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ABSTRA

Abstract

The established methodologies for studying computational complexity can be 

applied to the new problems posed by very large-scale integrated (VLSI) circuits. 

This thesis develops a "VLSImodel of computation" and derives upper and lower 

bounds on the silicon area and time required to solve the problems of sorting and 

discrete Fourier transformation In particular, the area A and time T taken by any 

VLSI chip using any algorithm to perform an N-point Fourier transform must satisfy 

AT2 > cN2!og 2N, for some fixed c > 0. A more general result for both sorting and 

Fourier transformation is that AT2x = \Omega(N^{1+x}log^{2x}N) for any x in the range 

0< x < 1. Also, the energy dissipated by a VLSI chip during the solution of either 

of these problems is at least \Omega(N^33/ 2/og N). The tightness of these bounds is 

demonstrated by the existence of nearly optimal circuits for both sorting and 

Fourier transformation. The circuits based on the sh uffie-exchange interconnection 

pattern are fast but large: T = O{log 2N) for Fourier transformation, T = O{log 3 N) 

for sorting; both have area A of at most O(N 2/log 1/ 2 N). The circuits based on the 

mesh interconnection pattern are slow but small: T = O(N1/ 2/oglog N), 

A=O(N!og 2N). 

Keywords: Computational complexity, information theory, graph embedding, 

mesh connections, shuffle-exchange connections, parallel algorithms, sorting, 

Fourier transfmmation, VLSI, area-time complexity. 





TABLE OF 

Tableof Contents 

1. Introduction 3
1.1 Units of area, time, information, and energy 6 
1.2 Problem definitions 9 

1.2.1 Discrete Fourier transformation 10 
1.2.2 Sorting 12 

13 Notation 13 
1.4 Related work 13 

20 The VLS! model of computation 19 

2.1 Lower bounds 22 
2.2 Correspondence to VLS{ chips 28 
23 Upper bounds 41 
2.4 Relation to the model of Mead and Rem 48 

3. Lower bounds 51 

3.1 Minimum bisection width 52 
3 . .2 Area 54 
33 Time bounds 60 

3.3.1 Discrete Fourier transformation 67 
3.3.2 Sorting 73 

4. Upper bounds 77 

4.1 Algorithms 78 
4.2 Recirculation algorithms 84 
4.3 VLSI implementations of the FFT 85 

4.3.1 Performing the FFf on a mesh . 85 
43.2 The multiply-add cell 90 
4.3.3 The FFT on shuffle-exchange connections 98 
4.3.4 Area bounds for the shuffle-exchange graph 104 

4.4 VLSI implementations of sorting 108 
4.4.1 Sorting on shuffle-exchange connections 108 
4.4.2 The comparison-exchange cell 110 
4.4.3 Sorting on mesh connections 112 

4.5 Constant factors in the VLSI implementations 116 

5. Conclusion 119 

Appendix A. Control program for cell 0 of a mesh-based FFT 123 
Circuit 



A CUMPL; ':TY ~.:;OR VLSI 



INTRODUCTION 

Chapter 1 

lntrodu tio 

f"AGE 

Very large-scale integrated (VLSI) circuit technology has profoundly changed the 

size and speed of computing structHres. A VLSI microcomputer occupies less than a 

square centimeter of silicon, yet outperforms several cubic feet of twenty-year-old 

computer components. The circuit densities attainable with VLsr are already 

staggering, and further improvements lie on the horizon. Chips with one hundred 

thousand transistors are feasible today. This figure may well increase to ten or 

twenty million in the next decade [lYiead 80]. 

The computational power of a chip is often measured by the number of 

transistors it contains. This is a misleading approach, for the organization of a chip's 

circuitry has a very strong effect on its size and speed. In general, the more regular. 

chip designs make more efficient use of silicon area. Such designs use less area for 

the wiling between transistors, leaving more room for the transistors themselves. 

This explains why present~ day technology cc:m put one hundred thousand transistors 

on a memory chip but only ten thousand transistors on a "random logic" chip. It 

nlso indicates that circuit size is more naturally measured by area than by cminting 

transistors. 

This thesis explores the relation between the speed and size of VLSI circuits, using 

the methodology of complexity theory. The first step in this methodology is to 

devise an accurate and precisely-defined model of a VLSI chip. It is then possible to 

derive limits on the area and time performance of any chip built according to the 

mles of the model. This thesis proves both upper and lower bounds on VLSI chip 

performance. A sample lower bound is that any chip that performs an N-point 
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?ou.rier m time- have mea A snough 

AT2 > cN2!og 2N, for some fixed c > The corresponding bound is 

obtained by designing a chip that can solve a Fourier transfonno The designs 

presented in 

that there is 

bounds. 

thesis are 

much room 

optimal in AT2 performance, demonstrating 

improvement in either upper or the lower 

The use of a new model of computation this thesis is justified by the novel 

aspects of VLSI design. As indicated above, the size of a VLSI chip is best measured 

by its area. The useful area of a chip is devoted to transistors and wires; neither can 

be neglected in a realistic model. Unfortunately, Turing machines and other 

traditional models of computation lack the concept of wire area. Yet it is precisely 

this concept that is used in Chapter 3 to prove lower bounds on area-time 

performance.· 

The main results of this thesis are expressed as area-time tradeoffs. The product 

of chip area A with the square of the time Tit takes to perform an N-element 

Fourier transform or sorting problem must satisfy AT2 = Q(N2log 2N). That is, 

AT2 > cN2log 2Nforsome fixed c > 9 and N > N0 . This lower bound is nearly the 

best possible, in the sense that there exist both fast, large chips and slow, small chips 

that nearly achieve these bounds. The small chips solve their problems in time 

proportional to N 1/ 2!oglog N, using area proportional to N log 2N. The near

optimality of these designs is immediate, since their AT2 performance exceeds the 

lowe! bound quoted above by a factor of only O(loglog 2N). The fast chips are also 

near-optimal. The Fourier transform chip· operates in O(log 2N) time, while an . 

analogous design solves a sorting problem in O(log 3N) time. Both chips occupy 

O(N2/log 1/ 2N) area. 

A more general result bounds the performance of any chip with area A that takes 

time T to solve an N-element sorting or Fourier transformation problem: 

AT2x = Q(Nl+xtog 2xN), for all x such that 0 ::;_ x < 1. Each value of x 

corresponds to a utility function AT2x with slightly different weights given to area 
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and perfcrmance. The on perfcm-:Jance · v;:;n above; is 

merely a special case (x = of this general result 

The general lower bound implies that a chip with performance A = O(JV) and 

T = O(N l/2log N) would be optimal under any AT2x metric, 0 < x < 1. The slow, 

small chips described above come quite close to these performance figures. The fast 

and large chips are far from optimal in this general sense. They only approach 

optimality when xis nearly 1, that is, when time is much more important t..l-}an area. 

The following section discusses units of measurement of VLSI circuits from a 

physical standpoint. The product of chip area with time is shown to be a measure of 

energy, leading to the following corollary of the general lower bound result at least 

Q(N J/2log N) units of energy must be dissipated during the smting or Fourier 

transformation of N numbers on a VLSI chip. 

The remainder of the current chapter (Sections 1.2 through 1.4) is devoted to a 

definition of the problems of sorting and Fomier transformation, the establishment 

of some notational conventions, and a review of the relevant literature. 

Chapter 2 develops a "VLsi model of computation" as a basis for the derivation of 

lower and upper bounds on chip performance. T'11e notion of a "communication 

graph" is introduced as the formal analog of a VLSI chip. Communication graphs 

correspond to VLSI chips, according to the scheme described in this chapteL 

Lower bounds are the subject of Chapter 3. A key parameter of any 

communication graph is defined, its "minimum bisection width." The minimum 

bisection width of a communication graph determines lower bounds on the area and 

speed of its corresponding VLSI chip. In brief, the mea A of a chip is at least 

proportional to the squme of the width of its communication graph, w2. The 

maximum-possible speed of a chip also increases with its width; more precisely, 

T = Q(N log N)/w. Multiplying the first inequality by the square of the second 

gives the lower bound AT 2 = Q(N 2!og 2N), With the additional assumption that 

the area A is at least Q(N), the relation becomes AT2x = Q((N + w2)(N log N)/w2 x). 
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It :hat choosing w .-c"'"" minimizes AT2x , leading 

to the general lower bound AT2x = Q(N 1 +xtog 

Chapter 4 develops near-optimal chip designs, providing upper bounds on 

achievable VLSI performance. Four designs are presented: "fast" and "slow" chips 

for bot.~ the sorting and Fourier transformation problems. The fast chips are based 

on the shuffle-exchange interconnection pattern, while the slow ones are based on 

mesh-type connections. 

1.1 Units of area, time, information, and energy 

A VLSI chip may be thought of as a multi-layered, planar stmcture. Transistors 

are formed on the surface of a silicon substrate, and cannot be stacked on top of 

each other. Above them is one or more layers of interconnect material (often a 

metal) that is selectively etched away to form connections or wires between the 

transistors. The conductive layers are normally insulated from each other, so that 

wires can cross over one another if they are formed in different layers. \Vire 

segments in different layers can be connected to each other, if a "via" or hole is 

formed in the insulation. 

For concreteness, the area calculations of this thesis assume there is only one 

layer of interconnect ·material, and that wires are laid out on a rectangular grid. 

Thus wires may meet only at right angles. Wires may also cross over each other at 

right angles, lf one of them makes a short mn in a heavily doped "channel" in the 

silicon substrate. 

The upper and lower bound results of this thesis could be extended to cover chips 

with multiple layers of interconnection, as indicated by the discussion on page 36 

and by Theorem 3: k layers of interconnection decrease chip area by at most a 

factor of k 2. There is little immediate importance to such an extension, since 

current chips use at most two layers of interconnection. Future chips are also likely 

to have a small number of layers, due to manufacturing difficulties and costs. Each 
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intercDrmectiort reqmres one or additlor"Jal steps, 

define where the wires are to run. Every manufacturing contributes to chip cost 

both directly (because increased fabrication time) and indirectly (because 

reduced yields). Thus VLSI will continue to be essentially planar until radical 

advances are made in fabrication techniques" 

For convenience, the assumptions of the VLSI model of computation made in this 

thesis are numbered in order of appearance md collected in a list on page 44. ([n 

this list, each assumption is split into two parts, labelled "L" and "U." Part "L" 

contains the suppositions strictly necessary for the lower bound proofs, while part 

"U" contains the additional suppositions needed by the upper bound constructions") 

The assumptions made in the previous paragraphs may be summarized as (Ll): 

horizontal and vertical wires are formed in a single planar layer, although two wires 

may cross each other at right angles. 

There is a natural unit of area for VLSI. Manufactming and physical limitations 

give rise to a minimal spacing between the centers of parallel wires. In the 

terminology of lYicad and Conway [Mead 80], this minimal spacing is 11\. The 

square of this length, 16 .. A.2, is thus a convenient area unit The area of a chip can be 

expressed in tem1s of unit squares, leading to (Ll, extended): one unit square is just 

large enough to conL1in one small transistor or one wire cross-over, and just wide 

enough to allow one wire to enter through each (unit-length) edgeo The 64K RAi\1 

currently available has an area of about 10 67\2, and chips of 10 8 or 10 9;..._2 may be 

possible [Mead 79]. 

111e total area of a VLSI chip may be evaluated in two ways. In production, it is 

tlJ.e mask size that is important, that ls, the area of the smallest bounding rectangle. 

This is another impmtant assumption, (U2): the area of a bounding rectangle is used 

to describe the upper bounds (circuit constructions) of this thesis. On the other 

hand, the lower bounds derived here measure only the area actually occupied by 

wires. This is assumption (L2). It strengthens the lower bound results and allows 

the derivation of bounds on energy dissipation, as noted later in this section. 
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lnformatiDJI measured One bit 
c> • 

1.nrmmat10n the 

an event which there were two likely possibilities. For example, a one~ 

bit signal can communicate the result of flipping a fair coin (heads or tails). More 

generally, the infom1ation content of an event has outcome vvith probability Pi 

is L.(-Pi log p1) bits [Shannon 49]. This quantity is also called the entropy of the 

probability distribution P, 

The unit of time is defined by (L3): a unit-width wire has at most unit bandwidth. 

In other words, a signal that encodes one bit of information has a duration of at least 

one time unit. For binary logic, a lower bound on the length of the time unit is the 

duration of the shortest pulse that can change the state of a circuit 

The definitions of area, time, and information given above are chosen to simplify 

the theoretical model. Their values in actual implementations will depend on 

engineering decisions. For example, the unit of time will probably be stretched by a 

factor of ten or more to allow for propagation delay and synchronization overhead. 

In any event, the asymptotic results of this thesis will be valid to within a constant 

factor as long as the definitions of area an9. time remain fixed. TI1ese units of 

measurement must not change with the size of the circuit being built or with the size 

N of the problem being solved. 

Unit values for area and time in a currently feasible MOS technology are 10 p.m 

and 50 ns, respectively [Mead 80]. In other words, wires are at 10 ,u.m spacings and 

the clock signal used for synchronization has a period of 50 ns. The units of AT 2 in 

this case are 250000 p.m2ns2. Anticipated advances in technology will reduce unit 

widths and times by a factor of 10, bringing the AT2 unit to 25 p.m2ns2. 

A unit of energy is defined by the product of the units of area and time. vVhen a 

signal is sent from one transistor to another, the driver must charge (or discharge) 

the capacitance presented by both the wire and the receiver. 'TI1e energy required to 

charge a capacitor is proportional to its capacitance, so that the energy consumed by 

a wire or a transistor is proportional to its area (the constant of proportionality 
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depends on ':'; way 'Nhich chip is Thus" can s;J.ld that .cj;1e 

unit of energy is consumed one of chip area eveD; time it is involved in the 

transrnission a signaL 

The proofs of Chapter 3 place a lower bound on the amount of wire that must be 

active continuously if a circuit is to compute a function in a given time T. The 

general lower bound on AT2x performance can therefore be used at x = 1h to give a 

lower bound on the total energy required to compute a function: 

AT= Q(N 3/2/og N), for both sorting and Fourier transformation. 

The unit of energy for a MOS chip can be evaluated in the following way. 

Curr-ently, wires have about Jo-3 pF of capacitance per unit area (100 JJ.m2), 

Assuming that the signal voltage swing on a wire is 4 volts, .008 pJ of energy 

( lhCV2) is needed to charge each unit of wire area, each time its voltage is 

changed. T'hus the product of wire area with the amount of time it is actively 

transmitting data has the dimensions of energy, and units of .008 pl. This energy 

unit will be reduced to 8 X 10 -B pJ, when lengths, times, and voltages are scaled 

down by the predicted factor of 10 [Mead 80]. 

"1.2 Problem definitions 

The two computational problems treated in this thesis are functions of N 

variables onto N variables. A VLSI chip js said to solve one of rhese problems if it 

can produce the appropriate N output values from any vector of N input values. 

Input and output values remain on the chip. This assumption is in accordance with 

a paradigm of comparing a VLSI chip with a conventional computer. Just as 

complexity issues can be studied without reference to the I/0 devices on a 

conventional computer, there is no need to model off-chip communication if there is 

a very large amount of memory on the chip. (The assumption of on-chip 

computation is implicit in assumptions L6 and L7, as defined in Section 2.1.) 

The values for problem variables are chosen from the elements of a finite set. 
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f . b' " d'' o a vana ,e m,:~y as a wor · 

number of bits. If there are no more than M possible 

a word length of r log lvfl bits can be used. 

bounded 

for each variable, t."len 

A particular assignment of values to input variables constitutes a "problem 

instance." These values must be chosen independently and uniformly, leading to 

(L4): there are N equally likely problem instances, if each of the input variables 

can take on different values. Assumption L4 is more powerful than it may appear 

at first glance. Its insistence on an independent, uniform distribution of input values 

allows many algebraic simplifications in the derivation of time bounds, as will be 

seen in Section 3.3. 

A chip is said to solve a problem in average time T if it takes an average ofT units 

of time to solve one of the M N equally likely problem instances. In a similar 

fashion, a chip is said to solve a problem in worst-case time T if it takes no more than 

Tunits oftime to solve any instance of the problem. 

For lower bounds, an average-case result is strictly stronger than an equivalent 

worst-case result. A chip with an average-case time of at least T must also have a 

worst-case time of at least T. The lower bound on Fomier transformation covers the 

average case, while the sorting lower bound applies only to the worst case. 

Obtaining a lower bound on achievable perfmmance for the average case of a 

sorting chip remains an open problem., 

The upper bound results of this thesis use nonadaptive (straight-line, non

branching) algorithms, so that the chips operate at the same speed on any problem 

instance. The best-, average-, and worst-case performances of the chips are thus 

identical. 

i .2 .1 Disc rete Fourier transformation 

The central problem studied in this thesis is the computation of the discrete 

Fourier transfmm, or DFT. The DFT may be defined as a matrL'\-vector 
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multiplication, ;1 x =, " where A is The" ut 

vector is .Yand the outp vector is y; both are of length N. The elements ofthe·iV~ 

by-N matrix A are constants detenn.ined by the structure of the ring in which the 

computation is performed. 

A ring is defined by a set of elements and the rules for adding and multiplying 

elements. The values of variables in x and y must be chosen from the elements in 

the ring. For the reason noted in the previous section, there can be only a finite 

number of values for each of the problem variables. The customary definition of a 

Fourier transform over the (infinite set) of complex reals is thus inadmissable here; 

only finite rings will be considered in this thesis. 

The structure of the ring over which the DFT is defined has some impact on the 

properties of the transform. It is customary [Agarwal 75, Aho 74, Bonneau 

'13, Nicholson 71] to restrict attention to commutative rings with additive and 

multiplicative identity elements, a principal Nth root of unity, and a multiplicative 

inverse for N. Such rings lead to DFTs with most of the properties associated with 

Fourier transforms in the field of complex numbers: invertibility, orthogonality, 

and the cyclic convolution property (Agarwal75]. 

A pmticularly suitable ring for the DFT is the integers {0, 1, ... , lvi-1} under 

addition and multiplication modulo M. The prime factorization of the modulus .AI 

characterizes this ring. If 

1 rl '2 rk 
1\1, =PI P2 · · · Pk , {1.1) 

then there is an Nth root of unity and an element N -I if and only if N divides the 

greatest common divisor of {p1 -1, p2 -1, ... ,pk -1} [Agarwal 75, Bonneau 73]. 

An immediate implication of this result is that 1tf > N. 

If the constant a is a principal Nth root of unity, the matri'< A in the dellning 

equation y = Ax is given by 

A[i,j} = a ij' for 0 < i,j < N. {1.2) 

The elements A[i,l} are all distinct [Agarwal 75]. 
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The length of the transform, N, determines what algorithms may be used to 

compute a DFT. Winograd's [Winograd 76] DFr algorithm is based on a 

recognition of this effect. The upper bounds of Chapter 4 are implementations of 

the "fast Fourier transform" or FFT [Aho 74], and thus assume (U4): N is a power 

of 2. In contrast, the lower bounds of Chapter 3 apply to all N. 

. The Fourier transform circuits of Chapter 4 use an additional assumption, also 

part of (U4): log lvf = O(log N). This assumption allows the value of any input or 

output variable to be coded in O(log N} bits, so that the dependence of circuit size 

on A1 can be expressed in terms of N alone. An interesting existence question is 

raised by this assumption. For arbitrary N, there had better be a ring modulus Af of 

appropriate size capable of supporting an N-element DFT. According to Agarwal's 

result, cited above, an N-element DFT exists in a ring of prime modulus ivf iff JVJ is 

ofthe form qN+l. Fortunately, it can be shown [Wagstaff79, Linnik 44] that the 

least prime JVI of this form is bounded by' a polynomial in N. A word-length of 

log J'vf = O(log N) bits, is thus available for any N-element DFT. Assumption U4 

merely states that the circuit constn1ctions of Chapter 4 use nearly miniillal word

lengths. 

1.2.2 Sorting 

'"The N inputs to a sorting chip may be thought of as integers between 0 and 

lvf -1. This analogy to the integers is intended to convey two things. First; the 

input values are members of a linearly ordered set, so that a "greater than" relation 

is defined. Second, there are exactly .NI different possibilities for each input value. 

TheN outputs of a sorting chip are a permutation of the inputs into sorted order. 

That is, output Yo is the smallest input value, output y1 is the second smallest, and so 

forth. 

Tne lower bound of Theorem 15 requires an addition to assumption (L4): 

Af = N 1 + e for some fixed positive e. Note that some lower limit must be assumed 



INTRODUCTI:ON PAGE13 

for El order obt2':' a .resu li.. Por· ~,·;·,1ple ___ • 1. .. cul , sorting 

= 1 is trivial; no computation is required tel' determine that aU output values are 

0, 

1 .3 Notation 

The following functional notation is used throughout this work. 

f(n) = O(g(n)) "jis big 0 of g," an upper bound within a constant factor. There 
exists a positive constant c tor which f(n) < cg{n) for all 
sufficiently large n. 

f(n) = 8(g(n)) "/is theta of g," an exact bound v;ithin a constant factor. There 
exist postttve constants c1 and c2 for which 
c1 g(n) < f(n) < c2 g(n) for all sufficiently large n 

f(n) = Q(g(n)) "/is omega of g," a !ower bound within a constant factor. There 
exists a positive constant c for which f(n) > cg(n) for all 
sufficiently large n. 

rxl "ceiling Of X," the least integer greater than Of equal to X. 

lxJ "floor of x," the greatest integer less than or equal to x. 

log x the base two logarithm of x. 

logYx {log x)Y. 

!oglogYx {loglog x)Y. 

/X/ the number of elements in the set Ji or dimensions in the vector · 
X. 

/{X}/ the number of distinct values in the sample space of the (discrete) 
random variable X. 

