
An O(n log n) Plane- Sweep
Algorithm for L1

and L00 Delaunay Triangulations

by

Gary M. Shute
Linda L. Deneen

Clark D. Thomborson(a.k.a. Thompson)

Technical Report 87-5

University of Minnesota
Duluth

Computer Science

Mathematics

and Statistics

An O(n log n) Plane-Sweep
Algorithm for L1

and L 00 Delaunay Triangulations

by

Gary M. Shute
Linda L. Deneen

Clark D. Thomborson(a.k.a. Thompson)

Technical Report 87-5

Department of Computer Science
University of Minnesota

Duluth, Minnesota

September, 1987

An O(nlogn) Plane-Sweep Algorithm for L1
and L00 Delaunay Triangulations

Gary M. Shute

Linda L. Deneen

Clark D. Thomborson(a.k.a. Thompson)

Department of Computer Science

University of Minnesota, Duluth

Duluth, Minnesota 55812

Keywords: Delaunay triangulation, plane-sweep algorithm, Voronoi dia.-

gram, L1 metric, L 00 metric, computational geometry, minimal spanning tree.

Abstract

The Delaunay diagram on a. set on points in the pla.ne, called 1ite1,

is the straight-line dual gra.ph of the Voronoi dia.gram. When no degen-

era.cies a.re present, the Delaunay diagram is a triangulation of the sites,

called the Delaunay triangulation. When degeneracies a.re present, edges

must be added to the Dela.unay diagram to obtain a. Delauna.y tria.ngula.

tion. In this pa.per we describe a.n O(nlog n) plane-sweep algorithm for

computing a Dela.una.y triangulation on a. possibly degenerate set of sites

in the plane under the Li metric or the L00 metric.

1

1 Introduction.

The Voronoi diagram on a set of points in the plane, called sites, is a subdivision

of the plane into regions, ea.ch site corresponding to a single region consisting

of all points in the plane that are closer to that site than to any other [8,19].

The Delaunay diagram is the straight-line dual graph of the Voronoi diagram

[9]. When no degeneracies are present, the Delaunay diagram is a triangulation

of the sites, called the Delaunay triangulation. Degeneracies will be discussed

carefully in Section 2.

Many problems that are described a.s applications of the Voronoi diagram

are, in fact, solved by using the Delaunay triangulation, so algorithms that com

pute the Delaunay triangulation directly are useful in their own right [5,9,13,17).

Among these applications are minimal spanning tree [10,19,21], all nearest

neighbors [19], relative neighborhood graph (21,22), and heuristics for various

optimization problems (3,16). Although the original work on Voronoi and Delau

nay diagrams was done for the Euclidean (L2) metric, it has since been extended

to convex distance functions [4], including the Lp metrics [4,10,12,14]. The L1

metric is of special interest to those developing heuristics for approximating the

rectilinear minimal Steiner tree, a problem arising in the design of VLSI circuits

(2,11,15,20].

Three computational techniques have been used to compute Voronoi and

Delaunay diagrams. The incremental technique, where sites are added to

the diagram one at a time, has a worst-case complexity of O(n2) (8,13,17].

2

The divide-and-conquer technique has a worst-case complexity of 0(n log n)

[4,5,9,10,12,13,14]. Most recently Fortune has developed an O(nlogn) plane

sweep algorithm for computing the L2 Voronoi diagram and Delaunay triangula

tion [7]. His algorithm avoids the difficult merge step of the divide-and-conquer

technique.

In this paper we describe an 0(n log n) plane-sweep algorithm for computing

Li and L00 Delaunay triangulations on sets of sites in the plane. We prove our

algorithm's correctness by direct geometrical argument. An alternative method

of proof might be through a generalisation of Fortune's hyperbolic transforma

tion • [7], although this proof would be complicated by the fact that• is singular

for L1 and L00 • In fact, the transformation• is singular even in L 2 whenever the

point set is degenerate. Nevertheless, it appears that our algorithm is a natural

extension of Fortune's in which substantial simplifications can be seen. First,

we are not faced with the problem of inverting a singular transformation. Sec

ond, our calculations are simple arithmetics as opposed to the quadratic forms

required in £ 2 • Third, we do not compute Voronoi edges, which streamlines

our data structures. Finally, we compute a Delaunay triangulation even when

degeneracies are present.

