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Abstract 

The Delaunay diagram on a. set on points in the pla.ne, called 1ite1, 

is the straight-line dual gra.ph of the Voronoi dia.gram. When no degen-

era.cies a.re present, the Delaunay diagram is a triangulation of the sites, 

called the Delaunay triangulation. When degeneracies a.re present, edges 

must be added to the Dela.unay diagram to obtain a. Delauna.y tria.ngula.

tion. In this pa.per we describe a.n O(nlog n) plane-sweep algorithm for 

computing a Dela.una.y triangulation on a. possibly degenerate set of sites 

in the plane under the Li metric or the L00 metric. 
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1 Introduction. 

The Voronoi diagram on a set of points in the plane, called sites, is a subdivision 

of the plane into regions, ea.ch site corresponding to a single region consisting 

of all points in the plane that are closer to that site than to any other [8,19]. 

The Delaunay diagram is the straight-line dual graph of the Voronoi diagram 

[9]. When no degeneracies are present, the Delaunay diagram is a triangulation 

of the sites, called the Delaunay triangulation. Degeneracies will be discussed 

carefully in Section 2. 

Many problems that are described a.s applications of the Voronoi diagram 

are, in fact, solved by using the Delaunay triangulation, so algorithms that com

pute the Delaunay triangulation directly are useful in their own right [5,9,13,17). 

Among these applications are minimal spanning tree [10,19,21], all nearest 

neighbors [19], relative neighborhood graph (21,22), and heuristics for various 

optimization problems (3,16). Although the original work on Voronoi and Delau

nay diagrams was done for the Euclidean (L2) metric, it has since been extended 

to convex distance functions [4], including the Lp metrics [4,10,12,14]. The L1 

metric is of special interest to those developing heuristics for approximating the 

rectilinear minimal Steiner tree, a problem arising in the design of VLSI circuits 

(2,11,15,20]. 

Three computational techniques have been used to compute Voronoi and 

Delaunay diagrams. The incremental technique, where sites are added to 

the diagram one at a time, has a worst-case complexity of O(n2) (8,13,17]. 
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The divide-and-conquer technique has a worst-case complexity of 0( n log n) 

[4,5,9,10,12,13,14]. Most recently Fortune has developed an O(nlogn) plane

sweep algorithm for computing the L2 Voronoi diagram and Delaunay triangula

tion [7]. His algorithm avoids the difficult merge step of the divide-and-conquer 

technique. 

In this paper we describe an 0( n log n) plane-sweep algorithm for computing 

Li and L00 Delaunay triangulations on sets of sites in the plane. We prove our 

algorithm's correctness by direct geometrical argument. An alternative method 

of proof might be through a generalisation of Fortune's hyperbolic transforma

tion • [7], although this proof would be complicated by the fact that• is singular 

for L1 and L00 • In fact, the transformation• is singular even in L 2 whenever the 

point set is degenerate. Nevertheless, it appears that our algorithm is a natural 

extension of Fortune's in which substantial simplifications can be seen. First, 

we are not faced with the problem of inverting a singular transformation. Sec

ond, our calculations are simple arithmetics as opposed to the quadratic forms 

required in £ 2 • Third, we do not compute Voronoi edges, which streamlines 

our data structures. Finally, we compute a Delaunay triangulation even when 

degeneracies are present. 

Another interpretation of our triangulation algorithm is as an extension of 

Fortune's algorithm for polygon containment [6]. Viewed in this light, we have 

extended Fortune's definition of a polygonal obstacle to allow point obstacles. 

The problem here is that in [6] an obstacle must have a set of edges upon which 
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normal vectors can be erected. We allow the sides of our square object to be 

parallel to the coordinate axes, something that is specifically excluded from 

Fortune's treatment. Finally, we can handle degenerate point sets. 

2 Fundamentals 

The Li and L00 distance functions are given by 

and 

Distances m both of these metrics are dependent upon the location of the coor

dinate axes. Circles in the L1 metric are squares with diagonals parallel to the 

coordinate axes, and circles in the L 00 metric are squares with sides parallel to 

the coordinate axes. 

