;

g

Figure 3.3. An example of a data encoding obfuscation.

Data aggregation obfuscations alter how data is grouped together. An

example is transforming a two-dimensional array into a one-dimensional array

and vice-versa.

Data ordering obfuscations change how data is ordered. The normal way

in which an array is used to store a list of integers has the ith element in the list

at position i in the array. Instead, we could use a function f(i) to determine the

position of the ith element in the list.

Data obfuscations will not be discussed further in this thesis. For additional

information about data obfuscation, see Bertenshaw [6] and Collberg et al. [10].

3.3.3 Control 
ow obfuscation

Control 
ow obfuscations a�ect the control 
ow of the program. Again we can

classify them further according to what operation they perform (Figure 3.4).

Chapter 4 covers control 
ow obfuscation in detail.
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Obfuscation

Control Flow

OrderingAggregation Computation

Figure 3.4. Control 
ow obfuscation categories.

Control aggregation obfuscations change the way in which program state-

ments are grouped together. For example, it is possible to inline procedures, that

is, replacing a procedure call with the statements from the called procedure itself.

Control ordering obfuscations alter the order in which statements are exe-

cuted. For example, loops can sometimes be made to iterate backwards instead

of forwards.

Control computation obfuscations hide the real control 
ow in a program.

For example, statements which have no e�ect can be inserted into a program.

3.3.4 Preventive transformation

In contrast to the three preceding techniques, a preventive transformation

does obscure the program to human readers. Preventive transformations are

intended to stop decompilers and deobfuscators from functioning correctly. We

can divide preventive transformations into two categories as in Figure 3.5.

Transformation

Preventive

InherentTargeted

Figure 3.5. Preventive transformation categories.

Inherent preventive transformations make known automatic deobfuscation

techniques harder to employ, although they add little or no obfuscation to a

program. In Figure 3.6, a for-loop has been re-ordered to run backwards. An

arti�cial data dependency is added to make it harder for a deobfuscator to undo

this control ordering obfuscation.

Targeted preventive transformations are designed to counter speci�c anal-

ysis tools. An example would be the HoseMocha [31] program which attacks a

weakness in the Mocha [51] decompiler. HoseMocha inserts extra instructions after

the return instructions in Java bytecodes. This transformation does not a�ect
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for(i=1;i<=10;i++)

A[i]=i
T
)

int B[50];

for(i=10;i>=1;i--)f
A[i]=i;

B[i]+=B[i*i/2]

g

Figure 3.6. An example of a preventive transformation. The for-loop has been re-

ordered to run backwards, which is possible since the original loop has no loop-carried

dependencies. To prevent an automatic deobfuscator from simply undoing this control

ordering obfuscation, we can add a fake data dependency to the reversed loop.

the behaviour of the application, but it makes Mocha crash, thus decompilation

is prevented.

3.4 Evaluation

We can measure the e�ectiveness of obfuscating transformations according to the

criteria potency, resilience, cost and stealth. In this section we will discuss these

measures.

3.4.1 Potency

The concept of one program being harder to understand than another is vague

since it is partially based on human perceptions. A large amount of research

has been carried out in the Software Complexity Metrics branch (see Marciniak

[35], pp. 131{163) of Software Engineering concerning this problem. In this �eld,

complexity metrics (see Table 3.1 for some popular ones) have been designed

with a view to improving program readability. A software complexity metric

usually counts some property of a source code program, with complex programs

having a greater amount of this property than simpler programs. For example,

the McCabe metric (�2 in Table 3.1), which counts the number of decision points

in a program, will increase as more if-statements are added to a program.

We can use these complexity metrics to derive statements like: \If programs P

and P 0 are identical except that P 0 contains more of property q than P , then P 0 is

more complex than P ." Note that the actual measured values of the metrics are

unimportant| it is the relative values of the metrics for P and P 0 that interest us.

That is, we design obfuscations which add more of the property q to a program,

since this is likely to increase the complexity of the program. This is our notion

of potency, which uses complexity metrics as follows:
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Definition 2 (Transformation Potency) Let T be an obfuscating trans-

formation, such that P
T
�! P 0 transforms a source program P into a target

program P 0. Let E(P ) be the complexity of P , de�ned by one of the metrics1 in

Table 3.1.

Tpot(P ), the potency of T with respect to a program P , is a measure of the

extent to which T changes the complexity of P . It is de�ned as

Tpot(P )
def
= E(P 0)=E(P )� 1:

T is a potent obfuscating transformation if Tpot(P ) > 0. 2

We will measure potency on a three-point scale hlow, medium, highi. If Tpot(P )

is a small positive value, then T is considered to have low potency. Conversely

if Tpot(P ) is a large positive value, then T is said to have high potency. A

potent obfuscating transformation should increase one or more of the measures

in Table 3.1.

3.4.2 Resilience

It may seem that increasing Tpot(P ) is a trivial process. For example, to increase

the �2 metric (Table 3.1) one need only to add some simple if-statements (i.e.

predicates) to P :

main() f

S1;

S2;

g

T
)

main() f

S1;

if (5==2) S3;

S2;

if (1>2) S4;

g

Figure 3.7. Trivial predicate insertion.

Such transformations are virtually useless | they can be easily undone by

simple automatic techniques such as peephole optimisations (see Aho et al. [2],

pp. 554{558). Constant folding will replace the boolean expression (5==2) with

false. Now it is obvious that S3 will never be executed, hence this dead code

can be eliminated, along with the statement if (false) S3. Thus, we require

a concept of resilience, which is how well a transformation resists attack from an

automatic deobfuscator. The resilience of a transformation T is a measure of the

total e�ort required to undo T and is a combination of two measures:

1The particular metric (or combination of metrics) to use is not crucial to this de�nition.
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Metric Metric Name Citation

�1 Program Length Halstead [19]

E(P ) increases with the number of operators and operands in P .

�2 Cyclomatic Complexity McCabe [36]

E(F ) increases with the number of predicates in F .

�3 Nesting Complexity Harrison [20]

E(F ) increases with the nesting level of conditionals in F .

�4 Data Flow Complexity Oviedo [39]

E(F ) increases with the number of inter-basic block variable refer-

ences in F .

�5 Fan-in/out Complexity Henry [21]

E(F ) increases with the number of formal parameters to F , and

with the number of global data structures read or updated by F .

�6 Data Structure Complexity Munson [38]

E(P ) increases with the complexity of the static data structures

declared in P :

Data structure Factors increasing complexity

Scalar variable none

Array dimensions, complexity of element type

Record number and complexity of �elds

�7 OO Metric Chidamber [7]

E(C) increases with:

�a
7 the number of methods in C

�b
7 the depth (distance from the root) of C in the inheritance

tree

�c
7 the number of direct subclasses of C

�d
7 the number of other classes to which C is coupleda

�e
7 the number of methods that can be executed in response

to a message sent to an object of C

�f
7 the degree to which C's methods do not reference the same

set of instance variables

Note: �f
7 measures cohesion; i.e. how strongly related are the

elements of a module

aTwo classes are coupled if one uses the methods or instance variables of the other.

Table 3.1. Overview of some popular software complexity measures. E(X) is the

complexity of a software component X, F is a function or method, C is a class, and

P is a program.
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Programmer E�ort

The amount of time required to construct an automatic deobfuscator able

to e�ectively reduce the potency of T .

Deobfuscator E�ort

The execution time and memory required by the automatic deobfuscator

constructed above to e�ectively reduce the potency of T .

Typically, a programmer is prepared to spend a set amount of e�ort to undo

an obfuscating transformation T . Constructing a deobfuscator requires T to be

analysed and if it is very di�cult to do this analysis, the programmer may give

up.

Note that a transformation is potent if it manages to confuse a human reader,

but it is resilient if an automatic deobfuscator is unable to undo the transforma-

tion.

strong

weak

Deobf-
uscator
effort

high
resilience

Programmer
effort

Poly
time

Exp
time

resilience
low

process
Inter-

procedural full
Inter-

one-way

Local

Global

(a)

trivial

weak

strong
trivial weak strong full

(b)

fullfull

Figure 3.8. The resilience of an obfuscating transformation.

We measure resilience on a �ve-point scale from trivial to one-way (Fig-

ure 3.8 (a)). One-way transformations are special because they cannot be undone.

Usually they remove information from the program that is useful to the human

programmer, but is unnecessary for the correct execution of the program. For

example, the formatting of the source code and variable names are not required

to execute a program. Other transformations add useless information which

does not change observable behaviour, but increases the \information load" on

a human reader. These transformations can be undone with varying degrees of

di�culty.

Figure 3.8 (b) shows that deobfuscator e�ort is classi�ed as either polynomial

or exponential time in the size of the program. Programmer e�ort is measured as

a function of the scope of T . It is easier to construct countermeasures against an
obfuscating transformation that only a�ects a small part of a procedure, than one

that may a�ect an entire program. The scope of a transformation is described

using terminology de�ned by code optimisation theory (Table 3.2).
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Term Part of program a�ected

Local a single basic block of a control 
ow graph

Global the entire control 
ow graph of a procedure

Inter-procedural the 
ow of information between procedures

Inter-process the interaction between independently exe-

cuting threads of control

Table 3.2. The scope of a transformation.

Definition 3 (Transformation Resilience) Let T be a behaviour-conserv-

ing transformation, such that P
T
�! P 0 transforms a source program P into a

target program P 0. Tres(P ) is the resilience of T target with respect to a pro-

gram P .

Tres(P )=one-way if information is removed from P such that P cannot be

reconstructed from P 0. Otherwise,

TRes
def
= Resilience(T

Deobfuscator

effort

; T
Programmer

effort

);

where Resilience is the function de�ned in the matrix in Figure 3.8 (b). 2

Resilience is measured using the �ve point scale htrivial, weak, strong, full, one-
wayi.

Suppose that we have a transformation T1 which has global scope and requires
exponential time for the deobfuscator to reduce the potency of the transformation.

Then the resilience of T1 will be strong according to Figure 3.8

Assume that we have another transformation T2 which has inter-process scope
but only requires polynomial time deobfuscator e�ort. In this case the resilience

of T2 will be full.

3.4.3 Cost

The cost of a transformation is the execution time/space penalty which it incurs

on an obfuscated application. We classify the cost on a four-point scale hfree,

cheap, costly, deari, as de�ned below:

Definition 4 (Transformation Cost) Let T be a behaviour-conserving

transformation, such that P
T
�! P 0 transforms a source program P into a target
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program P 0. Tcost(P ) is the extra execution time/space of P 0 compared to P .

Tcost(P )
def
=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dear if executing P 0 requires exponentially more resources

than P .

costly if executing P 0 requires O(np), p > 1, more resources

than P .

cheap if executing P 0 requires O(n) more resources than P .

free if executing P 0 requires O(1) more resources than P .

2

The actual cost of a transformation depends on the environment in which it is

applied. See Figure 3.9 for an example of the di�erent costs of a transformation.

Inserting a statement inside an inner loop will have higher cost than inserting the

same statement at the top level of a program. Naturally, we will want to minimise

the cost of transformations, while maximising the potency and resilience. We

achieve this by applying cheap transformations to frequently executed parts of a

program. We give the cost of a transformation as if it had been applied at the

outermost nesting level of a program.

a=5;

for(i=1;i<=n;i++) f
S1;

g

for(i=1;i<=n;i++) f

a=5;

S1;

g

(a) (b)

Figure 3.9. Di�ering transformation costs. In both cases we insert the simple state-

ment a=5 into the code fragments. The variable n holds an integer that is determined

at run-time. In (a) the transformation incurs a constant overhead, since the new code

is inserted before the loop and is only executed once. In (b) the overhead is O(n), since
the new code is executed on every iteration of the loop.

3.4.4 Stealth

A resilient transformation may not be susceptible to attacks by automatic de-

obfuscators, although it may be vulnerable to attacks by humans. If a trans-

formation introduces new code that di�ers greatly from the code in the original

program, it will be easily noticed by a reverse engineer. A predicate (boolean

expression) like the one in Figure 3.10 may be very resilient to automatic attacks,

but will stick out \like a sore thumb" in most programs.
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if IsPrime(

512-bit integerz }| {
837523474 : : :3853845347527) : : :

Figure 3.10. An example of a \sore-thumb" predicate (boolean expression).

It is essential that obfuscated code resemble the original code as much as

possible. Such transformations are stealthy. Stealth is a highly context-sensitive

metric. A transformation may introduce code which is stealthy in one program

but extremely unstealthy in another.

With each transformation T we associate a set of language features that would

be added when T is applied to a program Q. Language features could include

operators, variables, procedure calls to particular routines and whether Q has

single or multiple threads of execution. Some of the features of T may not be

among the features used by Q. These features reduce the stealth of T when it is

applied to Q. We formally de�ne the stealth measure as follows:

Definition 5 (Stealth) Let T be a behaviour-conserving transformation and

Q be a program. Ps(Q) is the set of language features used by Q, while Ps(T ) is
the set of language features introduced by T . Tste(Q) is the stealth of T when it

is applied to Q:

Tste(Q)
def
=

8>>><
>>>:

1:0; if jPs(T ) = 0 j:

1:0�
jPs(T ) n Ps(Q) j

jPs(T ) j
; otherwise:

2

We will measure stealth on a three-point scale hunstealthy, moderate, stealthyi. If

Tste(Q) is close to 1, then T is considered to be stealthy. Conversely if Tste(Q) is
close to 0, then T is unstealthy.

3.4.5 Quality

We can now give a formal de�nition of the quality of an obfuscating transforma-

tion:

Definition 6 (Transformation Quality) Tqual(P ), the quality of a trans-

formation T when it is applied to a program P , is de�ned as the combination

of the potency, resilience, cost and stealth of T . f is a function that takes a

quadruple of transformation measures and returns a scalar.

Tqual(P ) = f(Tpot(P ); Tres(P ); Tcost(P ); Tste(P )):

2



24 CHAPTER 3. CODE OBFUSCATION

The function f should have the following properties:

1. f increases monotonically as one of fTpot(P ), Tres(P ), Tste(P )g increases,

provided that the other measures, including Tcost(P ), are held constant.

2. f decreases monotonically as Tcost(P ) increases, provided that Tpot(P ),
Tres(P ) and Tste(P ) are held constant.

Ideally, we want an obfuscating transformation to have high potency, one-

way resilience, be free and stealthy. In practice, there is a tradeo� in these four

measures. The potency and stealth measures are not independent | as potency

increases, stealth decreases and vice versa. This is because the greater the degree

that an obfuscating transformation confuses a human reader, the more attention

it attracts to itself. Potent transformations tend to signal to a reverse-engineer

that they contain code that has been added to the original program. It is thus

desirable for these transformations to be as resilient as possible. Conversely,

stealthy transformations tend not to be particularly potent and it is not crucial

for them to be highly resilient. The cost measure is largely independent to the

other three measures but is highly context sensitive. A transformation applied

inside an inner loop will have far greater cost than if it is applied outside.

As an example, let us compare layout obfuscations with control 
ow obfus-

cations. Layout obfuscations have no e�ect on the run-time performance of a

program | they have free cost. It is often obvious that they have been applied

to a program, since information has been removed | they are unstealthy. This

does not matter because even if they are detected, these types of transformations

cannot be undone | they have one-way resilience. Layout obfuscations vary in

their potency. For example, the scramble identi�ers transformation has medium

potency while the remove formatting transformation has low potency. An identi-

�er name contains much pragmatic information whereas formatting (spaces and

blank lines) does not.

Control 
ow obfuscations have medium to high potency and may result in the

program requiring more memory and time to execute | they have cost greater

than free. The fact that their resilience is not one-way means that they must be

stealthy to avoid being detected and undone by a deobfuscator.

3.5 Using Obfuscation Measures

Our classi�cation scheme has practical and theoretical value. We use a variant

of the quality metric in our obfuscator to choose which transformation to apply

to a program. Chapter 7 describes the obfuscator in detail. We will develop

the abstract de�nition of transformation quality given in this chapter into the

concrete de�nition used by our obfuscator. To do so, we need to examine what

aspects are important when selecting a transformation to apply to a program.
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There are many heuristics that can be used to select a transformation but

two important issues that need to be considered are:

� T must blend in with the rest of the code it P .

� T should give high levels of obfuscation with low execution time penalty

(the greatest \bang-for-the-buck").

The �rst issue can be addressed by choosing those transformations with high

stealth when applied to T . The second issue can be handled by selecting trans-

formations that maximise potency and resilience, while minimising cost.

We want a variant of transformation quality which captures these heuristics

and is easy to calculate. To do this, we need to assign numerical values to the

abstract scales used by the potency, resilience, cost and stealth measures. The

values used by our obfuscator are given in Table 3.3.

Metric Scale

Potency low medium high

1 10 100

Resilience trivial weak strong full one-way

1 10 100 1000 10000

Cost free cheap costly dear

1 10 100 1000

Stealth unstealthy moderate stealthy

1 10 100

Table 3.3. Values used by our obfuscator for the transformation measures.

We can now de�ne the appropriateness of a transformation:

Definition 7 (Appropriateness) Let T be a behaviour-conserving transfor-

mation and P be a program. Tpot(P ), Tres(P ), Tcost(P ) and Tste(P ) are the

potency, resilience, cost and stealth of T when it is applied to P . !1, !2 and !3

are implementation de�ned constants that determine the relative importance of

the potency, resilience and stealth measures.

Tapp(P ) is the appropriateness of T when it is applied to P .

Tapp(P )
def
=

!1 � Tpot(P ) + !2 � Tres(P ) + !3 � Tste(P )

Tcost(P )

2

Suppose that we have two transformations T 1 and T 2 that could be applied

to a program P . Their transformation qualities are as follows:
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Potency Resilience Cost Stealth

T 1 high weak cheap stealthy

T 2 medium one-way free unstealthy

Before we can perform the appropriateness calculations for these transfor-

mations, we need to assign values to the constants !1, !2 and !3. We use

!1 = !2 = !3 = 1 in our obfuscator to give equal weighting to the potency,

resilience and stealth of an obfuscating transformation, when calculating its ap-

propriateness. The appropriateness of T 1 and T 2 are calculated as follows:

T1app(P ) =
1 � 100 + 1 � 10 + 1 � 100

10
= 21

T2app(P ) =
1 � 10 + 1 � 10000 + 1 � 1

1
= 10010

Hence, T 2 would be more appropriate than T 1 to apply to P .

3.6 Discussion

We believe that our obfuscation classi�cation scheme is extensive enough to clas-

sify any known obfuscation. It has categories for transformations that a�ect each

aspect of a source code program. Layout obfuscations alter the lexical structure

of a source code program. Data obfuscations and control 
ow obfuscations dis-

guise the data structures and control 
ow of a program respectively. There is a

fourth class of transformations, preventive transformations, that target speci�c

de�ciencies in decompilers and deobfuscators. This class includes transformations

such as inherent preventive transformations, which make particular deobfuscation

techniques di�cult to employ.

Existing obfuscators �t well into our classi�cation scheme. Crema and Jobe

perform the layout transformation of scrambling identi�er names in Java class

�les. Aggarwal's Java obfuscator [1] also scrambles identi�er names and removes

the debugging information from a Java class �le. This transformation is another

kind of layout obfuscation because debugging information is not required to exe-

cute a program. The HoseMocha obfuscator uses a di�erent approach, exploiting

a weakness in the Mocha decompiler. Mocha crashes if instructions are placed after

the last return instruction in a method. Hence HoseMocha employs a preventive

transformation.

3.7 Summary

This chapter has presented a classi�cation and evaluation scheme for obfuscating

transformations. With this scheme, it is possible to determine the best transfor-
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mations to apply to an application. In the next chapter we focus on control 
ow

obfuscations, a particular category of obfuscating transformations which disguise

the real control 
ow in a program.





C H A P T E R 4

Control Flow Obfuscation

\Who controls the past . . . controls the future:

who controls the present controls the past"

{ Nineteen Eighty-Four, George Orwell

4.1 Introduction

In this chapter we present a few control 
ow obfuscations, which are a particular

category of code obfuscation. Control 
ow obfuscations disguise the real control


ow in a program. For such transformations, a certain amount of computational

overhead will be unavoidable. Thus, there is a trade-o� between a highly e�-

cient program, and one that is highly obfuscated. Typically, an obfuscator will

assist in this trade-o� by allowing a user to choose between cheap and expensive

transformations.

Before examining examples of control 
ow obfuscations, we �rst discuss the

notion of opaque predicates, which are an important element of many control


ow obfuscations. We summarise portions of the papers by Collberg et al. [9, 11]

in this chapter.