Another interpretation of our triangulation algorithm is as an extension of

Fortune's algorithm for polygon containment [6]. Viewed in this light, we have

extended Fortune's definition of a polygonal obstacle to allow point obstacles.

The problem here is that in [6] an obstacle must have a set of edges upon which

3

normal vectors can be erected. We allow the sides of our square object to be

parallel to the coordinate axes, something that is specifically excluded from

Fortune's treatment. Finally, we can handle degenerate point sets.

2 Fundamentals

The Li and L00 distance functions are given by

and

Distances m both of these metrics are dependent upon the location of the coor

dinate axes. Circles in the L1 metric are squares with diagonals parallel to the

coordinate axes, and circles in the L 00 metric are squares with sides parallel to

the coordinate axes.

The L1 and L 00 metrics have a useful relationship to one another, as noted

in [13]. When points in the plane under the Li metric are transformed by using

u - z + y, v - y- z,

then

It follows that an algorithm that computes an L00 Delaunay triangulation on

a set of sites by reporting an appropriate set of edges between pairs of sites

4

can also be used to report an Li Delaunay triangulation on a set of sites by

adding a preprocessing step in which the sites are transformed by the preceding

transformation. Throughout the remainder of this paper, we will concentrate

on the L00 problem.

It is well-known that two sites in an L2 Delaunay diagram have an edge

between them if and only if there is a circle through the two sites containing no

other sites in its interior or on its boundary. If k ~ 4 sites lie on the boundary

of a circle with empty interior, their respective Voronoi regions meet in a single

point, and the face in the corresponding Delaunay diagram containing this point

is a k-gon. Such degeneracies prevent the Delaunay diagram from being a

triangulation, and extra edges between sites on this empty circle must be added

to make it one. See [9] for a careful discussion of these degeneracies in L,.

In Loo the analogue of the L2 circle is a square with sides parallel to the

coordinate axes. Following [9] we say that an edge between two sites p and q is

an (Loo) De/au nay edge if there is a square with sides parallel to the coordinate

axes containing p and q on its boundary and having no sites in its interior. We

call such a square an empty square through p and q. If there is an empty square

through p and q with no other site on its boundary, then pq is called a strictly

Delaunay edge. Throughout the rest of the paper, all squares and rectangles

will have their sides parallel to the coordinate axes.

If an empty square has multiple sites on its boundary, there may be crossing

or overlapping Delaunay edges. More specifically, four or more sites on the

5

boundary of the square produce crossing Delaunay edges, and three or more

sites on the same vertical or horizontal line produce overlapping Delaunay edges.

See Figure 1.

(a) Four sites on the
boundary of an empty
square have a pair of
crossing Delaunay edges.

(b) Three sites on the
same vertical (horizontal)
line have a Delaunay edge
overlapping two others.

Figure 1

(c) Multiple sites on the
boundary of an empty
square cause multiple
crossings and overlaps
of Delaunay edges.

In L2 the Delaunay diagram is defined to be the dual of the Voronoi diagram.

In Loo the Voronoi diagram itself is not always well-defined. This is because the

Voronoi diagram is constructed from the bisectors of pairs of points, and pairs

of points on the same vertical or horizontal line have bisectors of dimension two.

See Figure 2.

6

Figure 2

To maintain the property that the Voronoi diagram divides the plane into re

gions, one site per region, one can replace each region in the bisectors above by

a ray from the vertex of the region, 88 in [4,10,12,14]. In light of all this, we

will say that a set of sites in the L00 metric hu degeneracies if it contains two

or more sites on the same horizontal or vertical line or it contains four or more

sites on the boundary of the same empty square.

