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0. Abstract 

The VLSl Complexity of Sorting 

C. D. Thompson 

Division of Computer Science 
U. C. Berkeley 

Berkeley, CA 94720 

The area-time complexity of sorting is analyzed under an updated model of 

VLS! computation. The new model makes a distinction between "processing" 

circuits and "memory" circuits; the latter are less important since they are 

denser and comsume less power. Other adjustments to the model make it 

possible to compare pipelined and non-pipelined designs. 

Using the new model. this paper briefiy describes thirteen different designs 

for VLSI sorters. (None of these sorters are new, but few have been laid out or 

analyzed in a VLSI model.) The thirteen sorting circuits are used to document 

the existence of an area *time2 tradeotr for the sorting problem. The smallest 

circuit is only large enough to store a few elements at a time: it is, of course, 

rather slow at sorting. The largest design solves an N -element sorting problem 

in only O(lg N) clock cycles. The area•time2 performance figure for all but 

three of the designs is close to the theoretical minimum value, O(N2). 

Key words a.nd phra.ses: parallel algorithms, area-time complexity, VLSI, sorting, 

bubble sort, bitonic sort, heapsort, shuffle-exchange network, mesh-connected 

computers. 

1. Introduction 

Sorting has attracted a great deal of attention over the past few decades of 

computer science research. It is easy to see why: sorting is a theoretically 

interesting problem with a great deal of practical significance. AI!. many as a 

quarter of the world's computing cycles were once devoted to sorting [Knu 73, 

p.3]. This is probably no longer the case, given the large number of 

This work was :rupparted in ~art by the National Science Foundation under Grant ECS-a110664 and by 
the U.S. Army Resee.reh Office under Gnmt OAAG29-7s-G-0167. 
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microprocessors running dedicated control tasks. Nonetheless, sorting and 

other information-shuffiing techniques are of great importance in the rapidly 

growing database industry. 

The sorting problem can be defined as the rearrangement of N input values 

so that they are in ascending order. This paper examines the complexity of the 

sorting problem, assuming it is to be solved on a VLSI chip. Much is already 

known about sorting on other types of computational structures (Knu 73, pp. 1-

388], and much of this knowledge is applicable to VLSI sorting. However, VLSI is 

a novel computing medium in at least one respect: the size of a circuit is 

determined as much by its inter-gate wiring as by its gates themselves. This 

technological novelty makes it appropriate to re-evaluate sorting circuits and 

algorithms in the context of a "VLSI model of computation." 

Using a VLSI model, it is possible to demonstrate the existence of an 

area*time2 tradeoff for sorting circuits. A preliminary study of this tradeoff is 

contained in the author's Ph.D. dissertation [Tho BOa], in which two sorting 

circuits were analyzed. This paper analyzes eleven additional designs under an 

updated model of VLSI computation. The updated model has the advantage of 

allowing fair comparisons between pipelined and non-pipelined designs. 

None of the sorting circuits in this paper is new, since all are based on 

commonly-known serial algorithms. All have been proposed before for hardware 

implementation. However, this is the first time that most of these circuits have 

been analyzed for their area and time complexity in a VLSI implementation. Ten 

of the sorters will be seen to have an AT2 performance in the range O(N2lg 2N) to 

O(N2lg 5N). Since it is impossible for any design to have an AT2 product of less 

than O(N2) [Vui 80], these designs are area- and time- optimal to within 

logarithmic factors. 

A number of different models for VLSI have been proposed in the past few 

years [E&K 81, C&M 81, K&Z 81, Tho 80a, Tho SOb, Vui 80]. They differ chiefly in 

their treatment of chip I/0, placing various restrictions on the way in which a 

chip accesses its input. Typically, each input value must enter the chip at only 

one place [Tho 80a] or at only one time and place [B&K 81]. Savage [Sav 81] has 

characterized these as the "semelocal" and "semelective" assumptions, 

respectively. 

The model of this paper builds on its predecessors, removing as many 

restrictions on cr.Jp I/0 as possible. Following Kedem and Zorat, the semelocal 

assumption is relaxed by allowing a chip to access each input value from several 
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di.!Ierent I/0 memories. The intent is to allow redundant input codes: if each 

input bit appears ink places, a chip's area*time 2 performance may be enhanced 

by a factor of k 2 [K&Z 81]. 

Additionally, the new model is not semelective, for it allows multiple 

accesses to problem inputs. outputs, and intermediate results. Here, the intent 

is to model the use of off-chip RAM storage; the area of the RAM is not included 

in the total area of the sorting circuit. This omission clarifies the area *time2 

tradeoff for sorting circuits, since RAM area is involved in an entirely dit!erent 

form of tradeot!. {The recent work of Hong and Kung [H&K 81] indicates that a 

(time * tg space) tradeoff may describe how local memory at!ects the speed of a 

sorting circuit with fixed I/0 bandwidth.) Leaving RAM area out of the new 

model permits the analysis of sublinear size circuits. It also makes the model's 

area measure more sensitive to the power consumption of a circuit, since 

memory cells have a low duty cycle and generally consume much less power per 

unit area than a "processing" circuit. 

Other authors have used non-semelective models, although none has 

elaborated quite so much on the idea. Lipton and Sedgewick [L&S 81] point out 

that the "standard" AT2 lower bound proofs do not depend on semelective 

assumptions. Hong [Hon 81] defines a non-semelective model of VLSI with a 

space-time behavior which is polynomially equivalent to that of eleven other 

models of computation. His equivalence proofs depend upon the fact that VLSI 

wiring rules can cause at most a quadratic increase in the size of a zero-width

wire circuit. Unfortunately, Hong's transformation does not necessarily 

generate optimal VLSI circuits from optimal zero-width-wire circuits, since a 

quadratic factor cannot be ignored when "easy" functions like sorting are being 

studied. 

Lipton and Sedgewick [L&S 81] point out another form of input restriction, 

one that is not removed in this paper's model. In most situations it is natural to 

restrict one's attention to circuits which produce their outputs at fixed 

locations. For example, the most significant bit of the largest output value 

might be constrained to appear at I/0 port #1. regardless of the problem inputs. 

This natural restriction begs an important theoretical question: what is the 

hardest part of the sorting problem? Is it determining the rank order of the 

inputs, or is it permuting the inputs into sorted order, given their ranks? {A 

solution to the ftrst subproblem is all that is required of a "where-oblivious" [L&S 

81] sorting circuit.) I hope to be able to evaluate the VLSI complexity of these 



two subproblems in the near future; if you are interested in this problem area, 

please give me a call. For the purposes of this paper, however, the sorting 

problem will be assumed to include both "ranking" and "permuting" of the input 

values. 

The catalog of input restrictions is not yet complete. In both Vuillemin's 

[Vui 80] and Thompson's [Tho BOb] models of pipelined VLSI computation, 

analogous inputs and outputs for different problems must be accessed through 

identical I/0 ports. For example, input #1 of problem #2 must enter the chip at · 

the same place as input #1 of problem #1. While this seems to be a natural 

assumption for a pipelined chip, it leads to a number of misleading conclusions 

about the optimality of highly-concurrent designs. For instance, the highly 

parailelized bubble sort design of Section 3.10 is nearly area *time2 optimal 

under the old models, but it is significantly suboptimal under the model of this 

paper. 

When the restriction on pipelined chip inputs is removed, it becomes 

impossible to prove an O(N2) lower bound on AT2 performance until the 

definitions of area and time are adjusted. 

In the new model, the area performance of a design is its "area per 

problem," equal to its total area divided by its degree of concurrency. Thus it 

does not matter how many copies of a chip are being considered as a single 

design: doubling the number of chips doubles both its concurrency and its total 

area, leaving its area performance invariant. The old definition of area 

performance was the total area of a design, with no correction factor for its 

concurrency. 