1.4 Related work 

Three existing areas of inquiry shed light on the problems studied here. First, 

applications of a theory of graph embedding in the plane, such as printed circuit 

board wire routing, are relevant to the essentially planar VLSI technology. Second, 



PACE A COi'v1PLE,~j-iy 

the computation VLSI 1s other 

information theoretic models, Third, the area-time derived in this thesis may 

be contrasted with the space- time tradeoffs observed in more traditional models of 

computation. 

embedding. Results in this area are written in a wide of styies, from 

a hard-nosed pragmatic approach to a carefully-formalized theoretical treatment. 

On the practical end, the problem of wire and chip placement on printed circuit 

boards is quite similar to the problem of wire and circuit placement on the surface of 

VLSI chips. Donath [Donath 79] derives upper bounds for wire length in both 

problem domains, as a function of a parameter in the empirical "Rent's 

relationship" for logic networks. These upper bounds overestimate wire lengths by 

a factor of two or less, on a number of actual layouts. Sutherland and Oestreicher 

[Sutherland 73] estimate wiring requirements for printed circuit boards, under the 

pessimistic assumption that chips are randomly placed on the board. Both studies 

use the key idea, developed here in Section 3.1, of obtaining analytical results by 

partitioning the graph. 

Formal approaches to graph embedding also yield interesting results. Cutler and 

Shiloach [Cutler 78] study the problem of embedding bipartite graphs in the plane, 

under the rather restrictive assumption that no edge "crossovers" are allowed. 

Lipton and Tarjan [Lipton. 77] and Rosenberg [Rosenberg 79] obtain bounds on the 

cost of em beddings, under the very liberal assumption (for VLSI) that any number of 

edges may pass over a point. Leiserson [Leiserson 80] uses more natural 

assumptions in his algorithm for embedding a graph in near-minimal area. The last 

three papers cited use variants of the partitioning idea alluded to in the previous 

paragraph. Lipton and Tarjan take the idea one step further, and use the size of the 

partition to derive complexity results. lV1u_ch of their work should transfer into the 

VLSI model of computation, but this task has not yet been attempted. 

Inforw.ation-theoretic models. An information-theoretic model is defined here as 
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one of 

have a different orientation, measuring operation counts and memory requirements 

for the traditional von Neumann architecture for uniprocessors. Even so, t.1"1.e 

informational emphasis of the VLSI model of computation is far from unique. 

Among established models in complexity theory, cellular automata [von 

Neumann 66] are the most suited for informational studies. Each cell of a two~ 

dimensional array of automata changes its state as a function of the current states of 

its nearest neighbors. From an information-theoretic standpoint, each cell receives a 

packet of information from its neighbors every time urit This packet need have no 

more bits than the logarithm of the number of possible neighborhood state 

configurations. Minimal time and state solutions to cellular automata problems thus 

tend to minimize the transmission of information. Moshell and Rothstein's "bus 

automata" could be used to model the flow of information among cellular automata 

in a natural fashion [r.1oshe11 76]. 

Floyd [Floyd 72] makes use of the entropy of a memory state to obtain lower 

bounds on the number of operations needed to perform memory reorganization in a 

tvm-levei store" ·In his model, an operation is the production of a third "page" of 

information, as any function of the contents of any two pages. If nij is the number 

of records (amount of information) to be sent from the ith page to the jth page, the 

entropy of a memory state is defined as 2.: nulog nij. (Actually, Floyd's V-function is 

defined somewhat differently to handle the case that log nij is not an integer.) One 

operation can change the entropy of a memory state by at most p, where p is the 

number of records on a page. A lower bound on the number of operations needed 

to achieve a reorganization is thus the entropy of the original state (relative to that 

reorganization) divided by p" 

On another front, a theory of "distributed computing" is beginning to emerge as 

an outgrowth of research into parallel processing for database manipulation. A. Yao 

[Y ao 79] outlines some of the implications of various assumptions that might be 

made about a distributed system: one-way vs. two-way communication, 
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deterministic probabilist1c cor outations. [Abelson develops c:::-me 

analytic tools for bounding the infonnation transfer uired in the computation 

continuous, differentiable functions, Both authors treat a problem as a fixed 

partitioning Lnput data between a pair processors. distinction, thesis 

defines a problem as an input-output relation, with no partitioning assumptions. 

Space-time tradeoffs. Although operation counts and memory requirements of 

uniprocessors are irrelevant considerations for VLSI, the analytical tools to 

demonstrate space-time tradeoffs in more conventional models can be applied to 

VLSI area-time studies. 

Grigoryev [Grigoryev 76) studies the problem of computing a set of m binary 

functions. He proves that any straight-line (nonbranching, nonadaptive) algorithm 

with T steps and S storage locations satisfies ST > ml/2, if the set of functions is 

"/-independent" A similar notion of functional independence is the basis for the 

bounds of Section 3.3. Grigoryev's definition is discussed in more detail in that 

section. Savage and Swamy [Savage 79a] generalize Gri3oryev's method and apply 

it to integer multiplication. Earlier, they had found a space-time tradeoff for the fast 

Fourier transform algorithm [Savage 77]. 

Space-time bounds are often derived from consideration of a "pebble game" 

[Paterson 70, Savage 77] played on the graph of a straight-line algorithm. ·Each 

pebble corresponds to a storage register and each node represents a function to be 

evaluated. An edge leads from one node to another if the value of the parent 

appear.s as a parameter in the child's function. Nodes with no parents correspond to 

problem inputs; nodes with no children are problem outputs. Placing a pebble on a 

node means storing the value of the node's function in the pebble's register, which is 

possible only if the node's parents (the function's parameters) are all pebbled 

(evaluated and stored). Removing a pebble from a node corresponds to erasing the 

contents of the pebble's register. The object of the game is to pebble all childless 

nodes, in other words, to evaluate all the problem outputs. Time in this model is 

measured serially as the number of pebble movements, that is, the number of 

function evaluations. Space is the number of different pebbles (registers) used. 
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Fer "'!LSI, c:ne rs to interpret tne a 

different fashion. Each node could be a processor waiting for its predecessors 

send it the results of their function evaluations. Time would then be the depth of 

the graph, and space the area of the graph when embedded in the plane. The 

pebbling game seems irrelevant in this interpretation of a graph. Some pebbling 

results, however, involve proofs of necessary properties of any graph for a particular 

problem. For example, Valiant [Valiant 76] shows that any Fourier transform 

o.lgorithm corresponds to a hyperconcentrator. Pippenger's extension of this result, 

as reported by Tampa [Tampa 78], is the basis of Lemma 8 of Section 3.3.1. 

Unfortunately, most pebbling results are based on algorithms operating over the 

set of real numbers. The analytic techniques used do not always transfer into the 

modular arithmetic, or other finite algebraic structures, of the VLSI model of 

computation. 
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Chapter 2 

he LS~ model oJ cornp tati n 

A VLSI chip composed of transistors and interconnections is modeled by a 

network of nodes and wires. A node represents a transistor or a small cluster of 

transistors; as such, it receives and transmits signals over its connecting wires. A 

node may also represent a wire junction, in which case it merely copies the signals it 

receives on any one of its wires onto its other wires. Nodes and wires thus simulate 

the actions of transistors and wires on a VLSI chip. 

Nodes are capable of storing a limited amount of information. This enables them 

to model data storage elements on a VLSI chip. It also allows a collection of nodes 

and wires to be a complete, self-contained computing stn1cture. The inputs to a 

computation are stored in a distinguished set of nodes called source nodes. (These 

correspond to the "input registers" on a VLSI chip.) The output \:alues of a 

computation are collected in another set of nodes called sink nodes (the "output 

registers" on a chip). A collection of nodes and wires capable of solving a problem 

is called a communication graph. A communication graph is thus the formal analog 

of a YLSI chip. 

Section 2.1 contains precise definitions of the functional capabilities of nodes and 

wires, and the ways in which they may be put together to form communication 

graphs. Tne lower bound proofs of Chapter 3 (which apply to communication 

graphs) demonstrate that these definitions imply limits on the area and time 

performance of communication graphs. 

Every VLSI chip can be accurately modeled by a communication graph, as shown 
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bound results of Chapter 3 are valid for all 

communication graphs. 

reason, 

chips as as for an 

In Section we turn to 1ssues of upper bounds. An bound in VLSI 

model of computation implies the existence of a chip achieving the stated 

performance. Unfortunately, not all communication graphs defined in Section 2.1 

correspond to feasible chip designs. Section 2.3 remedies this difficulty by adding 

further constraints to the VLSI model of computation. Any communication graph 

satisfying the additional constraints of Section 23 is called an admissible 

communication graph. A generalized MOS process [Mead 80] may be used to 

implement a feasible chip based on any given admissible communication graph. 

Section 2.4 discusses the relationship of the VLSI model of computation with the 

similar model implicit in the work of Mead and Rem [l\t!ead 79]. 

The methodology of this chapter is summarized by the Venn diagram of Figure 

2-1. TI1e universe being studied is that of "all computational structures" that fit in 

area A and solve an N-element problem Pin time T. A (possibly empty) set of 

communication graphs achieving this area-time performance may be constructed in 

accordance with the definitions of Section 2.1. This set is denoted as "(A,T,P,N)

communication graphs." 

The correspondence scheme of Section 2.2 constmctively demonstrates that a 

communication graph can be obtained from any VLSI chip. Thus the set of 

"(A,T,P,N)~ VLSI chips" (actually, the set of (A,T,P,N)-communication graphs 

corresponding to VLSI chips) is a subset of all (A,T,P,N)-communication graphs. 

The generalized MOS process adopted for upper bound proofs is of course only 

one way of building VLSI chips, so that "(A,T,P,N)-MOS chips" is a proper subset of 

"(A,T,P,N)-VLSI chips." Finally, the class of "admissible (A,T,P,N)-communication 

graphs" defined by Section 2.3 form a subset of "(A.T,P,N)-MOS chips," according to 

the correspondence scheme of that section. 
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Figure 2°1: Domai.p.s of the lower and upper bound models. 
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This methodology illuminates the type of arguments needed to demonstrate the 

consistency and utility of the VLSI model of computation. For example, assumption 

A2 of Section 1.1 defines two measures of the area occupied by a circuit, depending 

upon whether the area figure is to be used as a lower Dr upper bound. The lower 

bound area is-just the amount-of area occupied by wires, while the upper pound area 

is that of the smallest bounding rectangle. This dual definition is consistent with the 

inclusion of "admissible (A.T,P,N)-communication graphs" m "(A,T.P,N)

communication graphs" since any graph bounded by a rectangle of area A must also 

have fewer than A units of wiring. 
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2.1 Lower bounds 

A communication graph is composed of nodes and wires laid out on a grid of unit 

squares. Physically, a wire is a horizontal or vertical strip of metal connecting two 

points on the surface of a chip. A node represents a point at which wires meet. so 

that a transistor or even a wire junction is a node. 

Assumption Ll, below, defines the concept of area for the lower bound model of 

VLSI computation. It is a restatement of the unit-area defuiition given in Chapter 1 

on page 7. (Some of the assumptions developed in Chapter 1 applied to lower 

bounds, some only to upper bounds. Accordingly, each assumption was prefixed 

with either an "L" or a "U" to indicate its application to lower or upper bounds. 

Assumptions Ll through L8 are defined in this section, forming a complete 

definition of the lower bound model of computation. Section 2.3 defines the upper 

bound model as a set of additional restrictions on these assumptions, labeled U1 

through U8.) 

Assumption Ll: Area. A unit square can contain one node or one wire 
cross-over. One wire may cross each edge of a unit square, so that nodes 
have a maximum of four wires. 

There are thus nine types of squares occupied by wires, as shown in Figure.2-2. 

A square may also contain a node, as indicated in the tenth "tile" of this figure. An 

arrowhead is ·drawn at the point where a wire meets a node if information flows into 

the node from that wire. This notion of information flow will be formalized later. 

Assumption L2 of Section 1.1 (page 7) makes the followi_ng definition of the total 

area of a communication graph. Note that only occupied squares are counted 

toward the lower bound on area. 



PAUE2J 

Assumption L2: Total area. The total area of a communication graph is 
equal to the number of unit squares occupied by wires or nodes. 

Figure 2s3: The shuffle-exchange graph of sixteen nodes. embedded in 
58 unit squares (and bounded by a 60-unit rectangle). 

The function of a wire is to carry information from node to node. Most wires 

carry information in one direction only. Such wires are drawn as a (possibly curved) 

line connecting two nodes, with an arrowhead pointing in the direction of 

information flow. The rarer bidirectional wire (such as the one in Figure 2-10) is 

drawn with two arrowheads. 

Example. Figure 2-3 shows an embedding of the shuffle-exchange 
·graph of sixteen nodes. The shuffle-exchange connectivity is natural for 
sorting and Fourier transformation [Stone 71]. A shuffle-exchange graph 
of size N = 2N has nodes numbered from 0 to N-1. Node i can transmit 
information to node {2i + l2i/Nl) mod N over a "shuffle" connection. 
"Exchange" connections exist in both directions between nodes 2i and 
2i+ 1. Section 4.3.4 treats the general problem of embedding a shuffle
exchange graph of size N. 

The following assumption bounds the rate at which one-bit signals can pass any 

point on a wire. This bandwidth limitation defines the unit of time for a 

communication graph, as indicated in assumption L3. 

Assumption L3: Units of timeo A wire has at most unit bandwidth in 
each direction. 

Time bounds are obtained in the VLSI model of computation from arguments 



based on the bandwidth limitation of wircso For this reason, it is l~nportaut that a 

problem be specified in a fixed number of bits. As defined i11 Section 1.2, a 

"problem instance" is an assignment of values to input variables. By the following 

assumption, based on the discussion on page 10, each problem instance cannot be 

coded in fewer than N log N bits. (Strictly speaking, assumption L4 is not a 

definition of the model so much as a description of the computational problems 

treated in this thesis.) 

Assumption L4: Problem definition. Each of N input variables takes on 
one of M different values, for a total of lvf N equally likely problem 
instances. In the sorting problem, J'vf = N 1 + e for some fixed positive e. 
In the Fourier transfonn problem, J'vf > N. 

It is now possible to describe the functionality of nodes and wires. At each 

instant of time t the signal available at one end of wire A is expressed by the boolean 

variable A(t). (Two boolean variables are associated with each bidirectional wire, to 

denote the possibly different signals available at either end.) 

The value of each signal is determined by the transmission function of the node 

that originally placed it onto its wire. The simplest transmission functions describe 

the operations of nodes with no "state" (local storage, memory). For example, a 

memory less node that has three incoming wires (A, B, and C) and one outgoing wire 

(D) has a transmission function of the form 

D(t+ 8n) = f(A{t), B{t), C(t)). (2.1) 

The boolean vmiables A(t), B{t), and C(t) denote the signals on the incoming wires 

at time t. TI1e signal on wire D appears at the far end of that wire after some fixed 

delay 8 D > 0. The function f is any of the 256 boolean functions of three boolean 

variables. Note that there is no explicit delay associated with the computation off 

Any such "node delay" is added to the delays of its wires. Also note that this model 

allows wires to act as transmission lines: wireD may have unit bandwidth even if its 

delay 8n is greater than unity, for there is nothing to keep a node from transmitting 

another signal before the first one has been received. (No VLSI technology allows 

transmission lines as yet, but the VLsr model of computation is ready for them 
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should become 

transmission is strong, due the ever~increasing ratio propagation 

device switching time.) 

l'fodes with state can have more complicated transmission functions, a.') defined 

Assumption L5. 

Assumption LS: Transmission functions. Node states and wire signals 
are completely and consistently described by the transmission function 
associated with each node. A node with state vector S, input wires 
(A, ... ,D), and output wires {E, ... ,G) computes a function of the form 

to 

[S(t+ I), E(t+ 8E), ... ,G{t+ 8c)J = F[S{t), A(t), ... ,D(t)]. (2.2} 

where 8E and Ba are the non-negative delays of wires E and G. 

There are two extremely important assumptions buried in the formalism of 

equation (2.2). First, the ftmction F is defined on the instantaneous values of its 

variables: there is no allowance for timing "jitter" or any other synchronization 

ditnculties. Thus the lower bound model of computation assu.mes that some form of 

synchronization bet-iVeen nodes is available, for which no area or time charges are 

made. The subject of synchronization will be discussed in more detail in Section 2.3, 

as the upper bound model of computation is developed. 

A second buried assumption ls that of determinism, that the signals coming into 

ench node ta.k:e on one of two values. Marginal and erroneous signals will appear in 

u.ny real system, although careful design practice will reduce the probabiltty of error 

to nearly zero. In any event, the VLSI model of computation treats only an ideal 

world in which there are no transmission errors. 

A communication graph is not completely specified without a description of the 

initial states of all nodes and wires. These states must all be constants, that is, 

independent of the values of problem input variables, with the exception of one 

node for each input variable, its source node. In other words, all information about 

the value of each input variable is initially concentrated at one point. As the 

computation proceeds, this information will of course be diffused throughout the 



PAGE 

Note 

input variables is one-oto-one, This assumption is 

although the recent work of Brent and Kung [Brent 

relaxed. 

PORVLSI 

ncdes and 

the proofs of Section 3J, 

indicates that it might be 

Assumption L6: Source nodes. The initial state of a source node may be 
function of the value of its variable. Each input variable affects 
the initial state of its source node. 

Just as there is one source node for each input variable, there is one sink node for 

each output variable. However, sink nodes need not be in one-to-one 

correspondence with their variables. The function of a sink node is to collect 

information about the correct values for its output variables. The computation is 

complete when each sink node has completely determined the values of its output 

variables. To ensure that a sink node is not just "guessing" the right answer 

momentarily, it is required to come to a stable decision, in the sense formalized 

below. 

Assumption L7: Sink nodes. There is a fixed assertion for each sink 
node, relating its state to the correct values of its output variables (as a 
function of the values of the input variables). A computation is complete 
at time T if all assertions are satisfied at all times t > T. 

The final assumption of the lower bound model defines what it means to say that 

a chip solves a problem: it must be able to solve all instances of that problem 

(assignments of values to input variables). 

Assumption L8: Solution time. A communication graph is said to solve 
a problem in worst-case time T if it takes no longer than T units of time to 
complete its computation of any problem instance. A communication 
graph is said to solve a problem in average time T if its average 
completion time, over all problem instances, is T. 

Some additional naming and drawing conventions will prove useful when dealing 

with communication graphs. Nodes that are neither sources or sinks are called 

switching nodes, since they can be considered as mere "switches" or combiners of 

information. This classification of nodes as sources, switches, or sinks for 

information is not disjoint; a single node may serve in any or all of these capacities. 
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TI1co: foHo;ring draw 

Nodes are numbered and wires are named with "capital letters" The delay a wire 1s 

either zero or unity, md ali wires emanating from a node have the sam.,e deiayo In 

the notation of assumption L5, aU the BE, 0 •• ,oG for a given node have the same 

value, either 0 or Nodes with zero-delay wires are drawn as dots, while nodes 

with unit-delay wires are drawn as open circles. Tne logical content of node 

transmission functions are indicated by boolean equations on each wire. 

Example. Figure 2-4 is a communication graph for a VLSI chip that 
computes the 'and' and 'or' functions of two boolean variables p and q. 
Nodes 1 and 2 are sources, node 3 is a switch, and the sink nodes are 
nodes 4 and 5. Wire A carries information about input p from node 1 to 
node 3. Similarly, wire B carries the value of input q. Node 3 computes 
the values of the two outputs, p 1\ q and p v q. Wires C and D carry these 
output values to sink nodes 4 and 5. 

Figure 2°4: A simple communication graph. 

A more precise description of Figure 2-4 is contained in the following 
transmission functions, initial assignments, and output assertions. 

Jj: S1(t+l)=S1(t}; A(t+l)-S1(t); S1(0) p; A(O) false 

h: S2(t+l)=S2(t); B(t+l)=S2(t); S2{0)=q,· B{O) false 

f3: C(t)=A(t)AB(t); D(t)=A(t)v B(t); C{O)=D{O) false 

f4: S4(t+ l)=C{t),· S4 {0) false,· assert S4 (t) pl\q 

fs: S5 {t+ l}=D(t); S5 {0} false; assert S5 (t} pvq 

From this description, it may be seen that the communication graph 
takes two units of time to solve its problem. The initial state sf {0} of 
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1 is defined as input variable carnes 
uus value during the first unit, since A{l)-SdO) p. In rhe same 
fashion, wire B carries value of q during t=l. Referring now to 
h, wire C carries p 1\ q and wire D carries p v q during this same period 
time. (Node 3 is defined to have zero delay, so that these signals are 
available immediately.) The signals on wires C and D are stored in the 
states of nodes 4 and 5 during time t-2, as indicated by the first equations 

.ft . TI1e output assertions be satisfied for times t> 2, so 
that the computation is complete after two time units. 

Note that nodes 1, 2, 4 and 5 have unit delay and that node 3 has zero 
delay. This might be an appropriate model for a circuit that clocks its 
inputs at time t=l and clocks its output latches at t=2. The next section 
discusses the subject of appropriate models in more detail. 

The delays of nodes 4 and 5 can be reduced without violating the lower 
bound model of computation. However, the delays of nodes 1 and 2 must 
remain, to avoid sending two signals down wires A and B at the same 
time. (The initial value on wire A is false; a zero-delay transmission 
function for node 1 would also require A{O) p.) Thus the computation of 
the 'and' and 'or' functions of two variables can be done in as little as one 
time unit, in the VLSI model of computation. 

2.2 Correspondence to VLSI chips 

The VLSI model of computation is designed so that VLSI chips correspond dirsctly 

to communication graphs. This section details the way in which a communication 

graph is derived from any chip layout. The correspondences described here are 

necessarily vague, as the VLSI model of computation is intended to apply to any 

technology. Examples are taken from both the generalized MOS technology 

described by Iviead and Conway [Mead 80], and from a "scaled" I 1. technology 

[Evans 79]. 

For chips with a single layer of interconnection material, the correspondence is 

simple. Conductive paths on the surface of the chip are modeled as wires. Wire 

junctions and transistors are nodes. The topologies of the domains are nearly 

identical. The planar silicon substrate becomes the grid of unit squares of the lower 
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\Vlth layers 

by the technique shown on page 36. 