4.2 Opaque Constructs

Control-
ow transformations must be cheap yet resilient to attack from deobfus-

cators. Many such transformations rely on the existence of opaque constructs.

Informally, a variable is opaque if it has a property that is known a priori to the

29
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obfuscator, but is di�cult for the deobfuscator to determine. Similarly, a predi-

cate (a boolean expression) is opaque if a deobfuscator can determine its outcome

only with di�culty, while this outcome is known by the obfuscator. Formally, we

de�ne opaque variables and predicates as follows:

Definition 8 (Opaque Variables and Predicates) A variable V is opaque

at a point p in a program, if V has a property q at p which is known at obfuscation

time. We write this as V q

p
or V q if p is clear from context.

A predicate P is opaque at p if its outcome is known at obfuscation time.

We write P F

p
(P T

p
) if P always evaluates to False (True) at p, and P ?

p
if P

sometimes evaluates to True and sometimes to False. See Figure 4.1. Again,

p will be omitted if it is clear from the context. 2

P
T

T F

P
F

FT F

P
?

T

Figure 4.1. Di�erent types of opaque predicates. Solid lines indicate paths that may

sometimes be taken, dashed lines paths that will never be taken.

Suppose that C is an opaque construct with a property p that is known at

obfuscation time. If a deobfuscator can deduce p by analysing C, we say that the

deobfuscator breaks C. Hence the key to highly resilient control transformations

is the ability to create opaque constructs that are di�cult for a deobfuscator to

break.

4.2.1 Opaque Construct Quality

The quality of control-
ow transformations that use opaque constructs depends

directly upon the quality of these constructs. We use the same scales to measure

the quality of opaque constructs as we do with obfuscating transformations.

The potency of an opaque construct measures how hard it is to understand

how the construct is calculated. The greater the complexity of the calculations,

the greater the potency of the construct. For example, opaque predicates based

on aliasing and threads have higher potency in general than those based on math-

ematical facts.

The resilience of an opaque construct measures the e�ort required to create a

deobfuscator that is able to break the opaque construct. Resilience is calculated

using the scheme in Figure 3.8.
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The cost of an opaque construct depends upon where it is inserted into a

program, as well as the time and space required to calculate the construct. The

constructs described in this chapter use little additional run-time resources.

The stealth of an opaque construct is context-sensitive. If a program performs

a lot of pointer manipulations, then opaque predicates based on aliasing will be

stealthy. On the other hand, opaque predicates based on mathematical facts will

be unstealthy unless a program performs a lot of arithmetic.

4.2.2 Static and dynamic analysis

There are di�erent kinds of deobfuscation techniques, some based on static anal-

ysis and some based on dynamic analysis. In this thesis, we are mostly concerned

about static analysis attacks on obfuscated programs.

Static analysis of a program is performed without executing the program,

whereas dynamic analysis takes place at run-time [16]. Common static analyses

include detection of dead code and uninitialised variables. Dynamic analysis is

performed by testing the program on sample input data. It is infeasible to test

all control paths in a program due to combinatorial explosion. Hence the input

data is partitioned into equivalence classes, which correspond to properties such

as statement and branch coverage. For example, suppose that there is a predicate

in the program that checks if a variable x is greater than zero. There are two

equivalence classes of input for this predicate, x > 0 and x <= 0.

4.2.3 Trivial and weak opaque constructs

An opaque construct is trivial if a deobfuscator can break it via a static local

analysis. That is, a deobfuscator need only examine a single basic block in the

control graph. See Figure 4.2(a) for some examples of trivial opaque constructs.

An opaque variable is also trivial if its value is computed using calls to library

functions with simple, well-understood semantics. Languages like Java require all

implementations to support a standard set of library classes, so opaque variables

of this form are easy to construct. An example is v2[0:::3] = (int)(Math:random() � 4).

Unfortunately, these opaque variables are equally easy to break. The deobfusca-

tor designer can tabulate the semantics of all simple library functions, and then

perform pattern-matching on the function calls in the obfuscated code.

An opaque construct is weak if a deobfuscator can break it by a static global

analysis. In other words the deobfuscator has to examine a whole control 
ow

graph. See Figure 4.2(b) for some examples of weak opaque constructs.

Opaque constructs based on mathematical facts such as 8x 2 IN; x2(x+1)2 j4

have resiliences ranging from trivial to strong, depending on how di�cult they

are to prove with an automatic theorem prover. The potency of these constructs

is medium, rather than high, because well-known mathematical facts can be
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f 1
 int v, a=5; b=6;

2
 v=11 = a + b;

3
 if (b > 5)
T

: : :

4
 if (Math:random() < 0)
F
: : :

g

f 1
 int v, a=5; b=6;

2
 if (: : :) : : :

/* a and b are

unchanged */
...

3
 if (b < 7)
T

a++;

4
 v=36 = (a=6 > 5)?(b*b):b;

g

(a) (b)

Figure 4.2. Examples of (a) trivial and (b) weak opaque constructs. In (a), lines 1


and 2
 set the values of the opaque variables v, a and b. Since the value of b is not

changed before the statement in line 3
 is executed, we know that b > 5 is true. The

random numbers generated by the Math.random() method are in the range [0 : : : 1),
hence the expression in line 4
 is always false. In (b), line 1
 assigns values to the

opaque variables a and b, which are unchanged by the statements in line 2
. So in

line 3
, b < 7 is true and a is incremented. In line 4
, since a > 5 is true, v is

assigned the value of b � b.

easily identi�ed by a human reading the program. The construct relying on this

mathematical fact can then be broken.

Trivial and weak opaque constructs can be broken by using local or global

static analysis. Ideally, we want opaque constructs that require worst case ex-

ponential time in the size of the program to break but only polynomial time

to construct. This is a similar situation to cryptography, where decryption is

much harder than encryption, unless one has the correct decryption key. We will

present two techniques for creating highly resilient opaque predicates | the �rst

is based on aliasing, the second on lightweight processes (threads).

4.2.4 Opaque constructs using objects and aliases

Two or more expressions that denote the same memory address are aliases of

each other. Figure 4.3 presents a trivial example.

Static analysis is made signi�cantly more complicated when aliasing can oc-

cur. Di�erent versions of precise static alias analysis are NP-hard [23] or undecid-

able [42]. We exploit this fact to construct opaque predicates which are di�cult

to break by static analysis alone. There are many fast but imprecise alias analy-

sis algorithms that will detect some aliases some of the time, but not all aliases

all of the time. Such algorithms are conservative in behaviour. Steensgaard [46]

demonstrates an interprocedural 
ow-insensitive points-to analysis that is very

fast in practice for real programs written by humans. The points-to problem is
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public class Alias f

public int x;

g

f 1
 Alias p = new Alias();

2
 Alias q = p;

3
 p.x = 5;

4
 q.x = 6;

g

q

p

p

q

p

p ?

x

3


1


x

?

5

x

q
6

x

2


4


Figure 4.3. An example of aliasing. The diagram on the right shows the objects to

which p and q point to after the execution of each line. p and q are aliases after the

statement on line 2
 has been executed. Hence after the statements on lines 3
 and 4


have been executed, the value of p:x is the integer 6.

related to the aliasing problem but the analysis requires the use of a special type

system.

To exploit the general di�culty of the alias analysis problem, we construct

a complex dynamic structure and maintain a set of pointers into this structure.

Opaque predicates can then be designed which ask questions that can only be

answered if an inter-procedural alias analysis has been performed.

Consider the obfuscated method P in Figure 4.4. Mixed in with P's original

code are redundant computations guarded by opaque predicates. The method

calls manipulate two global pointers g and h which point into di�erent connected

components (G and H) of a graph. The statement g=g.Move() makes g point to

another node in G. The statement h = h.Insert(new Node) inserts a new node

into H and makes h point to another node in H. P (and other methods that P calls)

is given an extra pointer argument f which refers to objects within G.

This set-up allows us to construct opaque predicates like those of state-

ments 4
 and 5
 in Figure 4.4. The predicate f==g may be either true or false

since f and g move around within the same structure. Conversely, g==h must be

false since g and h refer to nodes in di�erent structures.

Statements 6
{ 9
 in Figure 4.4 exploit aliasing. The predicate in statement 7


will be true or false depending on whether f and g point to the same or di�erent

objects. The predicate in statement 8
must evaluate to true since f and h cannot

alias the same object.
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g

f

h

H

g.Move()

G

public class Node f

/* Instance methods

omitted */

public boolean Token;

public Node car, cdr;

g

Node g, h;

method P(: : :,Node f) f

1
 g = g.Move();

h = h.Move();

2
 h = h.Insert(new Node);
...

3
 x.R(: : :, f.Move());
...

4
 if (f == g)
?
: : :

5
 if (g == h)
F
: : :

...

6
 f.Token=False;

g.Token=True;

7
 if (f:Token)
?
: : :

...

8
 f.Token=True;

h.Token=False;

9
 if (f:Token)
T
: : :

g

Figure 4.4. Opaque predicates constructed from objects and aliases. We construct a

dynamic structure made from Nodes. Each Node has a boolean �eld Token and two

pointer �elds (represented by black dots) which can point to other nodes. The structure

is designed to consist of two connected components, G and H. There are two global

pointers, g and h, pointing into G and H, respectively.

4.2.5 A Graph ADT

To make the technique based on aliasing more concrete, we present a Java Graph

abstract data type (ADT), which can be included in an obfuscated application.

The Graph operations are used to manufacture opaque predicates that are cheap,

and resilient. As long as the original application uses pointers (Java object refer-

ences), these predicates will also be stealthy. The Graph ADT uses a Set ADT,
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which is de�ned in Appendix C.

We must prevent deobfuscators from identifying the ADT by simple pattern

matching. We can foil deobfuscators with the following techniques:

1. The obfuscator should keep a large library of variants of the Graph ADT

that it could randomly select between. Several variants could be included

with and used in di�erent parts of the same application.

2. Invocations of the Graph primitives should be obfuscated like the user code,

including inlining, outlining, and identi�er scrambling.

3. The Graph ADT could be merged with the most similar user-de�ned class.

The Graph nodes created by the obfuscated application would be indistin-

guishable from existing objects created by the original application.

For sake of clarity we will not use any of these techniques in our examples.

Consider the Graph ADT shown in Figure 4.5. It contains operations for

creating a new graph (Node), adding new nodes to a graph (addNodei), traversing

a graph (selectNodei), and splitting a graph into components (reachableNodes

and splitGraph). Additional operations that could be included are merging

graphs, changing the direction of edges, and testing for various graph properties

such as connectivity, acyclicity, reachability and isomorphism.

The Graph ADT operations are combined into patterns that can be inserted

into the application. See Table 4.1 for some examples.

The following patterns ensure that the graph that is built is essentially tree-

shaped. That is, if P and Q point to nodes in a connected graph, then after one

of these operations is performed, P and Q can possibly refer to the same node.

� Insert (Table 4.1(a)) inserts a new node at an arbitrary place in the graph.

� Move (Table 4.1(b)) makes P point to an arbitrary graph node reachable

from P. Note that if the node P pointed to before the move becomes un-

reachable and there are no other pointers to it, the memory it uses will be

reclaimed by the garbage collector.

� Link (Table 4.1(c)) builds general graphs by adding an edge from some

leaf b to an arbitrary node a. The requirement that we only add edges

from leaves ensures that the graph will remain connected.

In contrast to the previous three code patterns, Split (Table 4.1(d)) divides

the graph pointed to by P into two separate components. After the split we know

that P and Q point into separate components. No matter which operations are

performed separately on these components, P and Q will never alias one another.

Figure 4.7 shows how these patterns can be used to construct opaque predi-

cates in a real program. We start by creating two graphs pointed to by p and q.



36 CHAPTER 4. CONTROL FLOW OBFUSCATION

# Code Pattern Example

(a)

Node Inserti;j(Node P) f

if (P == null)

return new Node();

else f

r = P.selectNodei();

q = r.addNodej();

return q;

g;

g

P
P

q
r

(b)
Node Movei(Node P) f

return P.selectNodei();

g

P P

(c)

void Linki;j(Node P) f

a = P.selectNodei();

b = P.selectNodej();

if (b.car == b)

b.car=a;

g

PP

b

a

(d)

Node Spliti(Node P) f

Q = P.selectNodei();

A = P.reachableNodes();

B = Q.reachableNodes();

P.splitGraph(

A.setDiff(B),B);

return Q;

g

P

Q

P P

A:

Q

B:

Table 4.1. An example of Graph ADT code patterns. The obfuscator inserts these

code patterns, which use the Graph primitives de�ned in Figure 4.5, into a program.

A number of graphs and pointers into these graphs are maintained, which allows the

obfuscator to create resilient opaque predicates.
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public class Node f

public Node car, cdr;

public Node()

f this.car = this.cdr = this; g

/* addNodei is a family of functions which insert a

new node after `this'. */

public Node addNode1() f

Node p = new Node(); p.car = this.car;

return this.car = p; g

public Node addNode2() f

Node p = new Node; p.cdr = this.car;

return this.car = p; g

/* selectNodei is a family of functions which return a

reference to a node reachable from `this'. */

public Node selectNode1() f return this; g

public Node selectNode2() f return this.car; g

public Node selectNode3() f return this.car.cdr; g

public Node selectNode4(int n) f

return (n <= 0) ? this :

this.car.selectNode4b(n-1); g

public Node selectNode4b(int n) f

return (n <= 0) ? this :

this.cdr.selectNode4(n-1); g

Figure 4.5. A simple Graph ADT to be used for manufacturing opaque predicates. Due

to length, the de�nition of this ADT is continued in Figure 4.6. To ensure there are no

null pointers, terminal nodes point to themselves. This simpli�es the implementation

of the selectNodei family of functions. The class Set (see Appendix C) implements

sets of objects and has operations insert and hasMember. The Graph primitives de�ned

in this �gure are used by the code patterns in Table 4.1.

We now consider the execution of the outer for-loop. We add a node to the

graph pointed to by p if y 2 [v:height � 10 : : : v:height]. This means that only

ten extra graph nodes have to be allocated over the entire execution of the loop.

When y == v:height becomes true, the graph pointed to by p is split, the new
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/* Return the set of nodes reachable from 'this'. */

public Set reachableNodes()

f return reachableNodes(new Set()); g

private Set reachableNodes(Set reached) f

if (!reached.hasMember(this)) f

reached.insert(this);

this.car.reachableNodes(reached);

this.cdr.reachableNodes(reached); g

return reached; g

/* A and B are sets of graph nodes. Remove any

references between nodes in A and B. */

public void splitGraph(Set A, Set B)

f this.splitGraph(new Set(), A, B); g

private void splitGraph(Set R, Set A, Set B) f
if (!R.hasMember(this)) f

R.insert(this);

this.car.splitGraph(R, A, B);

this.cdr.splitGraph(R, A, B);

if (this.diffComp(this.car, A, B))

this.car = this;

if (this.diffComp(this.cdr, A, B))

this.cdr = this; g
g

/* Returns true if the current node and node b */

are in different components */

private boolean diffComp(Node b, Set A, Set B) f

return (A.hasMember(this) && B.hasMember(b)) ||

(B.hasMember(this) && A.hasMember(b)); g
g

Figure 4.6. A simple Graph ADT to be used for manufacturing opaque predicates.

This �gure continues the code in Figure 4.5.

component that is formed is pointed to by q. This is a destructive update since

it causes the graph originally pointed to by q to no longer be referenced. When

the inner for-loop is about to be executed, p != q is false, since p and q point to

di�erent graph components. Thus, the added break-statement is never executed.
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static void Render (Vector world, View v) f

Node p = Insert1;1(null); Insert1;2(p);

Node q = Insert1;1(null);

for (int y = 0; y < v.height; y++) f

if (y>=v:height� 10)
?

Insert4;2(p,(int) (y * 1.5));

if (y == v:height� 10)
?

q = Split1(p);

for (int x = 0; x < v.width; x++) f

if (Move4(p,x)==Move4b(q,x))
F

break;

Ray ray = v.ray(x, y);

WorldObject o = hitObject(ray, world);

if (o != null) f

Color c = o.surface.color(o.hitPt, o.norm, v.eyePt);

Graphics.drawPoint(c, x, y);

gggg

Figure 4.7. Inserting Graph ADT routines. The inserted code is in italics. It is

constructed so that p and q will never point into the same dynamic structure.

4.2.6 Opaque constructs using threads

Parallel programs are more di�cult to analyse statically than sequential ones.

The reason is their interleaving semantics: n statements in a parallel region

PAR S1; S2; : : :; Sn; ENDPAR

can be executed in n! di�erent ways. Despite this, some static analyses of parallel

programs can be performed in polynomial time [30]. Others require all n! inter-

leavings to be considered.

In Java, parallel regions are constructed using lightweight processes known as

threads. Java threads have (from our point of view) two very useful properties:

1. Their scheduling policy is not speci�ed strictly by the language speci�cation

and will hence depend on the implementation.

2. The actual scheduling of a thread will depend on asynchronous events gen-

erated by user interaction, network tra�c, etc.

Combined with the inherent interleaving semantics of parallel regions, this

means that threads are very di�cult to analyse statically.

We use these observations to create opaque predicates that require worst-case

exponential time to break. The basic idea is very similar to the one used in

Section 4.2.4. A global data structure V is created and occasionally updated,
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but kept in a state such that opaque queries can be made. The di�erence is

that V is updated by concurrently executing threads.

Obviously, V can be a dynamic data structure such as the one created in

Figure 4.4. The threads would randomly move the global pointers g and h

around in their respective components, by asynchronously executing calls to move

and insert. This has the advantage of combining data races with interleaving

and aliasing e�ects, for very high resilience. An example of this combination of

techniques is shown in Figure 4.8.

thread S f

while (1) f

if (random(1,10) <= 9)

X = X.Move();

else

X = X.Insert(new Node);

sleep(3);

g
g

thread T f

while (1) f

if (random(1,20) <= 17) f
Y = Y.Insert(new Node);

sleep(5);

g

X = X.Move();

sleep(11);

g

g
Node X, Y;

main () f

X = new Node;

Y = new Node;

S.run(); T.run();

: : :

if (Y == X)F ( 1


: : :

g

Figure 4.8. An opaque predicate constructed using threads and aliasing. The predicate

at point 1
 will always evaluate to False, since X and Y point to di�erent structures.

Two threads S and T occasionally wake up to update the structures pointed to by the

global variables X and Y. Notice that S and T are involved in a data-race on X, but that

this does not matter as long as assignments are atomic. Regardless of whether S or T

wins the race, X will remain pointing to a di�erent structure than Y.
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4.3 Computation Obfuscations

Control computation obfuscations fall into the three categories in Figure 4.9,

which are discussed in the following sections.

and

Mirrors

Alter

Contol Flow

Abstractions

High-LevelSmoke

Language

Obfuscation

Breaking

Control Computation

Figure 4.9. Control computation obfuscation categories.

4.3.1 \Smoke and Mirrors" obfuscations

Inserting dead code into a program is an example of a \Smoke and Mirrors"

obfuscation. The aim is to hide the real control 
ow behind statements that are

irrelevant.

The McCabe [36] and Harrison [20] metrics (�2 and �3 in Table 3.1) suggest

that there is a strong correlation between the perceived complexity of a piece

of code and the number of predicates it contains. Fortunately, the existence of

opaque predicates makes it easy for us to devise transformations that introduce

new predicates in a program.

Consider the basic blocks A;B; in Figure 4.10. In Figure 4.10(a) we insert an

opaque predicate P T into this basic block, splitting up the statements A and B.

The P T predicate is irrelevant code since it will always evaluate to True.

In Figure 4.10(b) we again break the basic block into two halves, and then

proceed to create two di�erent versions B0 and B00 of the statement B. We

create B0 and B00 by applying di�erent sets of obfuscating transformations to B.

It will not be obvious to a reverse engineer that the two new versions of B in fact

perform the same function. We use a predicate P ? to select between B0 and B00

at run-time.

Figure 4.10(c) is similar to Figure 4.10(b), but this time we introduce a bug

into B00. The P T predicate always selects the correct version of the code, B".

4.3.2 High-level language breaking obfuscations

High-level language breaking obfuscations introduce features at the object code

level that have no direct source code equivalent. For example languages that do
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P
?

A;B;

P
T

(b)
(a)
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B
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(c)

P
T

T

B
0 B

00

F

f(B) = f(B0) = f(B00)

T F

f(B) = f(B0)

A;A;

B;

A;

Figure 4.10. The branch insertion transformation.

not have goto-statements are unable to represent non-reducible 
ow graphs.