The time performance of a design is newly defined as the delay between the 

presentation of one set of problem inputs and the production of the outputs for 

that problem. The old definition of time performance was the rate at which a 

design accepted input bits. It is easy to see that two sorting chips have twice 

the time performance of one, under the old definition. They also have twice the 

area. Under the new definition, area and time performances are not affected 

when a design is replicated. 

The old and new definitions of area and time can be contrasted by analyzing 

the combined sorting performance of N independent serial processors. As will 

be shown in Section 3.1, each one of these processors has an area of O(lg N) and 

each can solve one sorting problem every O(N lg 2 N) time units. A collection of 

N processors would thus consume input data at the rate of one bit every O(lg N) 



time units. Their total area is O(N lg N). yielding an "impossibly good" 

area *time2 performance of O(N lg 3 N) under the old definitions of area and time. 

Under the new definitions, the total area per problem is just O(lg N) and the 

solution delay is O(N lg 2N), so the AT2 performance is O(N2lg 0N). 

This paper is organized in the following fashion: Section 2 discusses the new 

VLSI model of computation, then defines it precisely; Section 3 sketches 

thirteen dillerent designs for VLSI sorters and analyzes the area-time 

performance of each; Section 4 compares the performances of each of the 

designs, with some discussion of the "constant factors" ignored by the 

asymptotic model; and Section 5 concludes the paper with a list of some of the 

open issues in VLSI complexity theory. In an attempt to keep the paper to a 

reasonable length, the constructions of Section 3 are described as briefly as 

possible. Readers wishing to "fill in the details" will have to follow the 

references, where applicable, and then exercise their own ingenuity. This is a 

regrettable situation, but an inevitable one since there is no accepted "high

level design language" for VLSI. 

2. Jlodel ot "VLSI Computation 

In all theoretical models of VLSI. circuits are made of two basic 

components: wires and gates. A gate is a localized set of transistors, or other 

switching elements, which perform a simple logical function. For example, a 

gate may be a "j-k t'lip-t'lop" or a "three input nand." Wires serve to carry signals 

from the output of one gate to the input of another. 

Two parameters of a VLSI circuit are of vital importance, its size and its 

speed. Since VLSI is essentially two-dimensional, the size of a circuit is best 

expressed in terms of its area. Sufficient area must be provided in a circuit 

layout for each gate and each wire. Gates are not allowed to overlap each other 

at all, and only two (or perhaps three) wires can pass over the same point. 

A convenient unit of area is the square of the minimum separation between 

parallel wires. In the terminology of [M&:C 80], this paper's unit of area is equal 

to (4X) 2, where ;\.is a constant determined by the processing technology. Each 

unit of area thus contains one, two, or three overlapping wires; or else it 

contains a fraction of a gate. The actual size of this area unit becomes smaller 

as technology improves. In 1978, it was typically 150 J.Lm 2 = 1.5* 10-a cm 2; 

eventually, it may be as small as .4- f.Lm 2 [M&C 80, p. 35]. 



The speed of a synchronous VLSI circuit can be measured by the number of 

clock pulses it takes to complete its computation. Once again. the actual size of 

this time unit is a technological variable. In 1978, a typical MOS clock period 

was 30 to 50 ns: and this may decrease to as little as 2 to 4 ns [M&C 80]. For 

the superconducting technology of Josephson junctions, a clock period of 1 to 3 

ns is achievable today, using a process for which the area unit is 25 p,m 2 [Ket 

80]. 

The speed of a VLSI circuit may be adversely afiecte~ by the presence of 

very long wires, unless special measures are taken. In many MOS processes, a 

minimum-sized transistor cannot send a signal from one end of the chip to the 

other in one clock period. To accomplish such cross-chip communication. 

special "driver" circuits are employed. These drivers amplify the current of the 

signal; O(lg k) stages of amplification are required to drive a length-k wire [M&C 

80, p. 14]. The use of these driver circuits is retlected in the VLSI model's 

"logarithmic delay" assumption, that a length-k wire has O(lg k) delay. Each 

stage of a driver's amplifier chain is individually clocked, so that the driver 

behaves like an O(lg k )-bit shift register. Note that this design for long-wire 

drivers achieves unit bandwidth. Every wire, even the longest one, has a 

throughput of one bit per time unit. 

The logarithmic delay assumption is used here because it leads to realistic 

circuit designs and time bounds. k; it turns out, the time bounds obtained for 

VLSI sorting under this assumption are no different from the ones that would be 

obtained under a "unit-delay" assumption (in which each gate is able to transmit 

its output all the way across the circuit, in one clock period). In the circuits of 

Section 3, the delay of the drivers is overlapped with the delays of comparison 

operations. The sole et!ect of the logarithmic delay assumption is thus to ensure 

that the VLSI designer strives for such an overlap. 

It may be argued that the logarithmic delay assumption is too severe or too 

lenient, depending on the technology. The former is currently the case in the 

121 and Josephson junction processes [Eva 79, Ket 80]. As of now, both are really 

unit-delay technologies; no drivers are needed for cross-chip communication. 

However, the results of this paper still apply if the drivers are omitted from the 

circuit constructions of Section 3. 

It seems unlikely that the logarithmic delay assumption will ever be too 

lenient on synchronous MOS circuits. Seitz [Sei 79] projects a signal 

transmission velocity of ( 1 em )/(3 ns) in a fully-developed MOS technology. This 



means that a cross-chip communication will only take a few clock periods, even 

if the "chip" is as large as a present-day "wafer." In other words, the time 

performance of the fully-developed MOS technology is only slightly 

overestimated by the logarithmic delay assumption-- the true delay would best 

be modeled as logarithmic plus a small constant. Modelling delay as a linear 

function of distance, as suggested by Chazelle and Monier [C&M 80], would 

greatly exaggerate the importance of delay in the determination of the speed of 

such circuits. 

If circuits ever become much faster or much larger than envisioned today, 

the logarithmic delay assumption may become invalid. As a case in point, 

consider the Josephson junction circuit assemblies currently built by IBM. They 

are 10 em on a side, and they run on a 1 to 3 ns clock [Ket 80]. The wires in 

these circuits are superconductors, but of course they cannot transmit 

information at a velocity greater than (a fraction of) the speed of light. Right 

now, the clock frequency and circuit dimensions are just small enough to allow a 

signal t.o propagate from one side of the circuit to the other in one clock period. 

Any increase in either speed or size would make this impossible. The 

computational limitations of such enhanced (and hypothetical) technologies 

could be analyzed under Chazelle and Monier's linear delay assumption. 

Before leaving the subject of wire delay, it should be noted that the model 

of this paper makes provision for the "self-timed" regime predicted by [Sei 79]. 

It may eventually become very ditl'icult to guarantee that all portions of a VLSI 

circuit get a clock signal with the correct frequency and/or phase. Fortunately, 

it is feasible to have the long-wire drivers include timing information with the 

data being transmitted, so that special "receiver" circuits can resynchronize the 

data with respect to the local version of the clock. Also, single-stage, unit-delay 

"repeater" circuits can be used to avoid driver delays in the interconnection 

networks of Sections 3.8 and 3.13. 

Thus far in the discussion, only "standard features" have been introduced to 

the VLSI model. The interested reader is referred to [Tho BOa] for more details 

on the practical significance of the model, and to [Sav 79] for an excellent 

introduction to the theoretical aspects of VLSI modelling. 

A major distinction between the model of this paper and most previous VLSI 

models is the way in which it treats "I/0 memory." Here, only a small area 

charge is made for the memory used to store problem inputs and outputs, even 

if this memory is also used for the storage of intermediate results. 