The L1 and L 00 metrics have a useful relationship to one another, as noted 

in [13]. When points in the plane under the Li metric are transformed by using 

u - z + y, v - y- z, 

then 

It follows that an algorithm that computes an L00 Delaunay triangulation on 

a set of sites by reporting an appropriate set of edges between pairs of sites 

4 



can also be used to report an Li Delaunay triangulation on a set of sites by 

adding a preprocessing step in which the sites are transformed by the preceding 

transformation. Throughout the remainder of this paper, we will concentrate 

on the L00 problem. 

It is well-known that two sites in an L2 Delaunay diagram have an edge 

between them if and only if there is a circle through the two sites containing no 

other sites in its interior or on its boundary. If k ~ 4 sites lie on the boundary 

of a circle with empty interior, their respective Voronoi regions meet in a single 

point, and the face in the corresponding Delaunay diagram containing this point 

is a k-gon. Such degeneracies prevent the Delaunay diagram from being a 

triangulation, and extra edges between sites on this empty circle must be added 

to make it one. See [9] for a careful discussion of these degeneracies in L,. 

In Loo the analogue of the L2 circle is a square with sides parallel to the 

coordinate axes. Following [9] we say that an edge between two sites p and q is 

an (Loo) De/au nay edge if there is a square with sides parallel to the coordinate 

axes containing p and q on its boundary and having no sites in its interior. We 

call such a square an empty square through p and q. If there is an empty square 

through p and q with no other site on its boundary, then pq is called a strictly 

Delaunay edge. Throughout the rest of the paper, all squares and rectangles 

will have their sides parallel to the coordinate axes. 

If an empty square has multiple sites on its boundary, there may be crossing 

or overlapping Delaunay edges. More specifically, four or more sites on the 
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boundary of the square produce crossing Delaunay edges, and three or more 

sites on the same vertical or horizontal line produce overlapping Delaunay edges. 

See Figure 1. 

(a) Four sites on the 
boundary of an empty 
square have a pair of 
crossing Delaunay edges. 

(b) Three sites on the 
same vertical (horizontal) 
line have a Delaunay edge 
overlapping two others. 

Figure 1 

(c) Multiple sites on the 
boundary of an empty 
square cause multiple 
crossings and overlaps 
of Delaunay edges. 

In L2 the Delaunay diagram is defined to be the dual of the Voronoi diagram. 

In Loo the Voronoi diagram itself is not always well-defined. This is because the 

Voronoi diagram is constructed from the bisectors of pairs of points, and pairs 

of points on the same vertical or horizontal line have bisectors of dimension two. 

See Figure 2. 
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Figure 2 

To maintain the property that the Voronoi diagram divides the plane into re

gions, one site per region, one can replace each region in the bisectors above by 

a ray from the vertex of the region, 88 in [4,10,12,14]. In light of all this, we 

will say that a set of sites in the L00 metric hu degeneracies if it contains two 

or more sites on the same horizontal or vertical line or it contains four or more 

sites on the boundary of the same empty square. 

We would like to clarify the definition of a Delaunay triangulation in the 

presence of degeneracies in L00 , but first we need a few preliminaries. Following 

[18] we refer to a planar graph that is embedded in the plane so that its edges 

are mapped to straight line segments 88 a planar straight-line graph or PSLG. 

A PSLG is called a triangulation if every interior face is a triangular. A PSLG 

G is said to satisfy the square crossing condition if for every square R through 

sites in S, with sites on both of two opposite sides of R and no sites on the 
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interiors of the other two sides, there is an edge in G that crosses the square. 

See Figure 3. 

The square crossing condition 

Figure 3 

Now we define an (L00 ) Dela•nay triangulalion on a set S of sites in the 

plane to be a PSLG G on S such that G is a triangulation, every edge of G is 

Delaunay, and G satisfies the square crossing condition. The inclusion of the 

square crossing condition in this definition needs some justification. First of all, 

it is easy to see that the square crossing condition implies G is connected, a 

desirable trait. Secondly, every strictly Delaunay edge pq has an empty square 

R through p and q with no other sites on its boundary. By shrinking and sliding 

R if necessary, it is possible to get p and q on opposite sides of R, whence the 

square crossing condition ensures that pq is in G. Therefore, for a set of sites 

with no degeneracies, G contains only the strictly Delaunay edges on S and is 

the usual dual of the Voronoi diagram. Finally, the square crossing condition is 

a generalization of Preparata and Shamos's Lemma 6.2 in [18, p. 220], and with 
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it, their proof can be modified to show that G contains a minimal spanning tree 

on S. 