We would like to clarify the definition of a Delaunay triangulation in the

presence of degeneracies in L00 , but first we need a few preliminaries. Following

[18] we refer to a planar graph that is embedded in the plane so that its edges

are mapped to straight line segments 88 a planar straight-line graph or PSLG.

A PSLG is called a triangulation if every interior face is a triangular. A PSLG

G is said to satisfy the square crossing condition if for every square R through

sites in S, with sites on both of two opposite sides of R and no sites on the

7

interiors of the other two sides, there is an edge in G that crosses the square.

See Figure 3.

The square crossing condition

Figure 3

Now we define an (L00) Dela•nay triangulalion on a set S of sites in the

plane to be a PSLG G on S such that G is a triangulation, every edge of G is

Delaunay, and G satisfies the square crossing condition. The inclusion of the

square crossing condition in this definition needs some justification. First of all,

it is easy to see that the square crossing condition implies G is connected, a

desirable trait. Secondly, every strictly Delaunay edge pq has an empty square

R through p and q with no other sites on its boundary. By shrinking and sliding

R if necessary, it is possible to get p and q on opposite sides of R, whence the

square crossing condition ensures that pq is in G. Therefore, for a set of sites

with no degeneracies, G contains only the strictly Delaunay edges on S and is

the usual dual of the Voronoi diagram. Finally, the square crossing condition is

a generalization of Preparata and Shamos's Lemma 6.2 in [18, p. 220], and with

8

it, their proof can be modified to show that G contains a minimal spanning tree

on S.

3 Description of the Algorithm.

In this section we give an informal description of an algorithm to produce an

L 00 Delaunay triangulation on a set of distinct sites in the plane. The formal

specification of the algorithm is given in the next section, and the proof of

correctness is in Section 5. This algorithm uses the plane-sweep technique,

where the sweep line L is vertical and moving from left to right across the

plane. AB is usual in a plane-sweep algorithm, we use a priority queue X to

control the position of the sweep line. Events in X are of two types: activation

of a site and inactivation of a site. The details of the prioritization of these

events in X will be discussed shortly. When an activation record is produced

by X, its site is inserted into a second data structure, Y, and that site is called

active ~ long ~ it remains in Y. When an inactivation record is produced by

X, its site is deleted from Y, and the site becomes inact,ive.

The data structure Y is a dictionary, and sites are stored in Y in reverse

lexicographic order on their coordinates (z, y); that is, the sites are ordered first

on y and then on z. It will be shown that adjacent sites in Y have a Delaunay

edge between them. It is these Delaunay edges that will be reported by the

algorithm, and we will prove that they form a Delaunay triangulation. At each

step of the algorithm, the Delaunay edges joining adja~ent sites in Y form a

9

polygonal path with endpoints monotonically nondecreasing in y. We call this

path the Y -frontier.

Next we will describe the interaction between the two data structures X

and Y. We begin the algorithm by inserting activation records for all the sites

into X, using the usual lexicographic order on the coordinates of the sites to

determine priority: sites smaller in the lexicographic order have higher priority.

Dummy sites (-oo, -oo) and (-oo, +oo) are placed in Y to ensure that all other

sites have two neighbors in Y, making computation simpler. It is easy to avoid

reporting the edges with dummy endpoints if desired. The algorithm is driven

by X: X produces the next event, causing one or two Delaunay edges to be

reported and some updates to be made to the data structures. When the event

produced by X is an activation for site p, p is inserted into Y, and edges are

reported between p and its two new neighbors in Y. When the event produced

is an inactivation for site p, p is deleted from Y, and a new edge is reported

between p's former neighbors. Moreover, with either type of event, it may be

necessary to insert new inactivation records into X or to change the priority

of inactivation records that are already there. Because X produces sites for

activation sequentially, we can think of sites as having an age with respect to

the algorithm. If site a's activation record is produced by X before site b's, we

say that a is older than b or that b is younger than a.