In the new model, each input and output bit is assigned a place in a k -bit 

"I/0 memory" attached to one or more "I/0 ports." Two types of access to the 

I/0 memory are distinguished. If the bits are accessed in a fixed order, the I/0 

memory is organized as a shift register and accessed in 0( 1) time. If the access 

pattern is more complex, a random access memory (RAM) is used. Such a 

memory has an access time of O(lg k) [M&:C 80, p. 321]. The random access 

time covers both the internal delays of the memory circuit as well as the time it 

takes the I/0 port to transmit (serially) O(lg k) address bits to the RAM. 

This paper's serial I/0 interfaces may seem a bit artificial. In particular, it 

might seem more realistic to involve several I/0 ports in a word-parallel 

memory interface. Such interfaces are not defined here, in an et!ort to keep the 

paper's model as simple and general as possible. In any event, a parallel 

interface could be "simulated" with several serial interfaces at little or no cost 

in area and time. 

Allowing more than one I/0 port to connect to a single I/0 memory makes 

it easy to model the use of multipart memory chips. However, a few restrictions 

must be placed on their usage, to remove the (theoretical) temptation to use 

multipart memories and printed-circuit board wiring as a means of avoiding on

chip wiring. (Note that a two-port memory provides a communication channel 

between its two I/0 ports, eliminating any need for an on-chip wire between 

them.) All I/0 ports connecting to a single memory must be physically adjacent 

to each other in the chip layout, to avoid any possibility of "rats-nest" wiring to 

the memory chips. 

The model makes as few assumptions as possible about the actual location 

of the I/0 memory circuitry, even though this can have a large effect on system 

timing. If the memory is placed on a different chip from the processing 

circuitry, its access time is considerably increased. Fortunately, this will not 

always invalidate the model's timing assumptions. The O(lg k) delay already 

assumed for a k-bit RAM will dominate the delay of an off-chip driver, if k is 

large enough. Alternatively, if k is small, it should be relatively easy to locate 

the RAM on the processor chip. As for off-chip "shift register" I/0 memories, 

there should be no particular difficulty in implementing these in such a way that 

one input or output event can happen every 0( 1) time units. 

As indicated above, time charges for ot!-chip I/0 are problematical and may 

be underestimated in the current model. Area charges for I/0 are also 

troublesome. Here, I/0 ports are assumed to have 0(1) area even though they 



are obviously much larger than a unit-area wire crossing or an 0(1) area gate. It 

is also assumed that a design can have an unlimited number of I/0 ports. In 

reality. chips are limited to one or two hundred pins, and each pin should be 

considered a major expense (in terms of manufacturing, reliability, and circuit 

board wiring costs). An attempt is made in Section 4 to use more realistic 

estimates of I/0 costs when evaluating Section 3's constructions. 

The complete model of VLSI computation is summarized in the following list 

of assumptions. 

Assumption 1: Embedding. 

a. Wires are one unit wide. 

b. Two wires may cross over each other at right angles (in one unit square). 

c. A logic node occupies 0(1) area. It has 0(1) input wires and 0(1) output 

wires, none of which are more than 0( 1) units long. 

d. Each logic node belongs to a self-timed region. All wires connecting to a 

logic node lie entirely within its self-timed region. 

e. A self-timed region may be as much as O(lg N) units wide or long. 

f. A driver node with an output wire of length k can be laid out in an 0(1}

by-O(k) unit rectangle. Its input wire is 0(1) units long. The output wire 

may pass through any number of self-timed regions before it connects to 

the input of a repeater or receiver node. 

g. A receiver node occupies 0(1) area. Its output wire is 0(1) units long. Its 

input wire may be of any length. 

h. A repeater node with 0(1} output wires of length at most k can be laid 

out in an 0(1)-by-O(k) unit rectangle. Its input wire is at least k 12 units 

long. (Note that the driver node of Assumption 1f can be constructed from 

a chain of lg k repeater nodes, each twice the size of the previous one.) 

i. An I/O memory and its associated I/0 ports occupy 0(1) area. Each I/0 

port has one input wire and one output wire, each of 0(1) length. 

j. Two nodes may cross over each other at right angles, but their 

intersection area does not count toward the required area for either node. 

(The crossover region is full of wires, so there is no room for transistors.) 



Assumption 2: Problem definition. 

a. A chip has degree of concurrency p if it solves p problem instances 

simultaneously. 

b. Each of the N input variables in a problem instance takes on one of M 

dit!erent values with equal likelihood. 

c. M = N 1
+t:, for some fixed e > 0. Furthermore. a nearly non-redundant 

code must be used, so that input and output values are represented as 

O(lg N) bit words. (This assumption makes it possible to express area and 

time bounds in terms of N alone.) 

d. The output values of a problem instance are a permutation of its input 

values into increasing order. 

Assumption 3: 'nmmg. 

a. Wires have unit bandwidth. They carry at most one bit of information in 

a unit of time. 

b. Logic nodes, repeater nodes, and receiver nodes have 0(1) delay. 

c. The driver node for a wire of length k has O(lg k) delay. 

Assumption 4: Transmission functions. 

a. A deterministic finite-state automaton (FSA) is associated with each 

node. The "state" of a node is a bit vector encoding the current state of its 

FSA. There is a fixed mapping between the (single-bit) signals appearing on 

the input and output wires of a node, and the inputs and outputs of its FSA. 

b. The state of a node is changed every time unit, i.e. its FSA undergoes 

one state transition per time unit. 

c. Logic nodes, repeater nodes, and receiver nodes are limited to 0(1) bits 

of state. 

d. Driver nodes have O(lg k) bits of state, one bit for each stage in their 

amplification chain. 

e. The state vector of a "k -bit" I/0 memory contains one bit for each of its 

assigned problem input and output bits. The assignment of problem bits to 

memories is one-to-one and is not data-dependent. 



f. There are O(lg k) bits in the state vector of each I/0 port attached to a 

k -bit memory; at most 0( 1) I/0 ports can be attached to each memory. 

The state vectors are used to address specific memory bits, as explained in 

Assumptions 4g and 4h. Two different ports may not access the same bit 

simultaneously. 

g. "RA.[\{-type" k -bit I/0 ports run a memory cycle every O(lg k) time units. 

During the first lg k time units of a cycle, the port receives a bit-serial 

address on its input wire. The next input signal is interpreted as a 

read/write indicator. If a write cycle is indicated, the following input signal 

is written into the addressed bit. During the last time unit of a memory 

cycle, the value of the addressed bit is available on the I/0 port's output 

wire. 

h. "Shift-register-type"· I/0 ports run a memory cycle every 0( 1) time 

units. During the first time unit of a cycle, the value of the currently

addressed data bit is available on the port's output wire. In the last time 

unit of a cycle, the signal appearing on the port's input wire is written into 

this data bit, then the port's address register is incremented (mod k ). 

Assumption 5: Area, time performance. 

a. The total area of a chip is the number of unit squares in the smallest 

enclosing rectangle. 

b. The area performance A of a chip is its total area divided by its degree 

of concurrency p. See Assumption 2a. 

c. The time performance T of a chip is the average number of time units it 

takes to solve any one of its p problem instances. 

3. Circuit Constructions 

This section presents thirteen constructions for sorting chips. Each will be 

briefiy described in its own subsection. First, however, we present a few useful 

building blocks. 

A serial comparison-exchange module can be built of 0(1) gates [Mor 79] in 

0(1) area. It has two bit-serial data inputs, A and B, and two bit-serial data 

outputs, max(A.B) and min(A,B). These inputs and outputs are serialized in a 

binary code, most-significant bit first. 

In some applications, two control lines are added to the comparison

exchange module. The four control states are: 1) unconditionally "pass-through" 



the two inputs; 2) unconditionally "swap" the two inputs; 3) send the larger of its 

two inputs to output #1: 4) send the smaller of its two inputs to output #1. These 

more complex modules can still fit in 0(1) area and produce two output bits 

every 0(1) time units. 