3 Description of the Algorithm. 

In this section we give an informal description of an algorithm to produce an 

L 00 Delaunay triangulation on a set of distinct sites in the plane. The formal 

specification of the algorithm is given in the next section, and the proof of 

correctness is in Section 5. This algorithm uses the plane-sweep technique, 

where the sweep line L is vertical and moving from left to right across the 

plane. AB is usual in a plane-sweep algorithm, we use a priority queue X to 

control the position of the sweep line. Events in X are of two types: activation 

of a site and inactivation of a site. The details of the prioritization of these 

events in X will be discussed shortly. When an activation record is produced 

by X, its site is inserted into a second data structure, Y, and that site is called 

active ~ long ~ it remains in Y. When an inactivation record is produced by 

X, its site is deleted from Y, and the site becomes inact,ive. 

The data structure Y is a dictionary, and sites are stored in Y in reverse 

lexicographic order on their coordinates (z, y); that is, the sites are ordered first 

on y and then on z. It will be shown that adjacent sites in Y have a Delaunay 

edge between them. It is these Delaunay edges that will be reported by the 

algorithm, and we will prove that they form a Delaunay triangulation. At each 

step of the algorithm, the Delaunay edges joining adja~ent sites in Y form a 
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polygonal path with endpoints monotonically nondecreasing in y. We call this 

path the Y -frontier. 

Next we will describe the interaction between the two data structures X 

and Y. We begin the algorithm by inserting activation records for all the sites 

into X, using the usual lexicographic order on the coordinates of the sites to 

determine priority: sites smaller in the lexicographic order have higher priority. 

Dummy sites (-oo, -oo) and (-oo, +oo) are placed in Y to ensure that all other 

sites have two neighbors in Y, making computation simpler. It is easy to avoid 

reporting the edges with dummy endpoints if desired. The algorithm is driven 

by X: X produces the next event, causing one or two Delaunay edges to be 

reported and some updates to be made to the data structures. When the event 

produced by X is an activation for site p, p is inserted into Y, and edges are 

reported between p and its two new neighbors in Y. When the event produced 

is an inactivation for site p, p is deleted from Y, and a new edge is reported 

between p's former neighbors. Moreover, with either type of event, it may be 

necessary to insert new inactivation records into X or to change the priority 

of inactivation records that are already there. Because X produces sites for 

activation sequentially, we can think of sites as having an age with respect to 

the algorithm. If site a's activation record is produced by X before site b's, we 

say that a is older than b or that b is younger than a. 

Next we examine the management of the inactivation records in X. We must 

consider the circumstances under which a site p is due to become inactive: there 
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must be sites to p's right, both above and below it, that prevent an empty square 

with p on its left boundary from being maintained as the sweep line L moves 

to the right. When this occurs, p can no longer be the endpoint of a Delaunay 

edge whose other endpoint is to the right of L, sop should become inactive. The 

obvious candidates for the bounding sites that cause this inactivation are the 

neighbors of p in Y; if they both lie to the right of p, we set up an inactivation 

record for pin X. Let p = (p.,p11 ); let r =(rs, r11 ) be the predecessor of pin 

Y; let q = (q.,q11 ) be the successor of pin Y. If rs> Ps and qi: 2: Psi then p 

must become inactive when L reaches Ps + q11 - r11 • See Figure 4. 

q 

p 

r 

L 

Figure 4 

Thus, an inactivation record for p with priority (Ps + q11 - r 11 ,p11 ) is entered 

into X, If this inactivation record has the same priority as an activation record 

already in X, we give higher priority to the inactivation record. It is not hard 

to see that two inactivation records can never tie in X. Notice that p becomes 
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inactive somewhat prematurely in the degenerate case where p,, = qz:. By doing 

this, we prevent some Delaunay edges with p as endpoint from being reported, 

but the algorithm will still produce a. Dela.unay triangulation, as we will prove 

in section 5. Whenever a site in Y gets a. new neighbor, we must check to see 

if it needs an inactivation record. In case a. site already has a.n inactivation 

record but a new neighbor has ca.used a. change in the inactivation priority, it is 

necessary to update the inactivation record, increasing its priority in X. 