Often a programming language is compiled to a native or virtual machine

code which is more expressive than the language itself. If this is the case, we can

devise language-breaking transformations, which introduce a sequence of virtual

machine (or native code) instructions that have no direct correspondence with

any source language construct. When faced with such instruction sequences a

deobfuscator will either have to try to synthesize an equivalent (but convoluted)

source language program, or give up altogether.

For example, Java bytecode has a goto instruction while the Java language

has no corresponding goto-statement. This means that the Java bytecode can

express arbitrary control 
ow, whereas the Java language can only (easily) express

structured control 
ow. We say that the control 
ow graphs produced from Java

programs will always be reducible, but Java bytecode can express non-reducible


ow graphs (see Aho et al. [2], pp. 606{608). The main feature of reducible 
ow

graphs is that there are no jumps into the middle of a loop.

Since expressing non-reducible 
ow graphs becomes very awkward in lan-

guages without gotos, we construct a transformation which converts a reducible


ow graph to a non-reducible one. This can be done by turning a structured loop

into a loop with multiple headers. In Figure 4.11(a) we add an opaque predi-

cate P F to a while-loop, to make it appear that there is a jump into the middle

of the loop. In fact, this branch will never be taken.

A Java decompiler would have to turn a non-reducible 
ow graph into one

which either duplicates code or which contains extraneous boolean variables.

Alternatively, a deobfuscator could guess that all non-reducible 
ow graphs have

been produced by an obfuscator. It can then simply remove the branch which

makes the 
ow graph non-reducible, along with what appears to be an opaque
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Figure 4.11. Reducible to non-reducible 
ow graphs. In (a) we split the loop body S2
into two parts (Sa2 and Sb2), and insert a bogus jump to the beginning of Sb2. In (b) we

also break S1 into two parts, Sa1 and Sb1. S
b

1 is moved into the loop and an opaque predi-

cate P T ensures that Sb1 is always executed before the loop body. A second predicate QF

ensures that Sb1 is only executed once.

predicate guarding this branch. Assuming that all non-reducible 
ow graphs have

been generated by an obfuscator will be wrong if the code has been compiled from

a language that does have goto-statements. For example, the C language source

program in Figure 4.12 contains a goto-statement in line 2
 which makes the 
ow

graph for the program non-reducible. The goto-statement is always executed

because the value of x is set to �ve in line 1
. Thus the body of the while-loop

in lines 3
- 6
 is executed once, which is not the case if the goto-statement is

removed.

We can use the alternative transformation shown in Figure 4.11(b) to foil

deobfuscators. If a deobfuscator blindly removes P F , the resulting code will be

incorrect.
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1
 int i = 10, x = 5;

2
 if (x>0) goto target;

3
 while (i < 10) f

4
 target:

5
 printf("Hellonn");

6
 i++; g

Figure 4.12. A C language program containing a goto-statement.

4.3.3 Control 
ow abstraction altering obfuscations

Control 
ow abstraction is the process of taking a sequence of low-level instruc-

tions and forming an equivalent description at a higher level. We can reverse this

process and de-abstract (remove abstraction) from the program. For example, a

for-loop in the C language source code can be changed into an equivalent loop

that uses if- and goto-statements (Figure 4.13). It is much more di�cult for a

human reader to understand the transformed program because the destination

of the goto-statements have to be identi�ed. The semantics of a for loop are

well-known and much easier to comprehend.

int i;

for (i = 0; i < 100; i++)

printf("%dnn", i);

T
)

int i;

i = 0;

loop:

if (i >= 100) goto endloop;

printf("%dnn", i);

i++;

goto loop;

endloop:

Figure 4.13. Control 
ow de-abstraction. A C language example of transforming a

for-loop into if- and goto-statements.

4.4 Aggregation Obfuscations

Programmers overcome the inherent complexity of programming by introduc-

ing abstractions into programs, the procedural abstraction being one of the most

important. Thus, obscuring procedure and method calls is of the utmost impor-

tance to the obfuscator. Inlining and outlining is one of the most e�ective ways in

which methods and method invocations can be obscured. The basic ideas behind

inlining and outlining methods are:
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� Code which the programmer aggregated into a method (presumably the

code segments logically belonged together) should be broken up and scat-

tered over the program.

� Code which seems not to belong together should be aggregated into one

method.

4.4.1 Inline and outline methods

Inlining is an important compiler optimisation. It is also an extremely useful

obfuscation since it removes procedural abstractions from a program. It is a

highly resilient transformation being essentially one-way. Once a procedure call

has been replaced with the body of the called procedure and the procedure itself

removed, no trace of the abstraction is left in the code.

Outlining (turning a sequence of statements into a subroutine) is a very useful

companion transformation to inlining. Figure 4.14 shows how procedures P andQ

are inlined at their call-sites, and then removed from the code. Subsequently, we

create a false procedural abstraction by extracting the beginning of Q's code and

the end of P 's code into a new procedure R.

call n:Q()

call m:P ()
Pk
Q1

Q2

Q3

P2..
.
Pk

P1

.

.

.

Q1

Q2

Ql
Ql

Q4

� � �

P2

P1

Pk�1

� � �P2

Pk

P1

call R

� � �

Q1

Q2

Ql

� � �

Inline Outline

Q's code

P's code

R's code

Figure 4.14. Inlining and outlining transformations.

In object-oriented languages such as Java, inlining may not always be a fully

one-way transformation. For a method invocation m:P (), the actual procedure

called will depend on the run-time type of m. If more than one method can

be invoked at a particular call site, we have to inline all possible methods [15]

and select the appropriate code by branching on the type of m (see Figure 4.15).

Hence, even after inlining and removal of methods, the obfuscated code may still

contain some traces of the original abstractions.
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code for
class2::P

code for
class1::P

call m:P ()

Inline
m.type = class1

m.type = class2

T F

FT

Figure 4.15. Inlining method calls. Unless we can statically determine the type of m,

all possible methods to which m.P() could be bound must be inlined at the call site.

4.5 Ordering Obfuscations

Programmers tend to organise their source code to maximise its locality. A pro-

gram is easier to read and understand if two logically related items are also

physically close in the source text. This kind of locality works on every level

of the source code: there is locality among terms within expressions, statements

within basic blocks, basic blocks within methods, methods within classes, classes

within �les, etc. All kinds of spatial locality can provide useful clues to a reverse

engineer. Thus, we randomise the placement of any item, wherever possible, in

the source application. For some types of items, such as methods within classes,

this is trivial. In other cases, such as statements within basic blocks, a data

dependency analysis (see [4, 53]) will have to be performed to determine which

reorderings are legal.

These transformations have low potency (they don't add much obscurity to

the program) but their resilience is high, in many cases one-way. For example,

when the placement of statements within a basic block has been randomised,

there will be no traces of the original order left in the resulting code.

Ordering transformations can be particularly useful companions to the \inline-

outline" transformation of Section 4.4.1. The potency of that transformation

when it is applied to a procedure P can be enhanced by performing the following

steps:

1. Inline several procedure calls in P .

2. Randomise the order of the statements in P .

3. Outline contiguous sections of P 's statements.

In this way, unrelated statements that were previously part of several di�erent

procedures are brought together into bogus procedural abstractions.

In certain cases it is also possible to reorder loops, for example by run-

ning them backwards. Such loop reversal transformations are common in high-

performance compilers [4].
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4.6 Discussion

We have given an overview of control aggregation and ordering obfuscations in

this chapter but they need to be studied in more depth. The most resilient and

stealthy opaque predicates are based on problems which have been shown to be

in the NP class of problems or are undecidable. There are certain instances of

NP problems are tractable [45], so further research will have to determine which

NP problems are suitable for creating opaque predicates.

In the following sections, we discuss the issues that arise in implementing

opaque predicates based on mathematical facts and aliasing.

4.6.1 Predicates based on mathematical facts

Opaque predicates based on mathematical facts have high resilience. However,

these predicates have varying degrees of stealth, depending on the part of the

program in which they are used. Over
ow is another problem. For example,

if we want to insert the predicate if (x2(x + 1)2 % 4 == 0)T , where x is an

integer variable, we must ensure that �216 < x < 215. Otherwise the expression

x2(x + 1)2 exceeds the maximum 32 bit signed integer value (231 � 1).

In Java, integer over
ow does not cause a run-time error. Instead, the value of

an integer expression is truncated to 32 bits. It would be best if a predicate holds

even if over
ow occurs. However, if over
ow does cause a predicate to evaluate

to the wrong result, we must analyse the program to determine the values that

x can have when this predicate is evaluated. In the example above, it might be

the case that �216 < x < 215 always holds when the predicate is executed, so

we do not have to worry about over
ow.

If over
ow can occur, we can transform the predicate by adding conditions:

if (((x <= -216) jj (x >= 215)) jj (x2(x + 1)2 % 4 == 0))T .

Lazy evaluation of the operands of the or operator (jj) will mean that the expres-

sion (x2(x + 1)2 % 4 == 0) is not evaluated unless �216 < x < 215. However,

guarding against over
ow by extending the conditions of a predicate lowers its

resilience. In the example above, it is obvious that the entire predicate is true

for �216 < x < 215, which suggests that the expression x2(x + 1)2 is true if x

is not in this range. Hence a deobfuscator can deduce that the expression is very

likely to be true all of the time.

4.6.2 Predicates based on aliasing

Opaque predicates that rely on the di�culty of alias analysis have high potency

and resilience. We have presented a scheme in this chapter that is based on

a Graph abstract data type. Ideally, an obfuscated application would create

several global data structures which are used by opaque predicates throughout
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the program. However, additional storage is required to create and modify these

dynamic structures. We must make sure that the obfuscated program does not

run out of dynamic storage space during execution. Languages with garbage

collection will be able to reclaim unreferenced dynamic storage. However, this

will not help if dynamic storage is being allocated at a greater rate than it is

being deallocated. Currently our obfuscator only uses data structures local to a

single procedure and does not worry about the amount of dynamic storage being

allocated.

Combining aliasing and threads allows us to create opaque predicates that

have high potency, full or one-way resilience, are stealthy and cheap. The use of

threads also o�ers a partial solution to the problem of excessive dynamic storage

usage. The threads that maintain the dynamic structures occasionally go to sleep.

Hence the rate at which new dynamic storage is requested will be reduced and

thus the number of requests for dynamic storage made by these threads during

the execution of the obfuscated program will be reduced.

4.7 Summary

This chapter has discussed control 
ow obfuscations and opaque predicates in de-

tail. In the next chapter, we will examine how selected features of Java bytecodes

help with and hinder code obfuscation.
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Java Obfuscation in Practice

\Practice makes perfect"

{ Proverb

5.1 Introduction

As we have mentioned, Java bytecodes are particularly vulnerable to decompila-

tion. In this chapter we describe the Java run-time environment, class �le format,

bytecode instruction set and veri�er. We examine the features of Java bytecodes,

and explain how they help or hinder decompilation and obfuscation.

An obfuscator which operates on Java bytecodes rather than the source code

does not need to perform semantic analysis. Also, there are obfuscations which

can only be applied at the object code, such as creating non-reducible 
ow

graphs (Section 5.6.3).

The version of Java that we describe in this chapter is version 1.0.2, as im-

plemented in Sun Microsystems, Inc., Java Developer's Kit (JDK) 1.0.2. A full

treatment of the Java class �le format and instruction set is not given here. See

Lindholm and Yellin [32] for a complete description of the Java Virtual Machine.

5.2 Executing Java Code

In this section, we will discuss the issues involved in executing Java programs.

The stages that are required can be seen in Figure 5.1.

The Java source program is compiled by the Java compiler into Java class �les.

These are then loaded by the class loader, either locally or through a network.

49
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Java Virtual
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Figure 5.1. Compilation and execution of a Java program.

The Java class libraries required are also loaded at this stage. Before the class

�les are executed, they must be checked by the Java veri�er. If no veri�cation

errors occur, the classes are executed by the Java virtual machine.

5.2.1 The class loader

To execute a Java program, the interpreter is given the name of the main class

in the program. This bytecode class �le is then searched for in the �le system.

Some features of bytecode class �les are examined in Section 5.3.

For each class A that is loaded into memory, the class loader determines the

classes that are used by A. If these classes are not already present in memory,

they must also be loaded into memory. This action is performed recursively until

all the classes used by a program are present in memory. The classes are then

checked by the bytecode veri�er.

5.2.2 The bytecode veri�er

The problem with distributing programs across a network, such as the Internet,

is that the recipient may not be able to trust the program. The program may

corrupt the user's system, either accidentally through poor programming, or de-

liberately, in the case of viruses. To stop this, Java bytecodes are checked by the

veri�er before they are executed. We describe these checks in Section 5.5.
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5.2.3 The run-time system

Method Area

Constant Pool
for Method A

Code for
Method A

branch +15

load item

Counter

Java
Program

Heap

Object

Java Stack

Temporary
Results

Local
Variables

Current
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Figure 5.2. The Java run-time data areas.

The Java run-time system supports multiple threads of execution. The fol-

lowing data structures are allocated on a per-thread basis:

Java program counter register

This register holds the address of the instruction currently being executed

by a thread.

Java stack

This is used to store Java virtual machine frames. A frame holds the local

variables and temporary results for a method. Each time a method is

invoked, a new frame is allocated on the stack. When a method �nishes

executing, the frame for that method is destroyed.

Note that the space in which the temporary results are stored is known as the

operand stack. With Java bytecodes, an operator obtains its operands from and

pushes the result onto this stack.
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The following data structures are shared amongst all threads:

Heap

This is used to store class instances and arrays. Storage space is reclaimed

by an automatic management system, such as a garbage collector.

Method area

This area stores per-class structures such as the constant pool, �eld and

method data, as well as the code for the methods.

5.2.4 Run-time checking

Some run-time errors cannot be detected by the veri�er, which only performs a

static analysis of bytecodes. To help catch these other errors, additional run-time

checks are performed. These include common errors such as using an array index

that is out-of-bounds and dereferencing a nil pointer. If one of these errors

occurs during the execution of a Java program, the error is reported rather than

causing the Java run-time environment to crash.

Java programs also designed to be run by web browsers such as Netscape

Communicator [13]. In this case the programs are known as applets rather than

applications. Downloading a web page with an applet in it will cause the applet

to be executed. In contrast, applications are downloaded and executed in sep-

arate phases. Since the downloading and execution of applets is not separate,

a user may be unaware that an applet is actually running, especially if no sta-

tus messages are displayed. An applet's access to a user's system needs to be

restricted through an additional level of run-time protection.

5.2.5 The security manager

Bytecode veri�cation and the run-time checks are insu�cient protection in them-

selves, since these checks will not prevent unauthorised access to the user's system

resources. For example, an applet may overwrite a user's �les. Applets must ac-

cess the system resources through a security manager. The user speci�es to the

security manager which system resources an applet is allowed to access as well as

the mode of access. This is the concept known as the Java sand-box. Obviously,

an applet must not be able to replace the security manager with one of its own

classes, as this would defeat the purpose of the security manager.

Suppose that a user speci�es that an applet can only write �les to one directory

and read �les from another. An applet tells the security manager that it is

performing a certain operation on a particular �le. The security manager checks

that this applet is actually allowed to perform this action and either proceeds

with the operation, or reports a security violation.
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5.3 Java Class File Format

Java class �les contain a component known as the constant pool. It is a table which

contains compile-time constant values and class, method and �eld references.

When combined with the method and �eld tables, the constant pool is roughly

equivalent to a combination of the symbol table, static initialised data area and

link table that are found in native object codes. Thus, the constant pool contains

a great deal of information about a Java program.

A Java class �le is at the lowest level a stream of bytes. Additional structures

are built up out of sequences of these bytes. In the following sections, we examine

some of these structures, and the e�ect they have on obfuscation. The notation

in Table 5.1 is used by the following sections for clarity and brevity.

u1 unsigned one byte quantity

u2 unsigned two byte quantity

hentry i the constant pool index of entry

Table 5.1. Constant pool entry notation.

5.3.1 Class, method and �eld references

Type Description

u1 Tag identifying this entry as a class reference

u2 hName of the class i

Table 5.2. Class reference constant pool item format.

When native object codes use libraries, the library code is commonly combined

with the compiled program code to make a single executable unit. This is not

the case with Java programs since Java library code tends to be system speci�c.

Instead this library code is stored locally on the user's machine as part of the

Java run-time system, while the program code is obtained elsewhere, such as

downloading it from the Internet. The Java run-time environment loads and

links the library class �les as required.

Suppose that we want to create a new instance of the class Thread. This will

appear, for example, as the bytecode instruction new 5. The constant pool item

at index 5 will be a reference to the class Thread, which is a two byte entry.

The �rst byte is the tag that identi�es the entry as a class reference. The second

byte is the constant pool index of the string `Thread', say index 19. The class
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reference is used by the Java run-time system to access the information needed

to create the new instance of the class Thread.

When a class C is loaded into memory by the class loader (Section 5.2.1), the

classes that it uses must also be loaded. The necessary information is in the form

of class references in the constant pool of C.

Type Description

u1 Tag identifying this entry as a method or �eld reference

u2 hName of the class being referenced i

u2 h Signature (name and type) of the reference i

Table 5.3. Method and �eld reference constant pool item format.

Method and �eld references in Java bytecodes use the relevant class name and

method or �eld signature. The Java run-time system uses the class name to �nd

the class data in memory. The signature is used to select a particular method

or �eld. With native object codes, method and �eld references are invariably

implemented using memory pointers (addresses). For example, the C language

routine printf might appear in native object code as a procedure call to the

memory address 35720.

Suppose that we have created a new instance of the class Thread. Now we need

to invoke the constructor of the class. This might be compiled to the bytecode

instruction invokenonvirtual 9. The constant pool item at index 9 will be a

reference to the constructor method for the class Thread, which is a three byte

entry. The �rst byte is the tag that identi�es the entry as a method reference.

The second byte is the constant pool index of the name of the class. In this case,

it will be index 15. The third byte is the constant pool index of the signature of

the reference. The Java run-time system uses the method reference to call the

required method.

5.3.2 Debugging information

There are many attributes in a Java class �le that are used for debugging purposes

only. They do not a�ect how a Java program executes.

The line number table attribute maps an address of a Java bytecode instruc-

tion to a line in the source �le. This is useful for generating error messages at

run-time.

Java local variables are polymorphic. Over a sequence of instructions, a Java

local variable may change its type. We discuss this type polymorphism in Sec-

tion 5.6.1. The local variable table maps a Java local variable to its name, type

and range of Java program counter values over which the variable is de�ned. This
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information allows debuggers to determine the value of a local variable during

the execution of a method.

5.3.3 Class �le limitations

There are many limitations on the format of Java class �les. The limitations

stem from the fact that 16-bit integers are used to represent item counts and

o�sets. The most crucial limitation is that the size of a method's code is limited

to 65535 bytes. In practice this limitation is not a problem since object-oriented

programs are not monolithic pieces of code.

5.4 The Java Bytecode Instruction Set

The Java bytecode instruction set is similar in form to traditional native code

instruction sets. The major di�erences are that:

� Java bytecodes operate on a stack.

� Java bytecodes must pass through a veri�cation stage before they are exe-

cuted (Section 5.5).

� All of the types (including arrays) are described in the bytecode.

� Unlike other native code instruction sets, Java bytecode is strongly typed.

We present a brief description of the Java bytecode instruction set. It is not

intended as a complete treatment of the instruction set | we only describe the

instructions used by our Java bytecode examples.

object 32-bit object reference

int 32-bit integer

long 64-bit integer


oat 32-bit 
oating point number

double 64-bit 
oating point number

CP8 8-bit constant pool index

CP16 16-bit constant pool index

VIdx 8-bit local variable index

CP[I] value of constant pool entry I

Var[I] value of local variable I

VT value V of type T

Table 5.4. Bytecode instructions notation.
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We describe bytecode instructions in the following manner, using the notation

in Table 5.4 for brevity:

Operand Stack

Instruction Args Before After Description

Xop : : : : : : : : : X 2 fi; l; f; d; ag : : :.