Next we examine the management of the inactivation records in X. We must

consider the circumstances under which a site p is due to become inactive: there

10

must be sites to p's right, both above and below it, that prevent an empty square

with p on its left boundary from being maintained as the sweep line L moves

to the right. When this occurs, p can no longer be the endpoint of a Delaunay

edge whose other endpoint is to the right of L, sop should become inactive. The

obvious candidates for the bounding sites that cause this inactivation are the

neighbors of p in Y; if they both lie to the right of p, we set up an inactivation

record for pin X. Let p = (p.,p11); let r =(rs, r11) be the predecessor of pin

Y; let q = (q.,q11) be the successor of pin Y. If rs> Ps and qi: 2: Psi then p

must become inactive when L reaches Ps + q11 - r11 • See Figure 4.

q

p

r

L

Figure 4

Thus, an inactivation record for p with priority (Ps + q11 - r 11 ,p11) is entered

into X, If this inactivation record has the same priority as an activation record

already in X, we give higher priority to the inactivation record. It is not hard

to see that two inactivation records can never tie in X. Notice that p becomes

11

inactive somewhat prematurely in the degenerate case where p,, = qz:. By doing

this, we prevent some Delaunay edges with p as endpoint from being reported,

but the algorithm will still produce a. Dela.unay triangulation, as we will prove

in section 5. Whenever a site in Y gets a. new neighbor, we must check to see

if it needs an inactivation record. In case a. site already has a.n inactivation

record but a new neighbor has ca.used a. change in the inactivation priority, it is

necessary to update the inactivation record, increasing its priority in X.

The position of the sweep line L is determined by the the event being pro

cessed. If the event is an activation for site p = (p11 ,p,), then L is the line

z = p11 • If the event is an inactivation for p with priority (p11 +fr - r,,p,),

then in most instances L is z = p,, +'Ir - r,. If, however, the activation of

a new site causes subsequent inactivations with p11 + q, - r, smaller than the

z-coordinate of the newly activated site, then L remains at the activation site

while the inactivations are done. Thus, L moves from left to right as the al

gorithm proceeds. Moreover, the processing of each event from X moves the

¥-frontier to the right. Inactive sites lie to the left of the ¥-frontier, and the

sites not yet seen, those with activation records still in X, lie to the right of the

¥-frontier. Edges of the triangulation on or to the left of the ¥-frontier have

been reported; edges of the triangulation to the right of the ¥-frontier have yet

to be reported. See Figure 5.

12

Inactive
points

Sweep line L

Y -frontier, containing
active points stored in Y

Figure 5

Points not yet seen,
stored in X

4 Formal Specification of the Algorithm

Input S is a set of distinct sites in the plane for which the algorithm will

produce an £ 00 Delaunay triangulation.

Data Structure X is a priority queue containing activation and inactivation

records for sites p = (Pz, Py) in S. The records of X are ordered lexicographically

on the triples (trans, y, status), where trans and y are real numbers under the

usual ordering and status is the enumerated type (inact, act). The activation

record for p has trans = Pz, y = p111 and status :::: act. A site p has an

inactivation record in X only if it has a predecessor r = (r8 , ry) in Y with

. rz > Pz and a successor q = (q.:r:, qy) in Y with qz ~ Pz· In this case, trans=

13

Pz + q11 - r11 , y = p11 , and status= inact. X supports the following operations

within time bound O{log k) when there are k records in X.

• Min(X) returns the minimal record in X.

• Insert{X,p, newtrans, newstatus) inserts a new record for site pinto X

with trans = newtrans and status = newstatus.

• ChangePriority(X,p, newtrans) changes the trans field of the inactivation

record for p in X to newtrans and adjusts the location of this record in

X accordingly.

Data Structure Y is a dictionary containing sites from S in reverse lexico

graphic order; that is, (pz,p11) < (qs,qr) in Y if and only if (i) Pr <qr or (ii)

p11 = q11 and Ps < q11 • Y supports the following operations within time bound

O(log k) when k sites are in Y.

• Insert(Y, p) inserts p into Y.

• Delete{Y, p) deletes p from Y.

• Successor(Y, p) returns the site above p in Y.

• Predecessor{Y,p) returns the site below pin Y.