Comparison-exchange modules may be pipelined, as illustrated in Figure 1 

for the case of seven-bit words. Pairs of input values enter the module from the 

top, and move downwards through the array at the rate of one row per time unit. 

In each row, the circular element performs a comparison-exchange operation on 

one bit of the inputs; the square elements pass their inputs through unchanged. 

Information about the "direction" of the comparison-exchange for each pair of 

input values travels diagonally through the array, from one circle to the next. 

A pipelined comparison-exchange array for O(lg N)-bit words complete 

comparison-exchange operations in T = O(lg N) time units. The total area of 

the array as drawn is O{Zg 2N), and its concurrency is lg N. giving it an area 

performance of A = O(lg N). However, in most applications the square boxes 

can be deleted, since the input and output data is already "staggered." The 

total area of the circles is only O(lg N), so that the area performance of the 

pipelined comparison-exchange module can be as good as that of the non

pipelined module, A = 0(1). 

A third building block is the programmed control unit, or PCU. A PCU is 

used to generate a large number of control signals from a very small area. In 

the constructions below, entire sorting algorithms are encoded into 0(1) PCU 

instructions. Each instruction is O(lg N) bits long, and executes in O(lg N) time 

units. The instruction set includes branches, arithmetic operations (shifts, 

adds, and negations), tests, and register-register moves. A PCU has 0( 1) 

difl'erent registers. One of these registers is connected to the control lines of a 

comparison-exchange module. Another register is used to generate address and 

control signals for any I/0 ports in the vicinity. 

In the constructions below, the term "bit-serial processor" is used to denote 

the combination of a PCU, 0(1) I/0 ports, and a bit-serial comparison-exchange 

module. Each processor can fit into an 0(1)-by-O(Zg N) unit rectangle, and can 

perform one comparison-exchange operation every O(lg N) time units. 

"Word-parallel processors" are used to augment the performance of some of 

the designs. A word-parallel processor is constructed from a PCU, a pipelined 

comparison-exchange module, and O(lg N) I/0 ports connected to shift-register 

memories. There is probably no reason to use a parallel processor with a 



DATA INPUTS 
MSB LSB 

CONTROL 666666 INPUTS MSB COMPARE-
EXCHANGE 

DO D D 
DO 
DO 

ODD DO 
0 DO 

99999~ LSB COMPARE-
EXCHANGE 

DATA OUTPUTS 

Figure 1: A pipelined comparison-exchange module. 

random-access memory, under the model of this paper, since the delay of a 

serial processor matches the delay of a RAM - any further processor speed is 

useless. 

A word-parallel processor can perform one comparison-exchange operation 

every 0(1) time units, for its inputs are easily "staggered" in the manner 

required by its pipelined comparison-exchange module. Finally, a word-parallel 

proce:!sor fits into an 0(1)-by-O(lg N) units rectangle. It thus occupies the same 

area as does a serial processor, to within constant factors. 

Now we are ready to examine sorting circuits for VLSI. The designs are 

presented in order of increasing parallelism. 
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3.1. Uniprocessor Heapsort 

This is the smallest sorter imaginable. It has one bit-serial processor 

running a standard heapsort algorithm [Knu 73, pp. 145-149] on N words of data. 

Each comparison-exchange and each "random" access to the input data takes 

O(lg N) time, so a complete heapsort takes T = O(N lg 2N) units of time. The 

area performance of this design is A = O(lg N). 

Other fast sorting algorithms, such as mergesort or quicksort, could be 

used in a uniprocessor design. However, none would yield a better area *time2 

performance, since all require O(N lg N) random accesses to the processor's 

I/0 memory. 

3.2. (lg N)-processor Heapsort 

Heapsort can be parallelized on a linear array of lg N bit-serial processors, 

one for each level of the heap [Arm 78] (see Figure 2). The heap operations are 

pipelined: during an insertion (or deletion) a data element moves down (or up) 

the heap by one level every O(lg N) time units. The processor at the top of the 

heap handles one data element, the smallest one. The k th processor 

(~k <lg N) handles 2.c elements. Total sorting time is T = O(N lg N), and the 

total area is A = O(lg2N). 

3.3. (1+lg N)-processor Jlergesort 

The mergesort algorithm, like the heapsort, fits quite nicely on about lg N 

processors [Tod 78]. Two variable-length FIFO queues are associated with each 

processor; processor P.c (0:5.k~lg N) has two ~-word queues attached to its 

output lines. 

Referring to Figure 3, processor P.c (k >0) merges sorted lists of length zA:-l 

into sorted lists of length 2.c. It does this by placing the smaller of the elements 

at the head of its input queues onto the tail of one of its output queues. Once an 

entire output list of z.c elements is complete, the processor starts filling its 

other output queue. This process repeats as long as inputs are presented to the 

chip. 

Processor P 0 is a special case. It performs an especially simple 

computation. It merely "splits" its input stream into two, placing alternate 

elements onto its left-hand and right-hand output queues. These elements 

should be considered sorted lists of length 1. since they are "merged" into 
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Figure 2: The (lg N)-processor heap sort for N= 16. 

sorted lists of length 2 by processor P 1• 

The FIFO queues must be implemented with random-access memory 

circuits, since fixed length shift-register memories will not work properly. First 

of all, the FIFOs are variable in length, so special arrangements (and extra time) 

would be necessary to "jump over" unused shift-register cells. Furthermore, 

elements are not extracted from the FlFOs at a uniform rate. A "pop" operation 

occurs on a FIFO queue only when the element at the head of the queue "wins" a 

comparison, and is sent on to the next processor in the chain. 

Since random-access memory must be used, the best achievable data rate 

through a processor is one element every O(lg N) time units. This allows just 

enough time for one bit-serial random access and one bit-serial comparison. 
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Figure 3: The (1+lg N)-processor mergesort for N=8. 

{The modules can not be pipelined easily, since there is no way of knowing which 

data elements should next be compared until the previous comparison is 

completed and the appropriate FlFO is popped.) 

The time performance of the mergesorter is limited by the data rate of its 

individual processors. It takes O(N lg N) time units for all the input elements to 

clear the first processor, and another O(N lg N) time units for the elements to 

percolate through the O(N) words of internal FlFO storage. Total time for a sort 



is thus T::: O(N lg N). The total area of the design is A ::: O(lg 2N), since each of 

the 1 +lg N processors fits into an O(lg N} area rectangle. 

3.4. (lg N)-processor Bitonic Sort 

Superficially, this design is very similar to the previous one. Both designs 

contain about lg N processors, and the k th processor has about 2.c words of 

data in a FIFO queue. However, in this case, the k processors are connected in a 

"ring" rather than in a simple linear array. Also, the bitonic sort processors do 

not require random access into their I/0 memories: a simple 2.e-word FIFO 

queue is all that is required. See Figure 4. (This arrangement has been called a 

"cascade" when used to perform the FFT [Des 80].) 

The processors execute a bitonic sorting algorithm [Knu 73, p. 237]. For 

the purposes of this paper, this algorithm can be described as lg N iterations of: 

a distance-! operation, followed by a distance-2 operation, ...• followed by a 

distance-2.c operation, ... , followed by a distance-N I 2 operation. The total 

number of operations is clearly lg 2N. 

A distance-2.c operation is either a no-op or a comparison-exchange 

between all pairs of data whose indices differ only in the kth bit. Somewhat 

fewer than half of the operations are no-cps. 

Processor P,e (~k <lg N) performs only distance-2.e operations, pairing up 

the appropriate data elements using a 2.1: -word FIFO queue. Three patterns of 

data flow are sufficient. When it uses pattern number 1, processor P.c places the 

elements it receives from processor P.c _1 onto the back of its FIFO queue, and 

sends the elements that come oti the front of its queue to processor P.t+l· In 

pattern number 2, processor P11 does a comparison-exchange on the element at 

the front of its queue and the element it receives from processor P,e_ 1, sending 

the larger of the two to processor PJ:+ 1 and placing the smaller on the back of its 

queue. Pattern number 3 is the same as pattern number two, except that the 

smaller of the two elements is sent to the next processor and the larger is 

placed on the back of the queue. 