The Args column lists the arguments of the instruction which are part of the

instruction itself, as opposed to being on the operand stack. The Before and

After columns show how the instruction a�ects the operand stack. In most cases

only the topmost items on the stack are a�ected. Many bytecode instructions are

typed | an instruction has separate variants to handle int, long, 
oat, double

and reference data types. The instruction variants correspond to the data types

in the following manner:

Instruction Data type

Variant operated on

iop int

lop long

fop 
oat

dop double

aop reference

5.4.1 Load and store instructions

Operand Stack

Instruction Args Before After Description

Xload n Var[n] X 2 fi; l; f; d; ag. Load local

variable n; 0 � n � 3.

Xload nVIdx Var[n] X 2 fi; l; f; d; ag. Load local

variable n.

Xstore n V X 2 fi; l; f; d; ag. Store value V

in local variable n; 0 � n � 3.

Xstore nVIdx V X 2 fi; l; f; d; ag. Store value V

in local variable n.

The short versions of the load and store variable instructions (Xload n and

Xstore n) can only access a limited range of local variables. However they

require fewer bytes to represent and are executed quicker by the Java virtual

machine than the long versions (Xload and Xstore).
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5.4.2 Push constant instructions
Operand Stack

Instruction Args Before After Description

bipush B B Push 8-bit signed integer B.

iconst n n Push int constant n; 0 � n � 5.

fconst n n Push 
oat constant n; n 2 [0; 1; 2].

ldc 1 ICP8
CP[I] Push the item from the constant

pool.

ldc2 w ICP16
CP[I] Push the long/double from the

constant pool.

The short instructions to push constants onto the stack execute quickly. These

instructions include iconst n and fconst n. However, these cover a small range

of constants. Large integers and 
oating point numbers have to be loaded from

the constant pool.

5.4.3 Class, method and �eld instructions

Operand Stack

Instruction Args Before After Description

new CCP16
R Create a reference R to a new

instance of the class C.

get�eld FCP16
Oobject V Push the value V of the �eld F

belonging to the object O.

getstatic FCP16
V Push the value V of the static

�eld F .

All of these instructions reference the constant pool. The new instruction uses

a class reference, while the getfield and getstatic instructions use a �eld

reference.

Operand Stack

Instruction Args Before After Description

invokenonvirtual

invokevirtual

MCP16
R;A1; : : : ; An (V ) Call method M with

parameters A1; : : : ; An

through object refer-

ence R.

Suppose that the object R belongs to the class C. If the actual method that M

refers to can be resolved at compile-time, then the invokenonvirtual instruction

is used. For example, class instance constructors and final methods, which

cannot be overridden by a subclass of C, will be called via the invokenonvirtual

instruction. Conversely, if M can be overridden by a subclass of C, then M will

be called via the invokevirtual instruction. M may return a value V .
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5.4.4 Arithmetic instructions
Operand Stack

Instruction Args Before After Description

Xadd A;B R X 2 fi; l; f; dg. R = A+B.

Xmul A;B R X 2 fi; l; f; dg. R = A �B.

Xdiv A;B R X 2 fi; l; f; dg. R = A =B.

Xrem A;B R X 2 fi; l; f; dg. R = A%B.

iinc nVIdx; Vint Increment local int variable n

by V .

i2d Iint Ddouble Convert I from an int into a

double.

Arithmetic instructions are strongly typed. If the types of the operands of an

instruction are di�erent, the bytecode veri�er (Section 5.2.2) will detect this and

generate an error.

5.4.5 Branch instructions
Operand Stack

Instruction Args Before After Description

goto Rint Goto address R.

if icmplt Rint Aint; Bint If A < B, goto address R.

if icmple Rint Aint; Bint If A � B, goto address R.

if icmpne Rint Aint; Bint If A 6= B, goto address R.

ifeq Rint Aint If A = 0, goto address R.

ifne Rint Aint If A 6= 0, goto address R.

if acmpeq Rint Aobject; Bobject If A 6= B, goto address R.

jsr Rint Jump to the subroutine at

address R.

The operand of a Java bytecode branch instruction (including jsr) is actually an

o�set from the current address. However, we have translated this o�set into an

absolute address, which makes our Java bytecode examples easier to understand.

5.4.6 Return instructions
Operand Stack

Instruction Args Before After Description

Xreturn V empty X 2 fi; l; f; d; ag. Return the

value V from a method.

return empty Return from a method.

ret nVIdx Return from a subroutine to the

address in local variable n.
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The operand stack is empty after a return instruction in a method is executed.

At this stage the Java frame for the method is destroyed because the frame is no

longer needed.

5.4.7 Array instructions

Operand Stack

Instruction Args Before After Description

arraylength R Vint Push the length V of an array R.

aaload R; Jint Vobject Push the object V stored at index J

of array R.

iaload R; Jint Vint Push the int V stored at index J of

array R.

There are di�erent types of Java arrays, for example int arrays and float arrays.

For each type of array, there are separate sets of instructions to load or store

an array element. Unlike many other native code instruction sets, Java array

elements are not accessed using an o�set from a base address in memory. An

array index must be non-negative and less than the length of the array or a

run-time error will occur.

5.4.8 Other instructions

Operand Stack

Instruction Args Before After Description

athrow Robject Robject Invoke the exception handler for

the exception object R.

checkcast ICP16
Robject Robject Cast the object to the class given

by CP[I] if possible. Otherwise a

ClassCastException is thrown.

dup V V; V Duplicate the top of the operand

stack.

pop V Remove the item at the top of the

operand stack.

The checkcast instruction causes a run-time exception if an attempt is made

to cast an object of class A to an object of class B, which is not a subclass

of A. The dup and pop instructions only operate on data types that can be

represented in 32 bits. There is a separate instruction which handles long and

double operands.
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5.5 Java Bytecode Veri�er

Java bytecodes are intended to be distributed across the Internet among a variety

of platforms [18]. The problem with this distribution method is that the recipient

may not be able to trust the program. The program may corrupt the user's

system, either accidentally through poor programming, or deliberately, in the

case of viruses. For this reason, Java bytecodes are subjected to rigorous bytecode

veri�cation [5]. This veri�cation occurs before any potentially unsafe code is

executed. The use of static as opposed to dynamic checking allows for greater

run-time e�ciency. However, it is still necessary to perform some run-time checks

to catch errors such as dereferencing a nil pointer and using an array index that

is out-of-bounds.

There are certain system-speci�c routines which cannot be written directly

in Java. These routines, which typically deal with �le handling, are contained

within the Java virtual machine itself (Figure 5.1). Such system-speci�c rou-

tines must be implemented in the native code of the particular platform and are

termed native code by the Java virtual machine. They execute faster than Java

bytecodes but it is not possible to subject them to veri�cation. Thus, the secure

distribution of upgrades and extensions to the Java virtual machine is a prob-

lem. A possible solution involving digitally signed code from trusted software

developers was mentioned in Section 2.4.

It is possible in Java to declare classes, methods and �elds as �nal, which

means that the data and algorithms they contain can never be replaced by creat-

ing a subclass. Consider the class Integer, which has routines to convert integers

into long integers, 
oating point numbers and strings. Suppose it was possible to

create a subclass of Integer with native code routines to convert integers into

pointers. We could then use this subclass to manufacture pointers to memory

locations that we are not supposed to access, such as system code areas. Since the

relevant routines are native, the veri�er would not be able to detect this security

violation. Thus to maintain the security of Java, the veri�er must ensure that

�nal classes are not subclassed, and �nal methods are not overridden.

Many of the constraints of the veri�er prevent improper manipulation of data

types. This ensures that it is not possible to manufacture pointers, such as

pointing into the user's operating system. The constraints are:

� If more than one execution path leads to an instruction, the operand stack

is the same size and contains the same types of objects before the execution

of that instruction.

� No local variable is read from unless it is known to contain a value of an

appropriate type.

� Methods are invoked with the appropriate arguments.
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� Fields are assigned only using values of appropriate types.

� All local variable uses and stores are valid.

� All opcodes have appropriate type arguments on the operand stack and in

the local variables.

5.6 Unusual Bytecode Features

In this section we discuss particular features of the Java bytecode instruction set

which make analysing Java bytecode more di�cult, namely local variable typing

and the implementation of the Java conditional operator.

It is trivially true that every valid Java source code program must compile

to a valid Java class �le. A valid Java class �le must pass through the veri�er

without causing any errors. However, not every valid Java class �le has a di-

rect correspondence to a valid Java source code program. This is because the

Java bytecode instruction set supports a richer set of language features than the

language Java. These features include goto and subroutine instructions.

5.6.1 Local variable typing

For each method the Java run-time environment provides an array of local vari-

ables. Each variable has an associated type and only operations with the appro-

priate type may be performed on that variable. For example, it is not possible

to store a 
oating point number into a local variable and load it as an integer.

However, it is legal to overwrite the contents of a variable with a di�erent typed

value. In this case, the variable will change type. Figure 5.3 illustrates this point.

We see in Figure 5.3 that depending on the destination of the conditional

branch instruction at address 1, local variable 1 can hold either an integer or

a 
oating point number. If instructions at addresses 4 to 6 are executed, local

variable 1 will hold an integer. If the instructions at addresses 9 and 10 are

executed, local variable 1 will hold a 
oating point number. Thus, local variable 1

cannot be given a consistent type when the instruction at address 11 is about to

be executed.

5.6.2 The conditional operator

The conditional operator is not unique to Java, and in fact is inherited from the

language C. The form of the conditional operator is

boolean expression ? expression1 : expression2
If boolean expression is true, then the value of the expression above is expression1.

Otherwise, the value is expression2. The types of expression1 and expression2
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Java Source

public static void TypeChange(int i) f

if (i != 0)

int j = 1;

else

float k = 0.0;

int j = 2;

g

+

Java Bytecode

Type of Local

# Instruction Comment Variable 1

0 iload 0 load local variable 0 (i) -

1 ifeq 9 compare with 0 and if equal,

goto address 9

-

4 iconst 1 push int constant 1 -

5 istore 1 store in local variable 1 (j) int

6 goto 11 goto address 11 int

9 fconst 0 push 
oat constant 0 -

10 fstore 1 store in local variable 1 (k) float

11 iconst 2 push int constant 2 -

12 istore 1 store in local variable 1 (j) int

Figure 5.3. An example of a local variable changing type. i is local variable 0. j is

local variable 1 in instructions 5 and 12. k is local variable 1 in instruction 10.

must be the same. An example of code that uses the conditional operator is in

Figure 5.4.

Note that in Figure 5.4, the conditional operator is implemented by the byte-

code instructions between addresses 6 and 18.

In order to apply control 
ow obfuscations, we need to know which bytecode

instructions correspond to a particular statement in the source code. This allows

us to avoid inserting a branch that can jump into the middle of a Java statement.

Otherwise the modi�ed code would be rejected by the Java veri�er. The code

would violate the constraint that all the execution paths that lead to a particular

point must have operand stacks with the same number and type of items on

them. For example, in Figure 5.4 when the bytecode instruction at address 19 is

about to be executed, the operand stack contains two integers. This is true no

matter which instruction was executed after the conditional branch instruction
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Java Source

1
 int i, j, k;

2
 i = 1;

3
 j = 0;

4
 k = 7 + ((i == j)?(9 * i):j);

+

Java Bytecode

Operand

# Instruction Comment Stack Size

0 iconst 1 push int constant 1 1

1 istore 1 store in local variable 1 (i) 0

2 iconst 0 push int constant 0 1

3 istore 2 store in local variable 2 (j) 0

4 bipush 7 push int constant 7 1

6 iload 1 load local variable 1 (i) 2

7 iload 2 load local variable 2 (j) 3

8 if icmpne 18 compare and if not equal, goto address 18 1

11 bipush 9 push int constant 9 2

13 iload 1 load local variable 1 (i) 3

14 imul multiply integers 2

15 goto 19 goto address 19 2

18 iload 2 load local variable 2 (j) 2

19 iadd add integers 1

20 istore 3 store in local variable 3 (k) 0

Figure 5.4. An example of the Java conditional operator. In line 4
 of the source

code, i 6= j, so k is assigned the value 7 + j. In the bytecode, i, j and k are local

variables 1, 2 and 3 respectively.

at address 8.

The standard algorithm for grouping a sequence of instructions into basic

blocks relies on identifying which instructions are leaders (see Aho et al. [2],

pg. 528). An instruction is a leader if:

� it is the �rst instruction in the sequence, or

� it is the destination of a branch instruction, or

� it follows a branch instruction.
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The instructions are partitioned into basic blocks that start with a leader and

contain no other leaders. All of the instructions which follow this leader will be

in a single basic block. A basic block includes all of the instructions up to the

instruction before the next leader. Normally, a basic block contains instructions

that represent one or more complete statements from the original source code.

Hence basic blocks can help to determine which instruction addresses can be used

as the destination of a branch.

The basic block grouping of instructions will not work if the source code uses

conditional operators. Suppose that the basic block algorithm is used to anal-

yse the Java bytecode in Figure 5.4. The bytecode is divided into four basic

blocks (Figure 5.5 (a)). The instructions which implement the conditional oper-

ator are split between basic blocks 1, 2 and 3, so it would not be valid to insert

a branch to the start of basic block 2.

We observe that the operand stack is empty before and after the execution of

the instructions that represent a statement. By keeping track of how each instruc-

tion a�ects the operand stack size, we can partition a sequence of instructions

into statement sized basic blocks. This modi�ed basic block algorithm is given

in Section 7.4.2. In Figure 5.5 (b), we see that the instructions that implement

the conditional operator on line 4
 in Figure 5.4 are placed into basic block 3.

Basic Start End

Block Address Address

1 0 8

2 11 15

3 18 18

4 19 20

Basic Start End Original

Block Address Address Line

1 0 1 2


2 2 3 3


3 4 20 4


(a) (b)

Figure 5.5. Comparison of the standard and modi�ed basic block algorithms. The

(a) standard and (b) modi�ed basic block algorithms are applied to the bytecode in

Figure 5.4.

5.6.3 Goto instructions

The language Java can only express programs that can be represented by reducible


ow graphs (Section 4.3.2), since it has no goto-statement. The main feature of

reducible 
ow graphs is that a loop has a single entry point | there are no

jumps into the middle of a loop. In contrast, the Java bytecode instruction set

does have a goto instruction. Hence Java bytecodes can express arbitrary control


ow graphs (Figure 5.6).
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S1

E

S2

S2

S1
while (E) f

g
Source

E

Sa
2

Sb
2

E2

S1

No direct
equivalent

(a) (b)

Bytecode
Flow
Graphs

Java

Figure 5.6. (a) Reducible and (b) Non-reducible control 
ow graphs. A normal loop

is in (a), while there is a jump into the middle of the loop in (b).

5.6.4 Subroutine instructions

The bytecodes jsr (jump to subroutine), and ret (return from subroutine) are

used to implement the try-finally statement. An example of a try-finally

statement is in Figure 5.7 and the corresponding bytecode is in Figure 5.8.

The instructions representing the statements in a finally clause are placed

into a subroutine. This avoids having to insert the finally clause code in three

separate places: after the try clause code and after both exception handlers.

Thus, the overall size of a method is reduced by replacing repeated code with a

subroutine.
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Java Source

public static void foo(int bar) f

try

f if (bar == 1) throw new Error(); g ( 1


catch (Error e)

f System.err.println(e); g ( 2


finally

f System.out.println(bar); g ( 3


g

Figure 5.7. An example of the try-finally statement. If an Error exception is

thrown during the execution of the try block (point 1
), the catch block (point 2
) is

executed, followed by the finally block (point 3
). If the exception is not raised, then

after the try block has �nished executing, the finally block is executed.

5.7 Discussion

In the following sections, we will discuss how the features of Java mentioned in

the previous sections hinder or aid the creation of obfuscating transformations.

Note that most of the transformations that are mentioned in this section are

rather simple when compared to those discussed in Chapter 4.

5.7.1 The class �le format

Unlike native object codes, the names of classes, methods and �elds are essential

to the operation of the Java virtual machine, as mentioned in Sections 5.2.1

and 5.3. Hence it is not possible to \strip" Java bytecodes of this information.

Determining the classes, methods and �elds used by a Java class �le is therefore

easy. However, it is possible to reduce the amount of information in the names

that is available to a human reader. This transformation is known as identi�er

scrambling (Section 3.3.1).

Consider a Java class MyClass which is de�ned in a class �le named

MyClass.class. Suppose that we want to scramble the identi�ers in this class.

We examine the constant pool for the strings representing the name of the class

and the names of the �elds and methods de�ned by this class. We can replace

these strings with di�erent names, while recording the name substitutions that

are performed. The references in the bytecode will be una�ected, since the con-

stant pool indices remain unchanged. Note that we must also change the name

of the class �le. So if we rename the class MyClass to x14fgh, the class �le must

be renamed as x14fgh.class

Java programs can be composed of more than one class �le. If the names

in the class MyClass are changed (for the purpose of scrambling identi�ers), we



5.7. DISCUSSION 67

Java Bytecode

# Instruction Comment

0 iload 0 load local variable 0 (bar)

1 iconst 1 push int constant 1

2 if icmpne 24 compare and if not equal, goto address 24

5 new 3 create new object of class Error

8 dup duplicate top of operand stack

9 invokenonvirtual 8 call Error constructor

12 athrow throw Error exception

Exception handler (Error class)

13 astore 3 save exception in local variable 3 (e)

14 getstatic 11 push System.err �eld reference

17 aload 3 load local variable 3 (e)

18 invokevirtual 9 call System.err.println

21 goto 24 goto address 24

Call �nally clause subroutine

24 jsr 34 jump to subroutine at address 34

27 return return from method

Exception handler (other classes)

28 astore 1 save exception in local variable 1

29 jsr 34 jump to subroutine at address 34

32 aload 1 load local variable 1

33 athrow throw exception

Finally clause subroutine

34 astore 2 store return address in local variable 2

35 getstatic 7 push System.out �eld reference

38 iload 0 load local variable 0 (bar)

39 invokevirtual 6 call System.out.println

42 ret 2 return to address saved in local variable 2

Figure 5.8. Compiled bytecode for the Java source code in Figure 5.7. bar is local

variable 0 and e is local variable 3.

must alter the classes that use MyClass. This will preserve the linking between

classes. To do this, we search the constant pools of classes for a class reference to

MyClass, as well as for references to methods and �elds de�ned by MyClass. The

same name substitutions performed on the class MyClass, must also be applied

to the references we have found in the other classes.

The JavaBeans speci�cation [48] de�nes a set of standard software component
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interfaces for Java. This allows a user to create an application out of components

downloaded from di�erent vendors. It is not possible to globally change identi�er

names in an application which is made of JavaBeans components. This is because

some of the identi�ers are used to interface to a vendor's component. The best

we can do is scramble the identi�ers which are local to the user's application.

Due to limitations in the class �le format, the amount of code that can be

added by obfuscating transformations is restricted. For example, the inlining

transformation (Section 3.3.3) could cause a method to exceed the code size limit.

This can be partially o�set if outlining is used in conjunction with inlining.

5.7.2 The bytecode veri�er

The analysis of Java class �les performed by the veri�er is conservative in nature.

For example, it is not possible to have a branch to a non-existent instruction

number in the bytecode, even if it can be determined at compile-time that the

branch is never taken. Thus, we have to careful that when inserting bogus code

we do not cause a violation of the veri�er's constraints.

Languages like C, which do permit pointer operations, can be di�cult to

understand (from a human's point of view) and analyse (from a machine's point

of view). Unfortunately for the obfuscator designer, pointer arithmetic is not

permitted in Java. The veri�er will report an error if a non-object reference

operator is used on an object reference. There are also no instructions to convert

between object references and other data types such as integers. Thus, this area

of obfuscation is not open to Java programs.

5.7.3 Applets and applications

The run-time environments for Java applets and applications are di�erent in

nature. This a�ects the types of transformations that can be performed on applets

as opposed to applications. For example, applets are not allowed to create their

own class loader. Otherwise an applet could bypass the security manager which

controls access to the resources on a user's machine. An applet would then have

unlimited access to the user's machine. For example, it could corrupt a user's

�les.

With Java applications, it is possible to create a class loader which instead

of reading a class �le from a disk or from across a network, obtains it directly

from memory. This would allow code to be generated at run-time, foiling static

analysis of an application's class �les.
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5.7.4 The bytecode instruction set

The code generated for the conditional operator leaves items on the operand stack

when a conditional branch is executed. This complicates analysis and hinders

obfuscation. An obfuscator must keep track of the contents of the operand stack

if it attempts to reorder blocks of instructions, so that the contents of the operand

stack are used correctly.

Local variables can change their type which makes analysis more di�cult.

This is why Java class �les contain optional debugging information that maps

local variables to their types (Section 5.3.2). An important stage during the

analysis of Java class �les by an obfuscator is determining the types of the local

variables in a method (Section 7.5.1).