Conductors, wires. Any VLSI chip must have an abstract operational description 

tenns of sequences of logical values that are carried along signal paths. a 

description exists at least in the chip designer's mind, when reasoning about the 

ways which data is represented, modified, and moved. 

A signal path is any conductor that serves to move data. Such conductors are 

modeled as wires in the VLSI model of computation. The data is modeled as a 

sequence of binary signals cru-ried by the wires. 

Transistors, wire junctions, and nodes. The wires of a communication graph have 

only two ends. A node is need{!d to model each spot on the chip where signals can 

fork ("fanout") or join ("fanin"). 

In particular, every active device or transistor on a chip is a node. In many 

technologies, transistors are used for logical fanin, as illustrated in Figure 2-5. 

c 
0 

A 

Vdd 

C = ..,g v A 

A 

Figure 2·5: MOS circuit illustrating logic fanin at an active device, 
with corresponding communication graph. 

The output C goes to Vdd (logical I) whenever the transistor is nonconducting 

(B=O), or whenever both A and Bare at Vdd. 
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fanout, as OCCUf~S transistor of 

B 

L_ 
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Figure 2·6: I 1.- circuit illustrating logic fanout at an active device. 
with corresponding communication graph. 

Here, a logical 0 is a high impedance state, while a wire in the 1 state is nearly 

shorted to ground. The outputs c/ and c2 are 0 ifthe transistor is turned off, which 

happens only when the injector current is short-circuited through B. 

Fanin and fanout can also occur without the mediation of an active device. For 

example, a single conductor can supply its signal to many different circuits. The 

model for such a conductor has a number of zero-delay fanout nodes, one for each 

fork in the signal path:, as shown in Figure 2-7, 

The fact that logic fanin can occur without an active device is perhaps surprising, 

yet it is a fairly common design practice. The I 1.- nand gate of Figure 2-8 illustrates 

an appropriate model for conductors that perform logic. 

In the VLSI model of computation, nodes are limited to four wires, so large 

fanouts and fanins must be modeled by multiple nodes. TI1is should not pose any 

special difficulties, as nodes are only a square wire width in size. Nodes and wires 

can thus model the internal communication within a large active device, as shown in 

Figure 2-9. 

Note that nodes are allowed to have rather complex . functions, by the 

introduction of a large vector of state bits. A state vector is required for the 

definition of a source or sink node, but shouldn't be needed to describe the 
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Figure 2a7: MOS circuit illustrating logic fanout on a conductor, 
with corresponding communication graph. 

operation of any other node. An exception arises if the chip's conductors ·carry more 

than two different logical signals. Nodes work only on binary signals, so they may 

need a few bits of state to model circuits employing multiple-valued logic. 

Source and sink node correspondence will be treated in more detail later in this 

section. 

Power, ground, and synchronization. A large proportion of the area of any VLSI 

chip is occupied by conductors that distribute power and global clock pulses. No 

wires are drawn in a communication graph to correspond to these conductors, since 

they do not carry information. This omission can only strengthen the lower bound 

results of this thesis, which are obtained without reference to the additional area 

constraints imposed by such wiring. Johannsen [Johannsen 78] treats the problem of 

power distribution on VLSI chips in more detail. 
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Figure 2·8: I~ nand gate illustrating logic fanin on a conductor, 
with corresponding communication graph. 

YFOR VLSI 

Time. The proper duration for a time unit is derived from the bandwidth 

limitation of wires, as expressed in assumption L2. A wire in a communication 

graph has at most unit bandwidth; the model's time scale must be adjusted until this 

assumption is satisfied. 

The effective bandwidth of a conductor on a chip is determined by the signal 
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Figure 2·9: I 1-- transistor illustrating large fanout at a single device, 
with corresponding communication graph. 
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conventions employed by the VLSI designer, and the timing characteristics of the 

implementing technology. A signal convention is an association of a logical 

(boolean) value with a voltage range or current flow along a wire. A set of signal 

conventions thus provides a correspondence between the logical signals on the wires 

in a communication graph, and the dynamic electrical "states" of conductors on the 

surface of a VLSI chip. Each signal has a time dimension, in the sense that a changed 

voltage or current configuration must be maintained for some minimal duration of 

time before it amounts to a changed logical value. 

The bandwidth of a conductor is the average information content of each signal 

divided by the duration of a signal. If each signal is equally likely to occur from the 

receiver's point of view, then the information content of each signal is the (base two) 

logarithm of the number of possible signals. Any other probability distribution for 

the signals gives a smaller information content and a smaller effective bandwidth. 

See [Shannon 49], p. 21. 

The lower bound model of computation models the state of a wire as a binary 

variable, according to assumption LS. This leads to some difficulty in modeling 

circuits whose wires carry more than one bit per signal. For such circuits, the 

definition of the time unit is modified so that their wires have at most unit 

bandwidth. The unit of time for the lower bound model is accordingly set equal to 

the minimal duration of a signal on a wire, divided by the logarithm of the number 



PAGE34 ACOMPLEXITYTHEORYFOR VLSI 

of such signals. Scaling the time unit in this way means that a signal carrying k bits 

of information is modeled indirectly, by k one-bit transmissions. 

The predominant two-valued logic is modeled directly. Signals in the model 

correspond one-to-one with signals on the chip. The unit of time is equal to the 

clock period, for synchronous logic. The effective time unit for an asynchronous 

circuit is usually determined by the rate at which data is fed to the circuit, but in any 

event it cannot be shmter tl1an the delay through one stage of on-chip logic. 

TIL-style "Tri-State" logic and other signal conventions with a high impedance 

state can also be modeled directly. The conductors in such .circuits may send one bit 

of information in both directions simultaneously. Consider the "wire-anded" NIOS 

circuit of Figure 2-10. The outputs C and D go to Vdd (logical I) iff both A and B 

are low, placing their transistors in the high impedance state. The wire mnning 

between the two transistors must be carrying information in both directions, since C 

and D depend on both A and B. (If either C or D were unused, unidirectional 

information flow would suffice to model the circuit.) 

Delay. In addition to the bandwidth constraint, time considerations enter the 

VLSI model in the form of wire delays. (Bandwidth is the amount of information 

emerging from the end of a wire in unit time, while delay is the amount of time· that 

elapses between the transmission and receipt of a signal. Currently, VLsr wires can 

cany only one signal at a time, so that the delay of a wire determines its bandwidth. 

This may not always be the case.) According to assumption LS, a signal created at 

time t appears at the far end of a wireD at time t+ 8 D, where 8 D is the non-negative 

delay of that wire. There is no explicit assignment of delay to each node, even 

though one could measure a delay from the time at which a signal appears at its 

inputs to the time at which a valid signal appears at its outputs. Such a "node delay" 

is of course an important component of the delay between the appearance of a signal 

at the input of one node and the appearance of a derived signal at the input of a 

connected node. 
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Figure 2~ 10: MOS "wire-and" circuit, with corresponding communication graph. 

The delay of a VLSI conductor is often strongly dependent on its length .. This is 

the reason that a separate delay is associated with each wire. 

The delay situation on an actual VLSr chip is really quite complex. Circuit delays 

are not independent of signal conditions, as suggested by the fixed delays of the VLSI 

model. Circuits just do not respond to logical 0 and 1 signals at exactly the same 

rate. The previous state of the circuit is important, and even the states of the 

surrounding circuits and wires can materially affect delays. However, a single delay 

value should be quite sufficient to describe the logical design of any chip. (Small 

variances in delay times will not affect the behavior of a VLSI circuit, for timing 

variations are cancelled at each synchronization point. The clock period must of 

course be longer than the longest delay in the circuit.) 
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simplistic approach. Every wire emanating from a that models an active logic 

element is assigned unit delay. Wires that connect to nodes that model wire 

junctions have zero delay. 

Jvfultiple layers of interconnection. The embedding rules for communication 

graphs correspond directly to chips with a single layer of interconnection material. 

\Vires are nonnally formed in this layer. Cross-overs are built with short runs in 

another conducting layer, for example, polysilicon in MOS technologies. 

When modeling chips with a single layer of interconnection, the unit of length is 

just the minimal spacing between the centers of parallel conductors. The model's 

grid of unit squares describes this minimal conductor spacing precisely. At most one 

wire crosses the unit length edge of any square. 

A legal communication graph can be drawn for every VLSI chip that employs 

multiple layers of interconnection by modifying the correspondence between 

surface area on the chip and unit squares of its graph. If there are k layers of 

interconnection, each· unit of chip area is modeled by k 2 unit squares. Figure 2-11 

shmvs the way in which three tmits of chip area map into twenty-seven unit squares, 

if there are three layers of interconnection. The unit squares in each k-by-k image 

of a unit of chip area are numbered in a matrix notation, but from bottom to top, 

left to right Square (i,i) corresponds to the ith layer "Oil the chip. Transistors are 

formed in the first layer, and are thus drawn as nodes in squares (1, l). See Figure 2-

12. A conducting path running in the first layer of interconnection is modeled as a 

wire running through squares {1,1) -- to get the connectivity right, it is also allowed 

to run through squares in row or column 1. In general, wires formed in the ith layer 

of interconnection are drawn in squares (i,j) or 0, i). Connections between adjacent 

layers of interconnection, or "vias," are drawn as wire bends in non-diagonal squares 

of a k-by-k image. For example, a bend in square (i,i+ 1) represents a connection 

between layers i and i + 1. A branch or fork in a wire on layer j is modeled by a 

fanout node in square (j,j). 
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12 13 

Figure 2·11: Correspondence scheme for a three-layer embedding. 
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Figure 2·12: A communication graph occupying 9 units of surface 
area on a three-layer chip. 

This correspondence scheme for drawing graphs from chips has an interesting 

implication for the reverse mapping. If a graph is known to require area A under 

the normal interpretation of a single level of interconnection, it also must require at 

least AI k 2 area when k layers of interconnection are available. (Interpret the 
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the graph 2 by-k images of ~bound 

is not necessarily it may not be possible to embed the layout in exactly AI k 2 

area because of the added restrictions on the placement on nodes and wire bends 

k-by-k images. (Also, as a practical matter, "vias" or connections between layers can 

not be placed arbitrarily close to each otheL) 

In the limit, the multiple level interpretation gives a "volume" result for graph 

embeddlngs. If a graph of area A is embedded in k=A l/4 levels, then it must 

occupy area AI k 2 =A l/2. Assuming the levels are unit distance apart, the graph 

must fill an A l/4-by-A l/4-by-A l/4 unit cube, or A 3/ 4 units of volume. This is a 

lower bound result, since the added restrictions on node and wire placement in k

by-k images imply that some planar embeddings in area A do not correspond to 

legal A l/4-level em beddings in volume A 3/ 4 (but all em beddings in a A I/4-by

A l/4-by-A l/4 unit cube can be interpreted as an embedding in an A l/2-by-A l/2 

square). 

Input registe."s, source nodes. Any VLSI chip that can solve an N-inpm problem 

must h~ve N input registers to store the values of the input data. These input 

registers correspond to the source nodes of the communication graph for that chip. 

Input registers appear as one of two structures on a chip, depending upon how 

information is stored. A bit of storage can be encoded as a static charge, or lack 

thereof, on a capacitive element. This approach is common in MOS technologies, in 

which the gate of a transistor can serve as a storage capacitor. A bank of transistors 

may tlms be an input register. Alternatively, the status of a current flow may define 

a bit. This dynamic representation is available in any technology. A positive 

feedback loop, or "cross-coupled logic," can make a circuit bistable. The state of 

such a circuit encodes one bit; a bank of them encodes an entire input value. 

The conductors emanating from an input register correspond to wires coming out 

of a source node. This correspondence points up one difficulty with the 

representation of an input register by a single source node. An input register formed 
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from of Is m space have Et mnnber 

emanating conductive paths. source node is localized to a unit square can 

have only four outgoing wires, A more elaborate correspondence scheme is needed 

to handle this discrepancy. 

The best model for a k-bit input register is a single source node connected to 

k -1 "auxiliary" nodes. Each node corresponds to one cell of the input register. 

Presumably, there are conductive paths linking the cells of the input register, so the 

nodes and wires of the model take up no more area than the input register. The 

conductive paths emanating from each cell of the input register may be directly 

modeled as wires connecting to the corresponding node. 

This model will overestimate the time taken by the chip, if all the bits of the input 

register are transmitted immediately. This error is limited, however, to the k-1 

time units it takes for each of the auxiliary nodes to get its bit from the source node. 

Such an error is negligible in comparison with the total solution time for the 

problems treated here. In terms of the methodology presented at the beginning of 

this chapter, (A,T-K.P,N)-VLSI chips are a subset of (A,T,P,N)-communication graphs, 

although some (A,T,P,N)-VLSI chips lie outside of this set 

The VLSI model of computation can be extended to handle the case that problem 

input values are obtained from off-chip connections. A source node is drawn at the 

point of entry of each input value. On a Vt.sr chip, such a "point of entry" is a very 

large contact pad connected to an external wire. More than one input value may 

come through each contact pad, but there should be no trouble finding room for an 

equivalent number of source nodes in the image of a contact pad that is many 

hundreds of unit squares in area. A situation that causes a little more difficulty 

occurs when information about a single input value is obtained from several 

different contact pads (for example, the kth bit of each input variable might be 

received on the kth contact pad). Since all infmmation about an input variable must 

be modeled as originating from a single point, extra connections must be included in 

the communication graph between the images of contact pads. In this way, the 
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bit of an input contact pad can a signal 

from an on-chip wire, originating from the source for that input variableo 

Fortunately, the data rate of an off-chip connection IS comparable to the 

bandwidth of an on-chip wire [Mead 80], so that very few wires will be needed to 

model these imaginary connections between contact 'pads. Brent and Kung [Brent 

79] some of the aspects of off-chip communication in a more way. 

Output registers, sink nodes. The N output values resulting from an on-chip 

computation must be stored in N output registers on the VLSI chip. The 

communication graph for such a chip has N sink nodes, one for each of these output 

registers. The output register - sink node correspondence is quite similar to that 

between input registers and source nodes. Output registers are implemented in the 

same way as input registers, as banks of storage cells. 

When an output register is formed from a bank of k storage cells, it is modeled by 

a string of k -1 auxiliary nodes and one source node. A maximal error of k -1 time 

units can result, as was observed in the modeling of source nodes. This worst case 

arises if all output cells receive a bit of information in the last operation of the chip. 

The chip's computation is complete at that time, but the sink node of the model 

must collect a bit of information from each of the auxiliary nodes. Assuming _they 

are connected linearly, this takes k-1 time. 

If problem outputs are to be shipped off-chip, sink nodes can be associated with 

contact pads in a manner analogous to the way in which source nodes were drawn 

for contact pads. Since a single sink node can handle many output variables, some 

a.<;pects of the correspondence are simplified. However, connections between 

contact pads will still have to be introduced if different bits of a single output value 

are sent off-chip from different contact pads. 
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per bound 

A communication graph is admissible if it can be implemented as a VLSI chip of 

the same area and time performance (within constant factors). The upper bound 

constructions of Chapter 4 are admissible communication graphs and hence 

correspond to feasible VLSI chips. 

1l1e upper bound model of computation consists of assumptions or admissibility 

rules Ul through U8. Any communication graph satisfying all these rules is 

admissible. Of course, such a graph must also satisfy assumptions Ll through L8 to 

be a communication graph in the first place. 

The upper bound assumptions were designed to be as simple and general as 

possible. Their simplicity stems largely from two decisions. All references to 

electrical parameters (capacitance, current density, etc.) are suppressed, and no 

attention is paid to constant factors in area or time calculations (the big-0 notation is 

employed throughout). Of course some discussion of electrical and technological 

parameters is necessary to justify the upper bound assumptions. The constant 

factors will be largely ignored until Section 4.5, which estimates the actual size of the 

VLSI Circuits proposed in Chapter 4. 

The generality of the admissibility rules allows them to upply to all currently 

ftasible VLSI technologies. These inducle technologies based on metal-oxide and 

Schottky-barrier field-effect transistors (e.g., the MOS family: CMOS, DMOS, HMOS, 

NMOS, PMOS, ... ) as well as the technologies based on bipolar trunsistors (such as I 1__). 

The first admissibiLity rule, assumption Ul, identifies and defines three types of 

nodes, logic nodes, driver nodes, and receiver nodes. These are drawn in Figures 2-13 

and 2-14. The full text of the mle appears on page 44, in conjunction with its 

corresponding lower bound assumption, Ll. 

A logic node must fit in 0{1) area, so it can not possibly have more than the 0(1) 

connections llilowed by assumption Ul. Assumption US, below, limits the state of a 
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Figure 2°14: Dimensions of driver and receiver nodes. 

logic node to 0(1) bits. Thus 0{1) transistors suffice to implement the transmission 

function of any logic node. The transistors can all be minimum~sized, for they do 

not drive long wires. (The area of a transistor must be proportional to the length of 

the wire it drives. All wires have a parasitic capacitance that grows linearly with the 

length of the wire [Mohsen 79].) 

When a logic node is actually implemented in VLSI, it will gate its outputs with a 

locally available clock pulse. The logic node will also need power and ground 

connections. As mentioned previously, this thesis assumes that some solution will 

be found for this distribution problem. However, there is no assumption that the 

phase of the clock signal will be constant over the entire surface of the VLSI circuit, 

for that may be impossible to arrange. Other methods are necessary to synchronize 

distant circuits. Long~range synchronization is one of the functions of driver and 

receiver nodes. 
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tirned region or defined as a set of that maintains 

synchronization internaily, but communicates asynchronously with other self-timed 

regions [Seitz 79]. For the purposes of this L~esis, a self-timed region is a set of logic 

nodes that receive clock pulses with nearly identical phase. Thus all nodes within a 

self-timed region are in synchronization with each other. 

Assumption Ul states that any square region of at most O(log 2N) area can 

qualify as a self-timed regwn. This assumption is dictated by practical 

considerations. Since a word of data has O(log N) bits, a self-timed region is just 

large enough to perform a significant computation on a few words. The use of 

smaller self-timed regions would complicate the constructions of Chapter 4. Also, it 

is unlikely that any circuit would use smaller regions due to the cost of 

synchronizing signals that cross region boundaries. Larger regions are of course a 

possibility, but they are not needed for the circuit constructions of this thesis. 

The output wire of a driver node is the only wire that can cross the boundary of a 

self-timed region. The receiver node attached to this wire must be able to 

synchronize itself with the driver. Otherwise it might sample the state of its input at 

a time when it is being changed by the driver. Actual implementations of driver and 

receiver nodes may employ any one of a number of synchronizing techniques. For 

example, the driver might send a clock bit between each data bit, and the receiver 

might sample its input at several times the data transmission rate. Note that this 

technique will not reduce the bandwidth of a wire by more than a constant factor. 

Thus even long wires can carry one bit ofinformation in 0(1) units of time. 

Driver nodes are also distinguished from all other nodes by their ability to drive 

long wires. However, the size of the driver must increase linearly with the length of 

its wire. This is a consequence of the capacitive nature of the load presented by a 

wire in VLSI technologies. A wire of length k has O(k) capacitance, so that O{k} 

units of drive current are needed to change its state (voltage level) in unit time. This 



PAGE44 A COMPLEXITY THEORY FOR VLSI 

amount of current can be obtained only from a transistor of O(k) area. 1 

The foregoing discussion is summarized by the following statements of 

assumptions Ll and Ul. 

Assumption Ll: Area. A unit square can contain one node or one wire 
cross-over. One wire may cross each edge of a unit square, so that nodes 
have a maximum of four wires. 

Assumption Ul: Area. The area of a node is determined by its 
functionality. 

a. A logic node is a node with at most 0{1) input wires, 0{1) output 
wires and 0{1) area. Each of its wires is 0{1) units long, that is, 
each wire nms through at most a constant number of unit squares. 
Each logic node belongs to a self-timed region. All wires 
connecting to a logic node must lead to or from other nodes in its 
self-timed region. Every self-timed region must be small enough 
to fit within a square of O(log2N) area . 

. b. A driver node and a receiver node are associated with each wire 
that is more than 0{1) units long or crosses the boundary of a self
timed region. A wire oflength k requires a driver that occupies an 
0{1) by O(k) unit area. Its receiver node takes up only 0(1) units 
of area. The driver's input wire and the receiver's output wire are 
0{1) units long. 

Arguments can be made for the us~ of larger delay functions. Since a signal can 

not travel faster than the speed of light, a length k wire should have delay O(k). 

Also, since all wires have some resistance in addition to their capacitance, the speed 

of signal propagation is limited by t.1e diffusion equation: a length k wire has delay 

O(k 2) [Seitz 79]. The assumption of logarithmic delay is chosen here, as it seems to 

give the least misleading results. The constant factor in the O(k 2) delay mle would 

be quite small, even for the largest constmctions proposed in this thesis. The timing 

of these VLSI circuits will probably not be dominated by wire delays. 

1Unfortunately, this strategy for obtaining unit bandwidth on long wires is not quite adequate. A 
wire can only carry a limited amount of current without damage, so that drivers can not be scaled-up 
indefinitely. One way of avoiding this difficulty would be to match the impedances of drivers, wires, 
and receivers. Tae resulting transmission lines would have unit bandwidth, yet the drivers would no 
longer have to charge or discharge the entire wire in one time unit. (This discussion is hypothetical, 
since no current VLsi technology has on-chip transmission lines.) 
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lie , a compact 

thus includes the 

il.ssumption : Total area. total area a communication graph is 
equal to the number of unit squares occupied by wires or nodes. 

Assumption U2: Total area. The total area of an admissible 
communication graph is the number of unit squares in the smallest 
bounding rectangle. 

Assumption U3 sidesteps the thorny issues of the actual information capacity of a 

bidirectional (v;ire-anded) wire. 

Assumption 13: Units of time. A wire has at most unit bandwidth in 
each direction. 