The algorithm to form an £ 00 Delaunay triangulation on S is given in Figure

6. The algorithm for updating inactivation records is given in Figure 7.

14

Initialization:

X +- 0; For all pin S, Insert{X,p,pz,act)
Y +- {(-00,-00),(-00,+oo)}

Triangulation:

while X is not empty
P +- Min{X)
if P is an activation record for p

Insert(Y,p)
Report edges Ei between p and Successor(Y,p)

and E2 between p and Predecessor{Y,p)
Update the inactivation records in X for

the older endpoints of E1 and E2
else { P is an inactivation record for p}

q +- Predecessor(Y, p)
Delete(Y, p)
·Report an edge E between q and Successor(Y, q)
Update the inactivation record in X for

end if
end while

the older endpoint of E

Figure 6. Algorithm to form an £ 00 Delaunay Triangulation on S.

15

•

r +- Predecessor(Y, p)
q +- Successor(Y,p)
if(r. > Ps) and (q. ~ Ps)

if p bas no inactivation record
Insert(X, p,p. + q11 - rr, inact)

else {p already has an inactivation record}
ChangePriority(X, p, Ps + q11 - r11)

end if
end if

Figure 7. Algorithm to update the inactivation record of site p.

5 Proof of Algorithm Correctness.

The main result of this section is Theorem 5.8, showing that our algorithm

produces a Delaunay triangulation. We prove this theorem by a sequence of

shorter results. Throughout this section, we let S denote the set of sites and G

denote the graph on S produced by our algorithm.

Lemma 5.1 G is a PSLG on S.

Proof: Each edge in G has endpoints in S and is a straight line. Thus, we need

only s.how that G has no crossing or overlapping edges. It suffices to show that

the new edges reported for an event produced by X do not cross or overlap any

previously reported edges. There are two cases to consider.

16

First, suppose that an activation record for site p is to be inserted into Y

between sites rand q, where r is the predecessor of q in Y. It follows from the

orderings on X and Y that r,, < q,,. Let Ube the region bounded on the left by

rq, below by 11 = r11 , above by 11 = q11 , and on the right by z = p •. See Figure 8.

-------1--- 11 = q,,

u
p

--------1-- 11 = r,,
r

z=p,,

Figure 8

Just before p is inserted into Y, no edge in the Y -frontier crosses into the

interior of U, because rq is in the Y-frontier, and the sites in the Y-frontier are

monotone nondecreasing in their y-coordinates. Furthermore, since all other

edges reported by the 3.lgorithm so far lie to the left of the Y-frontier, none of

them can cross into the interior of U either. Therefore, rp and pq cross no edges

previously reported by the algorithm. Moreover, since p11 ~ rz: and Pz: > qz:, rp

and pq cannot overlap qr.

Second, suppose that an inactivation record is produced for site p in Y, and

suppose r is the predecessor and q is the successor of p in Y. Consider the region

U bounded by rp, pq, y = q11 , z = p11 + q11 - r 11 , and y = r11 , as shown in Figure

17

9.

_____ .. q_~_ y = qll

p

----------- y = r11
r

:t = P11 + q11 - r,

Figure 9

As in the first case, no previously reported edge can cross into the interior of

U, so the new edge rq cannot cross any previously reported edge. Moreover,

q11 ~ p11 and r 11 > p11 , so rq cannot overlap rp or pr.
I

Lemma 5.2 G is a triangulation.

Proof: Each event from X processed by the algorithm produces a triangular

face. When the event is an activation for a site p, as in Figure 8, the new edges

rq and pq form a triangle with edge rq. When the event is an inactivation for

a site p, as in Figure 9, the new edge rq forms a triangle with edges rp and pq.

If any of the endpoints involved in either of the cases are dummy endpoints, an

implementation of the algorithm might not report the incident edges, but these

would be edges in the exterior face in any case. Therefore, all interior faces of

18

G are triangles.
I

Lemma 5.3 G satisfies the square crossing condition.

Proof: There are two cases to consider.