The goto and subroutine instructions may be used in the construction of

high-level language-breaking transformations, since the Java language does not

have goto- or subroutine-statements. It is possible to generate bytecodes that

use subroutines unrelated to a finally clause. Chapter 8 has sample outputs

from decompilers which attempt to translate such a subroutine.

5.8 Summary

In this chapter, we have seen how the features of the Java virtual machine both

hinder and help obfuscation. In the next two chapters, we will examine the

implementation of our Java obfuscator.





C H A P T E R 6

Overview of the Java Obfuscator

\Our life is frittered away by detail . . . simplify, simplify."

{ Henry David Thoreau

6.1 Introduction

This chapter provides an overview of our Java obfuscator, which is designed to

operate on Java version 1.0.2 class �les, as implemented in Sun's JDK 1.0.2. We

describe the options provided by our Java obfuscator and examine the advantages

and disadvantages of the implementation language. We also provide a high-level

description of the steps involved in obfuscating a program.

6.2 Using the Java Obfuscator

The Java obfuscator is invoked by typing the following command at the UNIX1

C-shell prompt:

jo 
ags

where 
ags is a list of 
ags chosen from the items below:

� -�le �le name

Speci�es the main class �le. The -�le pre�x is necessary if 
ags precede the

main class �le name.

1UNIX is a trademark of Bell Laboratories.

71
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� -noobf patterns

Speci�es the names of the class �les that must not be obfuscated. For ex-

ample `-noobf myapp/Main libs/' would mean that the class myapp/Main

and all classes from the package libs would not be obfuscated. The de-

fault pattern is `java/', which prevents any Java library routines from being

obfuscated.

� -maxcost cost

The maximum time-space cost that the user is prepared to have incurred

by transformations. The default cost is 100. We explain this value in

Section 7.6.4.

� -ob
evel level

The obfuscation level required by the user. The default level is 100. We

also explain this value in Section 7.6.4.

� -path path names

Speci�es the directories that are to be searched for classes. The default

path is `.', which is the current directory.

� -preservename names

The user class, method and �eld names that should not be scrambled.

A name is of the form class name, class name@field or method name

or @field or method name. The default names are `@main', `@<init>',

`@<clinit>', `@<finalize>', `@run'. We explain the signi�cance of these

names at the end of this section.

� -priority pri list

The names of classes and methods, which are paired with their obfuscation

priorities. This option allows the user to obfuscate the most important

classes and methods of the application. There is currently no way to target

speci�c parts of a method's code.

The source code objects that are not in pri list will be assigned a lower

priority than those that are in the list. The default is to assign equal

obfuscation priorities to all source code objects.

� -y or -n or -m obfuscation tags

Speci�es obfuscations that, respectively, must, must not or may be per-

formed. This option is useful for testing purposes.

Obfuscation tags are selected from:

insertBogusBranch, insertDeadCode, changeToSubroutine, publicise,

removeDebugInfo, scrambleIdents, all.
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`all' selects all obfuscations. The obfuscation tags are processed from left

to right. For example, `-n all -y publicise' will disable all but the

publicise obfuscation. The default is `-m all'.

We describe the transformations which each of these tags corresponds to in

the next section.

Certain methods de�ned by a class replace methods which are de�ned in the

system libraries. They are said to override the system-de�ned methods. The

-preservename 
ag is necessary to ensure that the names of these overriding

methods are not changed, which is essential because methods are invoked by

name in Java. To keep the command line interface to our obfuscator as simple as

possible, we decided to identify these special methods by name only but forget

about their parameters. This means, for example, that both of the methods

below

void main(String argv[])

int main()

will not have their names scrambled by our Java obfuscator. In the interests of

making programs easy to understand during development, programmers should

avoid using the names of special methods for their own routines. Hence the

limitation we have imposed on our obfuscator should not be a problem in practice.

By default, our obfuscator will not scramble the names of the following special

methods:

� <init>

The methods that are used internally by the Java run-time system to im-

plement instance constructor methods of a class have the name `<init>'.

When a new instance of a class is created, the constructor for that class is

invoked.

� <clinit>

This method is used internally by the Java run-time system to implement

a class initialiser, which is invoked when the class is loaded into memory.

� void main(String argv[])

The Java run-time system invokes this method when a Java program is �rst

executed. The argv array is used to pass parameters to the program.

� void run()

This method is used by a class to de�ne the main body of code that is

intended to be executed as a thread.

6.2.1 Obfuscations provided

Obfuscating transformations are identi�ed by a tag. The tags of the implemented

transformations are de�ned as follows and their qualities are summarised in Ta-
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ble 6.1:

� insertBogusBranch

This transformation disguises the control 
ow of a method by adding a

branch to the code. An opaque predicate is used to ensure that the branch,

which may be either backwards or forwards, is never taken. The code for

this transformation is given in Appendix A.1. Figure 4.11 illustrates how

this transformation is applied to code.

� insertDeadCode

This transformation disguises the control 
ow of a method by adding code

that will never be executed. This is achieved by using an opaque predicate

to select the correct code to execute. Figure 4.10 demonstrates the e�ect

of this transformation.

� changeToSubroutine

This transformation alters the control 
ow of a method by placing some

code in a subroutine (Section 5.6.4). The transformation makes the code

slightly harder for a human reader to understand and is easily undone by

inlining the subroutine. That is, the transformation has low potency and

weak resilience. Since Java bytecode but not source code has subroutines,

this transformation is unstealthy. The jump to and return from subroutine

instructions added to the transformed code have little overhead, so the

transformation cost is cheap.

� publicise

The access level scheme in Java helps programmers to avoid breaching mod-

ule abstractions. For example, suppose that a class de�nes a private �eld A.

If a method in another class attempts to access A, an IllegalAccessError

occurs causing the program to halt. However, a correctly written program

will not cause such errors.

The publicise transformation takes advantage of how the Java access level

scheme operates by changing the access levels of classes, methods or �elds

to public. Since the public access level does not restrict access, it provides

no abstraction information to a programmer. This transformation a�ects

the control aggregation of a program | how the methods are divided into

public interface routines and private implementation routines.

The transformation has low potency because the access level of a method

is not vital in determining whether the method is an interface or an im-

plementation routine. However, resilience is one-way because information

is removed from the program. It may not be obvious that access levels are

altered, so this transformation is stealthy. The access level of a method has

no e�ect on its execution time, so the cost of the transformation is free.
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� removeDebugInfo

This transformation eliminates debugging information (Section 5.3.2) from

a method. Debugging information is unnecessary for the execution of the

program, thus this is a layout transformation. Debugging information is

useful to a debugger but is less useful to a human, so this transformation

has low potency. Information is removed, so resilience is one-way. It is

not possible to tell if a method originally possessed debugging information,

hence this transformation is stealthy. Removing debugging information has

no e�ect on the execution time of a program, so the cost of this transfor-

mation is free.

� scrambleIdents

Java uses names to reference classes, �elds and methods (Section 5.3.1).

However the names do not have to be meaningful to a human reader. The

scramble identi�ers obfuscation replaces the original class, �eld and method

names in a program with randomly generated names. Using randomly gen-

erated names makes this transformation unstealthy. Instead, it is possible to

rename identi�ers to plausible but \wrong" names. For example, a variable

called `PreviousNode' could be changed into `NextNode'. An identi�er con-

tains a lot of information for a human, so this transformation has medium

potency. Information is removed from the program, so resilience is one-way.

The cost is free because the execution time of a program is una�ected.

Tag Kind Potency Resilience Stealth Cost

insertBogusBranch Control

computation

Depend on the quality of the opaque

predicate used

insertDeadCode Control

computation

Depend on the quality of the opaque

predicate used

changeToSubroutine Preventive low weak unstealthy cheap

publicise Control

aggregation

low one-way stealthy free

removeDebugInfo Layout low one-way stealthy free

scrambleIdents Layout medium one-way unstealthy free

Table 6.1. The qualities of the transformations provided by the obfuscator.

The opaque predicates that the insertBogusBranch and insertDeadCode

transformations depend upon are stored in a library of opaque predicates. This

makes it easy to add more opaque predicates to our obfuscator and also helps
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when new types of opaque predicates are being implemented. See Appendix B

for details of the opaque predicate library.

Obfuscating transformations are also implemented using a module system,

which facilitates adding new transformations to our obfuscator. See Appendix A

for details of this module system. Appendix A.1 presents an example of an

obfuscating transformation module.

6.2.2 Command line example

We present an example of invoking the obfuscator from the UNIX command line

and explain the actions of the 
ags.
jo Example.class

-maxcost 1

-obflevel 1

-path /usr/local/lib/java/classes

-n all

-y scrambleIdents

`Example.class' is the main class �le of the Java program which is being

obfuscated. The maximum run-time penalty that can be incurred by transforma-

tions is 1 and the obfuscation level of the program is 1. These two settings ensure

that only a single transformation can be performed on the program. Section 7.6.1

explains why this is the case.

The obfuscator searches for classes used by the program in the current direc-

tory and in the directory `/usr/local/lib/java/classes'. Note that searching

the current directory for the required class �les is the default behaviour.

The -n all and -y scrambleIdents 
ags allow the obfuscator to apply only

the scramble identi�ers transformation to the program.

6.3 Implementation Language

The language used to implement the obfuscator is the SICStus2 implementation

of Prolog, a logic programming language, for the DEC Alpha3. It was chosen for

the following reasons:

� Prolog has built-in lists, structures (tuples), memory management and

garbage collection.

� A built-in De�nite Clause Grammar (DCG) notation, which is convenient

for expressing the grammar rules used by our Java bytecode parser and

unparser.

2 c
1995 Swedish Institute of Computer Science (SICS).
3DEC Alpha is a trademark of Digital Equipment Corporation.
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� Prolog routines may be called in a reverse fashion. That is, inputs and

outputs may be swapped and the routine still functions correctly. Thus,

the Java bytecode parser also acts as a class �le constructor.

The disadvantages of Prolog are that:

� Compared to compiled languages like C, Prolog has poor run-time perfor-

mance, since it is interpreted. This may be partially o�set by the use of

the built-in SICStus Prolog compiler.

� Recursion must be used instead of iteration when implementing iterative

re�nement algorithms, as Prolog does not possess appropriate iteration con-

structs.

� The weak type system makes debugging di�cult. A Prolog routine will

simply fail if its parameters have the wrong type.

� Accessing global information is awkward. The information needs to be

stored into and retrieved from an internal database. This is ine�cient since

searching is required to �nd data, rather than a simple pointer dereference

as with a language like C.

The advantages of using Prolog as an implementation language outweigh the

disadvantages. The key disadvantage of Prolog is its poor run-time performance

compared to compiled languages, which we believe is not a major issue. A devel-

oper will obfuscate an application once before distributing it. The time taken by

this obfuscation step is insigni�cant compared to the total development time of

the product, and thus will not cause production delays.

E�ciency is not as important as correctness when constructing a prototype.

It is hard to debug an obfuscated program, which is similar in di�culty to de-

bugging optimised code. In some cases it is more di�cult to debug an obfuscated

program because some obfuscating transformations, like the insert dead code

transformation, introduce code containing a deliberate bug. The task of debug-

ging is made more di�cult because we now need to distinguish between these

intentional bugs and those bugs generated because the obfuscator itself contains

a bug. Thus, it is vital that the obfuscator's code is correct.

The choice of a programming language can a�ect how correct a program is.

The easier it is to implement an algorithm, less errors should be made. Many

analysis algorithms used by obfuscators and optimizers are symbolic in nature,

which �ts in well with Prolog. It is much easier to implement these algorithms in

a logic programming language like Prolog than in imperative languages like C.

We might consider that the algorithms used in our obfuscator are proprietary.

We therefore want to protect how our obfuscator operates. In this case a slow

obfuscator is harder to reverse-engineer than a fast one. If a long time is required

for output to be generated, analysing input and output data will not be a feasible

strategy for reverse-engineering.
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6.4 Obfuscator Structure

The obfuscation of a Java application involves the stages in Figure 6.1, which

will be discussed in greater depth in the next chapter.

1. Parse the Java class �les that make up the application (Section 7.3).

The information in Java class �les is converted from bytes into Prolog struc-

tures in memory.

2. Build an internal representation (Section 7.4).

The class inheritance hierarchy of the application is built and a control 
ow

graph of each method's code is generated.

3. Construct mappings (Section 7.5).

A static analysis of the application is used to construct mappings that

assist in determining which obfuscations to apply to particular parts of the

application. This is similar to the analysis used by code optimizers.

4. Apply obfuscating transformations to the application (Section 7.6).

Using the mappings constructed in stage 3, obfuscations are selected and

applied to the application.

5. Reconstitute the application (Section 7.7).

The Prolog structures that represent the application are converted back

into Java class �les.

6.5 Discussion

We believe that the command line interface is a 
exible method of using our

obfuscator. However, it is not the simplest interface to use, and ideally there

should be a graphical user interface (GUI). This GUI would then communicate

with the command line interface. Such a GUI is under development.

The -preserve option in the command line is awkward to use. Our obfuscator

should automatically be able to determine which methods in the Java system

libraries are overridden by a program. However, there are a large number of

methods that could be overridden. Consequently a large amount of time and

memory would be required to perform the analysis.

The obfuscation priority option is also awkward to use and does not allow the

user to select parts of a method's code to obfuscate. A partial solution is to use

pro�ling data to avoid heavily obfuscating the most frequently executed parts of

the program. This reduces the e�ect of obfuscation on the run-time performance

of the program. We have built a pro�ler but have not completely integrated it

into the obfuscation system.
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Figure 6.1. Overview of our Java obfuscator. The pro�ler is not yet fully integrated

into the system.
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The use of Prolog as an implementation language was poor in hindsight. It

is a fairly good language for prototyping because list handling is built-in and

lists are a fundamental data structure used by the obfuscator. However, the

run-time performance of Prolog is poor when compared to imperative languages

like C. Also, the weak type system of Prolog makes it a di�cult language for large

multi-person projects because errors due to misusing types are hard to locate.

6.6 Summary

This chapter has provided a top-level description of our Java obfuscator. In the

next chapter, we will examine the obfuscator in further detail.
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Implementation of the Java Obfuscator

\Give us the tools, and we will �nish the job."

{ Winston Churchill

7.1 Introduction

This chapter continues the description of the Java obfuscator. We describe the

algorithms used, the various design decisions made, and the problems encoun-

tered. We �rst examine the concept of a source code object, which allows us to

specify part of a program to obfuscate. The following sections then deal with the

successive stages in the obfuscation of a program.

7.2 Source Code Objects

Some of the obfuscating transformations implemented by our Java obfuscator

operate on parts of a program, rather than the entire program. To allow our

obfuscator to select speci�c parts of a program to transform, we need to de�ne

the notion of a source code object:

Definition 9 (Source Code Object) A Java application consists of the fol-

lowing source code objects:

� the application itself

� the classes de�ned by the application

� the �elds of each class

81
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� the methods of each class

� the basic blocks of each method
2

Source code objects are identi�ed by the tags in Table 7.1, which are Prolog

structures.

Kind Tag

Program program(Files)

Class class(File)

Field �eld(File@Name:Sig)

Method method(File@Name:Sig)

Basic Block bb((File@Name:Sig)/BBNum)

Table 7.1. Source code object tags. Files is a list of �le names of the classes in the

program. File is a class �le name. Name is a �eld or method name. Sig is a �eld

or method signature. BBNum is a basic block number. @, : and / are Prolog operators

which are used to separate the components of a tag.

class X f

int i;

void m() f
S1;

S2;

g

g

class Y f

float f;

void n() f

S3;

g
g

)

Source Code Objects

program([`X.class',`Y.class'])

class(`X.class')

class(`Y.class')

field(`X.class'@`i':`I')

field(`Y.class'@`f':`F')

method(`X.class'@`m':`()V')

method(`Y.class'@`n':`()V')

bb((`X.class'@`m':`()V')/1)

bb((`X.class'@`m':`()V')/2)

bb((`Y.class'@`n':`()V')/1)

Figure 7.1. Source code objects example.

An example of source code objects that correspond to a Java program is given

in Figure 7.1. The signatures `I' and `F' correspond to the types int and float.

The signature `()V' denotes a method that has no parameters and has no return

value.
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7.3 Parsing the Java Class Files

This stage was written by Dr. Christian Collberg. It uses the built-in DCG no-

tation of SICStus Prolog. The parser converts the information in a class �le into

Prolog structures and stores this information in the internal Prolog database.

The obfuscator processes Java class �les rather than source �les since this means

that there is no need for semantic analysis. Furthermore, certain obfuscations can

only be applied at the object code level, for example creating non-reducible 
ow

graphs (Section 5.6.3). Obfuscations such as removing comments and format-

ting (Section 3.3.1) occur automatically when the Java source �les are compiled

into bytecodes.

There are translators from many languages (including Ada and Scheme) to

Java source or bytecode [49]. This means that our obfuscator can be applied to

a variety of languages by utilising the appropriate translator.

7.4 Building an Internal Representation

Our obfuscator builds the following internal representations of an application |

an inheritance hierarchy of classes and a control 
ow graph for each method.

Additional information, such as the name and signature of a method, is left in

the constant pool.

We describe the algorithms used to create these structures next. As new

obfuscations are added, further analyses and structures need to be included in

the obfuscator. For example, data obfuscations require us to keep track of how

variables are related.

7.4.1 Class inheritance hierarchy

Java is an object-oriented language, with a single inheritance scheme. Thus, a

tree su�ces to represent the class inheritance hierarchy, with the class Object at

the root. The actual implementation uses a \parent-pointer" tree representation:

each class is paired with its parent and stored in a list. Two routines extract

information from this structure:

� childrenOf (SuperClass, Children)

The input to this routine is a name of a class in SuperClass. The output

is a list of class names in Children. These classes have the class SuperClass

as a parent.

� parentsOf (Child, Parents)

The input to this routine is a name of a class in Child. The output is a list

of class names in Parents. These classes have the class Child as a child.
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Note that classes in Java will have only a single parent. This is not true for

languages with multiple inheritance.

7.4.2 Control Flow Graph

A control 
ow graph (CFG) represents the control 
ow in a method. This

information is required to apply control 
ow obfuscations to a program. In

Section 5.6.2 we discussed why the standard control 
ow graph building algo-

rithm (see Aho et al. [2], pg. 528) was unsuitable for languages that contain a

C-style conditional operator.

The algorithm to build a control 
ow graph is in Figure 7.2. M is the method

that is being analysed.

BuildCFG(M)

L := FindLeaders(M);

B := PartitionBasicBlocks(M, L);

B0 := AddExitBlock(B);

B00 := AddCFGEdges(B0);

RETURN B00;

Figure 7.2. The control 
ow graph building routine.

� FindLeaders returns a list of the leaders in a method's code. A leader is the

�rst instruction in a basic block. For all possible execution paths through a

method's code, we keep track of the operand stack size as each instruction

is executed. Suppose that after the current instruction is executed, the

operand stack is empty. Then any instructions that would be executed

after the current one are leaders.

� PartitionBasicBlocks partitions the instructions in a method's code so

that each partition starts with a leader and contains no other leaders.

� AddExitBlock adds an exit basic block to the CFG. This basic block is a

common exit point, representing the fact that control has passed out of the

method.

� AddCFGEdges adds edges between basic blocks in the CFG. For each basic

block an edge is added from the basic block to its successors. We determine

which instructions could be executed after the last instruction in the current

basic block is executed. The basic blocks that these instructions belong to

are the successors of the current basic block.
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With the AddCFGEdges routine, certain instructions are handled di�erently

when successors are being determined:

� The return instruction causes control to be returned to the invoker of a

method.

� The ret instruction returns from a subroutine. Java uses subroutines to

implement finally clauses. Our obfuscator includes an obfuscation to

move some of the statements in a method into a subroutine. However,

our obfuscator does not alter existing subroutines. Hence our basic block

building algorithm does not need to determine subroutine return addresses.

� The athrow instruction causes an exception to be thrown. Control is passed

to an appropriate handler for the particular type of exception. If the method

does not catch the exception, it is passed to the superclass of the current

class. Thus, the successor of a basic block containing an athrow instruction

may be external to the current method, which cannot be easily represented

by the method's CFG.

To simplify analysis, basic blocks that contain a return, ret or athrow in-

struction have the exit basic block as their sole successor. In fact, we decided

not to obfuscate a method if it contains exception handlers, since it extremely

di�cult to ensure that the behaviour of such methods is correct after an obfus-

cating transformation is applied. Future versions of our obfuscator will remove

this restriction.