Assumption U3: Units of time. A wire has at most unit bandwidth in 
one direction only. 

Assumption U4 restricts the problem domain of the upper bound constructions. 

Restricting the number of inputs N to be a power of two permits the use of the fast 

Fomier transform algorithm. Restricting the word size, dlog lvf e, to O(log N) merely 

simplifies the form of the upper bounds, which would otherwise have a dependence 

on lvf as well as N. 

Assumption IA: Problem definition. Each of N input variables takes on 
one of ivf different values, for a total of MN equally likely problem 
instances. In the sorting problem, 1~! = N 1 + e for some fixed positive e. 
In the Fourier transforrnation' problem, .ivf > N. 

· Assumption U4: Problem definition. N = 2 Nand log Nf = O(log N). 

Assumption US defines the delay characteristics of admissible communication 

graphs. Logic nodes have at rr,.ost 0(1) delay. Greater delays are inconceivable, 

since a logic node has only 0(1) transistors and thus cannot "count" more than a 

constant number of clock pulses. 

The delay of a driver-wire-receiver circuit is proportional to the logarithm of the 

length of the wire. This assumption is consistent with the use of O(,lc)-area drivers 
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of minimum-sized This signal must amplified by 0(/og k) stages 

before it can be sent down the long wire. Each stage contributes 0(1) units of delay 

and is 0(1) times the area of the previous stage. If, additionally, each stage is 

clocked so that the amplification chain becomes a pipeline with 0(/og k) bits of 

capacity, driver-wire-receiver attains unit bandwidth O(!og delay. 

Arguments can be made for the use of larger delay functions. Since a signal 

cannot travel faster than the speed of light, a length k wire should have delay O(k). 

Also, since all wires have some resistance in addition to their capacitance, the speed 

of signal propagation is limited by the diffusion equation: a length k wire has delay 

O(k 2) [Seitz 79]. However, the constant factor associated with an O(k) or O(k 2) mle 

is so small that this thesis' assumption of 0(/og k} delay is the most appropriate. 

Assumption 15: Transmission functions. Node states and wire signals 
are completely and consistently described by the transmission function 
associated with each node. A node with state vector S, input wires 
{A, ... ,D), and output wires {E, ... ,G) computes a function ofthe fonn 

[S(t+l}, E(t+oE), ... ,G(t+oa)J = F[S(t), A(t), ... ,D(t}}, 

wher~ o E and oa are the non-negative delays of wires E and G. 

Assumption U5: Transmission functions. The transmission function of 
a node is constrained by its functionality. 

a. A logic node has at most 0{1} bits of state and 0{1) units of delay 
on each of its output wries. 

b. The total delay through a driver-wire-receiver circuit is O(log k) if 
the wire is k units in length. The driver and receiver nodes 
associated with this wire implement the identity function, so that 
the receiver output R(t) is a delayed version of the driver input 
D(t). The combined transmission function of the driver and the 
receiver Is 

R(t + ow) = D{t), 

where ow = O(log k}. 

{2.3} 

Assumption U6 rela\es an idealization of the lower bound model, that there can 
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be "'point sources" of dlog; jvf e bits of inforrnation. Si11ce logic £lOdes have oniy 0(1) 

bits of state, O(log k!) of them are needed to store a problem input value. 

Assumption 16: Source nodes. T'ne initial state of a source node may be 
any function of the value of its input variable. Each input variable affects 
only the initial state of its source node. 

Assumption U6: Source nodes, input registers. A source node is the 
middle member of a string off log 1Wllogic nodes called an input register. 
The initial state of the kth node of an input register is equal to the kth bit 
of the binary expansion of the value of its input variable, l<k<i log Afl. 
(Note that this assumption violates assumption L6, although its only effect 
is to allow an admissible communication graph to be initially in a state 
that a legal communication graph could only reach after r log iV!l/2 units 
of time.) 

Assumption U7 is analogous to Assumption U6" It rela"Xes the lower bound 

assumption of "point sinks" of information. 

Assumption 17: Sink nodes. There is a fixed assertion for each sink 
node, relating its state to the correct values of its output variables (as a 
function of the values of the input variables). A computation is complete 
at time T if all assertions are satisfied at all times t > T. 

Assumption U7: Sink nodes, output registers. A sink node is the middle 
member nf a string of r log i\1llogic nodes called an output register. The 
computation is complete when the kth node of every output register 
contains the correct value of the kth bit of its output variable, 
l<k<f log Jvfl, as defined by the output assertion of its sink node. (This 
assumption violates L7, since an admissible communication graph ts 
all<?wed to anticipate a legal completion by I fog .A1l/2 time unit~.) 

There is no assumption US. Problem solution time is defined the same way for 

upper bounds as it is for lower bounds. 

Assumption 13: Problem solutions. A communication graph is said to 
sot ve a problem in worst-case time T if it takes no longer than T units of 
time to complete its computation of any problem instance. A 
communication graph is said to solve a problem in average time T if its 
average completion time, over all problem instances, is T. 
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lv1ead and Rem [Mead 79] have optimized the area-time product for memory 

chips, using a slightly different model of VLSI circuitry. TI1eir unit of length is the 

same as that of this thesis, the minimum distance between two wires. Their timing 

mles can be summarized in the following statement A 'bus wire' of length ab that 

has a driving transistors of area b and one receiver of area ab operates in a time 

units. For example, a unit-sized transistor can drive Mother unit-sized transistor at 

the end of a unit-length wire in just one time unit In terms of the above rule, 

a=b=l. Alternatively, a 'bus driver tree' with a branching factor of a has a delay of 

a for each level that a signal ascends from a leaf-node driver (b=l). 

Mead and Rem could have reached similar results for their area-time analysis 

using the VLSI model of computation. Their area estimates are always obtained by 

counting wires, never by the size of the drivers. As for the timing rule, it is merely a 

worst-case result for the communication graph of Figure 2-15. A signal from the 

right-most of a leaf nodes takes a time units to get to its parent 

Despite the fact that the VLSI model of computation draws heavily on the work of 

Mead and Rem, their model is quite different in character. They build a single 

technology-dependent model instead of bui1ding two separate but general models 

for upper and lower bounds. In this way, they are able to predict the size of their 

constructions quite precisely, whereas the upper bounds developed here are accurate 

only to within a constant factor. · On the debit side, their preoccupation with the 

MOS transistor as a basic building block complicates their model and limits its range 

of application. 



Figure 2·15: A bus wire drawn as a communication graph 
(a =4, b = 1). 
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Lower bounds are proved in the VLSI model of computation by considering all 

possible communication graphs. A key property of each graph is identified, its 

minimum bisection widtlt Intuitively, the wider a graph, the more bandwidth it has 

across its midsection. Thus wide grnphs are generally fnster but larger than narrow 

graphs. More precisely, the area and time performance of a communication graph 

can be bounded from a knowledge of its minimum bisection width. The area of a 

graph is at least proportional to the square of its width, A> w~4, as proved in 

Theorem 2. The time ta...'i(en by a communication graph to solve anN-point DFT or 

sorting problem is at least inversely proportional to its width: T = rl(N log N)/w, 

by Theorems 10 and 15. The two theorems combine immediately to form the lower 

bound result AT2 = Q(N 2/og 2N). By assumption L6 of Section 2.1, there are N 

source nodes in a graph solving an JV-input problem, so that A > N. On the basis 

of this area bound and the area and time results quoted above, Theorem 12 proves 

that the minimum value tor a perfom1ance rnet1ic of the form AT2x occurs when 

w = 8(N 1/ 2), leading to Ll.e general lower bound AT2x = Q(N 1+xzog 2xN) for 

0< x< 1. 

This chapter is divided into three sections. The first defines the minimum 

bisection width of a graph. The next proves a lower bound on graph area in terms of 

its width. Section 3.3 derives bounds on graph speed, given its width, for the 

problems of Fourier transformation and smting. Combined area-tinle bounds 

follow as simple corollaries to these results. 
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·~ 1 Mini !C bisec width 

The minimum bisection width of a graph is, informally, the number of edge cuts 

needed to slice it in half. words, is the smallest number of edges whose 

removal disconnects one the vertices from the For example, the 

minimum bisection width of a linear graph or complete binary tree of N vertices is 

while the "mesh" of N = n 2 vertices has width n + (n mod 2). See Figure 3-1. 

Figure 3·1: Sample minimum bisectionso 

A slightly more general concept of bisection is needed for the lower bound proofs 

of Section 3.3. For reasons that will become apparent later, a communication graph 

is only "bisected" if half of the source nodes lie on either side of the bisection. This 
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idea formalized in <mllmving defimtions, m 

terminology" (A communication graph corresponds to an undirected graph of 

maxirnum degree 4, when nodes are replaced by vertices w1res undirected 

edges. Vertices corresponding to source nodes are members of the setS referred to 

below,) 

Let G be an undirected graph with vertices V and edges E. LetS c V be a subset 

of the vertices, andEs c E be a subset of the edges in G. Then Es is said to "bisect 

S in G' if the removal of Es induces some partition of V into two sets of vertices V1 

and V2 , each containing approximately half the vertices inS, such that 

4. Every path from a vertex in V1 to a vertex in V2 contains an edge in Es. 
(A path exists from vertex x to vertex y if x = y, or if there is some· 
vertex z such that (x,z) is an edge and there is a path from z toy.) 

The minimum bisection width of Sin G is defined as the number of edges in .the 

smallest cutset Es bisecting Sin G. Formally, 

AlB vV(S, G) = min {IEs I s.t. Es bisects Sin G}. (3.1) 

It is quite difficult in genernl to compute the minimum bisection width of a 

graph. In fact the problem is NP-complete, as shown by Garey's proof [Garey 74] of 

the completeness of "minimum cut into equal-sized subsets." Fortunately, it is 

enough for most purposes to know that every graph has a set of edges that realizes 

its minimum bisection width. 
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3.2 A rea 

The area occupied by a communication graph is defined by the assumptions of 

Section 2.1. In brief, area is measured by the number of unit squares filled by wires 

or nodes. Theorem 2 proves that any communication graph with minimum 

bisection width w must occupy at least w2/4 unit squares. Before proceeding with 

the proof of that theorem, we prove the following result to develop the reader's 

intuition. 

Theorem 1: If a communication graph fits within a rectangle of area 
( w -1) 2, then it can be bisected by cutting at most w wires. 

Proof. Rotate the communication graph by ninety degrees, if necessary, so that 

the height of the bounding rectangle is at most w -1. Next, try to position a vertical 

line within the rectangle so that half of the source nodes are on either side. Such a 

position may not exist, but it is easy to see that a vertical zig-zag line with a unit

length horizontal "step" can bisect any graph, as illustrated in Figure 3-2. The total 

length of the bisecting zig-zag inside of the rectangle is at most w. 'By assumption 

L2, at most one wire can cross any unit-length hmizontal or vertical line segment, so 

that the bisecting zig-zag cuts at most w wires. D 

Note that the contrapositive of Theorem 1 is "if the minimum bisection width of 

a communication graph is w + 1, then its minimum enclosing rectangle has an area 

of greater than ( w -1) 2 unit squares." This is the area of. a communication graph 

for upper bound purposes, as defined by assumption U2 of Section 2.3. The 

following result puts a lower bound on the area of a communication graph, m 

accordance with assumption L2 of Section 2.1. 

Theorem 2: If the minimum bisection width of the source nodes in a 
communication graph is w, then the wires and nodes of the graph must 
occupy at least w 2/4 unit squares. 

Proof. Place a Cartesian coordinate system on the grid of unit squares in such a 

way that the corners of all squares have integer coordinates. Nodes, being at the 

center of squares, lie wholly to the left or right of any vertical line {x = i}, when i is 

an integer. 
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Figure 3·2: A zig-zag bisecting a communication graph. 

Overview. The idea behind the proof is the construction of w 2 bisections of the 

graph, each bisection defined by a "zig~zag" line similar to the one used in the proof 

of Theorem 1. For example, Figure 3-3 shows an embedding of the shuffle

exchange graph of sixteen nodes, bisected in four different ways by the heavy "zig

zags" numbered 1 through 4. (The subscripted i and j values define the positions of 

these zig-zags according to the notation developed later ill the proof.) In general, 

each zig-zag cuts the plane into two pieces, each of which has about half of the 

source nodes. Each zig-zag must cut at least w wires, by definition of the minimum 

bisection width. The outermost vertical sections of the zig-zags are disjomt, so that 

8( w) occupied squares may be associated with the 8( w) wires cut by these vertical 

sections, for a grand total of 8(w 2) occupied squares. Figure 3-4 illustrates the way 

in which squares can be associated with most places that a wire may cross a zig-zag. 

The First zig-zag. The first zig-zag to be constructed has a horizontal segment one 
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Figure 3~3: Four zig-zags. 

At most one 
crossinf" not 

• -~.-- counted 
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At most 2k-2 crossinc;s 
not_ counted 

k\ 

Figure 3·4: First and kth zig-zags, showing occupied squares for 
most wire crossings. 

unit in length. The following paragraph contains a formal description of this zig

zag, and a proof that it can be placed to bisect any graph. 
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Ey monotonicity, 

or more that 

and IL(t1 + 1)1 N/2, related exact bisection is achieved 

by some zig-zag of the form shown in Figure 3~50 As iJ increases, the number of 

source nodes to the left the zig-zag increases monotonically. 

I 
x=l1 for y~j1 1 

------------------
y= j1 for 11~x~i1 + 1 I 

x=l1+1 for y:Sh I 
Figure 3G5: First zig-zag. 

By the definition of the minimum bisection width, any bisection ofthe graph cuts 

at least w wires. Any wire that crosses the zig-zag must run through one of the unit 

squares lying between the lines {x= if} and {x=if +1}. At least w -1 of these unit 

squares must be occupied by wires or nodes, since all wires intersected by vertical 

portions of the zig-zag run into disjoint squares, and at most one wire can intersect 

the horizontal segment of the zig-zag. 

Later zig~zags. Other zig-zags can be drawn to argue the existence of occupied 

squares outside the column defined by {if <x<if + 1}. By monotonicity, ah can be 

found for which the zig-zag shown in Figure 3-6 nearly bisects the graph. The set 

L(h) of vertices to the left of the zig-zag satisfies IL02Ji < N/2 and 

iL(h +1)1 > N/2. An exact bisection can be obtained by the introduction ofyet 

another bend (a "step") in the zig-zag. An t2 can be found in the range 

t1 -1 < i2 <if + 2 such that the zig-zag of Figure 3-7 defines a bisection, 

All wires that cross this zig-zag must run through one of the unit squares in the 

columns {if -l<x<i1} or {if +l<x<if +2I In fact, w-2 squares of t1ese 
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----------=-~-----_-1-5~x-5-11_+_2_· ---------===-,. y=j2 

! 

x=l1 +2 for ~J2 1 

Figure 3c6: First attempt at second zig~zag" 

I 
, x=i1-1 foi' y~j2+1 ~-~~~--~~~~. 

x=i2 for j2+1~Y~h I 
----------------~-. 

Figure 3=7: Second zig~zag, with step. 

columns must be occupied, since at most two wires may pass through the central 

portion of the zig-zag. See Figure 3-4. 

In all, a total of L w/2j zig-zags can be drawn to bisect the graph. The kth zig-zag 

has the form shown in Figure 3-8. The long vertical segments of the kth zig-zag are 

2k -1 units apart, so that at most 2k-3 wires can pass through the central 2k-3 

units of its horizontal steps without being counted by the scheme of Figure 3-4. 

Additionally, one wire can cross its unit-length vertical step. Out of a total of at least 

w wires crossing the kth zig-zag, at least w-2k+ 2 of them must occupy squares in 

the columns {i1 -k+ l<x<i1 -k+2} and {i1 +k-l<x<i1 +k}. 
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i 
I 

x=l1-k+ y~J. + 1 l 
--------------~~--

.x=lk for Jk +1~y~jk I 
----------------~= 

I 
for~~ I 

Figure 3~8: Kth zig-zag, fork> 2. 

Summary. The sum of the occupied squares counted by these zig-zags puts a 

lower bound on total graph area of 

w - 1 + 2:{w - 2k + 2) > w~4, 
l<k<lw/2j 

for w> 2. The theorem also hold5 for the trivial case w =1. 0 

{3.2) 

The zig-zag·constructions of Theorem 2 can also be used to prove a more general 

graph embedding result The most natural statement of the following theorem 

defines a slightly different set o.f embedding rules from any considered elsewhere in 

the thesis. Here, k edges are allowed to pass over any point in the plane, so that 

k=l corresponds to a strictly planar embedding. When k-2, edges are allowed to 

run on top of each other for any distance, while the wires of Section 2.1 may only 

pass over each other at crossovers. Finally, vertices may have degree 4k (whereas 

nodes have maximum degree 4), because kedges can cross each edge of the unit 

square containing a vertex. 

Theorem 3: A graph G =~E) with maximum node degree 4k and 
minimum bisection width MBW(V,G) = w cannot be embedded in less 
than w2/(4k 2). units of area, if vertices have unit area, edges have unit 
width, and no more than k edges pass over any point in the plane. 

Proof The idea behind the proof is to construct a number of bisecting zig~zags, 
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In the Theorem this case, unit a 

zig-zago The jtlz of l w 

occupied squares. 

zig-zags demonstrate existence - 2(j-

The first ' "' h" h cuts w eages, or w 1c at k can cross horizontal portion. 
' 

It thus demonstrates the existence of f{w -k)/kl > w/k-1 occupied squares of the 

central column of the embedded graph. The second zig-zag also cuts w edges, but 

2k of these may cross the central portion without necessarily going through any of 

the squares flanking the central column. The second zig-zag thus accounts for 

r(w -2k)/kl > w/k-2 occupied squares. In general, the jth zig-zag accounts for 

rrw-2(j-J)k)/k1 > w/k-2(j-J) squares. The sum of all these contributions for 

1 <j < Lw/2kj is at least w~{4k 2), hence the theorem. 0 

3.3 Time bounds 

The previous section related the minimum bisection width of a communication 

graph to its area. This section develops a complementary theorem linking the width 

of a graph to the time it takes to compute its function. The two results together give 

lower bounds on area-time complexity. 

·By definition, a communication graph with minimum bisection width w can be 

partitioned into two subgraphs, each containing half the source nodes, upon the 

removal of only w wires. This partition corresponds to a bisection of the problem 

being solved, y = f(x). If k of the sink nodes and r N/21 of the source nodes are on 

"side R" of a bisected graph, then the other N- k sinks and r N/21 sources are on the 

other side, "S." SideR must compute values for the k variables in YR corresponding 

to the k sink nodes included in its half of the bisected graph. The values of the input 

variables xR are available to side R; as they are stored in its r N/21 source nodes, but 

it has no initial information about the input values xs on the far side of the 

bisection. In general, side R will need some information about xs to compute the 

correct values for its outputs YR ; however, the amount of information needed may 

be a1'fected by the known inputs xR. (For example, if side R is to compute the 
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r outputs in problem, it needs nD · about the other 

LN/2j inputs own inputs xR are 

following definition of a sub function YR = FR 

R and each assignment of values to xR : 

These considerations motivate the 

, *)associated with each bisection 

YR = ~'< (xR, x5J {33) 

where 

(3.4) 

A lower bound on information flow between the two halves of the 

communication graph can be obtained by arguments on the structure of the 

F'.T?. (xR, *) arising from a bisected function F. 

One possibility is that no information flow Is necessary. This case arises 

whenever FR (xR, x5) evaluates to a constant, independent of the value of x5 . For 

example, the problem of computing a simple transformation y=ax is perfectly 

partitionable with no necessary information flow, Any bisection that places 

corresponding elements of x and y on the same side allows that side to compute its 

result without any information about the elements of .X that are on the other side" 

The other extreme case is that the computation of YR requires complete 

infmmatioil about x5 . In other words, all the functions YR = FR (xR, *) are 

injective. Each of the l{is }I possible values of x5 leads to a different value of YR, 
for any fixed .XR. 

Lemma 4: If the minimum bisection R of a communication graph of 
width w induces an injective function YR = FR (xR, -Ys) for each .XR, and 
if all 1 { x5 }I values of x5 are equally likely, then the average time to 
compute Fis at least (log l{x5}1)/w. 

Proof Any communication between the source nodes for X.) and the sink nodes 

for YR must pass over the w wires defining the minimum bisection, Total bandwidth 

is thus limited to cu bits per time unit. Over this channel must pass infonnation to 

disambiguate 1 { -Ys }I equally likely possibilities, so that the proper value of YR may 

be determined. 
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As Section the of a IS 

2: - Pi· In this case, pi = 1/1 , so that H =log j{xs}l. Theorem 9 

(page 28) of [Shannon 49], a channel with bandwidth w cannot transmit at an 

average rate exceeding w/H, no matter coding scheme is used. 11Ie average 

to determine a YR value is thus at least as long as the inverse of this average 

rate, or (log 1 {xs}l)/ w time units. 0 

This lemma indicates a way to show that a function F takes much time to 

compute. One could demonstrate that, no matter how the inputs .X are bisected, the 

resulting FR (xR, *) are aU injecti xe. 

In fact, much weaker conditions will suffice. To require injectivity is, from an 

information~theoretic standpoint, to require a trivial mapping between input and 

output probabilities. In an injective mapping, the probability of a specific output is 

equal to the probability of its corresponding input 

Non-injective mappings define more complex transformations· on probability 

spaces. Assuming that each input value is equally likely, the probability of an 

output value is proportional to the number of inputs that produce that output In 

this way, a conditional probability p(yR 1 xR) can be evaluated for each value of YR, 
given a value for xR, by counting the number of inputs is for which 

YR = FR (xR, is). 