The only remaining problem is to define the control algorithm for setting 

the pattern numbers. In general, processor P.e executes pattern number 1 on 

the first leN elements it encounters. This corresponds to k iterations of the 

"no-op" operation on N elements. Next, it alternately fills its queue with new 

elements (by executing 2.e instances of pattern number 1) then performs 

comparison-exchanges (by executing 2.e instances of pattern number 2 or 3). It 
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executes pattern 2 on the second half of the j -th set of z.e +1 elements during the 

i-th iteration of its "distance-2k" operation on the N data elements 

(0 :S j < (lg N)/ (k +1), 0 :S i < lg N) whenever j DIV 2' is odd; otherwise it 

executes pattern 3 on the second half of this set of elements. 

The control algorithm is thus rather simple to program. Processor P;. 

requires three counters. The first one counts the iteration number i, 

incrementing after every N elements. Pattern number 1 is selected whenever 

i <k. The second counter keeps track of the sets of 2.C+l elements; while the top 

bit of this counter is zero, pattern number 1 is selected_ The third counter (for 

j, above) is incremented whenever the second counter overflows; as long as 

pattern number 1 hasn't been selected by the first two counters, the i-th bit of 

this third counter determines which of patterns 2 and 3 should be selected. 

The total area of the design is A = O(lg 2N), since there are lg N processors 

of lg N area each. If bit-serial processors are used, a distance-2.c operation 

takes O(N lg N) time. The processors can all work on dit!erent operations 

simultaneously, so that the lg N iterations in a complete bitonic sort take just 

T = O(N lg 2N) time. 

The area*time2 performance of the design may be improved by using word

parallel processors. Now each operation requires only O(N) time, if O(lg N) 

communication lines are provided between processors. Total time is 

T = O(N lg N); total area is still A = O(lg 2N). Note that this parallelized design 

requires O(lg 2N) I/0 ports, in order to pro".'i.de sufficient memory bandwidth to 

the FIFO queues. Also, portions of the control algorithm will have to be hard

wired, so that the three counters described above can be incremented in 0(1) 

time. 

It is interesting that the lg N processor heapsorter has exactly the same 

area and time performance as the lg N processor bitonic sorter, even though 

the heapsorter does not use parallelized comparators. The heapsort algorithm 

requires each of the lg N processors to make "random accesses" to their local 

memory. The extra time taken by these slower accesses is exactly balanced by 

the greater number of comparison-exchange operations required by the bitonic 

sorting algorithm. 

(Chung, Luccio, and Wong have also proposed a lg N-processor bitonic sort 

for a magnetic bubble memory system [CLW 80]. Their algorithm has an inferior 

time performance to the one described above, since only one of their processors 

is active at any time.) 
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Figure 4: The (lg N)-processor bitonic sorter for N=16. 



3.5. O(lgZN)-processor Bitonic Sort 

This design "unrolls" the lg N-processor bit.onic sort, so that each 

processor is responsible for only one distance-z.b operation. Since about half of 

the lg 2 N operations of the bitonic sort algorithm are no-cps, only about 

(112)lg 2N processors are required in this version of the algorithm. See Figure 

5. Each processor fits in an 0(1)-byO(lg N) unit rectangle, so the entire design 

occupies O(lg 3 N) area. 

A surprisingly large amount of time and FIFO storage area is saved by 

eliminating the no-cps when "unrolling" the bitonic sort on lg N processors. 

Since a distance-2; operation is implemented with zi words of FIFO storage, and 

since all but k of the distance-N ;z.e operations are no-cps, the total storage is 

"i.(Nk/Z.e), or a little less than 2N words. The problem solution time is 

proportional to the length of this pipeline, or T = O(N) if word-parallel 

processors are used. The area performance is half of its total area, A = O(lg 3 N), 

because the pipeline stores two problems at a time. 

The area•time2 performance of this design is a factor of lg N better than 

that of the previous design. To better understand this phenomenon, it is helpful 

to compare the performance of one O(lg 2N)-processor bitonic sorter with that of 

a collection of lg N (Lg N)-processor bitonic sorters. Both have the same 

amount of total area, and both solve lg N sorting problems in O(N lg N) time (if 

word-parallel processors are used). However, the O{lg 2N)-processor 

implementation solves each sorting problem with logarithmically less delay. 

3.6 . ...JN lg N -processor Bitonic Sort 

Chung, Luccio, and Wong have recently proposed implementing a bitonic 

sort on ...JN lg N processors in a linear array [CLW 80]. Here, each processor has 

vN /lg N words of shift register storage. It can run a serial bubble sort 

algorithm on its local store in somewhat less than O(N) time, if it uses word

parallel processors. Working together, the entire array performs anN-element 

sort in T = O(N) and A = o(v' N lg 3N ). 

According to the model of this paper, this approach is highly non-optimal in 

an AT2 sense. It is no faster, but much larger, than the lg 2N-processor bitonic 

sorting design. 



3. 7. (N /2)-processor Bubble Sort 

The familiar bubble sorting algorithm can be fully parallelized on a linear 

array of N 12 bit-serial (or pipelined) comparison-exchange modules [Muk 72, 

CLW 80]. Each module performs the following simple computation: of the two 

data elements it receives from its left- and right-hand neighbors, it sends the 

smaller to the left and the larger to the right. The array can be initialized in 

parallel with zeroes, then serially loaded with N data elements through the left

most module. If it is then "flushed out" by loading maximal elements through 

the left-most module, the N data elements will emerge from the left-most 

module in O(N) comparison times. 

The total area of the N /2-processor bubble sorter is A = O(N lg N). When 

bit-serial modules are used, each comparison takes O(Lg N) time, so 

T = O(N lg N). The time performance is improved if word-parallel modules are 

used: in this case, T = O(N). Even so, the combined area*time2 performance of 

the design remains dismal. According to the AT2 = O(N2) lower bound, a sorter 

with O(N Lg N) area should sort in about 0(..../N) time. The following subsection 

describes a sorter that nearly achieves this bound. 

3.8. N -processor Bitonic Sort on Mesh 

The bitonic sort can be adapted to run very efficiently on N bit-serial 

processors connected in a square mesh [N&S 79, Tho BOa]. Word-parallel 

connections are used in the mesh in order to speed up the movement of data 

over long distances. 

The operation of this algorithm is rather complicated and will not be 

explained here. It is su!!icient to know that the O(N lg 2N) comparison

exchanges in the bitonic sort require a total of 0( lg 3 N) of the N processors' 

time. However. it can take as much as 0(..../N) time to rearrange the data among 

the processors in preparation for the next comparison-exchange step. 

Fortunately, only a few of the comparison-exchange operations take this amount 

of time, so that the total time to sort N elements is only T = 0(..../N ). 

To achieve the time bound asserted above, it is necessary to move words of 

data from one processor to the next in 0(1) time. This is a little difficult to 

arrange, since the wires between neighboring processors are O(lg N) units long. 

The driver nodes of Assumptions 1f and 3c take O(lglg N) time to amplify a 

signal for a wire of this length. However, once a signal has been amplified, it can 

travel from one processor to the next along a chain of repeater nodes 

_{As:?_t1ffip_ti()!1_tb.L._'lJsip.g__this approach, cross-chio ~ornrnunicatioiJ takes onj.y __ ~---
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Figure 5: The (11 2)(lg N)(l+lg N)-processor bitonic sorter for N=8. 