Case 1: Let R be a square with sites on its left and right boundaries and no

sites in its interior or on the interiors of its top and bottom boundaries. Let p

be the topmost site on its left boundary and q be the bottommost site on its

right boundary. We will show that P'l. is in G. See Figure 10.

p,
' u
'

R R
' q

' p t

' q

Figure 10

If p were to become inactive before q becomes active, it must have a prede-

cessor and a successor in Y that are both younger than p. Because R is empty,

p's predecessor a must be in the region A below R, and its successor b must be

in the region B above R. See Figure 11.

19

B

p,

A

Figure 11

Then Pe + bv - av > qe, which implies that q becomes active before p becomes

inactive.

Next we need to show that p and q become adjacent in Y. Consider the strip

U bounded by y = qv, y = Pv, and the left boundary of R. The top and right

boundaries of U are closed, and the bottom boundary is open. See Figure 12 .

•
Y=Pv I

----P •

u R R
u

q ------ ~p
Y = Pv ~

Figure 12

20

Let u be the oldest active site in U immediately after q has entered Y. If u = p,

then p and q are already adjacent in Y; otherwise u has a predecessor t and

a successor v in U LJ{p, q} that are both younger. Thus, the inactivation time

for u is U:r + Vy - ty :$ U:r + IPr - qy I < q:r ._ Therefore, u becomes inactive

before p becomes inactive and before any new sites can be inserted into Y. The

same argument can be repeated for any other active sites in U, sop and q must

become adjacent in Y, and pq is an edge of G.

Case 2: Let R be a square with sites on its top and bottom boundaries and

no sites in its interior or the interiors of its left or right boundaries. Let p be

the leftmost site on the top boundary of R and q be the rightmost site on the

bottom boundary of R. We will show that pq is in G. See Figure 13.

p p

- - - -y=py Y=Pr

u R u R

- - - - - -__ _______ _, - - - - - -__ _______ __,
q

Figure 13
q

If pis older than q, the argument given in case 1 applies again to show that

p is active when q becomes active. If q is older than p, a symmetric argument

holds to show that q is active when p becomes active. Finally, we apply the same

21

argument as in case 1 to show that all active sites in U become inactive before

the older of p and q and before any new sites can be entered into Y between p

and q, so that p and q become adjacent in Y and pq is in G.
I

It remains to prove that every edge of G is Delaunay. In order to simplify the

proof of this fact, it is helpful to show first that G satisfies a related property.

We say that a PSLG satisfies the empty rectangle condition if for every edge pq

in the graph, the rectangle with sides parallel to the coordinate axes and pq on

its diagonal has interior free of any sites. Notice that this condition is satisfied

vacuously if p and q are on the same vertical or horizontal line.

Lemma 5.4 G aatisfies the emptr ~ctapgle condition.

Proof: We proceed inductively. The first edge reported by the algorithm clearly

has an empty rectangle. Suppose that the edges reported during the processing

of the first k events all have empty rectangles.

If the (k + l)st event is an activation, the situation is described in Figure

8. It was proved in Lemma 5.1 that U is empty. By the inductive hypothesis,

rq has an empty rectangle R, so RLJ U contains empty rectangles for both new

edges rp and pq.

If the (k + l)st event is an inactivation, the situation is described in Figure

9. It was proved in Lemma 5.1 that U is empty. By the induction hypothesis,

rp and pq have empty rectangles Ri and R2, so R1 LJ R2 U U contains an empty

rectangle for the new edge rq.

22

I

Next, we prove another lemma, which will be used to prove Theorem 5.6.

First we need a definition: a PSLG satisfies the rectangle crossing con.dition if

for every rectangle R with sides parallel to the coordinate axes, width w, length

I > w, no sites on its interior, and sites on the interiors of both of its long sides,

there is an edge of the graph that intersects the interiors of both of the long

sides of R.

Lemma 5.5 If H is a PSLG that satisfies the square crossing condition, then

H satisfies the rectangle crossing condition.