SideR of a communication graph must receive enough information from sideS 

to determine its outputs, YR . At best; side S could send just 

2: - p(yR I .XR) log p(yR I xR) 
YR 

{3.5) 

bits of information, which is the amount of information about .Xs contained in any 

YR, given a value for .XR. (This bound is immediate from the definition of the 

information of an event as :2: -Pi fog pi.) Side S may have to send more 

information than this if it is unable to code each >~s value optimally. Its initial 

ignorance about the .XR value will in general preclude optimal coding. For this 
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iy lower- results on nnation can obtained 

following derivations. 

Since the values are indeterminate until the computation begins, the average 

amount of information transmitted a computation is at least 

XR YR 

where p(xR) = 1/J{xR}I is the a priori probability of any particular value of xR. 

So far in the discussion, only one functional bisection has been considered, the 

one corresponding to the minimum bisection of the communication graph 

computing it .Many communication graphs can be designed to solve one problem, 

and each may generate a different functional bisection. It is necessary to consider all 

possible functional bisections in order to obtain a lower bound on the time required 

to compute a function on any communication graph. 

Consider the minimum bisection of any communication graph solving a problem 

with N input values and K output values. A lower bound on the amount of 

information flow across the bisecting wires can be obtained as follows. A bisection is 

defined as splitting the source nodes in half, so that either I XR I = r N/21 and 

1-~sl =lN/2j, or lis! =rN/21 and lxRI =lN/2j. It also splits the sink nodes, so 

that one side or the other must compute at least I R/21 of the K output variables. 

'Without loss of generality, assume that side R has this many output variables and let 

)~1( be any I K/21 of these, ignoring the rest of the problem outputs. If side R has less 

than half of the inputs, assign one additional input to it so that I XR I = r N/21. (This 

possible addition of a component to .XR, and the possible omission of components 

from YR , can only decrease the amount of information needed by side R from side S 

during its computation of YR.) 

These considerations lead to a lower bound on the informational complexity of a 

functio~, H(F), defined as the minimum information flow across any bisection R, or 
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H(F) > min [ L p(xR) L - p(yR I xR} log p(yR I xR) 1 
R XR YR 

where 

and 

1 xR 1 = r N/21, IYR 1 = r K/21, 

p(xR) = 1/l{xR}I. 

{3.7} 

{3.8) 

{3.9) 

{3.10) 

Lemma 5 summarizes the definitions and motivations of this section. 

Lemma 5: The average time to compute a function F on a 
communication graph of width w is at least ll{F}/w. 

Proof. At least H(F) bits must cross the minimum bisection of any 

communication graph computing F, during each evaluation of F. However, the 

bandwidth of the wires forming this bisection is limited to w, so that an average 

evaluation of Ftakes at least H(F)/w time. 0 

A definition of the worst-case information complexity of a function, Hwors/F). 

may be made in a similar fashion. Referring to Equation (3.7), the inner sum may 

depend strongly on the value of xR. The worst-case inputs in this formalism are 

those that have an xR that maximizes the inner sum. Thus 

Hworsl (F)> min max ~ - p(yR.I xR) log p(yR I xR), {3.11) 
R XR YR 

where I XR I. IYR I. and p(YR I xR) are given by Equations (3.8) and (3.10). 

Equation (3.11) is not yet in its simplest form. The inner sum computes the 

entropy of a YR given an xR, that is, the average word-length in bits of an optimal 

code describing YR. In a worst-case ~alysis, it is the maximal word-length in the 

code for YR that is of interest, not the average length. Since there are I{YR }I 

different possible values for YR, a signal at least log I{YR}I bits long must be 

transmitted in the worst case. This gives a stronger bound on the worst-case 

informational complexity of a function, 
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min log I 
R XR 

where 

and 

1xR 1 = fN/21 IYR 1 = rK/21. 

XR-

Lemma 6: The worst-case time to compute a function F on a 
communication graph of width w is at least Hworsl(F}/w. 

Proof Any communication graph solving F will have to contend with a series of 

inputs for which xR and x8 max.imize the necessary information flow across its 

minimum bisection. Each of these "worst-case inputs" cannot be <solved in an 

average time less than HworslF)/ w, since the bandwidth across the bisection is at 

most w. 0 

Examples. The infom1ational complexity of some functions is trivial to evaluate. 

As noted previously, multiplication of a vector by a fixed scalar, y = a_y, has zero 

complexity. In terms of Equation (3.7), choose R to be the obvious bisection that 

places corresponding elements of .X and y on the same side. Then p(yR 1 xR) = 0 

unless YR = xR, in which case p(yR 1 xR) = 1. In either case, the summand 

p(yR I xR) log p(yR I xR) is zero, so that zero information need cross the bis.;ction R. 

Two other simple functions of some interest are the comparison and equality 

functions. The comparison function takes two arguments ranging over the integers 

{0, 1, ... , 1V -1} and produces one of two values as an output. The output is 1 if 

the first argument is greater than the second, 0 otherwise. The equality function is 

identical to the comparison function, except it returns 1 only if its arguments are 

equal. 

Somewhat surprisingly, it is _much easier to test for equality than to compare, 

judging by the information complexity of the two functions. Since there are two 

input variables, the only possible bisection puts one argument on either side. Let 
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output variable i"-ssvming the 

inputs are uniformly independently distributed, then p(JixR) = 1/lvf and 

p(OixR) = 1 - 1/Jlil for the equality function. Tims 

H(equality) > 2: {1/ll;f}{ -(1/M}Iog(J/M) - -1/M)log(J -1/JW)] 
XR 

> {1/N!) log Jvf + - 1/ivl}{log e) 2: 1/{klvl 
k>l 

> {1/M} fog Mo {3.14} 

The comparison function has p{llxR) = xR/Af, p{OixR) = l - xR/lvf, so that 

H(compare)> 2.{1/lv/}[ -(xR/Af)log(xR/i\lf}-{1- xR/M}log(J- xR/11,1)] 
XR 

> 22: -{1/lv/}(xR/lvf} log (x:R/M) 
XR 

> 2:L {1/lv!}(xR/Jv!) 
xR<M/2 

> 1/2. {3.15} 

This analysis suggests that the equality function might be easier to compute than the 

comparison function, since the lower bound on its informational complexity is so 

much smaller. In fact, A. Yao [Y ao 79] has proved that equality is indeed easier than 

comparison, in a similar model of computation. He shows that a signal of length 

fJ(loglog 1vf} rs necessary and sufficient to desc1ibe xs so that an equality decision 

can be made with a vanishingly small error probability. The comparison function, 

on the other hand, needs a signal of B(log lv!) bits, which is of course the length of 

the obvious binary representation of Xs. (Y ao's results underscore t11e fact that the 

informational complexity formulas developed in this section give only lower bounds 

on the necessary an1ount of information transmission. Fortunately, the lower 

bounds are nearly tight tor Fourier transformation and sorting.) 

A digression: Grigoryev's /·independence. The informational 
complexity of a function as defined in this thesis is similar to Grigoryev's 
definition [Grigoryev 76] of the /-independence of a function. A function 
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I£Japping a of boolean variables a vector boolean 
variables y is /-independent every partition A ofF containing exactly 
the components of .X and jJ satisfies 

(rn~xj{jiA}!) > (2iYAI-1 + (3, 
XA 

and YA is a sub function ofF, that is, a subset of the elements of y = F(x) 
\vhen F is partially evaluated at xA : 

YA c r F(xJ _ ;. {3.18) 
XA 

Taking the logarithm of Equation (3.16) and replacing "for every partition 
A" by "minimum over all partitions A," Grigoryev's definition becomes 

(min max log I{.YAJ!) > ~YA 1-1}. (3.19) 
A xA 

Note that this form of Gligoryev's definition bears a strong resemblance 
to the worst-case informational complexity HworsJF) of Equation (3.12). 
TI1ere are two major differences, however. Grigoryev's definition covers 
only boolean functions, which are a special case (lvf=2) of Equation 
(3.12). More importantly, a partition A in an /-independence proof is not 
necessarily a bisection R in an informational complexity derivation. The 
bisections used in the definition of Hworst (F) contain half of both input 
and output variables (Equation (3,13)), while a partition A contains a total 
of l variables. Grigoryev has made the more general definition, since the 
set of all partitions containing exactly ! = f N/21 + f K/21 variables ls 
properly contained within· the set of all bisections of N input and K output 
variables. A function F:{O,l}N +-- {O,J}K that is (rN/2l+rV2l)
independent must ha.ve worst-case infmmational complexity of at least 
r R/21, since its "best bisection" can require no less information flow than 
its "best partition." As will be seen later in this chapter, a funciton with 
infonnational complexity H has an area-time tradeoff of A.T2 = Q(H 2). 

Thus any chip that evaluates an N-independent function in worst-case 
time Tand area A must obey AT2 = Q(N 2!og 2N). 

3.3. 1 Disc rete Fourier transformation 

Consider the reduced DFT computation in which the communication graph is to 

evaluate only the first lN/2J of theN outputs. Furthermore, it is to produce only the 

mod Q residues of these outputs, where Q is any prime dividing the ring modulus iV{ 
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Following the definition in Section 1.2.1, the reduced DFT is a matrix vector 

multi plication 

Yr = Arx mod Q, (3.20) 

where the elements of Ar are given by 

Arfi,j} =a ij for O<i<tN/2j, OSJ<N. (3.21} 

and a is a principal N-th root of unity in the ring of multiplication and addition 

modulo M. The ring modulus }.;/must satisfy 

M - 'J '2 'k ( )\ · - P1 P2 • · · Pk , 3.22/ 

where 

Nj gcd(p1 -1, p2 -1, ... , Pk -1}. 

Since Q is one of the prime factors of lv!, the entire computation can be done 

mod Q. The reduced DFf is thus 

Yr = Ar(x mod Q), {3.23} 

where 

(3.24} 

and 

aQ = a mod Q. (3.25} 

All the ao are distinct [Agarwal 75]. 

The probability of any particular value of .X mod Q is simple to derive. . Each . 

mod Q residue arises in {0, 1, ... , .1~1-1} exactly N!/Q times, so that 

p(x mod Q) = {1J1/Q) Np(x) = 1/Q N. {3.26} 

The reduced DFT can thus be considered to be a mapping from 

{0, 1, ... , Q-1} N onto {0, 1, ... , Q-1} lN/2J, each point in the domain having 

equal likelihood. Assumption L4 is thus satisfied for the reduced DFT. 

Furthermore any computation of a DFT is also a computation of a reduced DFT, in 

the sense formalized below. Lower bounds for the reduced DFT thus apply 

immediately to the full DFT. 

Lemma 7: Any communication graph that solves a full DFT also solves 
a reduced DFT in the same amount of time. 
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. According assumption 7, ongm£1 assertion each of 

N outputs is satisfied at the of a DFf computation. other words, final 

state of the sink nodes computing one of these outputs corresponds to a particular 

output in the 1ing of modulo arithmetic. final state of sink node 

also corresponds to a particular value in the reduced ring of modulo Q arithmetic. 

Thus a new set of output assertions can be written to map final sink node states onto 

correct output values for a reduced DFT computation, leaving the rest of the 

communication graph intact. D 

The importance of the reduced DFT is that any bisection of domain elements still 

spans its entire range. The full DFT does not enjoy this property. 

Lemma 8: [Tompa 78, Valiant 76]: The matrix fanned by the 
selection of any liV/2J columns of Ar is invertible. 

Proof Let {bj} be the indices of the selected columns. TI1e resulting matrix B is 

then 

B{i,j} =(a.Q) ibj jor0<i,j<l_N/2j, O<bj<N. (3.27) 

The transpose of B is a Vandennonde matrL'< in which row j has the first LN/2j 
b. . b-

powers of ( a.Q) J. The base elements of each row, ( aQ) J, are distinct because they 

are selected from the necessalily distinct powers of aQ. The determinant of B Tis 

thus non-zero. Slnce Q is prime, integer arithmetic mod Q forms a field, and the 

determinant of B T has a unique multiplicative inverse. Therefore, B is invettible. 

D 

The preceding lemma is not quite powerful enough to evaluate the information 

complexity of the reduced DFT. It shews that if all of the first l N/2j outputs were 

on one side of a bisected communication graph, they would need complete 

information about any LN/2j of the inputs on the far side. In general, one can only 

expect to find a fraction of those outputs on one side, so the following lemma is of 

use. 
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~, = F(xJ 
F:·{O, 1, ... , k ~ {0, J..,., Q-J]K, 
domain x are equally likely, then for any 
components of y, 

L - p(SicJ log p(yc) = lYe !log Q. 
Yc 

. ·~. FOR VLSI 

lS 

elements of 
selection {C} of lYe I 

{3,28} 

Proof The probability, p{ye), of obtaining a particular value Yc for the selected 

set of components can be evaluated by considering all possible values for 

P(YeJ = 2: ofY'e = Fe(xJJ p(x). {3,29) 
X 

The "delta function," ofye = Fe(x}], is one if the projection of F(x) onto the 

variables in C equals Ye; otherwise 8[. . .] is zero.. The probability p(x) of any 

particular x is 1/Q k, since all x are equally likely. Also, every distinct x gives a 

distinct because F is a bijection:. There are just k-lYel components in y outside 

of Ye, so there are at most Q k-!Ye I distinct values of y for li'\ed Ye. Thus at most 

Q k -lYe I distinct x can give Fe(x) = Y'e. These considerations bound the size of 

the summand ]n Equation (3.29), giving 

P6eJ < (Q k-IY'e ~{1/Q Icy 

< 1/Q IY'el. (3.30) 

This inequality must be sharp for all Ye, by the following argument. The sum of 

p(Sie) over all Yc must be unity, as they are probabilities. There are exactly Q lYe I 
distinct Yc, so _ 

a_vgp(yc) = 1/Q lYe I. {3.31) 
Yc 

If any of the p(yc) were less than 1/Q lYe I, the average would fall below this 

figure. Thus 

POcJ = 1/Q I.Y'cl. {3.32) 

The lemma is now immediate. 
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{~~ - P6cJ log P(Yc) =~ ·~ 

YC 

-J/Q lYe I) log 

=I.YcllogQ, 0 

Finally, aH the groundwork is in place for the main theorem of this section. 
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{333} 

nfheorem 10: The average time T to compute an DFT on a 
communication graph with minimum bisection w is bounded by 

> (lN/4J log N}/w. 

Proof By Lemma 7, the time taken to compute a DFT is bounded from below by 

the time taken to compute a reduced DFT. The informational complexity of a 

reduced DFT is, by Equation (3.7), 

H(DFT} > min [ L p(xR) 2: - P(YrR I xR) log P(YrR I xR)], (3.34} 

R .X:R YrR 

where 

I xR I = fN/21 and IYrR I= flJV/2j/2l, (3.35) 

since the reduced DFf has N inputs and LN/2j outputs. 

For each bisection R, the reduced DFT may be expressed as 

Yr = ArR xR + Ars is, (3.36} 

where ArR is formed from the reduced DFT matlix by selecting the columns whose 

vmiables are in R. Similarly, the matrix Ars is formed from the l N/2j columns of 

Arnot in R. 

By Lemma 8, Ars is invertible, so that for fi1ecl xR, 

Yr = F_rR (xs) {3.37) 
. . b'' . fr f-O 1 Q 1} lN/2J f.Q I Q 1} LN/2J 1s a IJecuon om 2 , , , ••• , - onto 2. ~ , , ••• , - • 

Lemma 9 can now be applied to the expression for H(DFT) above, using 

y = Yr x =is, F(x) = FR (x) _, (3.38} 
XR 

k = LN/2J, .Yc = YrR• lYe I =I k/21 = flN/2j/2l, (3.39} 

and 
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so that 

H(DFT)> min[2:p(xR)(IlN/2j/2llogQ)J 
R XR 

> {flN/2j/2llog Q) min 2: p(xR) 
R X:R 

> [lN/2j/2lfog Qo 
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(3.41} 

Since any prime Q dividing the modulus of a DFT must be greater than N (see 

Section 1.2.1), 

H(DFT} > lN/4J log N {3.42) 

By Lemma 5, the average time Ttaken to solve a DFT on a communication graph 

with width w is bounded by 

T> H(DFT)/w 

so that 

T > (lN/4J log N)/wo 0 

(3.43) 

{3.44) 

Corollary 11: The performance of any communication graph with area 
A that solves a DFr in average time Tis limited by AT2 > lN/8j 2!og 2N. 

Proof By Theorem 2, the area of any graph with bisection width w is bounded 

by A> w~4. Squaring Equation (3.44) gives T 2 > liV/4j 2!og 2N/w 2, hence the 

TI1eorem. 0 

Corollary 12: The relation AT2x = Q(N 1+xtog2xN) is satisfied by 
any communication graph with area A that takes average time T to solve 
an N-element DFr, for all x such that 0 < x < 1. 

Proof The area of any communication graph with N source nodes must be Q(N}, 

since each source node takes up at least one unit of area. By Theorem 2 and 

Theorem 10, 

AT2x = fl( (N + w2/4)((N log N)/4w) 2x) 

{3.45) 
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of can be with smce first terin 

decreases with w and the second term increases\vith w, for 0 < x < 1. Equating the 

derivative of Equation (3A5) to zero gives 

(Nl+ 2xN)w -2x + 2x(log2xN}~·J2-2x)=O, 

-2xN1+ 2X[!og 2xN)w -2x-l + {2-2x)N 2x(log 2xN)w l- 2x = 0, 

{w l- 2x)/{w -2x-I) = 2xN1+ 2x(log 2xN)/{{2-2x)N2x!og 2xN), 

w2 = Nx/{1- x). 

so that 

{3,46) 

{3,47) 

{3,48) 

(3.49) 

w = tJ(N I/2) {3.50) 

leads to the best possible lower bound on AT2x perfmmance for 0 < x < 1. 

Specifically, when this value is used for w, Equation (3.45) becomes 

AT2x = Q(N 1 +xtog 2xN), {3.51) 

proving the Corollary for 0 < x < 1. Theorem 11 covers the case x=l, and the case 

x=O is immediate. D 

Corollary 13: At least Q(N 3/2/og N) units of energy must be dissipated 
by any chip solving an N point DFT. 

Proof A communication graph can be drawn for any chip solving a DFf, using 

the correspondence scheme of Section 2.3. By Corollary 12, the product of area with 

time for such a chip must be at-least Q(N 3/2 log N). As indicated in Section 1.1, the 

product of area with time measures energy. 0 

3.3.2 Sorting 

The average informational complexity of the sorting problem appears to be 

difficult to evaluate, but a worst-case bound is almost immediate. Recall that the 

sorting problem was defined in Section 1.2.2 as anN-input, N-output problem. The 

inputs are chosen from the integers {0, 1, ... , lvf -1}. The outputs are to be a 

permutation of the inputs into non-decreasing order. Note that the size of .i\1 is 

extremely important. If iti = 2, then each half of a bisected sorting circuit needs to 

know only the total number of zero input values on the other side of the bisector. 
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A bound on the informational complexit_Y of the sorting problem is obtained 

through an analysis of a "reduced" version, analogous to the reduced DFT of the 

previous subsection. Define the reduced sorting problem as a sort which only the 

first lN/2j output values are required to be couect. Call this problem 

ji = RSORT(x), where IYI = lN/2j and I xj =No 

Any communication graph solving the sorting problem must also solve RSORT: 

consider a reduced graph from which the assertions associated with the last f N/21 

output variables have been deleted. The time required by an RSORT is thus a lower 

bound on sorting time. Tne following lemma bounds the informational complexity 

of RSORT. 

Lemma 14: Hwors/RSORT) ~ lN/4j log{2lvf/N). 

Proof From Equation (3.12), 

Hwors/RSORT) =min max log I{YR}I, 
R xR 

where 

i.XRI =fN/21 and IYRI =flN/2j/2l- {3.53) 

The variability in the outputs of side R, I{YR}I, is ma'<imized when the elements 

of xR are all equal toM -1. In this case, the outputs of RSORT are only dependent 

on is, for this vector must contain all of the lN/2j smallest input values. As is 

varies over all its possibilities, so will YR, so that each of the flN/2j/2l elements of 

YR can take on any value in {0, 1, ... , lvf -1}. Since YR is in smted order, there are 

not quite JVJilN/2j/2 l possible values for YR. Instead, 

(Af + llN/2j/2l-l) 
I{YR}I = flN/2j/2l , · {3.54) 

the number of selections of flN/2j/2l indistinct elements from M possibilities. If 

the elements in each selection are arranged in increasing order, the selections can be 

seen to be in one-to-one correspondence with the YR " 
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Thus, 

liwors/RSORT) > log !{YR}i 

> log(.l\;JflN/2j/2l/flN/'2j/2l !lN/2j/2l) 

> ilN/2j/2llog {lvf/flN/2j/2V. 

Applying the inequalities 

N/2 > ilN/2j/2l > LN/4j 

to Equation (3.57) gives 

Hwors/RSORT) > LN/4J log(2iVf/N). D 

PfGF75 

(3055) 

(3,56) 

(3,57) 

(3.58} 

(3.59) 

Given this bound on the worst-case information complexity of RSORT, the 

following performance bounds are immediate for the full sorting problem. 

Theorem 15: The worst-case time taken by any communication graph 
of width w to sort N numbers chosen from {0, 1, ... , J11-l} is at least 
Q(N log N}/w, if iVf = N 1+e for some fixed E>O. 

Proof By Lemma 6, the worst-case time to perform an RsoRT is at least 

Hwars/RSORT)/w; from Equation (3.57), this is Q(N log N}/w since iVf =Nl+c;. 

Any communication graph that sorts also performs an RSORT, so the graph must 

take at least this much time to produce its results. D 

Corollary 16: The relation AT2x = Q(N 1+xzog2xf.f) is satisfied by 
any communication graph with area A that takes worst-case time T to 
solve a sorting problem of size N, for all x such that 0 < x < 1. 

Prooj: Identical to the proof of Corollary 12. 0 

Corollary 17: It takes at least Q(N J/2/og N) units of energy to sort N 
numbers on any VLSI chip. 