7.5 Constructing Mappings

The mappings de�ned below are constructed to assist in determining which source

code objects require obfuscation and which obfuscations to apply.

Ps For each source code object S, Ps(S) is the set of language features in S.

Ps(S) is used to �nd appropriate obfuscating transformations for S.

A For each source code object S, A(S) = fT1 7! V1; : : : ; Tn 7! Vng is a mapping

from transformations Ti to values Vi = Ti ste(S), describing the stealth of Ti
when it is applied to S.

I For each source code object S, I(S) is the obfuscation priority of S. I(S) de-

scribes how important it is to obfuscate S. If S contains an important trade

secret, I(S) will be high. If S contains mainly \bread-and-butter" code,

I(S) will be low.

We will use the trivial Java example in Figure 7.3 to show how these mappings

are calculated.
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Java Source

public class Echo f

public static void main(String argv[]) f

int i;

for (i = 0; i < argv.length; i++)

System.out.println(argv[i]);

g

g

+

Java Bytecode

Basic

# Instruction Comment Block #

0 iconst 0 push int constant 0 1

1 istore 1 store in local variable 1 (i) 1

2 goto 17 goto address 17 2

5 getstatic 7 push the value of System.out 3

8 aload 0 load local variable 0 (argv) 3

9 iload 1 load local variable 1 (i) 3

10 aaload load array element 3

11 invokevirtual 5 call System.out.println 3

14 iinc 1,1 increment local variable 1 (i) by 1 4

17 iload 1 load local variable 1 (i) 5

18 aload 0 load local variable 2 (argv) 5

19 arraylength push the length of the array argv 5

20 if icmplt 5 compare integers and if �rst is less

than second, goto address 5

5

23 return return from method 6

Figure 7.3. Trivial Java code example to demonstrate mapping algorithms. argv and

i are local variables 0 and 1 respectively. The basic block number is calculated by the

algorithm in Section 7.4.2.

7.5.1 Language features

Ps(S) is the set of language features belonging to source code object S. We

use these features to determine which transformation should be applied to S.

Currently the language features that we identify are in Table 7.2.

Not all of these features are applicable to a particular source code object.

Table 7.3 shows which features apply to which kind of source code object. Source
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Feature Description

kind Source code object kind

= hprogram, class, field, method, bbi

name Class, method or �eld name

type Method parameters or �eld type

classes Set of class names

classRefs Set of classes used by a class or method

fields Set of �elds de�ned by a class

fieldRefs Set of �elds used by a class or method

methods Set of methods de�ned by a class

methodRefs Set of methods used by a class or method

operators Set of operator and data type pairs

loops Set of loops contained in a method

locals Set of local variables usable on entry to a basic block

predicates Set of predicates remaining to be used by a basic block

Table 7.2. Language features for Java.

code objects form a hierarchy (Figure 7.4). The features of a source code object

will be the union of the features of the source code objects that are below it in

the hierarchy. For example, a class obtains its classRefs set by performing a

union operation on all the classRefs sets of the methods that the class de�nes.

The loops feature for method source code objects is determined using the

algorithm for constructing natural loops (see Aho et al. [2], pg. 604). The infor-

mation in the loops feature allows our obfuscator to apply obfuscations such as

inserting a branch into a loop.

The algorithm for calculating the locals feature for basic block (bb) source

code objects is based on the iterative algorithm for calculating reaching de�ni-

tions (see Aho et al. [2], pg. 625). The locals feature allows our obfuscator to

generate code that uses the local variables of a method. A local variable needs to

be initialised before it is �rst accessed. Also, the variable must be accessed with

an operator which has a matching type. Java local variables have type polymor-

phism (Section 5.6.1), so the type of a local variable must be determined before

this variable can be used. For example, if local variable 1 has the type float,

we have to use the load 
oat operator to read the value stored in this variable.

Consider a basic block B with predecessors A1; : : : ; An in the control 
ow graph.

If a local variable V is known to have been initialised in A1; : : : ; An, and the type

of V is the same in A1; : : : ; An, then it is a member of the locals set of B.

Consider the Java code in Figure 7.3. The language features for the method

main are in Table 7.4.
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Kind Feature Description

program classes Set of classes that make up the program

classRefs, fields, fieldRefs, methods, methodRefs and

operators are obtained from each class in the program.

class name Name of the class

fields Set of �elds de�ned by the class

methods Set of methods de�ned by the class

classRefs, fieldRefs, methodRefs and operators are obtained

from each method de�ned by the class.

method name Name of the method

type Type of the method

loops Set of loops in the code of the method

classRefs, fieldRefs, methodRefs and operators are obtained

from each basic block of instructions in the method.

field name Name of the �eld

type Type of the �eld

bb locals Set of local variables usable on entry to the basic

block

predicates Set of predicates that have yet to be used in the

basic block. Initialised to all the predicates in the

predicate library

classRefs, fieldRefs, methodRefs and operators are obtained

from the instructions in the basic block.

Table 7.3. The language features inheritance scheme for source code objects.

7.5.2 Transformation stealth mapping

The stealth of a transformation is highly context sensitive. The de�nition of

stealth in Section 3.4.4 may be re�ned so that the measure applies to individual

source code objects instead of the whole program. Code that would be unstealthy

if added to one method, might not be unstealthy if added to another.

Suppose we have a transformation T which is to be applied to source code

object S. To calculate Tste(S), we need to determine Ps(T ) which is the set of

language features that would be added when T is applied to S. We also need to

know Ps(S), which is the set of language features that is used by S. Table 7.3

shows the set of language features and the particular source code object to which

they are applicable. With this information we can use the de�nition for stealth in

Section 3.4.4, except that we perform the calculation replacing Ps(Q) by Ps(S).

The transformation stealth mapping A(S) for a source code object S is de-
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block
basic

method

class

program

field

Figure 7.4. The source code objects hierarchy. The code in a method is composed of

basic blocks of instructions. A class can de�ne �elds and methods. A program is made

up of classes, which form an inheritance hierarchy (Section 7.4.1).

Feature Value

name main

type [array(object(`String'))]:void

This method has an array of `String' objects as its single parameter. There

is no return value.

loops 5->3->4

There is a single loop in this method. The loop header is basic block 5 (which

tests whether the loop should continue to execute). The loop body consists of

basic blocks 3 and 4.

classRefs none

fieldRefs �eld(`java/lang/System'@out:object(`java/io/PrintStream')

This method references the �eld `out', which is an instance of the class

`java/io/PrintStream'. This �eld is from the class `java/lang/System'.

methodRefs method(`java/io/PrintStream'@println:([object(`String')]:void))

This method invokes the method `println', which takes an object of class

`String' as its single parameter. There is no return value. The invoked

method is from the class `java/io/PrintStream'.

operators const/int, =/int, ++/int

This method uses an assignment and an increment operator. It also pushes an

integer constant onto the stack.

Table 7.4. Language features of the method main of the Java code example in Fig-

ure 7.3.
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termined by calculating Tste(S) for each transformation T .

Consider the example in Figure 7.3. Let the source code object S be the

method main. Suppose that a transformation T adds the following language

features when it is applied to S:

Feature Value

classRefs class(`java/lang/Thread')

A reference is made to the Java Thread class.

methodRefs method(`java/lang/Thread'@`start':([]:void)

The method `start', from the class `java/lang/Thread' is invoked.

operators +/int, ++/int, const/int

The addition and multiplication operators are used. Additionally, an integer

constant is pushed onto the stack.

jPs(T ) j = 5, which is the sum of the sizes of all of the sets of language features

that T adds to S. The operators ++/int and const/int are present in Ps(S),

which means that jPs(T ) n Ps(S) j = 3. So:

Tste(S) = 1:0�
jPs(T ) n Ps(S) j

jPs(T ) j

= 1:0�
3

5
= 0:4

7.5.3 Obfuscation priority

Some parts of an application will contain valuable trade secrets, while other parts

will be ordinary \bread-and-butter" code. Our obfuscator provides a command

line 
ag that allows the user to determine the relative obfuscation priority for the

source code objects in an application (Section 6.2).

Obfuscation priority is inherited according to the hierarchy in Figure 7.4. The

program is given the most important obfuscation priority, which ensures that

obfuscations that a�ect the entire program can take place. Unless set di�erently

by the user, �elds and methods will have the same obfuscation priority as the

class that de�nes them. Basic blocks that belong to a method will have the same

obfuscation priority as that method. There is currently no way to change the

obfuscation priority of a basic block, since the division of method code into basic

blocks is an internal representation of our obfuscator. It is therefore di�cult

for the user to convey obfuscation priority information about basic blocks to

our obfuscator. This will be �xed when a more powerful GUI is added to our

obfuscator.
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7.6 Applying Obfuscating Transformations

The top-level loop of our obfuscator has the structure in Figure 7.5. A is the

application undergoing obfuscation.

WHILE NOT Done(A) DO

S := SelectCode(A);
T := SelectTransform(S);

A := Apply(T ,S);

Figure 7.5. Top level obfuscator loop.

� Done determines when the required level of obfuscation or the maximum

acceptable execution time penalty has been reached.

� SelectCode returns the source code object with the greatest obfuscation

priority.

� SelectTransform returns the most appropriate transformation to obfus-

cate the particular source code.

� Apply applies the transformation to the source code object and updates the

application accordingly.

We discuss each of these routines in the following sections.

7.6.1 The Done predicate

The Done predicate evaluates to true when there is no more remaining obfuscation

to be performed or no more execution time penalty can be imposed. That is, the

initial obfuscation level and maximum acceptable execution time penalty have

been exceeded. The code for the Done predicate is:

Done(A)
RETURN (Aobflevel <= 0) OR (Acost <= 0);

� A is the source code object tag which represents the application.

� Aobflevel is the remaining obfuscation level required by the application.

� Acost is the remaining execution time penalty that can be added to the

application.
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Aobflevel and Acost are initialised to user determined (Section 6.2) values,

namely the maximum required obfuscation level and maximum acceptable ex-

ecution time penalty. Suppose that the obfuscating transformation T is applied

to the application A. Aobflevel is decreased by a value calculated from Tpot(A)
and Tres(A). Acost is decreased by Tcost(A). Section 7.6.4 presents the algorithm

used to update Aobflevel and Acost.

7.6.2 The SelectCode algorithm

The initial obfuscation priorities of the source code objects are determined by

a command line option (Section 6.2). These values are updated as the source

code objects are obfuscated. The source code object tags, paired with their

obfuscation priorities, are stored in a priority queue. The priority queue is ordered

on descending obfuscation priority, so the source code object with the greatest

obfuscation priority is found at head of the queue. If there is more than one source

code object with the greatest obfuscation priority value, we choose a random one

to obfuscate.

7.6.3 The SelectTransform algorithm

Suppose we have a source code object S that we wish to obfuscate. We want to

apply the most appropriate transformation T to S, which will have maximum po-

tency and resilience for a minimum cost. Given Tqual(S), we can use the de�nition
for appropriateness in Section 3.6 to determine Tapp(S), except that we perform
the calculation with Ps(S) instead of Ps(P ). An example of using the quality of

a transformation to calculate its appropriateness was given in Section 3.6.

The potency, resilience and cost of an obfuscating transformation T use the

abstract scales which are de�ned in Section 3.4, such as hlow, medium, highi

potency. Before calculations using these measures can be performed, these scales

need to be given concrete numerical values. Our obfuscator uses the values given

in Table 3.3.

If T does not use an opaque predicate, then potency, resilience and cost of T
can be determined statically and can therefore be stored in the transformation

module that de�nes T . Appendix A discusses the structure of transformation

modules. On the other hand, the stealth of T is calculated at run-time for each

source code object. Stealth is a much more context sensitive measure than the

other measures. The calculation of stealth was discussed in Section 7.5.2.

If T uses an opaque predicate P , then the quality of T will depend upon

the quality of P . The other measures will be determined at run-time from P .

The information needed to do so is stored in a predicate library. We discuss the

structure of predicate libraries in Appendix B.
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For each source code object, we keep a priority queue containing obfuscat-

ing transformation tags paired with their appropriateness. The priority queue is

ordered on decreasing appropriateness values, so the most appropriate transfor-

mation to apply to a source code object is found at the head of the queue. If

there is more than one transformation with the greatest appropriateness value,

we choose a random transformation to apply to the source code object.

7.6.4 Applying an obfuscating transformation

The algorithm in Figure 7.6 applies the transformation T to a source code ob-

ject S. !1, !2, !3, !4 are constants that may be adjusted to \�ne-tune" obfuscator

performance.

Apply(T ,S)

S := Obfuscate (T , S);

I(S) := I(S)� (!1 � Tpot(S) + !2 � Tres(S));

Aobflevel := Aobflevel � (!3 � Tpot(S) + !4 � Tres(S));
Acost := Acost � Tcost(S);

RETURN A;

Figure 7.6. The apply transformation algorithm.

� Obfuscate applies the transformation T to the source code object S, up-

dating the internal data structures of the obfuscator. See Appendix A.1 for

an example of an obfuscating transformation.

� Since S has been obfuscated, its obfuscation priority (I(S)) must be de-

creased. The amount that it is decreased by depends on the potency and

resilience of the applied transformation, which are scaled by !1 and !2

respectively.

� The required remaining obfuscation level of the application (Aobflevel) is

decreased. The amount that it is decreased by depends on the potency

and resilience of the applied transformation, which are scaled by !3 and !4

respectively.

� The acceptable remaining cost that can be incurred by obfuscations (Acost)

is reduced by the cost that the transformation incurs.

Our obfuscator uses !1 = !2 = !3 = !4 = 1 to give equal weighting to

potency and resilience in the calculations. Aobflevel and Acost must be reduced to

below zero before the obfuscator stops. The default values of the maxcost and
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obflevel options (Section 6.2) are 100 for both options. Given the values used by

our obfuscator in Table 3.3 for the abstract transformation measure scales, we see

that the transformations applied by our obfuscator must have a total obfuscation

level (potency plus resilience) exceeding 100 and a total cost exceeding 100. This

can be achieved in a number of ways:

Number of Potency Resilience Cost

Transformations of each Transformation

1 1 100 100

1 100 1 100

10 10 10 10

Of course, not all of the transformations applied by the obfuscator have to have

exactly the same potency, resilience and cost.

7.7 Re-constituting the Application

This stage uses the same code as the parsing stage (Section 7.3). The fact that

most Prolog routines can be called in a reverse fashion means that it is unneces-

sary to write a wholly separate class �le parser and unparser.

7.8 Discussion

There are advantages and disadvantages in obfuscating Java programs at the

bytecode level. The implementation of our obfuscator is simpli�ed because we

do not need a semantic analysis stage. By using appropriate translators, it is

possible to obfuscate a large number of languages, including Ada and Scheme.

The downside in working with Java bytecodes is that the information contained

in Java class �les needs to be abstracted to a higher level in order to be useful. A

large number of the algorithms of our obfuscator are concerned with extracting

and processing this information.

We believe that our class inheritance hierarchy scheme is 
exible enough to

cope with object-oriented languages that have a multiple inheritance scheme.

Java has a single inheritance scheme, although it does have interfaces. A class

which implements an interface must de�ne all of the methods in that interface.

This information could be added to our inheritance hierarchy but would make it

more complicated. Depending on the obfuscating transformations implemented

by an obfuscator, this additional inheritance information may be unnecessary.

The internal mappings calculated by our obfuscator can be extended to handle

additional obfuscating transformations. Currently there is room for improvement

in the representation of the mappings. For example, the appropriateness mapping

de�nes a priority queue for each source code object. This is costly in terms
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of memory. However, this implementation ful�ls the requirement that given a

source code object S, we can determine the appropriateness of each obfuscating

transformation applied to S.

The control 
ow graph building algorithm is quite complicated and executes

slowly. It di�ers from the standard algorithm (see Aho et al. [2], pg. 528) due to

the need to handle the conditional operator correctly. The standard algorithm

breaks up the instruction implementing the conditional operator into several basic

blocks. The operand stack is not empty on exit from some of these basic blocks.

Any basic blocks that are added must therefore ensure that they do not a�ect

the operand stack. We therefore decided to divide instructions into basic blocks

in which the operand stack is empty on entry to and exit from a basic block. In

hindsight, the extra complexity of the new algorithm was not worthwhile. Instead

we should have used the standard algorithm and preserved the contents of the

operand stack when we add basic blocks to a method.

Our obfuscator currently does not handle methods with exception handlers.

Support for such methods will be present in a future version of our obfuscator.

7.9 Summary

Now that we have examined the implementation of our obfuscator, we are ready

to evaluate it. In the next chapter, we will apply our obfuscator to concrete

examples of Java code.
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Examples

\Example is always more e�cacious than precept."

{ Samuel Johnson

8.1 Introduction

This chapter presents some examples of the transformations employed by our ob-

fuscator. We also use the decompilers Mocha [51] and WingDis [12] to attempt to

recover the Java source code from the transformed Java bytecode. By measuring

the e�ect the transformations have on selected software complexity metrics, we

can gauge their e�ectiveness. As mentioned in Section 3.4.1 the exact values of

these metrics is unimportant | it is the observed change that is of interest.

By applying the following transformations individually to separate code ex-

amples, we can demonstrate their e�ects clearly:

� The change to subroutine transformation

� The insert dead code transformation

� Non-standard code patterns

We then present an example of code that is processed by our obfuscator.

Unlike the other three examples, an arbitrary number of transformations is used.

When we present transformed bytecode, the instructions that have been added

or changed are marked by an asterisk (*).

97
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8.2 Change to Subroutine

The change to subroutine transformation alters the control 
ow of a method by

replacing some code with a call to a subroutine. This is a high-level language

breaking transformation, since Java bytecodes but not Java source code have

subroutines (Section 5.6.4).

Java Source

public class Test f
public static double example(int i) f

double j = 2.0;

if (i == 1)

j *= 2.5;

return i / j;

g

g

+

Java Bytecode

# Instruction Comment

0 ldc2w 6 push double 
oating-point constant 2.0

3 dstore 1 store in local variable 1 (j)

4 iload 0 load local variable 0 (i)

5 iconst 1 push int constant 1

6 if icmpne 15 compare and if not equal, goto address 15

9 dload 1 load local variable 1 (j)

10 ldc2 w 4 push double 
oating-point constant 2.5

13 dmul multiply double 
oating-point numbers

14 dstore 1 store in local variable 1 (j)

15 iload 0 load local variable 0 (i)

16 i2d convert int to double 
oating-point number

17 dload 1 load local variable 1 (j)

18 ddiv divide double 
oating-point numbers

19 dreturn return double from method

Figure 8.1. Code before the change to subroutine transformation is applied. i and j

are local variables 0 and 1 respectively.
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The obfuscator was invoked with the command:

jo Test.class -maxcost 1 -obflevel 1

-path /usr/local/lib/java/classes

-n all -y changeToSubroutine

The original code in Figure 8.1 was transformed into the code in Figure 8.2.

Java Bytecode

# Instruction Comment

0 ldc2 w 6 push double 
oating-point constant 2.0

3 dstore 1 store in local variable 1 (j)

4 iload 0 load local variable 0 (i)

5 iconst 1 push int constant 1

6 if icmpne 15 compare and if not equal, goto address 12

9 *jsr 17 jump to subroutine at address 17

12 iload 0 load local variable 0 (i)

13 i2d convert int to double 
oating-point number

14 dload 1 load local variable 1 (j)

15 ddiv divide double 
oating-point numbers

16 dreturn return double from method

17 *astore 3 store return address in local variable 3

18 *dload 1 load local variable 1 (j)

19 *ldc2 w 4 push double 
oating-point constant 2.5

20 *dmul multiply double 
oating-point numbers

21 *dstore 1 store in local variable 1 (j)

22 *ret 3 return to address saved in local variable 3

Figure 8.2. An example of code being placed in a subroutine. i and j are local

variables 0 and 1 respectively. Local variable 3 is used to store the subroutine return

address.

The source code recovered by Mocha and WingDis are presented in Figures 8.3

and 8.4. The source code output by Mocha contains pop and endfinalize state-

ments, which are not part of the Java language. It also fails to show where the

subroutine is invoked. The variable local is not declared. The source code out-

put by WingDis contains a jsr-statement to the label B4. The jsr-statement

is not part of the Java language. Furthermore the label B4, which is used by

WingDis to represent the subroutine start address, is not de�ned. The subrou-

tine that should contain the statement j *= 2.5 is missing.