0(.../N) time on an N-element mesh. (An earlier version of the N-processor 

bitonic sort on the mesh [Tho BOa] had a poorer time performance because it 

used driver nodes for all interprocessor communication.) 

The total area of the design is A = O(N lg 2N). Note that the N processors 

take up only O(N Lg N) area, but the word-parallel data paths between 

neighboring processors require more room in the asymptotic limit. 

(A more complicated sorting algorithm [Tho 77] will run on the mesh in the 

same asymptotic time and area. For large N, it may have a constant factor 

advantage in time but a constant factor disadvantage in area, due to the larger 

program required to control the processors.} 

3. 9. N -processor Bitonic Sort on Sh.utne-Exchange Net 

Stone notes that the bitonic sort is easily adapted to run on N bit-serial 

processors interconnected in the shuffle-exchange pattern [Sto 71]. If bit-serial 

interconnections are used, the O(N lg 2N) comparison-exchanges in the bitonic 

sort take a total of T = O(Lg 3 N) time, since N I 2 comparisons can be done at a 

time. The long-wire drivers and the comparison-exchanges introduce 

approximately equal delays into the computation. 

Given that this design sorts so quickly, it should not be surprising that it 

requires a lot of area. Otherwise, it would be a counterexample to the 

AT2 = O(N2Lg 2N) lower bound. An asymptotically optimal embedding of the 

shuffle-exchange graph has been recently obtained [KLLM 81, Leig Bla]. It 

requires area A = O(N2 1 Lg 2 N). 

The AT2 performance of this design is a little sub-optimal. Seemingly, the 

bitonic sorting algorithm makes too many long-distance data movements on the 

shut!le-exchange network. Some of these were avoided in the N -processor mesh 

design, because the "no-ops" were deleted. Perhaps the shuffle-exchange 

sorting design can be made more efficient by a similar trick. 

3.10. N -processor Bitonic Sort on CCC 

Preparata and Vuillemin [P&V 79] have shown that their "cube-connected 

cycles" interconnection pattern can run the bitonic sort algorithm as et!iciently 

as the shuffle-exchange pattern: A = O(N21 lg 2N), T = O(Lg 3N). Their network 

has the advantage of having a simple, asymptotically-optimal, layout; the 

asymptotically-optimal layout for the shuffle-exchange graph is much less 
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uniform. On the other hand. the bitonic sort algorithm for the CCC is somewhat 

more complicated than the bitonic sort on the shuffle-exchange. 

3.11. (N lg 2 N )-processor Bitonic Sort 

Batcher's bitonic sorting network [Muk 72, Knu 73, p. 237} can be laid out 

explicitly on a VLSI chip. Each of the (11 2)(lg 2N+lg N) parallel comparison

exchange operations is implemented by a row of N I 2 bit-serial comparison

exchange modules. " The bit-serial interconnections between the rows of 

comparators require more room than the comparators themselves, at least 

asymptotically. The wiring in front of the comparators doing a "distance-2.1: 

operation" takes up a 2.1: by N area of the chip; the total area occupied by the 

network is N ~ (Nk 1 2.1:) = O(N2), since there are k distance-N I 2-t comparison

exchange operations. 

The network is naturally pipelined with a concurrency of lg 2N, since there 

is about a word of storage in the long-wire drivers associated with most of the 

O(lg 2N) rows of comparators. Its area performance is thus its total area divided 

by its concurrency, A = O(N21 lg 2N). The delay experienced by each problem is 

T = O(lg 3N). Note that this area-time performance is the same as that of the 

two previous designs. The additional processors work on different problem 

instances, so they cannot speed up the computation of any single instance. 

An improvement can be made to the construction outlined above, leading to 

a better AT2 performance. There is no need for multiple stages of amplification 

at the outputs of the bit-serial comparators if the comparators themselves are 

"scaled up" to match the length of their output wires. Now the comparators for 

the distance-2.1: operation will each occupy 0(2A:) area. (The transistors in the 

comparators should all be oriented in the same direction, so that they have 

more current-driving capability when the comparator is "stretched" to fill an 

0(1)-by-0(2.1:) rectangle.) The total area is still O(N2): the enlarged comparators 

take up the space occupied by the long-wire drivers in the original construction. 

However, bits now travel from one row of comparators to the next in 0(1) time. 

The network has total delay T = O(lg 2N), concurrency O(lg N). and area 

performance O(N21 lg N). 

Vaughn Pratt recently pointed out to the author that shellsort can be 

implemented on either (lg 2N) or (N lg 2N) processors with the same area *time2 

performance as the bitonic sort. 



3.12. N2-processor Bubble Sort 

A final attempt can be made to optimize the bubble sort for VLS1, providing 

a dit!erent comparison-exchange module for each of the N 2 comparisons in a 

bubble sort on N elements [Knu 73, p. 224]. The resulting network is not very 

impressive. If built from bit-serial comparators, it occupies O(N2) area. Total 

delay through the network is T = O(N). and N /lg N problem instances will tit in 

it at any given time. Its area performance is its total area divided by its 

concurrency, A = O(N Lg N). Note that the same time performance can be 

obtained in a small fraction of this area with the Lg 2N -processor bitonic sorting 

design. 

When built of pipelined comparison-exchange modules, the N 2-processor 

bubble sorter occupies a total of N 2lg 2N area. Its concurrency increases to 

about N Lg N, giving it the same area performance as before, A = O(N Lg N). Its 

time performance worsens, becoming T = O(N lg N). 

3.13. (N 2)-processor Rank Sort 

Consider a square array of N 2 processors, interconnected in the following 

peculiar way. The N processors in each row are the leaves of a balanced binary 

tree; the internal nodes of the "row trees" provide communication paths 

between the root of the tree and its N "leaf" processors. Similarly, a "column 

tree" provides connections between the N processors in each column of the 

array. Each processor is thus a leaf node in two orthogonal trees. 

This network has been called by various names, including the "Orthogonal 

Tree Network" [Nat 81] and the "Mesh of Trees" [Leig 81a, Leig 81b]. Figure 6 

illustrates it for the case N=16. 

A brute-force sorting algorithm can be implemented on this network, as 

pointed out by the authors cited above. (Muller and Preparata [M&P 75] describe 

this algorithm without reference to the natural "shape" of the orthogonal tree 

network.) Each of the N inputs to a sorting problem can be presented to one of 

the root nodes of a row tree. The inputs are then broadcast to the leaves of the 

· tree, so that each processor in a row has a copy of that row's input. Next, the 

column trees come into play: the jth leaf processor of the jth column tree 

sends a copy of its input to its root. This value is broadcast downwards through 

the column trees. so that processor (i,j) now contains copies of two input 

values, input[i] andinput[j]. 
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Figure 6: The Orthogonal Tree Network for N=16. 

The next step in the sorting algorithm is to compute the ranks of the 

inputs. The ith row tree evaluates the rank of input i by "summing" the results 

of comparing input[i] with input[j]. To be more specific, processor (i,j) 

compares its two input values, sending a '1' up through its row tree if 

.mput[i] <input[j] or if (inpu.t[i] =input[j])and(i <j). These values are 

summed by the row trees. A moment's reflection should convince the reader 

that the sum of the values in row i is the rank of input[i], with ties being broken 

by the i < j calculation. The root of each row tree will have a different integer 

from the range of possible ranks, [O.N -1]. 



The input ranks are next broadcast to the leaf nodes of the row trees. 

F"mally processor (i,j) sends up the value of input [i] through its column tree if 

ra.nk [i] = j. (This operation is called a "selection" in the discussion 

immediately below.) The sorted values are now available at the roots of the 

column trees. 

It remains to establish the area and time complexity of this sorting 

procedure. Since broadcast, summation, and selection operations are involved 

on trees with N leaves, the best possible time performance is T = O(lg N). This 

performance is in fact achievable, but only with careful design. 