Proof Identical to the proof of Corollmy 13. D 

Chapter 3 is now complete. In summary, the "informational complexity" of a 

function is defined as the minimum necessary information flow across any bisection 

of a communication graph computing that function. Also by definition, the 

available bandwidth across any bisection of a communication graph is proportional 
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to Its "minimum bisection width. Thus a lower bound on the tLme needed to 

compute a flmction is its informational complexity divided by the minimum 

bisection width of the graph computing it. Theorems 10 and 15 evaluate this lower 

bound for the functions of sorting and Fourier transformation. Previously 

(Theorem 2), the area of a communication graph was shown to be at least w~4, 

·where w is its minimum bisection width. Corollaries 12 and 16 combine these lower 

bounds on area and time to give the general result that AT2x = Q(N 1+xtog 2xN) 

forO< x< 1. 
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An upper bound in the VLSl model of computation is proved by the existence of 

an admissible communication graph achieving a given performance level. This 

chapter details four constructions, two solving the Fourier transform problem and 

two solving the sorting problem. Of the two graphs solving each problem, one is 

based on the shuffle-exchange interconnection pattern, and one is based on the 

square mesh. The shuffle-exchange designs are fast but large: the Fourier transform 

circuit operates in time T = O(log 2N) and area A= 0(1V2/log 1/ 2N); the sorting 

circuit has T = O(log 3 N) and the same area. The mesh designs for both problems 

are relatively slow and small, T = O(N 1/ 2loglog N) and A= O(N log 2N). All four 

designs are nearly optimal under the AT2 metric, and the mesh designs are nearly 

optimal under any AT2x metric, for 0 < x < 1. 

The constructions are described in a top-down fashion, starting with a discussion 

of the basic Dlgorithms, the bitonic sort and the fast Fourier transfonn (FFf). In 

Section 4.1, these algoriu~ms are defined as networks consisting of O(JV log N) or 

more cells each capable of perfonning a two-element sort or a two-element Fomier 

transform. Section 4.2 discusses the way in which a network constmction leads to a 

recirculation algorithm that uses only O(N) cells. Section 4.3 gives two VLSI 

implementations of the FFT algorithm, one for a mesh-based recirculation network, 

one for a shuffle-exchange-based recirculation network. These two networks are 

used to implement the bitonic sorting algorithm in Section 4.4. Section 4.5 develops 

approximations to the actual size and speed of the VLSI implementations of sorting 

and FFT circuits, comparing these to their asymptotic performance measures. 
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Both the bitonic sort and the fast Fourier transfonn are often described as large 

networks of fairly simple cells. The FFT network will be discussed first, since 

construction is the simpler of the tWo. 

N~element FFT network [Cochran is built from a of llzN log N 

multiply-add cells. Figures 4-1 and 4-2 illustrate the recursive construction of anN

element network from N/2 cells and two i\V2-element networks. Figure 4-3 is the 8-

element FFT network that results from this method of construction. 

The basis of the recursive construction is the two-element FFT network 

composed of a single multiply-add cell. A cell marked k produces as outputs 

Y0 = X0 +a kx1 (4.1} 

and 

(4.2) 

where X0 and X1 are its two input values (here a is an N-th root of unity, as defined 

in Subsection 1.2.1). The exponent of a is parameterized since different cells have 

different values for k. The construction of Figure 4-2 defines the way in which cells 

are assigned values for their parameter k. In this construction, networks and 

subnetworks are also parameterized: a (k)-FFT network is built from an N/2-

element (0)-FFT network and an N/2-element (N/4)-FFT network. 

The outputs of anN-element (0)-FFT network are theN outputs of the discrete 

Fourier transfonn. However, these outputs appear in "bit-reversed" order [Cochran 

67]. That is, if the output indices are expressed as (log J'{)-bit binary numbers, then 

each output appears in the position denoted by reading its index in reversed order. 

For example, the fifth output of an 8-element FFT, Y4 , appears in position 

(001)2 = 1, since the binary representation of its index is (J 00)2 . 

It is now time to examine sorting networks. 111e N-element bitonic sorting 

network [Batcher 68] js built of 1I2N(!og N)(log N + J) comparison-exchange cells, 
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k 

Figure 4·1: Multiply-add cell or 2-element FFT network. 

k 

Nf2 -ELEMENT (k)- FFT 

NETWORK NETWORK 

Y, 0 0 0 

Figure·4-2: Recursive construction of anN-element (k)-FFT network 
from lhN(log N) multiply-add cells. · 

interconnected as shown in Figures 4-4 through 4-7. A comparison-exchange cell is 

a two-input, two-output device that compares the values of its two inputs, sending 

the larger toward the point of its arrow. As indicated in Figure 4-6, a sorting 

network is defined in a doubly-recursive fashion, from two smaller sorting networks 

and one bitonic merger. Note that a bitonic merger is topologically identical to the 

FFT network of Figure 4-2, since it has the same recursive construction, from N/2 

cells and two half-sized networks. 
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Y4 Y2 Y'"' Y. Ys Y3 
Figure 4· 3: An 8~element FFT network. 

The tenn bitonic seems to have been coined by Batcher [Batcher 68], by analogy 

with monotonic. A bitonic sequence is the concatenation of two monotonic 

sequences, one increasing and the other decreasing. In the article cited above. 

Batcher also makes a distinction between a "bitonic sorter" (his name for a bitonic 

merger) and the complete bitonic sorting network. In an effort to avoid confusion 

between these two networks, Hatcher's distinction is not observed here. 

Xo X, 

Yo 'f; 

Yo= MIN (Xo,X.) 
Y1 = MAX ( Xo, X. ) 

Figure 4·4: Comparison-exchange cell or 2-element sorting network. 
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Figure 4·5: Recursive construction of anN-element bitonic merger. 
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The bases for the recursions of Figures 4-5 and 4-6 are formed trivially by the 

single comparison-exchange cell of Figure 4-4, which may be considered either a 

. two-element bitonic merger or a two-element sorting network. The arrow inside a 

sorting network indicate the "direction" of its sorting process: the larger input 

elements move toward the point of the arrow, following Knuth's notation ([Knuth 

73], p. 237). The direction of these arrows is critical in the construction, for one of 

the two N/2-element sorting networks of Figure 4-6 must produce its outputs in 

ascending order, while the other must produce a descending sequence. 

The action of a sorting network can be described in an intuitive fashion [Stone 

71]. The graph of the outputs of the left-hand N/2-element sorting network may be 

visualized as /, for its rightmost outputs are the largest. Similarly, the graph of the 

outputs of the right-hand N/2-element sorting network looks like \. The inputs to 

theN-element bitonic merger are thus a bitonic sequence /\. Just inside of the N

element bitonic merger, the two arms of the 1\ are interleaved to form an x. The 
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N;2- ELEMENT BITONIC 

SORTER 
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N;2- ELEMENT BITONIC 

SORTER...-.---

N - ELEMENT BITONIC MERGER 

Yo 0 0 0 

Figure 4·6: Construction of anN-element bitonic sorting network from 
two N/2-dement bitonic sorting networks and 

one N-element bitonic merger. 

comparison-exchange cells are able to pick apart the top and bottom halves of this 

x into a A and a v, both of which are_bitonic sequences. The A is passed to the left 

and the v is sent to the right. Since all elements of the A are less than any element 

of the V, the outputs of the two N/2-element bitonic mergers look like 1 and 1 and 

can be immediately combined into a fully sorted sequence/. 

Note that there are two distinct ways of forming an ascending sorting network · 

(-+) from a descending sorting network ( ~ ). One way is to "flip" the network along 

a vertical axis, so that the rightmost and·largest output becomes the leftmost output 

This is the approach used on page 237 of [Knuth 73]. The other way, chosen by 

Stone [Stone 71] and adopted here, is to reverse the directions of all the comparison

exchange cells inside a descending sorting network. Figure 4-7 shows the eight

element sorting network obtained from the construction of Figure 4-6, using this 



Figure 4· 7: An 8-element bitonic sorting network. 

type of descending sorter. The two methods of reversal give distinct networks. In 

particular, the top row of an eight-element sorting network built using Knuth's 

approach has comparison-exchange cell directions (- - ---;. - ), while the top row of 

Figure 4-7 is ( -t +- - --* ). The virtue of the latter approach is that it has a more 
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The sorting and FFT networks described in the previous section could be 

implemented directly in VLSI, although this would be grossly inefficient. During the 

course of a computation, each cell is active only once, producing just one pair of 

results. 

There are two ways to boost the efficiency of smting and FFT networks, 

pipelining and recirculation. The pipelining approach introduces a row of registers 

between each row of cells in Figures 4-3 and 4-7. A new problem can be fed into the 

top row of the network as soon as the previous problem inputs have emerged from 

ul_at row. Since a pipelined design solves many problems simultaneously, it can 

solve a series of problems more quickly than a non-pipelined design. However, the 

pipelined design is no faster at solving a single problem, and thus does not have a 

better time performance under the ground ntles of this thesis. (An interesting 

extension to the VLST model of computation would explore different notions of time 

performance. For example, solution time might be defined as the time between 

successve problem solutions, under tb.-e assumption that the circuit is always being 

fed with new problems.) 

The second method of increasing efficiency, recirculation, uses one row of cells 

many times during the solution of a single problem. During each stage of the 

computation, this row simulates the action of one of the rows in the complete 

network. The inputs needed by the row as it simulates the (k + l)st row of the 

network are obtained from the outputs of the kth stage of computation. A 

recirculation network is used to handle this data flow. The structure of this network 

is impmtant. If its connectivity is not precisely right, the data will have to circulate 

more than once through the row before it reaches the correct cell. As shown in 

Subsections 4.3.3 and 4.4.1, the shuffle-exchange pattern is an ideal recirculation 
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one pass througl"t is sufficient :;:::age of a FFT or 

bitonic sort The mesh pattern is nearly so well suited to these 

algorithms, but it does require much less silicon area, as shown later in this chaptero 

4.3 VLSI implementations of the F 

This section is divided into four parts. The first part shows how an N-element 

FFT can be performed on a row of N multiply-add celts, using a mesh-type 

recirculation network. The resulting algorithm is essentially identical to one 

proposed for the the IUiac IV computer [Stevens 71]. 

The second subsection examines the problem of implementing a multiply-add 

cell in VLSL A construction is proposed, and its area-time performance is analyzed. 

This leads to area and time results for a complete mesh-based FFT circuit. 

The construction of Subsection 4.3J uses a different recirculation network based 

on the shuffle-exchange graph. Area and time results for this FFT circuit are 

developed in Subsection 4.3.4, after the problem of embedding the shuffle-exchange 

graph in the plane has been solved. 

4.3.1 Performing the FFT on a mesh 

The square mesh interconnection pattern takes its name from its appearance 

when d~awn in its most compact form, as in Figure 4-8. In a mesh with N = n 2 

cells, an interior cell i connects ''horizontally" to cells i-1 and i+ 1, and "vertically" 

to cells i-n and i+ n. Note that there are no end-around connections, so that nodes 

on the periphery of the mesh have fewer than four neighbors. Figure 4-8 shows the 

row-major indexing scheme for the cells in a mesh that is implicit in the definition 

given above for cell connectivity. 

The precise functionality of the cells in the mesh will be developed in the next 

subsection, in keeping with a top-down approach to the description of the 



PAGE COMPLEXIrl THECJR Y FOR 

Figure 4-8: A 16-cell mesh drawn in its most compact form. 

constructions. At the present level of detail, cells may be thought of as message

driven processors. Each cell can create a new message from the information 

contained in its registers, addressing it to any other cell in the network. Each cell can 

also forward messages along the shortest path to their destinations. Finally, each cell 

can receive messages addressed to it, and update its registers appropriately. 

To understand the way in which an FFf can be performed on a mesh, it is best to 

visualize the mesh in the linearized form of Figure 4-9. In this representation, the 

horizontal connections are still quite short, but the vertical connections have been 

lengthened dramatically (they must skip over N l/2 -1 intervening cells). Of course, 

the VLSI circuit will not be laid out in this fashion, as the vertical connections would 

waste a lot of area. 

Figure 4-9: A 16-cell mesh drawn in linear form. 
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There is a natural correspondence between the linear form of the N-cell mesh 

and the N-element FFT network. Each of the N columns of cells in the FFT 

network corresponds to one of theN cells in the mesh; the interconnections between 

rows of cells in· the FFT network correspond to data movement among the cells in 

the mesh (a "recirculation"). The comments made so far apply to any recirculation 

algorithm on any recirculation network: what makes the N-cell mesh correspond 

nicely to the N-element FFT network is the fact that each recirculation can be 

mapped efficiently onto either the horizontal or vertical interconnections of the 

mesh. Referring to the 16-element FFT network of Figure 4-10, the interconnection 

pattern between each pair of rows consists of connections between columns whose 

indices differ by a power of 2. Similarly, in Figure 4-9, connections exist between 

cells whose indices differ by a power of 2. 

The actions performed by cell 0 of a 16-cell mesh performing a 16-element FFT 

can be described wjth reference to Figures 4-9 ,and 4-10. Initially, the 16 inputs to 

the FFT are stored one per cell: cell i contains input ~. Looking at the top of 

column 0 of the FFf network, cell 0 receives input X8 from cell 8, and does a 

multiply-add step with coefficient a0 on this new value and its original input X0 . It 

keeps one of its two outputs, sending the other back to cell 8. :iVIoving to the second 

row of cells in the FFT network, cell 0 receives a value from ceil 4, does a multiply

add step, and returns a modifie·d value to cell 4. Next, cell 0 receives a value from 

cell2, and returns a modified value to that cell. Finally, cell I sends a value to cell 0, 

for use in its last multiply-add step. The FFT computation is complete after this 

multiply-add step. 

The actions of cell 0 in the FFT algorithm are anomalous in the sense that no 

other cell performs a multiply-add step dming the simulation of every row of t11e 

FFT network. In fact, only half of the cells participate in each stage of the 

computation. In the first row of the 16-element example of Figure 4-10, the 

participating cells all have four- bit binary indices of the form (Ocba)2 . That is, only 

the first eight cells perform the first multiply-add step, and the outputs of the other 
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Figure 4Q 10: A 16-element FFT network. 
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eight cells will be ignored. Moving to the second row of the FFT network, only cells 

with binary indices of the form {d0ba)2 do a multiply-add step. In the third and 

fourth row, cells with indices (dc0a)2 and (dcb0)2 participate in the multiply-add 

step, respectively. 
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of cell 0 anomalous because have to act as acL 

intermediary routing of data values from one cell to another. Most routings 

on the mesh do involve intermediate cells. For example, the top row of the FFT 

network of Figure involves a distance~8 routing: the data from cell 8 reaches 

cell 0 by way of cell 4, passing over two vertical interconnections. Note that all 

distance~B routings can be perfonned (in parallel) by one intermediate cell at 

distance 4 from the sender and the receiver. 

On an N = n 2 cell mesh, both distance I and distance n routings are called unit 

distance routes because they can be accomplished over horizontal or vertical 

connections with no intermediate cells. A unit distance route takes time tR. 

The total time taken by the data movement during an FFT can be evaluated in 

terms of the number of unit distance routes performed. In the case of the 16-

element FFT of Figure 4-10, the top row's distance-8 routing takes two unit distance 

routes (2tR}. After the first multiply-add step, there is another distance-S routing 

followed by a distance-4 routing, taking time 3tR. After the second multiply-add 

~tep, there is a distance-4 routing and a distance-2 routing, which also takes time 

3tR. The third multiply-add step is followed by a distance-2 and a distance-] 

routing, for another 3tR units of time. The fourth multiply-add step is followed by a 

(supert1uous) distance-] routing. The total routing time in the computation of a 16-

element FFT is thus 12tR. 

In the general case of an N-cell mesh performing an N-element FFT, cell indices 

can be represented as (log N)-bit binary numbers. There are log N rows in the FFT 

network, the kth of which is simulated by a multiply-add step in cells with a zero bit 

in the ((log N) - k)th bit of their index" A distance-(JV/2 k) routing is performed 

before and after this multiply-add step. A summation of the time contributions of 

all rows k of the FFT network will give the total amount of routing time. Similarly, 

the amount of time taken by the multiply-add computations can also be evaluated in 

terms of tu, the time taken by a single multiply-add step. This line of reasoning 

leads to the following lemma. 
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An N-eitiL FFT can pc!rformed JV~cell 

in time T = O(N 1/ 2tR + lV)tM}, If a unit-distance takes 
time tR and a multiply-add step time tM. 

p ,/-' Th ~ -' rooJ. 1ere log N rows an N-element FFT network. cells of mesh 

simulates ro-w k of the network by performing two distance-(N/2 routings and one 

multiply-add step. When k <(log N)/2, the mesh's vertical interconnections should 

be used to perform the routings in minimal time. Othervvise, the horizontal 

connections should be used. 

The total time for the FFT is thus 

T = 2: ( 2{N/2 k)/N l/2 tR + ~VI} + 2: ( 2(N/2 ";tR + tM ), (43) 
J<k<(log N)/2 {log N)/2<k<log N 

so that 

T = 4(N l/2 -J)tR + (log N)tM. 0 (4.4) 

This completes the desc1iption of the way in which the FFf algorithm can be 

performed on mesh connections. The next subsection gives a VLSI implementation 

of a multiply-add cell. A mesh composed of N of these cells can compute an FFT in 

the manner described above. 

4.3.2 The multiply-add cell 

Each multiply-add cell in a mesh implementation of the FFT must perform two 

functions. First, it must be able to perform a multiply-add step on two (log _~\!f)-bit 

numbers X0 and X1 , computing 

Y0 =Xo + a1X1 (4.5} 

and 

{4.6} 

Here, a1 is the power of a used in the jth stage of the FFT computation. Each 

multiply-add cell uses a different list of aj values, corresponding to the 

computations performed in its column of the FFf network. A multiply-add step 

takes time tM, in the terminology of Lemma 1. 
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each cell must send and receive values) to 

a transmission is called a unit-

distance route and takes time tR in the tenninology of the previous subsectiono 

By the result of Lemma 1, the time performance of an N~cell square mesh will be 

arTected much more strongly by than by tM, 

This observation suggests that a bit-serial method be used in the multiply-add 

computation to save area. Also, a bit-parallel routing method should be used to 

minimize tR. 

Figure 4-11 shows the structure of a multiply-add cell that does bit-serial 

computation but has bit-parallel computation paths to and from its immediate 

neighborso There will be N such cells in a complete mesh, arranged in a square 

patterno Each cell is O(log N) units wide by O(log N) units long, so that N nodes 

occupy O(log 2N) area. Note that there are log ivf wires in each of the parallel 

communication paths, so that a (log Nf)-bit word can be transmitted to a neighbor in 

a single operation. However, it will take O(log N) time to get a word out of a 

transceiver and into the arithmetic circuits, since there is only a serial data path 

between these two elements. (Recall that log M = O(log N) by assumption U4 of 

Chapter 2.) 

There are four control wires for the vertical (resp. horizontal) transceiver, telling 

it to transmit data in parallel upwards (to the right) or downwards (to the left), or 

else to shift data serially into or out of the arithmetic circuit The internal stmcture 

of a transceiver is shown in Figure 4-12. The circles are logic nodes forming a shift 

register that can be accessed either serially (shift in, shift out) or in parallel (up, 

down). The large triangular drivers must be able to send a signal down an O(log N) 

unit wire. Hence they have area O(log N). Since the entire transceiver must fit in an 

O(log 1V) by O(log N) unit area, these drivers must be oriented vertically, as 

indicated in Figure 4-12. 
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Figure 4~ 11: Multiply-add cell for the mesh. 

Lemma 2: The multiply-add cell of Figures 4-11 and 4-12 has a routing 
time tR = O(loglog N}, exclusive of the time it takes to shift data into and 
out of the transceivers (the shifting time will be included with tM ). 

Proof The delay of a driver of area O{log N) is O(loglog N}, by assumption US of 

Chapter 2. 0 

The total routing time for an N-element FFT computation IS thus 

O(N l/2 tR} = O(N l/2/oglog N). This time bound could be improved to O(N 2) if a 

few more assumptions were added to the upper bound model of computation. As 
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noted in the proof of Lemma 2, the factor of O(loglog N) arises from the delay of the 

drivers: each has O(log!og N) stages of amplification. Such amplification is 

necessary beecause the outputs of the arithmetic and control circuitry are obtained 

from minimal-sized transistors. However, there is no need for much gain in the data 

paths from one transceiver to the next. This observation suggests the following 

construction for a transceiveL Its drivers, receivers and shift registers could be built 

entirely from O(log N)-area transistors. 2 The scaled drivers would work with 0(1) 

2Even though it is quite feasible to "scale" circuitry in this way, the concept was not included in 
the upper bound model of computation in order to keep it as simple as possible. Changing the model 
to allow scaled logic nodes would entail changes in the definition of self-timed regions, since an 
otherwise-legal logic node might be too large to fit in a self-timed region. 
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delay, reducing the unit-distance routing time tR to 0(1) time units. The multiply

add time tu would be increased slightly, since there would be O(log!og N) stages of 

amplification between the outputs of the arithmetic and control circuitry and the 

inputs of the transceivers. However, if these stages were individually clocked, the 

amplifier would have a throughput of one bit per time unit and only O{log!og N) 

delay. The additional delay would be insignificant in comparison to the O(log N) 

time units required to shift the data in and out of the arithmetic circuitry. 

The arithmetic and control circuits of the multiply-add cell are shown in Figure 

4-13. This circuitry can be thought of as a microcoded processor having a control 

program of O(log N) instructions that are each O(!og N) bits wide. Each instmction 

has three fields: a timer word to indicate the number of clock cycles that the current 

instmction should persist, an aj value to be used by the arithmetic unit, an_d a 

control field for the transceivers and the multiplexers in the upper right hand corner. 

As will be seen below, no instmction will persist for more than O(N l/2!og!og N) 

units of time, so that an O(log N)-bit timing word will be sufficiently .long. 

The arithmetic unit has three serial data inputs and two serial outputs labelled aj, 

X0 , XI, Y0 and Yj. It implements equations (4.5) and (4.6), producing Y0 and Y1 

from X0 and ajXI in a bit-serial fashion. 