Proof: We can assume without loss of generality that the long sides of R are

horizontal. Let s be eitlier the leftmost site on the interior of the top side of R or

the leftmost site on the bottom side of R, whichever is further right. Moreover,

we can assume without loss of generality that s is on the top side of R. Now let

t be the site on the interior of R's bottom side that is on or to the left of the

vertical line through s and has minimal distance from the vertical line through

s. See Figure 14.

s

I.I
T l • t u

R t
w

•
Figure 14

23

If 8z: - tz: $ w, then it is easy to see that there is a square with side w in R

that has sites only on its top and bottom sides, with 8 on its top side and t on

its bottom side. The square crossing condition ensures, therefore, that there is

an edge in H that intersects the interiors of the top and bottom sides of R.

If 811: - tz > w, let u be a site with Uz $ 811:, u~ $ 8~, and having minimal

distance d from 8. This is the case shown in Figure 14. Notice that d $ Sz - t11:,

so Uz ~ tz. By the choice of u, the square T with sided and 8 at its upper right

corner has an empty interior and no sites on its top or right sides except for 8

and possibly u {at the lower right corner). If there are any sites on the bottom

side of T other than at the lower left corner, then T can be shifted slightly

to the right to produce a square with sites only on its top and bottom sides.

The square crossing condition then ensures an edge that intersects the interiors

of the top and bottom sides of R. If there are no sites on the bottom side of

T except possibly at the lower left corner, then the only sites on T are 8 and

one or more sites on the left side of T that are on or below the bottom side of

R. In this final case, the square crossing condition again ensures an edge of H

intersecting the interiors of the top and bottom sides of R.
I

We now prove a general result, from which our desired result follows.

Theorem 5.6 If H is a PSLG satisfying the empty rectangle condition and the

square crossing condition, then every edge in H is Delaunay.

24

Proof: Let pq be an edge of H. Without loss of generality we can assume

that the horizontal distance from p to q is greater than or equal to the vertical

distance from p to q. Let U be the region between the vertical lines through p

and q; let R be the rectangular section of U between the horizontal line through

the lowest sites in the interior of U above pq and the horizontal line through the

highest sites in in the interior of U below pq. The empty rectangle condition

implies that p and q are on the left and right sides of R. If the height of R is

less than the width of R, then Lemma 5.5 implies that there is an edge of H

crossing the interiors of both the top and bottom sides of R. This edge would

cross pq, however, contradicting the assumption that His a PSLG. Therefore,

the height of R is greater than or equal to the width of R, so R must contain

an empty square through p and q, whence pq is Delaunay.
I

Corollary 5. 7 Every edge in G is Delaunay.

The proof of the algorithm's correctness now follows from Lemmas 5.1, 5.2,

5.3, 5.4, and Corollary 5.7.

Theorem 5.8 G is a Delaunay triangulation.

6 Run Time of the Algorithm

The run time for the initialization step of the algorithm is 0(n log n) to insert

n sites into X. This can be improved to 0(n) using a technique described by

25

Bentley [1]. Because X contains at most two records for each site (one activation

record and perhaps one inactivation record), the ma.in loop in the triangulation

step is entered at most 2n = O(n) times. Ea.ch execution of the loop takes in

O(Iog n) time, so the run time for the entire algorithm is 0(n log n). The space

used is O(n).

We have implemented the algorithm in Con an Encore Multima.x. When run

on a set of 1000 random sites, the program produced a Delaunay triangulation

in 32.6 CPU seconds. A profile of the execution revealed that 88 per cent of this

execution time was spent doing input and output. Execution of the program on

a set of 25,000 random sites took 130 CPU seconds, excluding input and output.

Profiling further revealed that the program spent about 7 .5 times as much

time manipulating X as Y. This is not particularly surprising; we suspect that

for a random point set, X contains approximately n records on the average

and Y contains approximately y'n records on the average. The run time of the

program could be improved even more in the average case by using a bucketing

technique on the records in X [17]. Moreover, the algorithm can be adapted

to handle very large data sets by dividing the plane into vertical strips, each

containing approximately ./Ti sites, and processing the strips one at a time from

left to right.