Observe that in Figure 6 the wires connecting nodes in the row and column 

trees are not all of the same length. The closer one gets to the root, the longer 

the wires; the wires double in length from one "level" of the tree to the next. 

This means that scaled repeater nodes (Assumptions 1h and 4c) should be used 

to form the internal nodes of row and column trees. The repeater node on the 

kth level of a tree (k =0 for the root) contains 0(1) gates scaled up to occupy an 

0(1)-by-D(N I z.t>-unit area. See Figure 7. 

Figure 7: A row tree, internal nodes drawn to scale. 

The functionality of the repeater nodes must be such to enable it to 

perform the tree operations alluded to above: broadcast, summation, and 

selection. These operations produce and consume lg N bit numbers; but each 

repeater node contains only 0(1) gates. The solution to t.his design problem is to 

use bit-serial logic. 

The summation operation is performed by having the internal nodes of the 

tree act compute one bit of the sum during each clock period. Each node adds 

up the two bits sent up to it by its children, adds the result to the contents of a 

local one-bit register "S" (S=O, initially), and sends the carry bit up to its 



ancestor. The sum bit is retained in each node's "S" register for a fixed amount 

of time, as described below. After lg N time periods have elapsed, all the 

carries have rippled up to the root node of the row tree, so that register "S" of 

this node contains the most significant bit of the sum. 

The other sum bits are computed by a similar process. The first wave of 

carries was initiated by the processors at the leaves of the tree, when they sent 

up a 0 or a 1 as the result of their comparison. Assume this occurs at time T=O. 

A second wave of carries can be initiated at time T=2 by the immediate 

ancestors of the leaf processors, if they send up the contents of their "S" 

register. Eventually, this will result in the root node being able to evaluate the 

second-most significant bit of the sum. (As a matter of fact, this bit will be 

available just one time unit after the most significant bit was computed.) In 

general, the k th-most significant bit of the sum is generated at the root of the 

tree at time k +lg N, as a result of the "S" register bits being released at time 

T=2k by the internal nodes at a distance k from the leaf processors. 

Of c curse, the root nodes of the row trees do not have room to store the 

entire lg N bits of a sum, for they have only 0(1) gates. Fortunately, they are 

not required to do so. The purpose of the summation operation is to set the 

stage for a "selection" operation on the column trees. The sum bits can thus be 

broadcast down through the row trees, as they are computed, so that each 

processor is informed of the rank of its input element. 

The circuitry for "selection" of one element from a column tree is quite 

straightforward. Barring logic errors, only one processor in each column tree 

will attempt to send its input value up to the root. It can do so in a bit-serial 

fashion; the other processors can send up zeros; and the internal nodes can 

compute the "or" of their two inputs. 

The entire sorting algorithm can thus be performed in O(lg N) time on N 2 

leaf processors of O(lg N) area, interconnected by orthogonal trees formed from 

about N lg N internal nodes of 0(1) gates apiece. Because the internal nodes 

must be enlarged as they near the root, each tree occupies O(N lg N) area. The 

total area of the circuit is thus A = O(N2lg 2N). Or is it? 

The observant reader will have already noticed that the long repeater nodes 

of Figure 7 will intersect each other in Figure 6, when both column and row trees 

are considered. This means that the transistors in the repeater nodes can not 

be laid out in a contiguous region. In fact, the root nodes of the trees will have 

O(N) units of transistor area which is intersected by O(N lg N) wires in the 



repeater nodes of the orthogonal trees. With this many crossings, it is inevitable 

that individual transistors in the repeater nodes will have to be "broken up" as 

they are enlarged for the higher reaches of the tree. The "broken" transistors 

will work in parallel to provide the required increase in current. (Unfortunately, 

this fragmentation brings us closer to the limits of the "logarithmic rule" for 

wire delay. The period of the system clock will undoubtably be determined by 

the performance of these broken transistors. Therefore the true time 

performance of this design will be somewhat worse than the O(lg N) figure 

claimed above, for the length of the clock period will increase as N increases.) 

Tom Leighton recently pointed out that it is not really necessary to have 

the long repeater nodes intersect each other in an O(N2lg 2N)-area layout of the 

orthogonal tree network. However, it is necessary to have O(N2lg 2 N) wire 

crossings in any layout of this network. 

4. Comparison of the Designs 

The area and time performance of the thirteen sorting circuits is 

summarized in Table 1, below. The entries in this table give the area and time 

performance of each of the designs of Section 3. As defuled in Section 2, the 

area performance of a design is its "processing" area divided by its concurrency. 

This metric is an indication of the power consumed per sorting problem. The 

time performance can be summarized as the elapsed time between the first 

input to the circuit and the last output from the chip for each sqrting problem. 

Table 1 shows that nearly all of the designs considered in this paper are 

within a factor of O(lgA= N) of being optimal in an area*time 2 sense. The sole 

exceptions are the bubble sorters and the ...J N lg N -processor bitonic sorter. 

Table 2 contains additional information about the sorters. The first entry 

for each design shows its concurrency, defined as the number of sorting 

problems that should be solved simultaneously to achieve the maximum possible 

"area performance." The second and third entries indicate the total area 

required by each design, broken down into "processor" and "memory" 

categories. One bit of memory occupies one unit of area; processor area is 

more dit!icult to characterize -- see Section 2. (For the purposes of this paper, 

processing circuitry communicates with memory circuitry only through I/0 

ports, as described in Assumptions 4-g and 4-h.} 

T'ne final column of Table 2 lists the processor-memory bandwidth in 

bits/(unit time). These entries are also equal to the number of I/0 ports 



Design Area Perf. Time Perf. I Area*Time2 

(Lower bound) - - n(N2) 

Uniprocessor lg N N lg 2N N 2 lg 5N 

lg N - proc. heapsort lg 2N N lg N N 2 lg 4N 

lg N - proc. mergesort lg 2N N lg N N 2 lg 4N 

lg N - proc. bitonic lg 2N N lg N N 2 lg 4N 

lg 2 N - proc. bitonic lg 3N N N 2 lg 3N 

v N lg N - proc. bitonic -J N lg 9N N N3 lg3/2N 

N I 2- proc. bubble N lg N N N 3 lg N 

N - proc. bitonic, mesh N lg 2N -..IN N 2 lg 2N 

N- proc. bitonic, S-E N 21 lg 2N lg 3N N 2 lg 4N 

N - proc. bitonic, CCC N 2/ lg 2N lg 5N N 2 lg 4N 

N lg 2N- proc. bitonic N 2/lg N lg 2N N 2 lg 3N 

N 2 - proc. bubble N lg N N N 3 lg N 

N2 - proc. rank sort N 2lg 2N lg N N 2lg 4N 

Table 1: Area-time bounds for the sorting problem. 

required by each design. Since problem inputs and outputs must pass through 

the processor-memory interface, it should not be surprising that the designs 

with high concurrency and/or good time performance must haye a large 

processor-memory bandwidth. What is a bit surprising is that all designs are 

within a factor of lg N of making optimal use of their I/0 ports. All keep their 

I/0 ports busy all the time, and all produce at least one bit of problem output 

for every lg N accesses to the bits in their memory circuits. Another 

interpretation of the processor-memory bandwidth figures is that no design 

makes tremendous use of its memory for temporary storage. 

Of course, a sorting circuit should not be selected just because it is 

asymptotically optimal. A circuit designer is interested only in actual speeds 

and sizes. Although the model of computation of this paper is not exact enough 

to permit such analyses, some statements can be made about the relative sizes 

and speeds of the designs. 

The smallest design is clearly the O(lg N) area uniprocessor. Somewhat 

surprisingly, this design is nearly area*time2 optimal if it is programmed to use 
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Total Area 

Design Concurrency I/0 B.W. 