The Appendix gives a control program for cell 0 in an N-cell mesh computing an 

N-element FFr. Initially, input Xj to the FFr is contained in the shift register "V" 

of cell rs vertical transceiver. After log N stages of computation, output r;. should 

be in the horizontal transceiver "H" of cell i. The comments in the right hand 

margin of the control program indicate which instructions differ in the programs for 

cells other than cell 0. The program for cell 0 is unique in two ways: it participates 

in each stage of the computation by producing valid yO and YI values from valid X0 

and XI values, and it uses the same value of a1 in each stage of the computation 

(only half of the cells participate in each stage of the computation, and many use 

several different a1 values). 
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The multiplier box; of figure 4-14 forms the mod M product ajxl from the bit

. serial inputs x1 and aj. Its bit-serial output is used in two places. Along one path, it 

is negated then added mod M to Xo to form the bit-serial output y1 . The other path 

leads to another bit-serial adder that produces y0 . 

The most complicated portion of this construction is the mod lvf multiplier. It 

consists of 2f log Ml carry-save adders that form the product ajx1 . This 2f log Ml-bit 

result is then multiplied by 1/M, with sufficient precision to maintain r log Ml bits of . 

accuracy to the right of the radix point. The bits to the left of the radix point are 

discarded, and the ones to the right are multiplied by lvf to form the r log Jvfl-bit 

result aj x1 mod M. 

The multiplier thus ha.S three sets of carry-save adders and storage for two 

constants, 1/M and M. The first constant can be expressed as a 2f log Ml-bit scaled 

integer, to obtain the necessary accuracy for the second multiplication step. The 
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othtr consrant is, of a r log integer, amoum: hardware 0 

multiplier is O(log M) = N), since a cell of a carry~save adder can built 

from 0{1) gates. Total time for the three multiplication steps is O(log N), since each 

involves O(log = O(log N) 

A more realistic construction for the multiplier would use only two multiplication 

steps. The constants a1 and 1/1\11 could be multiplied in advance tmd stored as a 

single 2f log Ail-bit number. The mod multiplication of a1 by x1 could then be 

perfmmed by multiplying x1 by a1/kf, then multiplying the fractional part of the 

result by M. 

It is very easy to design the mod lvf adder and negater. Addition can be 

performed with a bit-serial adder whose output is compared with lvf in a bit-serial 

comparator. If the sun1 is greater than kf, then Af can be subtracted from it in a bit

serial subtracter. The entire process takes only O(log 11-1) = O(!og N) time and 

O(log N) hadware. The negater is even simpler. Its input is subtracted from j\;f in a 

bit-serial subtracter. Once again, O(log N) time and area is stifficient. (This negater 

produces an erroneous result if its input is zero; however the "excess J.YF' will be 

removed by the adder connected to its output in Figure 4-14.) 

A more realistic circuit for the addition portion of the arithmetic i.mit would 

combine the negation step yvith the following addition step, saving O(log N) time 

and area. 

The overall performance of the multiply-add cell is described by the lemma 

be'Iow, which summarizes the preceding discussion. 

Lemma 3: TI1e multiply-add cell of Figures 4-11 through 4-14 has a · 
multiply-add time tA,f = O(!og N) and area A = O(log N). 

We are now in a position to prove the following theorem about the performance 

of the complete mesh-based FFT circuit. 
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Proof By Lemma 1, an N-element FFT can be performed in time 

T = O(N l/2)tR + (log N)tlvl) on an N-cell mesh. The unit routing time for this 

structure, tR, is O(log!og N) by Lemma 4-12. Lemma 3 gives = O(log N). Thus 

. T = O(N l/2log!og N). 

'The total area is O(N !og 2N) since there are N cells of O(!og 2N) area each. 0 

The following corollaries state the combined area-time performance of the mesh

based FFT circuit. 

Corollary 5: AT2 = O(N 2!og 2N loglog 2N) for theN-element FFT. 

Corollary 6: AT2x=0(1V 1+xtog 2N!oglog 2xN) for theN-element 
FFT 

Note that the FFT circuit of this subsection is very nearly optimal under the AT2 

metric developed in Chapter 3, for it is at most O(loglog 2N) from the optimal 

AT2 = Q(N 2log 2N) of Theorem 11. It is also nearly optimal under the AT2x 

metric, since it is O(loglog 2xN) from the optimal value of AT2x. 

Also note that the total multiply-add time of (log N)tM is completely dominated 

by the routing time N J/] tR. There is thus no incentive to improve the multiply-add 

circuitry, for such improvements will not affect the asymptotic performance of the 

complete FFT circuit. 

'The next subsection shows how an FFT can be computed using a circuit built 

around a shuffle-exchange pattern recirculation network. 

4.3.3 The FFT on shuffle-exchange connections 

The shuffle-exchange pattern is a natural choice for a recirculation network 

solving the FFf [Stone 71]. This subsection revises Stone's FFT circuitry to apply it 
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to model of contrast to the n' construction of 

previous section, one routing step need be made between multiply~add steps. 

Circuits based on the shuffle-exchange pattern are thus faster than mesh~based ones, 

since the performance of the mesh is limited by its routing time. However, the area

time tradeoff results of Chapter 3 imply that shuffle-exchange circuits must be much 

larger than mesh-based ones, to counterbalance their improved time performance. 

The shuffle-exchange graph is defined on N = 2N nodes numbered from 0 to 

N -1. Each node has two incoming and two outgoing edges. The outgoing edges 

for node i connect to node (2i+ L2VNJ} mod N (a shuffle connection), and to node 

iEBJ (an exchange connection). Here EB represents the bitwise exclusive-or 

operation which, in this case, complements the least significant bit of i. Exa.'Tiples of 

shuffie-exchange graphs have appeared earlier in this thesis, in Figures 2-3 and 3-4. 

An 8-node shuffle-exchange graph is drawn below in Figure 4-15. 

The following subsection treats the problem of embedding the shuffle-exchange 

graph in the plane, according to the embedding rules of Chapter 3. T11e current 

subsection examines the way in which an FFT can be performed on N/2 cells 

connected in a shuffle-exchange pattern. (Note that this subsection's construction 

solves an N-element FFf on N/2 cells, not on N cells as in the mesh-based 

constmction.) 

The FfT algorithm was defined in Section 4.1 as a network of 1/2N(log N) cells, 

each performing one multiply-add step. As we saw in Subsection 4.3,1, the recursive 

construction of the FFT network lends itself to a mesh-based implementation in 

which each of N cells did the work of all the cells in one of the N columns. As it 

stands, the FFT network is not suited for implementation on a shuffle-exchange 

pattern, for there is a different pattern of data movement between each row of the 

network. 

However, the cells in each row of an FFT network can be reananged so that the 

interconnections between each row form the same pattern, a "perfect shuffle" [Pease 
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68, Stone 71]. Figure 4-16 illustrates this rearrangement of Figure 4-10, the 8-

element FFT network. Note that all cells lie in N/2 columns, and that a multiply

add step occurs in each row of each column. 

The linear representation of the shuffle-exchange graph (Figure 4-15) bears the 

same relationship to the rearranged FFT graph of Figure 4-16 as the linear 

representation of the mesh (Figure 4-9) does to the FFT graph of Figure 4-10. Each 

row of the FFT graph corresponds to one stage in the computation on the linear 

network, that is, to one multiply-add step and one or more passes through the 

recirculation network. 

The rearranged FFT network is ideal for implementation on N/2 multiply-add 

cells connected in a shuffle-exchange fashion. Each cell corresponds to two nodes in 

the shuffle-exchange graph. Cell i has all the connections of nodes 2i and 2i+ 1 in 

theN-node shuffle-exchange graph (see Figure 4-15). The "exchange" connections 

of the two nodes are thus internal to the cell, but two "shuffle" connections emanate 
I • 

from the cell. For example, one of the outputs of cell 2 in a 4-cell shuffle-exchange 

pattern (N = 8} goes to cell 0, while the other output goes to cel11. 

CELLS: 0 2 3 4 5 6 7 

NODES: 

Figure 4-15: A 16-node shuffle-exchange graph, laid out in a linear fashion. 
Exchange connections are internal to the cells. 

The computation of an N-element FFT on an N/2-cell shuffle-exchange 

recirculation network can be described· explicitly with reference to Figures 4-15 and 

4-16. Initially, each cell contains two of theN inputs: cell i contains inputs X2i and 

X2i+ 1 in its registers X0 and X1 . During each of the log N stages of computation, 
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Figure 4~ 16: A rearranged 16-element FFT network. 

each cell performs a multiply-add step on X0 and X1 , sends the results Y0 and Y1 

out over its "shuffle" output connections, and receives new values X0 and X1 from 

its "shuffle" inputs. 

The following lemma summarizes the behavior of the shuffle-exchange-based 

FFT algorithm. 
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Lemma 7: An N-element FFT can be performed on an N/2-cell 
shuffle-exchange network in time T = O((log N)tR + (log N)tM), if a 
routing step takes time tR and a multiply-add step takes time ti\-1, . 

A multiply-add cell for the shuffle-exchange network can be built along the lines 

of Subsection 4.3.2's constn1ction. ·Three modifications are necessary, however. 

First, there is no reason to provide parallel data paths between cells. Bit-serial 

connections take up much less area, and are fast enough to keep the multiply-add 

circuitry busy almost all the time. This was not the case in the mesh construction: 

multiply-add time was completely dominated by routing time. 

A second modification to the multiply-add cell changes its aspect ratio from 

O(log N) by O(log N) to 0(1) by O(log2 N). The reason for this modification will 

become apparent in the next subsection, when the shuffle-exchange connections are 

embedded in the plane. 

Finally, the drivers for the Y0 and Y1 outputs must be able to handle wires that 

are O(iV/log N) units long (this is the length of the shuffle connections in the 

embedding developed in the next subsection). 

TI1ese three modifications lead to the multiply-add cell shown in Figure 4-17. 

Note that the control program must be· stored in an 0(1) by O(log 2N) bit array, to fit 

in the required aspect ratio. This means that O(log N) time must elapse between 

instructions (see the Appendix) so that a new instmction can be shifted in. 

The following lemma describes the time· performance of the shuffle-exchange- . 

based FFf circuit. 

Lemma 8: An N-element FfT can be performed on N/2 cells 
interconnected in a shuffle-exchange recirculation pattern in time 
T = O(log 2N). 

Proof A total of log N routing steps and log N multiply-add steps are necessary. 

The time taken by a single multiply-add step is the same as it was for the mesh

based constmction, tM = O(log 2N). Total multiply-add time is thus O(log 2N). 
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Figure 4" 17: Multiply-add cell for a shuffle-exchange network: 

Total routing time is also O(log 2N), since there are O(log N) routing steps each 

involving log M = O(log N) bit-serial data transfer operations. These transfers 

occur at unit bandwidth, so that the transmission of one word takes O(log N) time. 

Additionally, there is an O(!og N) delay in the drivers, for the wires between cells are 

O(N/log N) units long. (The delay of a driver-wire-reciever circuit is the logarithm 

of the length of the wire, by assumption US.) 

Note that the time performance of this circuit is optimal: faster multipliers 

and/ or faster instruction loading would not help. - The same time performance 

would be observed if each of the N cells merely sent O(log N) bits of data to another 

cell, and repeated the process O(log N) times. This observation, coupled with 
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Chapter 3's area-time tradeoff for the DFT, leads to the first theorem in the 

following section. 

4.3.4 Area bounds for the shuffle-exchange graph 

This subsection presents upper and lower bounds on the area of a shuffle

exchange graph, when it is embedded in the plane according to the rules of Chapter 

2. 

Theorem 9: At least Q(N2/log 2N) units of area are required to embed 
a shuffle-exchange graph in the plane under Assumptions Ll through L8. 

Proof Under the lower bound model of computation, a communication graph 

with N unit area nodes could compute anN-element FFT in time T = O(log 2N), if 

the·nodes are connected in the shuffle-exchange pattern. Each node could do a 

multiply-add step in O(log Jol} time, the time it takes to shift a word into or out of a 

node in bit-serial fashion). 

Since any communication graph computing the FFT must satisfy 

AT2 = Q(N2!og 2N) by Theorem 11, this particular graph must have area 

A =fi.(N2/log 2N). D. 

CoroHary 10: The average length of the edges in a planar embedding of 
the shuffle-exchange graph is Q(N/log 2N). 

Proof Each node of a shuffle-exchange graph has degree four, so there are O(l.V) 

edges in anN-node graph. The nodes themselves take up only O(N) area, so the 

total area offJ.(N2/log 2N) must be due to the edges alone. D 

The following theorem is a constructive upper bound for embedding the shuffle

exchange graph in the plane. It is optimal to within a factor of O(log3/ 2N), judging 

from the result of the preceding theorem. Closing the remaining gap between the 

upper and lower bounds is an open research problem. 3 

3Recently, Dan Hoey and Charles Leiserson of C-MU [Hoey 80] have produced an O(N 2 /log N) 
embedding of the shuffle-exchange graph, narrowing the gap between the upper and lower area 
bounds to O(log N). 
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each cell occupies an O{l) by 

Proof: preliminary remarks. As described in the circuit construction of 

Subsection 4JJ, cell number i corresponds to two nodes an N-node shuffle

exchange graph, nodes 2l and 2i+l. Placing two cells into one node in this way has 

h1.e advantage that exchange connections are local to the nodes. The remainder of 

the proof deals with the problem of arranging the nodes to minimize the length of 

the shuffle connections. 

If node indices are expressed as binary numbers of log N bits each, a shuffle 

connection exists between nodes i and {2i+ l2i/NJ) mod N. Note that this last 

functional form corresponds to an end-around left shift. Shuffle connections thus 

connect nodes with the same number of '1 'bits in the binary representation of their 

indices. 

This observation suggests a partition of the N/2 cells into log N equivalence 

classes, or neighborhoods. Celli and cellj are in the same equivalence class iff i andj 

have the same number of '1' bits in their binary representation. Let Bk denote the 

set of cells with k '1 'hits. 

It is easy to verify that shufde connections link cells in Bk only \vith other cells in 

Bk and with cells in Bk-I a.nd Bk+I 0 Consider the even-numbered node in cell i of 

class Bk, that is, node 21. Its shuffle connection must be to another node with exactly 

k '1' bits in its index. The only nodes of that type are the even-numbered nodes in 

class Bk and the odd-numbered nodes in class Bk-l 0 A symmetrical argument 

shows that the odd-numbered nodes in Bk connect to odd-numbered nodes in Bk 

and to even-numbered nodes in Bk+ 1 0 

Clustering cells by their neighborhoods helps limit the length of the w1res 

implementing the shuffle connections. Unfortunately, the neighborhoods are rather 

large, for there are only log N neighborhoods and N/2 cells. 
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Place the :;:mg horizontal them by 

neighborhood. cells so that the to even-numbered nodes 

point upwards if they are in even-numbered equivalence classes, downwards 

otherwise. As indicated in Figure 4-17, the shuffle connections have been localized 

into (log N)+ 1 disjoint regions, one for each gap in the sequence 

(Bo, ,, .. ,B{logN)-1). 
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The shuffie connections for (Bk, Bk+ 1) can be laid out in a rectangular region 

OOBk/ + /Bk+ 1D wide and OOBk/ + /Bk+ 1D deep. The width is due to the 0(1) 

width of the /Bk/ + /Bk+ 1 I cells involved in the shuffle connections of this 

neighborhood. The depth comes from the /Bk/ + /Bk+II wires implementing the 

connections. Each wire is assigned one unit of depth,_ so that it can run an 

appropriate horizontal distance without" interference. 

The number of cells in Bk is easily counted. It is just the number of cell indices 
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(log N) -1 bits in each cell index, so that 

N -1) 
k 0 (4. 

Tne largest Bk is thus Bl{Iog N)/2j, which has size O(N/log 1/ 2N). The largest 

neighborhood is (BL(log N)/2j ,Bl{Iog N)/2j + 1}, which may contain wires as long as 

O(N/log l/2 N). 

The entire layout fits in a rectangular region O(N) wide and O(N/log l/2N) deep. 

The width of the layout is due to the cell width. The depth is mostly due to the size 

of the largest neighborhood, since cell depth is asymptotically negligible by 

comparison. 0 

Theorem 12: An N-element FFT can be perfonned m 
A= O(N 2/Iog 1/ 2JV) and T = O(log 2lV) using a circuit based on the 
shuffle-exchange recirculation pattern. 

Proof Immediate from Lemmas 8 and 11. D 

The following corollaries indicate that the shuffle-exchange-based FFT circuit is 

nearly nearly optimal under the AT2 metric, for it is only O(log3/2N) from the 

optimal performance of AT2 = Q(N2log 2N). However, this same circuit is far from 

optimal under the AT2x metric for x < 1, since it is O(N l-xlog 2x-l/2 N) from the 

optimal AT2x = Q(i_V 1+xzog2xN). 4 

Corollary 13: AT2 = O(N2!og 7/ 2N) for the N-element FFT on a 
shuffle--exchange-based Circuit of Theorem 12. 

Corollary 14: AT2x = O(N2log 4x-l/2N) for theN-element FFT on a 
shuffie-exchange-b~ed Gircuitof-'Theorem 12. 

The iliscussion of Fourier transformation methods is-'ndw complete.· The next 

section deals with sorting on the mesh and the shuffle-exchange connections. 

4Rccently, Prcparata and Vuillemin [Preparata 79] have devised a layout that ousrerfoy;;s the 
shuffle-exchange-based FFr design described above. Their layout has an area of O(N /log N) :md 
would take 0{/og 2 N) time to compute a Fourier transform, if the multiply-add cell of this thesis were 
used in its implementation. Their construction is thus within a constant factor of the lower bound on 
AT2 cost. 
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4.4 VLSI implementations of sorting 

Before reading this section, the reader is g_dvised to review the description of the 

bitonic sorting network contained in the latter part of Section 4.1. 

Subsection 4.4.1 describes the bitonic smting algorithm as it applies to a VLSI 

circuit with N/2 comparison-exchange cells connected by a shuffle-exchange 

recirculation network. The construction of the comparison-exchange cell is covered 

in Subsection 4.4.2. Finally, Subsection 4.4.3 gives a VLSI implementation of the 

bitonic sort on N cells in a mesh pattern. 

4.4.1 Sorting on shuffle-exchange connections 

The shuffle-exchange connections are nearly as well-suited for sorting as they are 

for Fourier transformation. This should not be surprising, for the N-element bitonic 

sorting network is very similar to the N-element FFT network. 

The same approach used to perform an FFT on N/2 cells with shuffle-exchange 

interconnections can ~e used to perform a bitonic sort, as shown by Stone [Stone 

71]. This subsection adapts his circuits to the VLSI model of computation. 

The time taken to sort N elements on a shuffle-exchange-based circuit is bounded 

by the following lemma 

Lemma 15: An N-element sort can be performed on N/2 cells 
interconnected with a shuffle-exchange recirculation network in time 
T =0({log 2N)tR + (log 2N}tc}. if it takes tR units of time to perform a 
routing step and tc units of time to perform a comparison-exchange step. 

Proof. Refer to Figures 4-4 through 4~7 for~tlie c6nstruction·ofthe bitonic sorting 

network. The bottom half of Figure 4-6 forms an N-element bitonic merger, which 

is isomorphic to an N-element FFT network. The reader may verify this by 

comparing the bottom three rows of Figure 4-5 with Figure 4-2. 

Note that successive rows of these networks specify distance N/2, N/4, ... , 1 
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routings. By Lemma 8, these bottom rows can be simulated in time 

O({log N)tR + (log NJtc), where the comparison time tc takes the place of the 

multiply-add time tM of the FFT algorithm. 

The top half of the bitonic sorting network is formed recursively from two half

sized sorting networks. As in the case of the full-sized network, the last (log N) -1 

rows of these half-sized networks can be specified by a geometrically decreasing set 

of routings: distance N/4, N/8, ... , 1. Note that these two networks are contained 

side-by-side in the last (log N)-1 rows of anN-element Fourier transform network. 

Again by analogy with the Fourier transform circuit, a total of 

O((log N)tR + (log NJtc) time is sufficient to simulate these rows on a shuffle

exchange network, if a null comparison-exchange is performed after the (seemingly 

unnecessary) distance N/2 routing of the first step of the FFT algorithm. Actually, 

this routing is not unnecessary, for it does result in a net movement of data among 

the cells, in preparation for the distance N/4 routing. 

Continuing with the recursive construction of the bitonic sorting network, the top 

halves of the two half-sized sorting networks are themselves formed of four quarter

sized sorting networks. TI1e routings of the last (log N)-2 rows of ¢ese quarter

sized networks are distance N/8, N/16, ... , 1. Once again, the FFT algorithm can 

be used to simulate these routings in O({log N)tR + {log NJtc time, if two null 

comparison-exchanges are followed by (log N)- 2 comparison-exchange steps. 

The recursive construction is complete at a depth of (log N)- J. The last network 

in the construction is a 4-sorter form.ed of two 2-sorters and one 4-merger. The 2-

sorters are identical to 2-mergers, so the entire constmction may be visualized as 

N/2 2-mergers above N/4 4-mergers above N/8 8-mergers above ... one N-merger. 

Each of the (log N) levels of mergers can be simulated in O{(log N)tR + (log N)tc) 

time, for total time O((log 2N)tR + {log 2NJtcJ. 0 _ 

The preceding lemma has perhaps obscured the simplicity of the sorting process 

on a shuffle-exchange network. A sort consists of log 2N passes through the network, 
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pass~ The operations required of a cell are thus very simple. During each stage 

computation it mu.st do one oft_hree things: a null comparison-exchange, 

yl..;.... 

Y2 ~ X2. 

a "-<--- " comparison-exchange, 

Y1 - max(Xi, X2) 

Y2 - min(X1, X2), 

or a "--+" comparison-exchange, 

Y1 -r min(X1, X2) 

Y2 ~ max(X1, X2). 