26

7 Conclusions

We have described an 0(n log n) plane-sweep algorithm for computing a Delau

nay triangulation on a set of sites in the plane under the £ 00 metric. A simple

preprocessing step, when added to our algorithm, transforms it to an algorithm

for computing an £1 Delaunay triangulation. Our algorithm performs satisfae

torily even when degeneracies are present, unlike many related algorithms.

References

[1] J. Bentley. Programming pearls. Communications of the ACM, 28(3):245-

250, March 1985.

[2] M. W. Bern. Two probabilistic results on rectilinear Steiner trees. In Pro

ceedings of the 18th Annual ACM Symposium on the Theory of Computing,

pages 433-441, May 1986.

[3] L. P. Chew. There is a planar graph almost as good as the complete graph.

In Proceedings of the end Annual Symposium on Computational Geometry,

pages 169-177, 1986.

[4] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance

functions. In Proceedings of the Symposium on Computational Geometry,

pages 235-244, 1985.

27

[5] R. A. Dwyer. A simple divide-and-conquer algorithm for constructing De

launay triangulations in 0(n log log n) expected time. In Proceedings of the

end Annual Symposium on Computational Geometry, pages 276-284, 1986.

[6] S. J. Fortune. A fast algorithm for polygon containment by translation. In

Automata, Languages, and Programming, Jeth Colloquium, Lecture Notes

in Computer Science 194, pages 189-198, Springer-Verlag, New York, 1985.

[7] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. In Proceedings

of the end Annual Symposium on Computational Geometry, pages 313-319,

1986.

[8] P. J. Green and R. Sibson. Computing Dirichlet tesselations in the plane.

Computer Journal, 21(22):73-87, 1981.

[9] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general sub

divisions and the computation of Voronoi diagrams. ACM Transactions on

Graphics, 4(2):74-123, April 1985.

[10] F. K. Hwang. An 0(n log n) algorithm for rectilinear minimal spanning

trees. Journal of the ACM, 26(2):177-182, April 1979.

[11) F. K. Hwang. An O(nlogn) algorithm for suboptimal rectilinear Steiner

trees. IEEE Transactions on Circuits and Systems, CAS-26(1):75-77, Jan

uary 1979.

28

[12] D. T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. Journal

of the ACM, 27(4):604-618, October 1980.

[13] D. T. Lee and B. J. Schachter. Two algorithms for constructing a De

launay triangulation. International Journal of Computer and Information

Scienus, 9(3):219-242, 1980.

[14] D. T. Lee and C. K. Wong. Voronoi diagrams in L1 (L00) metrics with 2-

dimensional storage applications. SIAM Journal of Computing, 9:200-211,

1980.

[15] J. H. Lee, N. K. Bose, and F. K. Hwang. Use of Steiner's problem in

suboptimal routing in rectilinear metric. IEEE Transactions on Circuits

and Srstems, CAS-23(7):47Q-476, July 1976.

[16] A. Lingas. The greedy and Delaunay triangulations are not bad in the

average case. Information Processing Letters, 22:25--31, 1986.

[17] A. Maus. Delaunay triangulations and the convex hull of n points in ex

pected linear time. BIT, 24:151-163, 1984.

[18] F. P. Preparata and M. I. Sha.mos. Computational Geometry: An Intro

duction. Springer-Verlag, New York, 1985.

[19] M. I. Sha.mos and D. Hoey. Closest point problems. In Proceedings of the

16th IEEE Sympcsium on Foundations of Computer Science, pages 151-

162, 1975.

29

[20) J.M. Smith, D. T. Lee, and J. S. Liebman. An O(nlogn) heuristic algo

rithm for the rectilinear Steiner minimal tree problem. Engineering Opti

mization, 4(4):179-192, 1980.

(21] K. J. Supowit. The relative neighborhood graph, with an application to

minimal spanning trees. Journal of the ACM, 30(3):428-448, July 1983.

[22] G. T. Toussaint. The relative neighborhood graph of a finite planar .set.

Pattern Recognition, 12:261-268, 1980.

30