The position of the sweep line L is determined by the the event being pro

cessed. If the event is an activation for site p = (p11 ,p,), then L is the line 

z = p11 • If the event is an inactivation for p with priority (p11 +fr - r,,p,), 

then in most instances L is z = p,, +'Ir - r,. If, however, the activation of 

a new site causes subsequent inactivations with p11 + q, - r, smaller than the 

z-coordinate of the newly activated site, then L remains at the activation site 

while the inactivations are done. Thus, L moves from left to right as the al

gorithm proceeds. Moreover, the processing of each event from X moves the 

¥-frontier to the right. Inactive sites lie to the left of the ¥-frontier, and the 

sites not yet seen, those with activation records still in X, lie to the right of the 

¥-frontier. Edges of the triangulation on or to the left of the ¥-frontier have 

been reported; edges of the triangulation to the right of the ¥-frontier have yet 

to be reported. See Figure 5. 
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Inactive 
points 

Sweep line L 

Y -frontier, containing 
active points stored in Y 

Figure 5 

Points not yet seen, 
stored in X 

4 Formal Specification of the Algorithm 

Input S is a set of distinct sites in the plane for which the algorithm will 

produce an £ 00 Delaunay triangulation. 

Data Structure X is a priority queue containing activation and inactivation 

records for sites p = (Pz, Py) in S. The records of X are ordered lexicographically 

on the triples (trans, y, status), where trans and y are real numbers under the 

usual ordering and status is the enumerated type (inact, act). The activation 

record for p has trans = Pz, y = p111 and status :::: act. A site p has an 

inactivation record in X only if it has a predecessor r = (r8 , ry) in Y with 

. rz > Pz and a successor q = (q.:r:, qy) in Y with qz ~ Pz· In this case, trans= 
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Pz + q11 - r11 , y = p11 , and status= inact. X supports the following operations 

within time bound O{log k) when there are k records in X. 

• Min(X) returns the minimal record in X. 

• Insert{X,p, newtrans, newstatus) inserts a new record for site pinto X 

with trans = newtrans and status = newstatus. 

• ChangePriority(X,p, newtrans) changes the trans field of the inactivation 

record for p in X to newtrans and adjusts the location of this record in 

X accordingly. 

Data Structure Y is a dictionary containing sites from S in reverse lexico

graphic order; that is, (pz,p11 ) < (qs,qr) in Y if and only if (i) Pr <qr or (ii) 

p11 = q11 and Ps < q11 • Y supports the following operations within time bound 

O(log k) when k sites are in Y. 

• Insert(Y, p) inserts p into Y. 

• Delete{Y, p) deletes p from Y. 

• Successor(Y, p) returns the site above p in Y. 

• Predecessor{Y,p) returns the site below pin Y. 

The algorithm to form an £ 00 Delaunay triangulation on S is given in Figure 

6. The algorithm for updating inactivation records is given in Figure 7. 
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Initialization: 

X +- 0; For all pin S, Insert{X,p,pz,act) 
Y +- {(-00,-00),(-00,+oo)} 

Triangulation: 

while X is not empty 
P +- Min{X) 
if P is an activation record for p 

Insert(Y,p) 
Report edges Ei between p and Successor(Y,p) 

and E2 between p and Predecessor{Y,p) 
Update the inactivation records in X for 

the older endpoints of E1 and E2 
else { P is an inactivation record for p} 

q +- Predecessor(Y, p) 
Delete(Y, p) 
·Report an edge E between q and Successor(Y, q) 
Update the inactivation record in X for 

end if 
end while 

the older endpoint of E 

Figure 6. Algorithm to form an £ 00 Delaunay Triangulation on S. 
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r +- Predecessor(Y, p) 
q +- Successor(Y,p) 
if(r. > Ps) and (q. ~ Ps) 

if p bas no inactivation record 
Insert(X, p,p. + q11 - rr, inact) 

else {p already has an inactivation record} 
ChangePriority(X, p, Ps + q11 - r11 ) 

end if 
end if 

Figure 7. Algorithm to update the inactivation record of site p. 