I 
p M 

U nip roc essor 1 lg N N lg N 1 

lg N - proc. heapsort 1 lg 2N N lg N lg N 

lg N - proc. mergesort 1 lg 2N N lg N lg N 

lg N - proc. bitonic 1 lg 2N N lg N lg 2N 

lg 2N- proc. bitonic 2 lg 3N N lg N lg 3N 

"N lg N - proc. bitonic 1 N lg N N lg N lg N 

N I 2 - pro c. bubble 1 N lg N N lg N lg N 

N - proc. bitonic, mesh 1 N lg 2N N lg N VJ1 lgN 

N - proc. bitonic, S-E 1 N 2/lg 2N N lg N Nllg 2N 

N - proc. bitonic, CCC 1 N 2/lg 2N N lg N Nllg 2N 

N lg 2 N - pro c. bitonic lg N N2 N lg 2N N 

N 2 - proc. bubble N/lg N N2 N2 N 

N 2 - proc. rank sort 1 N 2lg 2N N lg N N 

Table 2: Other performance measures. 

any of the O(N lg N)-step serial algorithms. 

If more sorting speed is desired, the (lg N)-processor heapsort design 

becomes attractive. It requires almost exactly lg N times as much area as the 

uniprocessor design, since the processors and programs for the two designs are 

very similar. The design has the smallest possible delay of any sorter that 

receives its inputs in a single bit-serial stream, since the first output is available 

immediately after the last input has been received. (The N I 2-processor bubble 

sorter is the only other design considered in this paper that has this property. 

All others introduce at least an O(lg N) delay between the last input time and 

the first output time.) 

A major drawback of (lg N)-processor heapsorter is that it requires lg N 

independently addressable memories, one for each processor. The total 

memory-processor bandwidth increases proportionately (see Table 2) to lg N 

bits per time unit. 



The (lg N)-processo:r bitonic design bas about the same area and time 

performance as the (lg N)-processor heapsort design. The former has the 

advantage of a slightly simpler control algorithm, and it uses the simpler shift

register type of I/0 memory; the latter uses a more efficient sorting algorithm 

and hence less memory band>vidth. 

The (Zg 2N)-processor bitonic sorter is smaller than either of the (lg N) 

processor designs, for moderately sized N. Its control algorithm is extremely 

simple, so that a "processor" is not much more than a comparison-exchange 

module. Its major drawback is that it makes continuous use of 

(1!2)*(lg N)• (lg N- 1) word-parallel shift-register memories, of various sizes. 

The (..J N lg N )-processor bitonic sorter bas been entered in Table 2 with a 

total area of O(N lg N), so that there is room on the chip for all of its temporary 

storage registers. Otherwise, it would require ..J N lg N separate I/0 memories. 

It has the same speed and a somewhat better I/0 bandwidth than the (lg 2N)

processor bitonic sorter just discussed. However. the latter's shift registers 

could also be placed on the same chip as its processing circuitry, equalizing the 

I/0 bandwidth for the two designs. When "constant factors" are taken into 

consideration, the (..J N lg N )-processor design is clearly much larger than the 

(lg 2N)-processor design, because it has more processors and a much more 

complicated control algorithm. 

The (N /2)-processor bubble sorter has a couple of significant advantages 

that are not revealed in either Table 1 or Table 2. Its comparators need very 

little in the way of control hardware, so that at least for small N, it occupies less 

area than any of the preceding designs. Also, it can be used as a "self-sorting 

memory," performing insertions and deletions on-line. {The uniprocessor and 

the (lg N)-processor heapsorter can also be used in this fashion.) However, for 

even moderately-sized N, the bubble sorter's horrible area*time2 performance 

becomes noticable. For example, when N = 256, the (lg 2N)-processor's 36 

comparators and 491 words of storage probably occupy less room than the 128 

comparators in a bubble sorter. Nonetheless, the bubble sorter always 

maintains about a 2:1 delay advantage over the (lg 2N)-processor bitonic sorter, 

when similar comparators are used. 

The N -processor mesh-type bitonic sorter is the first design to solve a 

sorting problem in sublinear time. Unfortunately, it occupies a lot of area. 

Each of its processors must run a complicated sorting algorithm, reshuffling the 

data among themselves after every comparison-exchange operation. Its I/0 
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bandwidth musl also be large, since it solves sorting problems so rapidly. 

However, constant factor improvements may be made to its area and bandwidth 

tlgures, by reprogramming the processors so that each handles several data 

elements at a time. Also, large area and bandwidth are not always significant 

problems: in an existing mesh-connected multiprocessor, the N processors are 

already in place and the I/0 data may be produced and consumed by local 

application routines. 

The next three designs in Tables 1 and 2 are variants on a fully-parallelized 

bitonic sort. The shuffle-exchange processor has a slight area advantage over 

the CCC processor. because of its simpler control algorithm. However, the CCC 

is a somewhat more regular interconnection pattern. so that it may be easier to 

wire up in practice. Both designs are smaller in total asymptotic area than the 

(N lg 2N)-processor bitonic sorter, which solves lg N problems at a time. 

Nonetheless, the control structure of this last design is so simple that, as a 

rough guess. it takes less area than the others for all N < 220• (Of course, if a 

shuffle-exchange or a CCC processor has already been built, the additional area 

cost for programming the sorting algorithm is very smalL) 

There seems to be little to recommend the N 2-processor bubble sorter. It 

has the same I/0 bandwidth, a bit more total area, and a much worse time 

performance than the (N lg 2N)-processor bitonic sorter. 

Finally. the N 2-processor rank sorter can be characterized as being larger 

but not all that much faster than theN- and (N lg N)-processor bitonic sorters. 

Its chief interest is theoretical: it sorts in a minimal number, O(lg N), of gate 

delays. No other sorting circuit of equivalent time performance could possibly 

beat its area performance by more than a logarithmic factor or two. considering 

the theoretical limit of AT2 = O(N2). However, it remains an open question 

whether it is possible to build a T = O(lg N) sorter that occupies even a little 

less area. 

5. Closing Remarks 

At the time of this writing, there are a number of important open questions 

in VLSI complexity theory. A simply stated, but seemingly perplexing problem. 

is to find out how much area can be saved when additional "layers" of wiring are 

made available by technological advances. It is known that a k-level embedding 

can be no smaller than 1/ k 2 of the area of a two-level embedding [Tho BOa, pp. 

36-38], but it is not known whether this bound is achievable. (Some results on 



k-level embedding have been obtained recently [Res 81].) 

A second problem is to derive matching upper and lower bounds for the 

area*time2 complexity of the sorting problem. The best upper bound is 

AT2 = O(N 2lg 2N), achieved by t.he N-processor bitonic sort on a mesh. The best 

lower bound is O(N2) [Vui 80], which leaves a gap of O(lg N). The gap can be 

closed by adding the assumption that all lg N bits of each input value are read 

in through a single I/0 port [Tho BOa]. (The current model allows the bits of 

each input value to be read in through d.it!erent ports.) It seems probable that 

the AT2 = O(N2 lg 2 N) result for word-oriented I/0 can be extended to handle the 

less restrictive model of this paper. On the other hand, it is conceivable that 

such a bound is impossible because of the existence of some yet-to-be

discovered sorting circuit with an AT2 performance better that that of the 

bitonic sort on the mesh. 

Another set of problems is opened up by the fact that the area *time2 

bounds are at!ected greatly by nondeterministic. stochastic, or probabilistic 

assumptions in the model. For example, equality testing is very easy if one only 

requires that the answer be "probably" correct [Yao 79, L&S 81]. 

A final and very important problem in VLSl theory is the development of a 

stable model. Currently there are almost as many models as papers. If this 

trend continues, results in the area will become difficult to report and describe. 

However, it is far from settled whether wire delays should be treated as being 

linear or logarithmic in wire length, and the costs of off-chip communication 

remain unknown. 
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