{4.8) 

(4.9) 

(4.10) 

The next subsection describes the construction of a comparison-exchange cell that is 

capable of performing these operations. 

4.4.2 The comparison-exchange cell 

Figure 4-19 illustrates a constmction of a comparison-exchange cell that can fit 

into either an O(log N) by O(log N) area or into an 0{1) by O(log 2N) area. 

The serial comparator logic at the top of the figure can be built with 0{1) gates in 

a straightforward manner, as long as the inputs are presented most-significant bit 

first [Moravec 79]. This logic is responsible for putting the larger or smaller of the 

two inputs xi and x2 onto the output lines yl and y2; the "direction" of the 

comparison-exchange is dictated by the two-bit state vector stored in the shift 

registers below. For concreteness, the state-vector assignment may be specified as 

follows: 

00 = Y1 .,__ X1, Y2 - X2, (4.11) 

10 = Y1 ....- max(X1, X2), Y2 - min{X1, X2), and (4.12) 

11= Y1 - min(X1, X2), Y2 - max(X1, X2). (4.13) 

Since the sorting algorithm is complete after log 2N passes through a shuffle-
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Figure 4m 19: The comparison-exchange cell. 
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exchange based recirculation network, 2log 2Nbits of state vector suffice to define all 

operations of the comparison-interchange celL The shift registers holding the state 

vector should be clocked once every tc time units, if tc is defined (as in the previous 

subsection) as the time taken for a comparison-exchange step. The value of tc is 

O(log N), since each bit of the inputs is sent to one of the outputs after 0(1) delay. 

(Note that this performance is possible only if the most-significant bits of the inputs 

are sent first) 

The discussion above is summarized by the following lemma and theorem. 

Lemma 16: The comparison-exchange cell of Figure 4-19 has a 
comparison-exchange time tc of O(log N) and an area of O(log 2 N). Its 
aspect ratio may be either square or 0(1) by O(log 2N), depending on how 
the shift registers are "folded." 

Theorem 17: AnN-element sort can be performed in O(N 2/log 1/ 2N) 
area and O(log 3N) time on N/2 comparison-exchange cells arranged in a 
shuffle-exchange pattern. 

Proof. By Lemma 15, an N-element sort can be done in time 

T = O((log 2N)tR + (log 2N)tc} on N/2 cells connected in a shuffle-exchange 
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pattern. The unit routing time tR is the same as it was in the FFf circuit of Lemma 

8, since the words still have O(log N) bits. Thus tR = O{log N}, and tc = O(log N) 

by the preceding Lemma. Finally, the embedding of Subsection 4.3.4 may be used 

to give an area bound of O(N 2/tog I/2 N). 0 

The following corollaries are immediate. 

Corollary 18: AT2 = O(N2!og 11/ 2N} for anN-element sort performed 
on N/2 comparison-exchange cells connected with a shuffle-exchange 
recirculation network. 

Corollary 19: AT2x = O(N2!og6x-I/2N) for an N-element sort 
perfonned on N/2 comparison-exchange cells connected with a shuffle
exchange recirculation network. 

The shuffle-exchange-based sorting circuit is thus nearly optimal under the AT2 

·metric. It is only O(log 7/ 2) from the optimal performance of AT2 = fJ.(N 2!og 2N). 

However, this same circuit is far fi·om optimal under the AT2x metric (unless 

x = 1), for it is O(N1-x!og4x-l/2N) from the optimal AT2x = Q(N1+xtog 2xN). 

4.4.3 Sorting on mesh connections 

This subsection shows how the bitonic sorting algorithm can be used to sort N 

elements on N comparison-exchange cells mTanged in a mesh. The same approach 

is used as in the other recirculating constructions of this thesis: each stage of 

computation on theN cells corresponds to one row of the bitonic sorting network. 

Since there are O(log 2N) rows in the sorting network, a total of O(log 2N) · 

comparison-exchange steps must be performed. However, the total number of unit

distance routing steps is variable, depending on the way in which the data is 

distributed among the cells during the course of the computation. 

To minimize the number of routing steps, the cells should be indexed in "shuffled 

row-major order" [Thompson 77]. In .this scheme, a cell is given the n-bit binary 

index bn bn/2 bn- I bn/2-1 bn-2n/2-2 bn-3 bn/2-3 · · · bn/2+3 b3 bn/2+2 b2 bn/2+1 bl, 

if its natural "row-major" index would be bnb11 _ 1bn_ 2bn_ 3 ... bn/2+ 3 bn/2+2 
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row-major index on a playing card, then "shuffling" the top half of the deck 

bnbn-l bn~ 2 _ 3 o o bn/l+lbn/2+ln/l+l with the bottom half bn/2 brv'l-J bri/l- 2 

bn/2 ~ 3 . .. b3 b2 b1 )o Figure 4~20 illustrates the row-major and shuffled row-major 

indexing of a mesh with N = 16 cells. Note that the cell in the lower left comer has 

row-major index 1210 = 11002 and hence shuffled row~major index 1010 = 10102 • 

Figure 4·20: Row-major and" shuffled row-major indexing schemes 
for the 16-cell mesh. 

The shuffled row-major indexing scheme has two important properties for sorting 

algorithms. First of all, it is similar to the row-major indexing scheme in that it is 

simple to move data between pairs of cells whose indices differ only in the kth bit 

In general, 2j horizontal or vertical routes will move data between all such pairs of 

cells. For example, a distance-2 routing is two horizontal steps in the row-major 

indexing scheme and one vertical step in the shuffled row-major indexing scheme. 

A distance-8 routing is two vertical steps in either scheme. (It should be obvious 

that any indexing scheme obtained by permuting the bits of the row-major cell 

indices must preserve this property. However, it is difficult to verify the property by 

direct examination of the linear fonn of the shuffled row-major indexing scheme in 

Figure 4-21.) 

A second property of the shuffled row-major indexing scheme distinguishes it 

from the row-major indexing scheme, a property that leads to its improved time 

performance on the bitonic sort The number of routing steps required to do a 

distance-2j routing in the shuffled row-major indexing scheme is never more than 
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:teps required with the 

row-major indexing which a distance~ IV routing is Ni/~2 horizontal 

steps but a distance~ N 1/2 routing is only one vertical step") Since there are 

more short routings than long routings in the bitonic sorting algorithm, this property 

of monotonicity makes the shuffled row-major indexing scheme preferable to the 

row~major indexing scheme" that the difference the two 

schemes is asymptotically significant l11e shuffled row-major indexing scheme is a 

factor of N) faster than the row~major indexing scheme") 

A recirculating bitonic sorting algorithm is obtained from the N-element bitonic 

sorting network and the linear form of the shuffled row-major indexing scheme for 

the N-cell mesh shown in Figure 4-21. Each row of the network is simulated in turn 

by theN cells. Connections between rows are simulated by data routings among the 

cells. The following lemma bounds the time performance of this algorithm. 

Figure 4~21: The linear form of the 16-cell mesh numbered by the 
shuffled row-major indexing scheme. 

Lemma 20: An N-element sort can be performed on N cells 
interconnected with a mesh-based recirculation network in time 
T = O(N1/ 2tR + (log 2N)tc), if i~ takes tR units of time to perform a 
unit-distance routing step and tc units of time to perform a comparison
exchange operation. 

Proof (See [Thompson 77l) The time required to do a distance-2 k routing on 

the shuffled row-major indexing scheme for the N-cell mesh is just 2 r k/21 tR . This 

observation may be verified easily for the case N = 16 of the right-hand mesh of 
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In the case, as a cc t'.ence of m 

horizontal vertical routings alternate an ascending sequence or rout~ng 

distances: distance-2 ° is one horizontal roure, distance-2 1 is one ve11ical route: 

distance" 2 2 is two horizontal routes, distance-2 3 is vertical routes, 

The time required for a 2 k-element merge (see Figure 4-5) is less than 

8*2l(k-I)/2j tR. This bound is obtained from the fact that a 2 k-element merge 

requires two distance-2 k-l routings, two distance-2 k- 2 routings, , . , , and two 

distance-! routings. The first four of these routings take at most 4*2l(k-IJ/2JtR 

time, and the times required by each of the succeeding groups of four routings form -

a geometric series with ratio one-half. The entire sum is thus less than twice that of 

the leading term, or 2*4-~2l(k-I)/2JtR. 

The time required for a 2 k-element sort (see Figure 4-6) on the shuffled 'row

major indexing scheme of the N-cell mesh is less than 32*2 L(k-IJ/2 1 tR. To verify 

this, note that a 2 k-element sort is formed of a 2 k-element merge, preceded by two 

2 k- 1-element merges nmning in parallel, preceded by four ik-2-element merges, . 

. . , preceded by N/4 four-element merges, preceded by N/2 two-element merges 

(these are the same as the two-element sorts that are actually specified in the 

construction). The first two of these together take less than 2*8*2L(k-IY~hR, by the 

bound of the preceding paragraph. The time taken by each succeeding pair of 

merges form a geometric series with ratio one-half. The entire 2 k-element sort thus 

takes less than 2*2*8*2l(k -i)/2 J t R. (A more rigorous argument tightens this bound 

to 14*2 k/2 tR for even values of k [Thompson 77].) 

The lemma is now almost proved, since anN-element sort (N = 2 1~ takes routing 

tin1e 0(2 k/2 tR) = O(N f/2 tR). The comparison-exchange steps take time 

O(log2Ntc), for there are O(log 2N) rows in the complete N-element bitonic sorting 

network. 0 

The performance of an N-element mesh-based sorting circuit can now be 

described. 
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be perfonned ir ;rrea 
cornparison-exchange cells arrangtu in a 

Proof The comparison-exchange cell of Lemma 16 and Figure 4-19 has a 

comparison-exchange time tc of O(log N) and an area of O(log 2 N). If N of these 

are arranged in a mesh, they will a total of A = O(N log area. Attaching 

horizontal and vertical transceivers to each as in Figure 4-11, will not affect the 

asymptotic area requirements, but will result in a data routing time tR of 

O(log!og N). (As indicated in the discussion on page 92, tR could be reduced to 

0{1) by suitable changes in the upper bound model of computation.) Total time for 

an N-element sort is thus T = O{N l/2loglog N), by Lemma 20. 0 

Note that this sorting circuit takes up as much area and is just as fast as the mesh

based FFT circuit of Subsection 4.3.2. As indicated by the following corollaries, it is 

very nearly optimal under the AT2 metric of Chapter 3, for it is at most O(loglog 2N) 

from the optimal AT2 = Q(N 2log 2N). It is also nearly optimal under the AT2x 

met1ic, since it is at most O{loglog 2x N) from the optimal value of 

AT2x = 'Q(Nl+xtog2xN). 

Corollary 22: AT2 = O(N2log 2N loglog 2f\f) for the N-element mesh
based sorting circuit. 

Corollary 23: AT2x = O(N 1+xtog?N loglog 2xN) for the N-element 
mesh-based sorting circuit. 

4.5 Constant factors in the VLSI implementations 

This thesis has demonstrated the existence of area-time tradeoffs in VLSI design, 

at least for chips that solve asymptotically large problems. It is now time to find out 

whether such tradeoffs will be available to designers in the foreseeable future. In 

other words, is a design with one hundred million transistors large enough for 

asymptotic analysis? The answer seems to be "almost": among designs that solve 

ten thousand element FFTs, the asymptotically "fast but large" shuffle-exchange

type chips are indeed faster but also slightly smaller than their "slow but small" 

mesh-type counterparts. 
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The arithmetic circuitry will be examined first The multiply-add cell of Figure 

4-13 or 4-17 can be built in about 10 4 units of area, if the word length is sixteen bits. 

This allows ample room for two 32-bit carry-save adders, a few hundred gates of 

control logic, and a few hundred bits of storage for constants. Accordingly, up to 

ten multiply-add cells would fit on a present-day chip with 10 5 units of area. By the 

year 1990, som~thing like 10 4 cells could be formed on the 10 8 units of area 

. available on a single silicon wafer. Such a circuit would perform a ten thousand 

element FFT. 

The interconnections between the cells have yet to be considered. The mesh-type 

pattern poses no difficulties. Each of the multiply-add cells will be separated from 

its neighbor by a sixteen-wire bus (see Figure 4-11). Assuming that the 10 4-area 

cells are 10 2 units on a side, the width of the bus is almost negligible. 

A ten thousand element FFT will also be feasible on a shuffle-exchange-type 

design. Here five thousand multiply-add cells should be laid out as tall, thin 

rectangles in a few rows at the bottom of a wafer (see Figure 4-17). The exchange 

connections are to nearest neighbors, and thus take up little area. The shuffle 

connections can be routed upwards to some unused horizontal "channel," across in 

this channel, then down to the approp1iate cell. Since there are 10 4 horizontal 

channels on a wafer of 10 8 units of area, all shuffle connections can be made in this 

way. 

The asymptotic size advantage of the mesh-based design is not apparent in chips 

of this size. In fact, the shuffle-exchange-type chip would actually be a little smaller, 

because it uses only half as many cells to perform a ten thousand element FFT. 

Furthermore,· the routing control logic is much simpler for the shuffle-exchange 

circuit than for the mesh circuit, since the shuffle-exchange circuit uses the same 

recirculation pattern after each multiply-add step. 

Mesh-type designs might become attractive from the standpoint of size if million

cell chips are ever feasible. One million multiply-add cells could be ananged in a 
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mt:sno .m in 10 10 units Hm4ever, shuffie sJr>ong five 

hundred thousand wou occupy 10 11 square of wiring in the best 

embedding known to the author. 

As mentioned above, the shuffle-exchange design is a little faster than the mesh 

desigTl ten thousand element FFTs. either case, there are - stages of 

computation in the FFT algorithm. Each multiply-add step takes about 10 2 clock 

periods, due primarily to the two 16-bit by 32-bit multiplications. Total multiply

add time for either design is thus 10 3 clock periods or a few microseconds, if a 5 nS 

clock is used [Mead 80]. 

The total routing time on a mesh-type design also turns out to be a few 

microseconds. By Equation (4.4), there are 4(10 2 -1) unit distance routing steps in 

a ten thousand element FFT. Allowing two or three clock pulses per unit route for 

synchronization and buffering, routing takes 10 3 clock pulses or a few microseconds. 

Routing on the shuffle-exchange design is somewhat faster than on the mesh-type 

design. In a ten thousand element FFT, there are 13 routing steps. Each step is a 

bit-serial transfer of 16 bits. Total routing time is thus several hundred clock periods 

or about one microsecond. 

The speed advantage of the shuffle-exchange design will increase with the size ·or 

the FFT, as predicted by the asymptotic analysis. If a million-element FFT ever 

became feasible, the mesh-type design would perform 4(10 3 -1) routing steps, 

while the shuffle-exchange design would do only several hundred steps. (The 

comparison is between 4N1/ 2 and log2N.) 

Therefore, ten thousand element FFT designs are just large enough for the 

asymptotic time analysis of this thesis, but not quite large enough for the area 

analysis. 
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elusion 

The main contributions of this thesis fall into four areaso 

L A new model of computation is developed, suited to the study of the 
area and time performance of VLSI chips. 

2. A lower bound is obtained on the area A occupied by a graph when 
embedded in the plane, in tenns of its minimum bisection width w. For 
a k-level planar embedding, A> w~4k 2. 

3. The informational complexity of a function is defined, dete1mining the 
difficulty of computing that function on a VLSI chip. 

4. Nearly tight upper and lower bounds are derived on achievable area
time performance for sorting and Fourier transformation, as 
summarized in the list and table below. 

• An N-element sorting or Fourier transformation problem can be 
solved on a diip of area A = O(N log 2N) and time 
T = O(N l/2loglog N), using a mesh-based interconnection 
scheme. This performance is nearly optimal for any AT2x metric, 
0< x< 1. 

@ An N-element Fourier transformation problem can be solved on a 
chip of area A = O(N 2/log l/2 N) and time T = O(log 2 N), using 
an interconnection scheme based on the shuffle-exchange graph. 
This performance is optimal under the AT2 metric. 

<\)An N-element sorting problem can be solved on a chip of area 
A= O(N 2/log 1/ 2N) and time T = O(log 3N), using an 
interconnection scheme based on the shuffle-exchange graph. This 
performance is nearly optimal under the AT2 metric. 
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AT2 AT2x 

Upper hounds: 

Mesh-based FFT O(N2log 2N loglog 2N) O(Nl+xtog2N loglog 2xN) 

Mesh-based sort O(N2log 2N loglog 2N) O(Nl+xtog 2N loglog 2xN) 

Shuffle-exchange FFT O(N 2log 7/ 2N) O(N2log4x-l/2N) 

Shufile-exchange sort O(N 2log 11/ 2N) O(N2log6x-l/2N) 

Lower hounds: 

(For any design) Q(N 2log 2N) Q(Nl+xtog2xN) 

Table 5·1: Area-time complexity of sorting and Fourier transformation. 

Several avenues of research have opened up as a result of this thesis. 

The model of computation could be expanded to cover othe~ possible VLSI 

technologies, such as Josephson junctions and magnetic bubble devices. This would 

permit formal development of upper and lower bound results for these technologies. 

Other modifications to the model would handle pipelined designs (page 84) and take 

full ad vantage of scaling (page 92). 

Other problems should be studied besides sorting and Fourier transformation. It 

should be possible to derive fairly tight upper and lower bounds for matrix 

multiplication, integer multiplicatio~. Gaussian elimination, and transitive closure. 5 

The embedding of the shuffle-exchange graph described in Subsection 4.2.2 

5Lower bounds were obtained for several of these problems as this thesis was being written. 
Savage [Savage 79b] proved lower bounds on boolean matrix multiplication and Gaussian 
elimination, using the VLsr model of computation. Brent and Kung [Brent 79] and Abelson [Abelson 
SOb] derived lower bounds for integer multiplication. Brent and Kung obtained a slightly more 
powerful result, for they were able to relax assumptions L6 and L7 of Chapter 2. In their model, 
inputs and outputs did not have to be contained on the chip; however, each input is available at its 
input port only once. They were able to prove that nearly all of the input bits had to be on the chip at 
the same time. The rest of their proof technique is similar to that used in this thesis. 
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deserves .:areful improved could 1 the gap 

and lower for designs using that interconnection pattern. (Dan Hoey and 

Charles Leiserson have obtained an O(N 2/log area embedding for the shuffle-
. 2n 
exchange graph for case that = 2 [Hoey However, is still an 

O(log N) gap between the upper and lower bound results.) 

The definition of informational complexity could be ilnproved. As it stands, it is 

demonstrably weak on such functions as "equality" and "comparison" (see page 66), 

despite its apparent strength on sorting and Fourier transformation. The problem 

seems to lie in its assumption of optimal coding (page 62). 

Finally, the model of computation might be enhanced. It currently treats 

information as an imperishable item: in the view of the model, information cannot 

be destroyed, it merely flows from one side of the chip to another. This view is 

adequate to model the (nearly) one~to-one mappings of sorting and the DFf. 

However, it is sure to fail on exponentially hard functions. Somehow, the 

computation of a hard function must involve more than sending the inputs from one 

side of the chip to the other, yet this is enough to compute any function according to 

the present model. 
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trol prog 
Circuit 

Timer 

logN 

(N l/Y2) loglog N --

logN 
(IV 1/y~) !oglog N -
logN 

a· J 

Appe dix 
r ceil 0 of -based 

Control 

X0 - V 

UP 

Comment 

V registers contain initial data 
Load X0 register from V 
(This step omitted for cell i, i < N/2 
i.e., omitted if ~lag N)-J = 1) 

Begin stage 1 
Get data from cell N/2 
(Cell i, i > N/2 will receive "garbage" 
during this routing, hence vvill compute 
garbage during this step) 
Load register X1 
rvlultiply-add: Y0 .. , .. .'LY0 +a 0X1 , 

Yj ..,.... Xo - a o Xr 
(Other cells use different aj values) 
Send Y1 down to cell N/2 

LoadX0 
End stage 1 
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logN 
(N 1/~4) loglog N -
!ogN 

""log 2N a 0 

logN 
(N I/~,1) loglog N -
logN 

logN 
(N 1/~8) loglog N 
logN 
~!og 2N a 0 

logN 
(N //~8) loglog N -
logN 

logN 
1 
logN 
,....log2N 
logN 
1 
logN 

logN 
(N I/~2) loglog N 
logN 
~log2N a 0 

logN 
(N I/~2) loglog N -
logN 

v- Y0 
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Begin stage 2 

Receive data from cell N/ 4 
LoadX1 
(Cell i, N/4 < i < N/2 and JN/4 < i < N 
will compute "garbage" during this stage) 

Send Y1 down to cell N/ 4 

End stage 2 

Begin stage 3 

UP Receive data from cell N/8 

X1 - V 
M-A 
V...... Y1 Send Y1 down to cell N/8 
DOWN 
X0 - V End stage 3 

(Stages 4 through (log N)/2 -1 not shown) 

Begin stage (log N)/2 

Receive data from cell N 1/ 2loglog N 
V...- Y0 
UP 
X1 .,.... V 
M-A 
V ..._ Y1 Send Y1 down to celi N l/2loglog N 
DOWN 
X0 .,__ V End stage (log N)/2 

Begin stage (log N)/2 + 1 
H..- Y0 Note shift to horizontal routing 
LEFT Receive data from cell (N I/~2) loglog N 
x1 ...... H 
M-A 
H ...... Yj Send Y1 over to cell (iV l/~2) loglog N 
RIGHT 
X0 ~ H end stage (log f.lj/2 + 1 
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(Stages (log JV)/2 + 2 t.fuough 
(log - 1 not shown) 

Begin stage (log N) 
logN H~ Y0 
i Receive data 1 
log v 

) ao 
.<1 I .._ 

~!og-N M-A 
!ogN «- yl Send Y1 over to cell 1 
1 RIGHT Eml stage (log lV) 

logN H- Y0 This step omitted for cell i, i odd 
H registers contain transfom1ed data 
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