5 Proof of Algorithm Correctness. 

The main result of this section is Theorem 5.8, showing that our algorithm 

produces a Delaunay triangulation. We prove this theorem by a sequence of 

shorter results. Throughout this section, we let S denote the set of sites and G 

denote the graph on S produced by our algorithm. 

Lemma 5.1 G is a PSLG on S. 

Proof: Each edge in G has endpoints in S and is a straight line. Thus, we need 

only s.how that G has no crossing or overlapping edges. It suffices to show that 

the new edges reported for an event produced by X do not cross or overlap any 

previously reported edges. There are two cases to consider. 
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First, suppose that an activation record for site p is to be inserted into Y 

between sites rand q, where r is the predecessor of q in Y. It follows from the 

orderings on X and Y that r,, < q,,. Let Ube the region bounded on the left by 

rq, below by 11 = r11 , above by 11 = q11 , and on the right by z = p •. See Figure 8. 

-------1--- 11 = q,, 

u 
p 

--------1-- 11 = r,, 
r 

z=p,, 

Figure 8 

Just before p is inserted into Y, no edge in the Y -frontier crosses into the 

interior of U, because rq is in the Y-frontier, and the sites in the Y-frontier are 

monotone nondecreasing in their y-coordinates. Furthermore, since all other 

edges reported by the 3.lgorithm so far lie to the left of the Y-frontier, none of 

them can cross into the interior of U either. Therefore, rp and pq cross no edges 

previously reported by the algorithm. Moreover, since p11 ~ rz: and Pz: > qz:, rp 

and pq cannot overlap qr. 

Second, suppose that an inactivation record is produced for site p in Y, and 

suppose r is the predecessor and q is the successor of p in Y. Consider the region 

U bounded by rp, pq, y = q11 , z = p11 + q11 - r 11 , and y = r11 , as shown in Figure 
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9. 

_____ .. q_~_ y = qll 

p 

----------- y = r11 
r 

:t = P11 + q11 - r, 

Figure 9 

As in the first case, no previously reported edge can cross into the interior of 

U, so the new edge rq cannot cross any previously reported edge. Moreover, 

q11 ~ p11 and r 11 > p11 , so rq cannot overlap rp or pr. 
I 

Lemma 5.2 G is a triangulation. 

Proof: Each event from X processed by the algorithm produces a triangular 

face. When the event is an activation for a site p, as in Figure 8, the new edges 

rq and pq form a triangle with edge rq. When the event is an inactivation for 

a site p, as in Figure 9, the new edge rq forms a triangle with edges rp and pq. 

If any of the endpoints involved in either of the cases are dummy endpoints, an 

implementation of the algorithm might not report the incident edges, but these 

would be edges in the exterior face in any case. Therefore, all interior faces of 

18 



G are triangles. 
I 

Lemma 5.3 G satisfies the square crossing condition. 

Proof: There are two cases to consider. 

Case 1: Let R be a square with sites on its left and right boundaries and no 

sites in its interior or on the interiors of its top and bottom boundaries. Let p 

be the topmost site on its left boundary and q be the bottommost site on its 

right boundary. We will show that P'l. is in G. See Figure 10. 

p, 
' u 
' 

R R 
' q 

' p t 

' q 

Figure 10 

If p were to become inactive before q becomes active, it must have a prede-

cessor and a successor in Y that are both younger than p. Because R is empty, 

p's predecessor a must be in the region A below R, and its successor b must be 

in the region B above R. See Figure 11. 

19 



B 

p, 

A 

Figure 11 

Then Pe + bv - av > qe, which implies that q becomes active before p becomes 

inactive. 