The Halstead metric (�1 in Table 3.1) is a�ected by this transformation,

since we are adding additional operators and operands to the code. One way



100 CHAPTER 8. EXAMPLES

in which the transformed program can be represented as source code is shown

in Figure 8.5. Note that we need to add jsr- and ret-statements to the Java

language. These statements jump to and return from a subroutine. The jsr

Subroutine statement adds 1 operator and 1 operand, while the ret-statement

adds 1 operator to the program. Hence the �1 measure is increased by 2+1 = 3.

According to this metric, the transformed program has greater complexity than

the original.

public static double example(int i)

f

double d;

d = 2;

if (i == 1)

return (double)i / d;

pop local

d *= 2.5;

endfinalize local

g

Figure 8.3. Output from Mocha for the bytecode in Figure 8.2.

public static double example(

int int0) f

double double1;

obj obj3;

double1= 2;

if (int0 == 1) f

jsr B4;

g
return ((double)int0 / double1);

g

Figure 8.4. Output from WingDis for the bytecode in Figure 8.2.
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public static double example(int i) f

double j = 2.0;

if (i == 1)

jsr Subroutine

return i / j;

Subroutine:

j *= 2.5;

ret;

g

Figure 8.5. Possible source code representing the bytecode in Figure 8.2. Note that

jsr- and ret-statements have been added to the Java language in order to represent

subroutines.

8.3 Insert Dead Code

The insert dead code transformation disguises the control 
ow of a method by

adding an opaque predicate to the code, which ensures that the dead code is

never executed. This transformation is an example of a \Smoke and Mirrors"

obfuscation which is a particular kind of control computation transformation.

Java Source

public class Test2 f

public static int combine(int list[]) f
int temp = 0;

for (int i = 0; i < list.length - 1; i++)

temp += list[i] * list[i + 1];

return temp;

g
g

Figure 8.6. Source code before the insert dead code transformation is applied.

The obfuscator was invoked with the command:

jo Test2.class -maxcost 1 -obflevel 1

-path /usr/local/lib/java/classes

-n all -y insertDeadCode

The bytecode in Figure 8.7 was transformed into the bytecode in Figures 8.8

and 8.9.
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Java Bytecode

# Instruction Comment

0 iconst 0 push int constant 0

1 istore 1 store in local variable 1 (temp)

2 iconst 0 push int constant 0

3 istore 2 store in local variable 2 (i)

4 goto 22 goto address 22

7 iload 1 load local variable 1 (temp)

8 aload 0 load local variable 0 (list)

9 iload 2 load local variable 2 (i)

10 iaload load array element

11 aload 0 load local variable 0 (list)

12 iload 2 load local variable 2 (i)

13 iconst 1 push int constant 1

14 iadd add integers

15 iaload load array element

16 imul multiply integers

17 iadd add integers

18 istore 1 store in local variable 1 (temp)

19 iinc 2,1 increment local variable 2 (i) by 1

22 iload 2 load local variable 2 (i)

23 aload 0 load local variable 0 (list)

24 arraylength load length of array

25 iconst 1 push int constant 1

26 isub subtract integers

27 if icmplt 7 compare integers and if �rst is less

than second, goto address 7

30 iload 1 load local variable 1 (temp)

31 ireturn return int from method

Figure 8.7. Bytecode for the source code in Figure 8.6. list, temp and i are local

variables 0, 1 and 2 respectively.

The source code recovered by Mocha and WingDis are presented in Figures 8.10

and 8.11. Both decompilers functioned correctly, since the insert dead code trans-

formation is designed to confuse a human reader, not the decompiler.

The statement i += list[i] * list[i + 1] in Figure 8.7 can be trans-

formed into i -= list[i] / list[i + 1], by changing the increment opera-

tor (+=) into the decrement operator (-=) and the multiplication operator (*)

into the division operator (/). This is the dead code which is added to the pro-
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Java Bytecode

# Instruction Comment

0 iconst 0 push int constant 0

1 istore 1 store in local variable 1 (temp)

2 iconst 0 push int constant 0

3 istore 2 store in local variable 2 (i)

4 *goto 47 goto address 47

7 *iload 2 load local variable 2 (i)

8 *iload 2 load local variable 2 (i)

9 *iconst 1 push int constant 1

10 *iadd add integers

11 *imul multiply integers

12 *iconst 2 push int constant 2

13 *irem remainder of integer division

14 *ifne 32 compare with 0 and if not equal, goto address 32

17 iload 1 load local variable 1 (temp)

18 aload 0 load local variable 0 (list)

19 iload 2 load local variable 2 (i)

20 iaload load array element

21 aload 0 load local variable 0 (list)

22 iload 2 load local variable 2 (i)

23 iconst 1 push int constant 1

24 iadd add integers

25 iaload load array element

26 imul multiply integers

27 iadd add integers

28 istore 1 store in local variable 1 (temp)

29 *goto 44 goto address 44

. . .

Figure 8.8. An example of inserting dead code (part A). Due to the length of the

code, it is continued in Figure 8.9. list, temp and i are local variables 0, 1 and 2

respectively.

gram, which is stealthy and contains introduced bugs. The opaque predicate

(i * (i + 1) % 2 == 0)T is used to ensure that the dead code is never exe-

cuted. We constructed the predicate based on a result from elementary number

theory | 8x 2 IN; 2 j (x + x2). So this predicate is always true.

The Halstead, McCabe and Harrison metrics (�1, �2 and �3 in Table 3.1)

are all a�ected by this transformation, since we are adding a new predicate to
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Java Bytecode

# Instruction Comment

. . .

32 *iload 1 load local variable 1 (temp)

33 *aload 0 load local variable 0 (list)

34 *iload 2 load local variable 2 (i)

35 *iaload load array element

36 *aload 0 load local variable 0 (list)

37 *iload 2 load local variable 2 (i)

38 *iconst 1 push int constant 1

39 *iadd add integers

40 *iaload load array element

41 *idiv divide integers

42 *isub subtract integers

43 *istore 1 store in local variable 1 (temp)

44 iinc 2,1 increment local variable 2 (i) by 1

47 iload 2 load local variable 2 (i)

48 aload 0 load local variable 0 (list)

49 arraylength load length of array

50 iconst 1 push int constant 1

51 isub subtract integers

52 if icmplt 7 compare integers and if �rst is less

than second, goto address 7

55 iload 1 load local variable 1 (temp)

56 ireturn return int from method

Figure 8.9. An example of inserting dead code (part B). This code continues from

Figure 8.8. list, temp and i are local variables 0, 1 and 2 respectively.

the program, as well as dead code. �1 is increased by 19, which is the number

of operators and operands in the new statements if (i * (i + 1) % 2 == 0)

and i -= list[i] / list[i + 1]. Note that the Halstead cost of reading the

value of an array element is one array access operator and one array index variable

operand. �2 increases by one because the predicate (i * (i + 1) % 2 == 0)

has been added to the program. Since this predicate has been added inside a loop,

�3, which measures the nesting level of conditionals in a program, is increased.

All three metrics have been increased, so it appears that the complexity of the

transformed program has increased.
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public static int combine(int an[])

f

int i = 0;

for (int j = 0; j < an.length - 1; j++)

f

if (j * (j + 1) % 2 == 0)

i += an[j] * an[j + 1];

else

i -= an[j] / an[j + 1];

g

return i;

g

Figure 8.10. Output from Mocha for the bytecode in Figures 8.8 and 8.9.

public static int combine(

int[] int0) f

int int1;

int int2;

int1= 0;

int2= 0;

while (int2 < (int0.length - 1)) f

if (((int2 * (int2 + 1)) % 2)!= 0) f
int1= (int1 - (int0[int2] / int0[(int2 + 1)]));

g

else f
int1= (int1 + (int0[int2] * int0[(int2 + 1)]));

g

int2 += 1;

g

return int1;

g

Figure 8.11. Output from WingDis for the bytecode in Figures 8.8 and 8.9.
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8.4 Non-standard Code Patterns

The paper by Proebsting and Watterson [41] discusses decompilation of Java by

code pattern matching. By using non-standard patterns of bytecode instructions,

it is possible to defeat such decompilers. That is, non-standard code patterns may

be used as preventive transformations.

One class of non-standard code patterns arises from performing code motion

on very-busy expressions, which are expressions that are used on every possible

control 
ow. Performing code motion on these types of expressions is a standard

global optimisation performed by compilers and is known as hoisting (see Aho

et al. [2], pg. 714).

We did not implement this transformation in our obfuscator due to lack of

time. However, we did apply the transformation by hand to small examples of

Java code.

Java Source

public static int operate(int i, int j) f
if (i == 0)

return j + 2;

else

return j * 2;

g

+

Java Bytecode

# Instruction Comment

0 iload 0 load local variable 0 (i)

1 ifne 8 compare with 0 and if not equal, goto address 8

4 iload 1 load local variable 1 (j)

5 iconst 2 push int constant 2

6 iadd add integers

7 ireturn return int from method

8 iload 1 load local variable 1 (j)

9 iconst 2 push int constant 2

10 imul multiply integers

11 ireturn return int from method

Figure 8.12. Code before hoisting very-busy expressions. i and j are local variables 0

and 1 respectively.

The source code in Figure 8.12 is compiled into bytecode. We then perform
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code motion on the integer variable j and the integer constant 2, which are

very busy expressions. The corresponding bytecode instructions, iload 1 and

iconst 2, are moved to before the conditional branch instruction. The result of

this code motion can be seen in Figure 8.13.

Java Bytecode

# Instruction Comment

0 *iload 1 load local variable 1 (j)

1 *iconst 2 push int constant 2

2 iload 0 load local variable 0 (i)

3 *ifne 8 compare with 0 and if not equal, goto address 8

6 iadd add integers

7 ireturn return int from method

8 imul multiply integers

9 ireturn return int from method

Figure 8.13. An example of hoisting very-busy expressions. i and j are local vari-

ables 0 and 1 respectively.

The source code recovered by Mocha and WingDis are in Figures 8.14 and 8.15.

The source code output by Mocha contains symbols such as expression, which

are not part of the Java language. The source code output by WingDis, while

correct syntactically, is incorrect semantically since the variable StackVar is not

de�ned by the method.

public static int example(int i, int j)

f

expression j

expression 2

if (i != 0) goto 8 else 6;

+

return

*

return

g

Figure 8.14. Output from Mocha for the bytecode in Figure 8.13.

The Halstead metric (�1 in Table 3.1) is a�ected by this transformation. It

can be seen that since the expressions j and the integer 2 are pushed before the
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public static int example(

int int0,

int int1) f

if (int0!= 0) f

return (StackVar * StackVar);

g
else f

return (int1 + 2);

g

g

Figure 8.15. Output from WingDis for the bytecode in Figure 8.13.

if-statement is executed, the number of operands in the program is decreased

by 2. That is �1 is decreased by 2. Since the transformation is a targeted

preventive transformation, the complexity of the transformed program does not

need to increase. The aim is to confuse decompilers but not necessarily confuse

a human reader.

Transforming programs using code motion does not a�ect the control 
ow

of the programs, since we do not insert any new instructions. Thus, the trans-

formation of hoisting very-busy expressions is a preventive rather than a high-

level language-breaking transformation. Furthermore, it is a targeted preventive

transformation, since it is e�ective against decompilers that do not search for this

particular code pattern.

Code motion also produces patterns of its own in the transformed code. We

can break up these code patterns by applying additional transformations. For

example, instead of pushing the very-busy expressions onto the operand stack

consecutively, we can push the �rst expression onto the operand stack and ex-

ecute some other instructions. We can then push the second expression onto

the operand stack and then execute the instructions that use the very-busy ex-

pressions. These additional transformations hinder decompilation by increasing

the number of patterns that are required for complete pattern matching. Alter-

natively the decompiler has to transform the code into a form on which it can

pattern-match.
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8.5 Sample Obfuscator Output

The source code in Figure 8.16 was compiled into the bytecode in Figures 8.17

and 8.18.

Java Source

public class Bag f

public static StringBuffer Process(Vector Items) f

StringBuffer S = new StringBuffer();

for (int i = 0; i < Items.capacity(); i++) f
Bag B = (Bag) Items.elementAt(i);

S.append(i);

if (B.capacity > 100)

S.append(" is big");

else

S.append(" is small");

g
return S;

g

g

Figure 8.16. Original source code before obfuscation.

Our obfuscator was invoked on the bytecode in Figures 8.17 and 8.18 with

the command:

jo Bag.class -maxcost 100 -obflevel 1000

-path /usr/local/lib/java/classes

The bytecode in Figures 8.17 and 8.18 was transformed into the bytecode in

Figures 8.19, 8.20 and 8.21.

The source code recovered by Mocha is presented in Figure 8.22. The source

code recovered by WingDis is in Figures 8.23 and 8.24. The transformations

are far more e�ective in confusing humans and decompilers when combined than

when they are applied separately to a program.
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Java Bytecode

# Instruction Comment

0 new 7 create new object of class StringBu�er

3 dup duplicate top of operand stack

4 invokenonvirtual 12 call StringBu�er constructor

7 astore 1 store in local variable 1 (S)

8 iconst 0 push int constant 0

9 istore 2 store in local variable 2 (i)

10 goto 57 goto address 57

13 aload 0 load local variable 0 (Items)

14 iload 2 load local variable 2 (i)

15 invokevirtual 8 call Items.elementAt

18 checkcast 5 cast the Object reference into a Bag reference

21 astore 3 store in local variable 3 (B)

22 aload 1 load local variable 1 (S)

23 iload 2 load local variable 2 (i)

24 invokevirtual 13 call S.append

27 pop pop top of operand stack

28 aload 3 load local variable 3 (B)

29 getfield 9 push Bag.capacity �eld

32 bipush 100 push int constant 100

34 if icmple 47 compare integers and if �rst is less than or

equal to second, goto address 47

37 aload 1 load local variable 1 (S)

38 ldc 1 1 push reference to the String \ is big. "

40 invokevirtual 14 call S.append

43 pop pop top of operand stack

44 goto 54 goto address 54

47 aload 1 load local variable 1 (S)

48 ldc 1 2 push reference to the String \ is small. "

50 invokevirtual 14 call S.append

53 pop pop top of operand stack

54 iinc 2,1 increment local variable 2 (i) by 1

57 iload 2 load local variable 2 (i)

58 aload 0 load local variable 0 (Items)

59 invokevirtual 10 call Items.capacity

62 if icmplt 13 compare integers and if �rst is less than

second, goto address 13

. . .

Figure 8.17. Bytecode for the source code in Figure 8.16 (part A). Due to the length

of the code, it is continued in Figure 8.18. Items, S, i and B are local variables 0 to 3.
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Java Bytecode

# Instruction Comment

. . .

65 aload 1 load local variable 1 (S)

66 areturn return object reference from method

Figure 8.18. Bytecode for the source code in Figure 8.16 (part B). This continues the

code in Figure 8.17. Items, S, i and B are local variables 0 to 3.

Java Bytecode

# Instruction Comment

0 *new 7 create new object of class StringBu�er

3 *dup duplicate top of operand stack

4 *invokenonvirtual 12 call StringBu�er constructor

7 *astore 1 store in local variable 1 (S)

8 *iconst 0 push int constant 0

9 *istore 2 store in local variable 2 (i)

10 *new 48 create new object of class Node

13 *dup duplicate top of operand stack

14 *invokenonvirtual 49 call Node constructor

17 *astore 4 store in local variable 4 (p)

19 *aload 4 load local variable 4 (p)

21 *invokevirtual 52 call p.selectNode2

24 *astore 5 store in local variable 5 (r)

26 *aload 5 load local variable 5 (r)

28 *invokevirtual 56 call r.addNode1

31 *pop pop top of operand stack

32 *aload 4 load local variable 4 (p)

34 *invokevirtual 59 call p.selectNode1

37 *astore 6 store in local variable 6 (q)

39 *aload 4 load local variable 4 (p)

41 *invokevirtual 52 call p.selectNode2

44 *astore 6 store in local variable 6 (q)

. . .

Figure 8.19. Obfuscated bytecode (part A). Due to the length of the code, the example

is continued in Figures 8.20 and 8.21. Items, S, i, B, p, r, q, a and b are local

variables 0 to 8.
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Java Bytecode

# Instruction Comment

. . .

46 *aload 4 load local variable 4 (p)

48 *invokevirtual 63 call p.reachableNodes

51 *astore 7 store in local variable 7 (a)

53 *aload 6 load local variable 6 (q)

55 *invokevirtual 63 call q.reachableNodes

58 *astore 8 store in local variable 8 (b)

60 *aload 4 load local variable 4 (p)

62 *aload 7 load local variable 7 (a)

64 *aload 8 load local variable 8 (b)

66 *invokevirtual 69 call a.setDi�

69 *aload 8 load local variable 8 (b)

71 *invokevirtual 73 call p.splitGraph

74 *aload 4 load local variable 4 (p)

76 *aload 6 load local variable 6 (q)

78 *if acmpeq 94 compare and if equal, goto address 94

81 goto 149 goto address 149

84 *iload 2 load local variable 2 (i)

85 *iload 2 load local variable 2 (i)

86 *imul multiply integers

87 *iconst 2 push int constant 2

88 *idiv divide integers

89 *iconst 2 push int constant 2

90 *irem remainder of integer division

91 *ifeq 108 compare with 0 and if equal, goto address 108

94 *aload 0 load local variable 0 (Items)

95 *iload 2 load local variable 2 (i)

96 *iconst 1 push int constant 1

97 *iadd add integers

98 *invokevirtual 8 call Items.elementAt

101 *checkcast 5 cast the Object reference into a Bag reference

104 *astore 3 store in local variable 3 (B)

105 *goto 117 goto address 117

. . .

Figure 8.20. Obfuscated bytecode (part B). This code continues from Figure 8.19 and

is continued in Figure 8.21. Items, S, i, B, p, r, q, a and b are local variables 0 to 8.
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Java Bytecode

# Instruction Comment

. . .

108 aload 0 load local variable 0 (Items)

109 iload 2 load local variable 2 (i)

110 invokevirtual 8 call Items.elementAt

113 checkcast 5 cast the Object reference into a Bag reference

116 astore 3 store in local variable 3 (B)

117 *jsr 159 jump to subroutine at address 159

120 aload 3 load local variable 3 (B)

121 getfield 9 push Bag.capacity �eld

124 bipush 100 push int constant 100

126 if icmple 139 compare integers and if �rst is less than or equal

to second, goto address 139

129 aload 1 load local variable 1 (S)

130 ldc 1 1 push reference to the String \ is big. "

132 invokevirtual 14 call S.append

135 pop pop top of operand stack

136 goto 146 goto address 146

139 aload 1 load local variable 1 (S)

140 ldc 1 2 push reference to the String \ is small. "

142 invokevirtual 14 call S.append

145 pop pop top of operand stack

146 iinc 2,1 increment local variable 2 (i) by 1

149 iload 2 load local variable 2 (i)

150 aload 0 load local variable 0 (Items)

151 invokevirtual 10 call Items.capacity

154 if icmplt 84 compare integers and if �rst is less than second,

goto address 84

157 aload 1 load local variable 1 (S)

158 areturn return object reference from method

159 *astore 9 store return address in local variable 9

161 *aload 1 load local variable 1 (S)

162 *iload 2 load local variable 2 (i)

163 *invokevirtual 13 call S.append

166 *pop pop top of operand stack

167 *ret 9 return to address saved in local variable 9

Figure 8.21. Obfuscated bytecode (part C). This code continues from Figure 8.20.