Next we need to show that p and q become adjacent in Y. Consider the strip 

U bounded by y = qv, y = Pv, and the left boundary of R. The top and right 

boundaries of U are closed, and the bottom boundary is open. See Figure 12 . 

• 
Y=Pv I 

----P • 

u R R 
u 

q ------ ~p 
Y = Pv ~ 

Figure 12 
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Let u be the oldest active site in U immediately after q has entered Y. If u = p, 

then p and q are already adjacent in Y; otherwise u has a predecessor t and 

a successor v in U LJ{p, q} that are both younger. Thus, the inactivation time 

for u is U:r + Vy - ty :$ U:r + IPr - qy I < q:r ._ Therefore, u becomes inactive 

before p becomes inactive and before any new sites can be inserted into Y. The 

same argument can be repeated for any other active sites in U, sop and q must 

become adjacent in Y, and pq is an edge of G. 

Case 2: Let R be a square with sites on its top and bottom boundaries and 

no sites in its interior or the interiors of its left or right boundaries. Let p be 

the leftmost site on the top boundary of R and q be the rightmost site on the 

bottom boundary of R. We will show that pq is in G. See Figure 13. 

p p 

- - - -y=py Y=Pr 

u R u R 

- - - - - - ....__ _______ _, - - - - - - ....__ _______ __, 
q 

Figure 13 
q 

If pis older than q, the argument given in case 1 applies again to show that 

p is active when q becomes active. If q is older than p, a symmetric argument 

holds to show that q is active when p becomes active. Finally, we apply the same 
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argument as in case 1 to show that all active sites in U become inactive before 

the older of p and q and before any new sites can be entered into Y between p 

and q, so that p and q become adjacent in Y and pq is in G. 
I 

It remains to prove that every edge of G is Delaunay. In order to simplify the 

proof of this fact, it is helpful to show first that G satisfies a related property. 

We say that a PSLG satisfies the empty rectangle condition if for every edge pq 

in the graph, the rectangle with sides parallel to the coordinate axes and pq on 

its diagonal has interior free of any sites. Notice that this condition is satisfied 

vacuously if p and q are on the same vertical or horizontal line. 

Lemma 5.4 G aatisfies the emptr ~ctapgle condition. 

Proof: We proceed inductively. The first edge reported by the algorithm clearly 

has an empty rectangle. Suppose that the edges reported during the processing 

of the first k events all have empty rectangles. 

If the (k + l)st event is an activation, the situation is described in Figure 

8. It was proved in Lemma 5.1 that U is empty. By the inductive hypothesis, 

rq has an empty rectangle R, so RLJ U contains empty rectangles for both new 

edges rp and pq. 

If the (k + l)st event is an inactivation, the situation is described in Figure 

9. It was proved in Lemma 5.1 that U is empty. By the induction hypothesis, 

rp and pq have empty rectangles Ri and R2, so R1 LJ R2 U U contains an empty 

rectangle for the new edge rq. 
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I 

Next, we prove another lemma, which will be used to prove Theorem 5.6. 

First we need a definition: a PSLG satisfies the rectangle crossing con.dition if 

for every rectangle R with sides parallel to the coordinate axes, width w, length 

I > w, no sites on its interior, and sites on the interiors of both of its long sides, 

there is an edge of the graph that intersects the interiors of both of the long 

sides of R. 

Lemma 5.5 If H is a PSLG that satisfies the square crossing condition, then 

H satisfies the rectangle crossing condition. 

Proof: We can assume without loss of generality that the long sides of R are 

horizontal. Let s be eitlier the leftmost site on the interior of the top side of R or 

the leftmost site on the bottom side of R, whichever is further right. Moreover, 

we can assume without loss of generality that s is on the top side of R. Now let 

t be the site on the interior of R's bottom side that is on or to the left of the 

vertical line through s and has minimal distance from the vertical line through 

s. See Figure 14. 

s 

I.I 
T l • t u 

R t 
w 

• 
Figure 14 
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If 8z: - tz: $ w, then it is easy to see that there is a square with side w in R 

that has sites only on its top and bottom sides, with 8 on its top side and t on 

its bottom side. The square crossing condition ensures, therefore, that there is 

an edge in H that intersects the interiors of the top and bottom sides of R. 

If 811: - tz > w, let u be a site with Uz $ 811:, u~ $ 8~, and having minimal 

distance d from 8. This is the case shown in Figure 14. Notice that d $ Sz - t11:, 

so Uz ~ tz. By the choice of u, the square T with sided and 8 at its upper right 

corner has an empty interior and no sites on its top or right sides except for 8 

and possibly u {at the lower right corner). If there are any sites on the bottom 

side of T other than at the lower left corner, then T can be shifted slightly 

to the right to produce a square with sites only on its top and bottom sides. 

The square crossing condition then ensures an edge that intersects the interiors 

of the top and bottom sides of R. If there are no sites on the bottom side of 

T except possibly at the lower left corner, then the only sites on T are 8 and 

one or more sites on the left side of T that are on or below the bottom side of 

R. In this final case, the square crossing condition again ensures an edge of H 

intersecting the interiors of the top and bottom sides of R. 
I 

We now prove a general result, from which our desired result follows. 

Theorem 5.6 If H is a PSLG satisfying the empty rectangle condition and the 

square crossing condition, then every edge in H is Delaunay. 
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Proof: Let pq be an edge of H. Without loss of generality we can assume 

that the horizontal distance from p to q is greater than or equal to the vertical 

distance from p to q. Let U be the region between the vertical lines through p 

and q; let R be the rectangular section of U between the horizontal line through 

the lowest sites in the interior of U above pq and the horizontal line through the 

highest sites in in the interior of U below pq. The empty rectangle condition 

implies that p and q are on the left and right sides of R. If the height of R is 

less than the width of R, then Lemma 5.5 implies that there is an edge of H 

crossing the interiors of both the top and bottom sides of R. This edge would 

cross pq, however, contradicting the assumption that His a PSLG. Therefore, 

the height of R is greater than or equal to the width of R, so R must contain 

an empty square through p and q, whence pq is Delaunay. 
I 

Corollary 5. 7 Every edge in G is Delaunay. 

The proof of the algorithm's correctness now follows from Lemmas 5.1, 5.2, 

5.3, 5.4, and Corollary 5.7. 

Theorem 5.8 G is a Delaunay triangulation. 

6 Run Time of the Algorithm 

The run time for the initialization step of the algorithm is 0( n log n) to insert 

n sites into X. This can be improved to 0( n) using a technique described by 
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Bentley [1]. Because X contains at most two records for each site (one activation 

record and perhaps one inactivation record), the ma.in loop in the triangulation 

step is entered at most 2n = O(n) times. Ea.ch execution of the loop takes in 

O(Iog n) time, so the run time for the entire algorithm is 0( n log n ). The space 

used is O(n). 

We have implemented the algorithm in Con an Encore Multima.x. When run 

on a set of 1000 random sites, the program produced a Delaunay triangulation 

in 32.6 CPU seconds. A profile of the execution revealed that 88 per cent of this 

execution time was spent doing input and output. Execution of the program on 

a set of 25,000 random sites took 130 CPU seconds, excluding input and output. 

Profiling further revealed that the program spent about 7 .5 times as much 

time manipulating X as Y. This is not particularly surprising; we suspect that 

for a random point set, X contains approximately n records on the average 

and Y contains approximately y'n records on the average. The run time of the 

program could be improved even more in the average case by using a bucketing 

technique on the records in X [17]. Moreover, the algorithm can be adapted 

to handle very large data sets by dividing the plane into vertical strips, each 

containing approximately ./Ti sites, and processing the strips one at a time from 

left to right. 
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7 Conclusions 

We have described an 0( n log n) plane-sweep algorithm for computing a Delau

nay triangulation on a set of sites in the plane under the £ 00 metric. A simple 

preprocessing step, when added to our algorithm, transforms it to an algorithm 

for computing an £1 Delaunay triangulation. Our algorithm performs satisfae

torily even when degeneracies are present, unlike many related algorithms. 
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