Items, S, i, B, p, r, q, a and b are local variables 0 to 8. Local variable 9 is used to

hold the subroutine return address.
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public static StringBuffer Process(Vector vector)

f

StringBuffer stringBuffer;

int i;

Bag bag;

Node node1;

Node node3;

stringBuffer = new StringBuffer();

i = 0;

node1 = new Node();

Node node2 = node1.selectNode2();

node2.addNode1();

node3 = node1.selectNode1();

node3 = node1.selectNode2();

Set set1 = node1.reachableNodes();

Set set2 = node3.reachableNodes();

node1.splitGraph(set1.setDiff(set2), set2);

if (node1 == node3) goto 94 else 149;

if (i * i / 2 % 2 == 0) goto 108 else 94;

bag = (Bag)vector.elementAt(i + 1);

bag = (Bag)vector.elementAt(i);

if (bag.capacity > 64)

stringBuffer.append(" is big. ");

else

stringBuffer.append(" is small. ");

i++;

if (i < vector.capacity()) goto 84 else 157;

return stringBuffer;

pop node1

stringBuffer.append(i);

endfinalize node1

g

Figure 8.22. Output from Mocha for the bytecode in Figures 8.19, 8.20 and 8.21.
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public static StringBuffer Process(

java.util.Vector Vector0) f

// JavaDis cannot analyze control flow of this method fully

StringBuffer StringBuffer1;

int int2;

Bag Bag3;

int int4;

Node Node4;

Node Node5;

Node Node6;

Set Set7;

Set Set8;

B0:

StringBuffer1= new StringBuffer();

int2= 0;

Node4= new Node();

Node5= Node4.selectNode2();

Node5.addNode1();

Node6= Node4.selectNode1();

Node6= Node4.selectNode2();

Set7= Node4.reachableNodes();

Set8= Node6.reachableNodes();

Node4.splitGraph(Set7.setDiff(Set8), Set8);

if (Node4 == Node6) goto B13;

B11:

goto B22;

B12:

if ((((int2 * int2) / 2) % 2)== 0) goto B15;

B13:

Bag3= (Bag)Vector0.elementAt((int2 + 1));

B14:

goto B16;

B15:

Bag3= (Bag)Vector0.elementAt(int2);

Figure 8.23. Output from WingDis for the bytecode in Figures 8.19, 8.20 and 8.21

(part A). Due to length, the output is continued in Figure 8.24.
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...

B16:

jsr B24;

if (Bag3.capacity <= 64) goto B20;

StringBuffer1.append(" is big. ");

...B19:

goto B21;

B20:

StringBuffer1.append(" is small. ");

B21:

int2 += 1;

B22:

if (int2 < Vector0.capacity()) goto B12;

return StringBuffer1;

B24:

int4= stackVar;

StringBuffer1.append(int2);

ret int4;

g

Figure 8.24. Output from WingDis for the bytecode in Figures 8.19, 8.20 and 8.21

(part B). This code continues from Figure 8.23.
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Conclusion

\This is not the end. It is not even the beginning of the end. It is the end of the

beginning."

{ Winston Churchill

9.1 The Cost of Obfuscation

Obfuscating an application can a�ect its execution behaviour. There are three

main issues to be considered:

� Increased code size

Since control structures are added to the application, the obfuscated pro-

gram will be larger than the original.

� Increased data size

Opaque predicates based on alias analysis rely on the obfuscated applica-

tion building complex data structures at run-time. Thus, the obfuscated

program generates more dynamic data than the original.

� Increased cycle time

Introduced code, other than dead code, must be executed by the inter-

preter. Thus, the obfuscated program will require more instruction cycles

to execute than the original.

Increased cycle time is the least serious problem. Most of the introduced

instructions are dead code guarded by opaque predicates and are never executed.
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The predicates themselves will be simple operations such as pointer or integer

comparisons, which a�ect run-time performance only slightly.

Increased code size can have a severe e�ect on programs intended to be dis-

tributed across a network. The downloading time of a program will be increased

and it may execute slower due to deteriorated cache and paging behaviour. The

extra memory required to hold the obfuscated code may mean that the instruc-

tions in a commonly executed section of code cannot all �t into the cache. The

need to keep altering the contents of the cache will degrade performance.

The most serious problem is the increased data size. More dynamic data

means that the workload for the garbage collector is increased. There is also

the possibility that an obfuscated application will not execute correctly since it

exhausts all the available dynamic data storage space.

An obfuscator has to account for these factors when transforming a program.

There is a tradeo� between a highly obfuscated program and increased run-time

resource requirements. Pro�ling can determine the most frequently executed

parts of a program, and we avoid applying expensive transformations to these

parts. Not all of a program contains trade secrets, so di�erent parts of a pro-

gram can have di�erent levels of obfuscation. The obfuscator's e�ort can be

focussed on the most valuable parts of a program, so we maximise the e�ect of

transformations.

9.2 Future Work

There are many areas of our obfuscator that have to be extended. Given the time

constraints of a Masters thesis, we were unable to complete a full implementation

of the obfuscator as described in Collberg et al. [9].

9.2.1 Additional features required

Currently, our obfuscator is unable to transform methods which contain exception

handlers. It is di�cult to ensure that the behaviour of such methods is correct

after an obfuscating transformation is applied to these methods. However, a

future version of the obfuscator will be able to handle methods that contain

exceptions.

We need to implement more control obfuscations in our obfuscator. Other cat-

egories of transformations, such as data obfuscations, also need to be investigated.

Additional obfuscations will require more data 
ow analyses to be performed on

a program. For example, we need to be able to �nd very-busy expressions in

order to perform the transformation in Section 8.4.
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9.2.2 Improvements to existing features

Currently the statements which calculate opaque predicates are inserted adjacent

to each other in the program. These statements should be distributed throughout

the program, so that identifying such predicates is made more di�cult. Hence

we need to add a control ordering transformation that reorders statements.

When we insert opaque predicates based on mathematical facts, we do not

check whether over
ow occurs. We should either determine that over
ow does

not occur whenever the predicate is evaluated, or we can guard the predicate

with additional conditions.

A graphical user interface (GUI) is under development to make our obfuscator

easier to use. The GUI will be constructed as a front-end to the existing command

line interface. The user communicates with the GUI, which communicates with

the command line interface and provides feedback to the user.

We want our obfuscator to avoid using expensive transformations on the most

frequently executed parts of a program, which can be identi�ed by a pro�ler. We

need to make the basic block representation available to this pro�ler so that it

can maintain execution counts for the basic blocks. Such a pro�ler has been built

but is not yet completely integrated into the obfuscator.

9.3 Summary

Our Java obfuscator has focused mainly on control 
ow obfuscations. However,

there is much more work to be performed in this area. Of particular interest are

opaque constructs, which are covered in depth in Collberg et al. [11].

This thesis has given a broad outline of data obfuscations and preventive

transformations. Further work on data obfuscations is in Bertenshaw [6] and

Collberg et al. [10].
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Obfuscation Modules

\I am a brain, Watson. The rest of me is a mere appendix."

{ The Marazin Stone, Sir Arthur Conan Doyle

An obfuscating transformation module is de�ned by a Prolog source code �le.

The �le de�nes the following routines:

� AnalyseObfuscation (T , D)

This routine analyses the transformation T to determine its features. These

features tell the obfuscator to which kinds of source code object the trans-

formation can be applied. D is the additional data needed to analyse the

transformation. Currently it is an empty language features set, which the

AnalyseObfuscation routine adds elements to form the features set of T .

� AnalyseQualities (T , S)

Associated with T are the potency, resilience and cost measures. This

routine returns these measures when the transformation is applied to the

source code object S.

� Obfuscate (T , S)

Applies T to the source code object S and updates the language fea-

tures (Ps(S)) and the appropriateness set A(S).

� Any supporting routines required by the transformation.

The use of a module system makes adding new transformations to the obfus-

cator easy. All that is required is to add the �le name of the new obfuscating

transformation module to the list of Prolog source �les to be loaded by the Prolog

interpreter. After loading the �le, the new obfuscation will be available.
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A.1 The Insert Bogus Branch

Transformation

As an example of an obfuscating transformation, we present the insert bogus

branch transformation. This transformation inserts into a method's code a branch

that is never taken. The branch may be either forwards or backwards, and may

convert the control 
ow graph of the code into an irreducible control 
ow graph.

That is, this transformation can be either a \Smoke and Mirrors" obfuscation or

a high-level language breaking obfuscation.

This transformation uses a P F predicate to ensure that the inserted bogus

branch is never taken. So the obfuscation qualities of the insert bogus branch

transformation depend upon those of the predicate that is selected. In fact the

qualities of the opaque predicate that is inserted are used as the qualities of the

transformation.

We have presented pseudo-code instead of the actual Prolog code, for sake of

clarity and brevity.

Interface Routines

AnalyseObfuscation(insertBogusBranch, D)

Ps(T ) := D [ fkind = [ bb ]g;

RETURN Ps(T );

The kind of source code object (Section 7.1) that the insert bogus branch trans-

formation processes are basic blocks (bb).

AnalyseQualities(insertBogusBranch, S)

Tpot(S) := variable;

Tres(P ) := variable;

Tcost(P ) := variable;

RETURN (Tpot(S), Tres(P ), Tcost(P ));

S is a source code object. The potency, resilience and cost of the insert bogus

branch transformation are determined from the opaque predicate that is used.

Obfuscate(insertBogusBranch, S)

S 0 := InsertBogusBranch(S);

RETURN S 0;

This routine applies the actual obfuscation routine for the insert bogus branch

transformation to source code object S.
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Support Routines

InsertBogusBranch(B)

P := SelectLibPred(B, f evaltrue = 0.0 g);
M := the method to which the basic block B belongs;

Btarget := SelectTargetBB(M, B);

B0 := InsertBogusBranch(M, B, Btarget, P);

RETURN B0;

B is a basic block. The SelectLibPred routine chooses the most appropriate

opaque predicate P to insert into the control 
ow graph. An additional constraint

is the fact that P must always evaluate to false. That is, the probability that it

evaluates to true is 0.

The SelectTargetBBNum routine chooses a basic block Btarget which is to be

the destination of the inserted branch. The InsertBogusBranch routine inserts

a branch to Btarget. This branch is inserted before B and is guarded by P , which

always evaluates to false. Hence this branch will never be taken | it is a \bogus"

branch.

SelectTargetBB(M, B)

C := the control flow graph of M;

L := the set of basic blocks that belong to C;

E := the exit basic block of C;

L0 := C n fB;Eg;
Btarget := a random basic block from L0;

RETURN Btarget;

The exit basic block of a method M is not selected as a target of the bogus

branch because it does not actually contain any instructions. It is added to the

control 
ow graph of a method to represent the fact that the execution path has

left the method (Section 7.4.2).

The basic block B is also not selected because the bogus branch is inserted

before B. It is pointless if B is the destination of the branch because it is obvious

that the branch is bogus.

InsertBogusBranch(M, B, Btarget, P)

C := the control flow graph of the method M;

I := a new branch instruction, whose destination is the

basic block Btarget;

P 0 := AppendInstr(I, P);

C 0 := InsertBBBefore(C, P 0, B);
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Update the control flow graph C 0:

Make P 0 the predecessor of B;

Make B and Btarget the successors of P 0;

For each original predecessor Ai; 1 � i � n of B do:

Replace B with P 0 as the successor of Ai;

Add Ai to the set of predecessors of P;

Make C 0 the control flow graph of M;

RETURN B;

M is the method to which the basic block B belongs. The AppendInstr rou-

tine adds the instruction I to the end of the predicate basic block P . The

InsertBBBefore routine inserts the predicate basic block P 0 before B in the

control 
ow graph C.

The rest of this routine updates the control 
ow graph of the method M .
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The Opaque Predicate Library

Many control-
ow altering transformations implemented by our obfuscator use

opaque predicates. We therefore provide a library of opaque predicates in our

obfuscator. The scheme for selecting and inserting opaque predicates is presented

in this section.

B.1 Selecting an Opaque Predicate

We want to choose the most potent, resilient, cheap and stealthy opaque pred-

icate to insert into a program. We may also specify the kind of the opaque

predicate (P T , P F or P ?) that is required. So the �rst task of the predicate

library is to ensure that only the right kind of predicate is chosen. The appro-

priateness measure can then be used to determine which predicate has the best

combination of the obfuscation measures.

B.2 Opaque Predicate Attributes

The attributes of opaque predicates are listed in Table B.1.

Note that the features attribute is determined by the obfuscator at run-time,

so it does not need to be hard-coded into the opaque predicate libraries. This

means that the opaque predicate libraries require less disk space to store. Also

the opaque predicate libraries are more 
exible. If the set of language features

examined by the obfuscator is extended, there is no need to alter the opaque

predicate library �les.

The params attribute is a list of variables used by the opaque predicate code.

These variables must be replaced with actual variables from the program, which
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Attribute Description

name opaque predicate name

code opaque predicate code

evaltrue proportion of times the opaque predicate will evaluate to true

features opaque predicate code language features

params set of variables in the opaque predicate code

quality quality of the opaque predicate

Table B.1. Opaque predicate attributes.

transforms the opaque predicate code into a form that can be inserted into the

program.

The quality attribute is partly calculated at run-time. The potency, re-

silience and cost of an opaque predicate are stored in the predicate library, while

the stealth is calculated from the features attribute of the predicate and the

language features set of the source code object.

name
code
evaltrue
features
params
quality

Predicate

Source
Code Object

Attributes:

(PT ; PF or P?)
Predicate Type

Simple
Predicates

Graph
Predicates

Predicate Libraries

Figure B.1. The function of the predicate libraries.

B.3 Inserting an Opaque Predicate

Before we can insert an opaque predicate P into a program, we need to replace

the variables in P with actual variables from the program. Suppose that P is

to be inserted before a basic block B. B is a node in the control 
ow graph of

a method M , which is de�ned by the class C. A1; : : : ; An are the predecessors

of B in the control 
ow graph of M . The variables from the program that we

can use in P will be the variables that can be used in B. That is, we can use the
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variables from the locals set of B and the �elds of C to replace the variables in

the template code of P . If more variables are needed than are provided by the

sources above, we can add additional local variables to M , or additional �elds

to C.

Suppose that we have replaced the variables in the template code for P with

variables from the program. To insert P before B, we need to alter the control


ow graph of M using the algorithm in Figure B.2.

UpdatePredCFG(P, B)

Make P the only predecessor of B;

Make B the only successor of P;

For each original predecessor Ai; 1 � i � n of B, do

In the set of successors of Ai, replace B by P;

Add Ai to the set of predecessors of P;

Figure B.2. Algorithm to alter the CFG when a predicate is inserted.

B.4 The Simple Opaque Predicates Library

Table B.2 lists the opaque predicates based on mathematical facts that are im-

plemented by our obfuscator.

name code evaltrue params

simple1 if(7y2 � 1 == x2) 0.0 x::int, y::int

simple2 if((x2 + x) % 2 == 0) 1.0 x::int

simple3 if((x3 � x) % 3 ! = 0) 0.0 x::int

simple4 if((x% 2 == 0) jj 1.0 x::int

((x2 � 1) % 8 == 0))

simple5 if(x2=2% 2 ! = 0) 0.0 x::int

Table B.2. The simple opaque predicates library.

Simple opaque predicates are assumed to have medium potency, strong re-

silience and low cost. This information is stored in the quality attribute.

The simple opaque predicates library also contains a routine to change the

kind of a predicate from P T to P F and vice versa. Consider the predicate

if(7y2 � 1 == x2), whose evaltrue attribute is 0.0. We can change the kind of

this predicate from P F to P T by changing the comparison from == to !=.
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B.5 The Graph Opaque Predicates Library

The graph operations de�ned by this library use the Graph ADT primitives de-

�ned in Section 4.2.5. These operations are not opaque predicates in their own

right. Instead they either invoke the Graph ADT primitives or are patterns, which

are sequences of primitives. The operations manipulate a graph, while maintain-

ing certain properties, so that the graph can be used to construct an opaque

predicate.

Predicates based on graph operations are assumed to have high potency, full

resilience and low cost. This information is stored in the quality attribute.

The attributes of graph operations are listed in Table B.3.

Attribute Description

external set of external variables to be substituted

kind kind of entry

pattype type of pattern

variants maximum variant values

Table B.3. Additional attributes for graph operations.

The kind �eld has four values, which distinguishes the four categories of graph

operations:

1. initialisation

These operations invoke the primitives which create the initial graph.

2. test

These operations test whether certain properties of a graph hold. One

property is whether two node pointers reference the same node, which is

always false if the pointers refer to nodes in separate connected components.

3. primitive

These operations invoke the primitives which manipulate a graph, such as

the addNode family which inserts a new node into a graph.

4. pattern

Patterns are sequences of graph primitives. The e�ects of these patterns on

a graph are known, so we can construct opaque predicates by applying a

number of patterns to a graph and then testing this graph for a particular

property. For example, the Split pattern breaks a graph into two separate

connected components.

The external attribute is a set of variables used by a graph operation in

addition to the variables in the params attribute. This attribute allows the
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selectNode4 and selectNode4b primitives, which use mutual recursion on an

integer parameter n, to be implemented (Figure 4.5). The additional variables

are to be replaced when the entire opaque predicate is inserted into a method's

code. The variables in the params attribute are replaced during the construction

of the opaque predicate.

Graph operations whose kind �eld has the value pattern, also de�ne the

pattype and variants attributes.

The pattype attribute determines how the pattern a�ects the connectivity of

a graph. This attribute has three values:

1. splitting

After the pattern is applied, a graph will consist of two separate compo-

nents.

2. joining

After the pattern is applied, a graph will consist of a single component.

3. static

The pattern does not a�ect the connectivity of a graph.

Each pattern in the library is parameterised. The parameters determine which

variants of the primitives can be used. The variants attribute lists the primitive

variants that can be used and the variables which need to be replaced. For

example, if selectNode(1)/[a/r, b/p] appears in the code for a pattern, it

will be replaced with the code for the selectNode(1) primitive. The a and b

parameters for the primitive will be replaced by the variables r and p respectively.

The graph operations do not have an evaltrue attribute. Instead we keep

track of the properties of a graph as the code patterns are applied to it. This

information is supplied by the pattype attribute. Suppose that we want to

construct an opaque predicate that is always false. We create a new graph and

apply code patterns to it. We ensure that the graph is divided into two separate

components, by applying the splitGraph pattern to the graph and then only

applying code patterns that do not join the two components. If p points to a

node in one component and q points to a node in the other component, then p

== q will always be false.

The graph opaque predicate library is in Tables B.4 and B.5. N stands for

object(`Node') and S stands for object(`Set').
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name kind code params external

newNode initialisation new Node()

test test if(p == q) p::N, q::N

addNode(1) primitive p.addNode1() p::N

addNode(2) primitive p.addNode2() p::N

selectNode(1) primitive p.selectNode1() p::N

selectNode(2) primitive p.selectNode2() p::N

selectNode(3) primitive p.selectNode3(n) p::N n::int

selectNode(4) primitive p.selectNode3b(n) p::N n::int

reachable primitive p.reachable() p::N

splitGraph primitive p.splitGraph(a,b) p::N,

a::S, b::S

setDi� primitive a.setDiff(b) a::S, b::S

Table B.4. The primitive routines of the graph opaque predicates library.

name

variants code params pattype

insert(I,J)

I 2 [1 : : : 4],

J 2 [1 : : : 2]

if (P == null)

return new Node();

else f
r = selectNode(I)/[p/P];

return addNode(J)/[p/r];

g

P::N,

r::N

static

move(I)

I 2 [1 : : : 4]

return selectNode(I)/[p/P]; P::N static

link(I,J)

I 2 [1 : : : 4],

J 2 [1 : : : 2]

q = selectNode(I)/[p/P];

r = selectNode(J)/[p/P];

if (r.car == r)

r.car = q;

P::N,

q::N,

r::N

joining

split(I)

I 2 [1 : : : 4]

Q = selectNode(I)/[p/P];

a = reachable/[p/P];

b = reachable/[p/q];

c = setDiff;

splitGraph/[p/P, a/c, b/b];

return Q;

P::N,

Q::N,

a::S,

b::S,

c::S

splitting

Table B.5. The patterns of the graph predicates library. For all of these patterns,

the kind attribute is pattern and the external attribute is an empty set.
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The Set Abstract Data Type

In this chapter we give the Java source code for the Set ADT. The implemen-

tation is not a complete ADT for sets | only those operations required by the

Graph ADT de�ned in Section 4.2.5 are de�ned. Note that the Set ADT uses

the Hashtable class from the Java library routines.

public class Set f

protected Hashtable theSet;

public Set() f this.theSet = new Hashtable(); g

/* Accessors */

public void setSet(Hashtable newSet) f this.theSet = newSet; g

public Enumeration elements() f return this.theSet.elements(); g

/* Returns true if the set contains the element,

otherwise returns false */

public boolean hasMember(Object elt) f

return this.theSet.containsKey(elt);

g

/* Adds an element to the set */

public Set insert(Object elt) f

this.theSet.put(elt, elt);

return this;

g

131
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/* Removes the items in set B from the current set */

public Set setDiff(Set B) f

Set newSet = new Set();

Enumeration enum = this.elements();

while (enum.hasMoreElements()) f

Object elt = enum.nextElement();

if (!B.hasMember(elt)) newSet.insert(elt);

g
return newSet;

g

g
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